Biogeosciences Discussions

Soil CO₂ efflux from two mountain forests in the Eastern Himalayas Bhutan: components and controls

- 3 4
- 5 Norbu Wangdi^{1,2}, Mani Prasad Nirola^{1,4}, Mathias Mayer¹, Norbu Zangmo², Karma Orong², Iftekhar
- 6 Uddin Ahmed¹, Andras Darabant¹, Robert Jandl³, Georg Gratzer¹, Andreas Schindlbacher³
- 7 ¹Institute of Forest Ecology, University of Natural Resources and Life Sciences, 1180 Peter Jordan Strasse, Vienna, Austria
- 8 ² Ugyen Wangchuck Institute for Conservation and Environmental Research, Department of Forests and Park Services Lamai Goempa, Bumthang, Bhutan
- 9 ³Federal Research and Training Centre for Forests, Natural Hazards and Landscape BFW, A-1131 Vienna, Austria
- 10 ⁴National Biodiversity Center, Ministry of Agriculture and Forests, Thimphu, Bhutan
- 11 Correspondence to: Norbu Wangdi (norwangs@gmail.com)
- 12

13 Abstract

14 The biogeochemistry of mountain forests in the Hindu Kush-Himalaya range is poorly studied although climate change 15 is expected to disproportionally affect the region. We measured the soil CO₂ efflux (Rs) at a high elevation (3260 m) 16 coniferous, and a lower elevation (2460 m) broadleaved forest in Bhutan, eastern Himalayas, during 2014 and 2015. Both 17 sites experienced typical monsoon weather (cold-dry winters, warm-wet summers) during the study. Trenching was 18 applied to estimate the contribution of autotrophic (Ra) and heterotrophic (Rh) soil respiration. The temperature (Q_{10}) 19 and the moisture sensitivities of Rh were determined under controlled laboratory conditions and were used to model Rh 20 in the field. The higher elevation coniferous forest had a higher standing tree stock, reflected in higher soil C stocks and 21 basal soil respiration (R_{10}). Rs was similar between the two forests (2015: 14.5 ± 1.2 t C yr⁻¹ broadleaved; 12.8 ± 1.0 t C 22 yr¹ coniferous). Modelled annual contribution of Ra was ~ 45% at both forests with a low autotrophic contribution during 23 winter and high contribution during the monsoon season. Ra, estimated from trenching, was lower and highly variable, 24 indicating that trenching poorly performed at these forests/soils. Rs neatly followed the annual course of soil temperature 25 (field Q_{10} between 4 and 5) at both sites. Co-variation between soil temperature and moisture likely was the main cause 26 for the high Q_{10} obtained from field Rs. Temperature sensitivity of Rh was lower ($Q_{10} \sim 2.3$ at both sites). Under the 27 preceding weather conditions, a simple temperature-driven model was able to explain more than 90% of the temporal 28 variation in Rs. To predict and understand how Rs responds to infrequently occurring extreme climate conditions such as 29 monsoon failures, however, longer Rs time series are required for a better integration of interactions between soil 30 temperature, moisture, Ra and Rh.

31

32 Keywords: Himalaya, soil CO₂ efflux, autotrophic soil respiration, heterotrophic soil respiration, incubation,

33 temperature sensitivity, moisture sensitivity

34 25	1 Introduction
35 36	Carbon dioxide (CO ₂) efflux from soil (= soil respiration; Rs) is one of the major fluxes in the global C cycle, affects
37	atmospheric CO ₂ concentrations and feeds back on global climate change (Schlesinger and Andrews, 2000;
38	Reichstein et al., 2003; Hashimoto et al., 2015). Counteracting to C uptake via photosynthesis, Rs primarily
39	determines whether forest ecosystems serve as C sink or source to the atmosphere (Dixon et al., 1994; Schlesinger
40	and Andrews, 2000; Bolstad et al., 2004). The current function of forests as global C sink (Janssens et al., 2003;
41	Stocker, 2014) could weaken or even turn into the opposite if climate change disproportionally accelerates respiratory
42	processes such as Rs (Cox et al., 2000). Rs consists of an autotrophic component (Ra; root and rhizosphere
43	respiration), which is closely linked to C gain by photosynthesis and a heterotrophic component (Rh), which is the
44	respiratory product of soil organic matter (SOM) decomposition. While the source of Ra is recently assimilated CO ₂ ,
45	Rh can release stored soil C to the atmosphere. For better prediction of the response of forest C cycling to climate
46	change, it is crucial to understand how Rs and its components are affected by changing environmental parameters
47	such as temperature and moisture (Davidson and Janssens, 2006). Rates and climate sensitivity of Rs, Ra and Rh can
48	vary among forest ecosystem type and climatic region (Hashimoto et al., 2015). So far, research has primarily focused
49	on the temperate and boreal areas of the northern hemisphere and remote forested areas are still largely uninvestigated
50	(Bond-Lamberty and Thomson, 2010). The Hindu Kush-Himalaya range represents a region, where research on forest
51	biogeochemistry is gaining momentum (Ohsawa, 1991; Wangda and Ohsawa, 2006a; Pandey et al., 2010; Sharma et
52	al., 2010b; Verma et al., 2012; Sundarapandian and Dar, 2013; Dorji et al., 2014b; Tashi et al., 2016). It extends over
53	4.3 million km ² across eight countries with an average forest cover of approximately 20 % (Schild, 2008), ranging
54	from lowland tropical forest to high altitudinal forests up to ~ 4900 m (Schickhoff, 2005; Liang et al., 2016). Situated
55	in the south-eastern range of the Himalayas, Bhutan shows a forest cover of 70 % (DoFPS, 2011). Most forests in
56	Bhutan are natural old growth (Ohsawa, 1987), store high amounts of C in biomass and soil (Sharma and Rai, 2007;
57	Dorji et al., 2014a) and serve as an important regional C sink (FAO, 2010). As climate change is expected to intensify
58	in the Himalaya region (Xu et al., 2009; Tsering et al., 2010; Singh, 2011; Shrestha et al., 2012; Xu and Grumbine,
59	2014), the effects on forest C cycling could have implications not only regionally, but also on a global scale.
60	With the objective of a better understanding of soil C cycling of mountain forest ecosystems of the eastern
61	Himalayas, we studied Rs, its components (Ra, Rh), as well as the effects of environmental drivers such as
62	temperature and moisture at a high altitude cool temperate conifer forest and a lower altitude cool broadleaved forest
63	in Bhutan. We hypothesized that (I) overall rates of Rs were higher at the lower elevation and correspondingly
64	warmer broadleaved forest site. As precipitation was expected to be non-limiting during the growing season (~
65	monsoon season), we further hypothesized that (II) the seasonal course of Rs was mainly driven by soil temperature.
66	The contribution of Ra was expected to be lowest during the cold and dry winter and to significantly increase during
67	the growing season. We further expected that water logged soil showed decreased Rs during peak monsoon.

- 68 2 Materials and methods
- 69

70 2.1 Site description71

Two representative forest ecosystems for the eastern Himalayas (Wikramanayake, 2002), a cool temperate mixed 72 73 coniferous forest and a cool temperate broadleaved forest, were studied at Thimphu and Wangduephodrang districts, 74 Bhutan. The cool temperate mixed coniferous forest (Grierson and Long, 1983) was situated on a south-east facing 75 slope close to the top of a mountain ridge (elevation 3260 m a.s.l). The cool temperate broadleaved forest was situated 76 on an east facing gentle slope along the same mountain ridge ~ 11 km eastwards (elevation 2640 m a.s.l.). Sites will 77 be referred to as "coniferous forest" and "broadleaved forest" in the further text. The coniferous forest was dominated 78 by Tsuga dumosa along with Picea spinulosa, Quercus semecarpifolia, Abies densa, Acer campbelli and Taxus 79 baccata. The broadleaved forest was dominated by Quercus lanata and Quercus griffithii. Soils at the coniferous 80 forest were Cambisols. Soils at the broadleaved forest were Luvisols. A detailed site and soil description and the 81 comparison are given in Table 1. The current study was aligned within a larger-scale throughfall manipulation 82 experiment, which consisted of control and temporarily roofed areas within each forest type. For this study, we 83 randomly distributed all our plots within the control areas (~ 1500 m² each) of the throughfall manipulation 84 experiment.

85

86 2.2 Field measurements

87

Basic climate parameters were measured using automatic weather stations located at a distance of approx. one
kilometer from the sites at the same elevation. Data was recorded at 15 min intervals on a Decagon-EM50 data logger
(Decagon Devices Inc., Pullman, WA, USA). The automatic weather stations recorded precipitation with an ECRN100 rain gauge (Decagon Devices Inc., Pullman, WA, USA), and air temperature and relative humidity with a VP3 vapor pressure, temperature and relative humidity sensor (Decagon Devices Inc., Pullman, WA, USA).

93 Stand and soil inventories were carried out in March and April 2014 at both forest types covering an area of ~ 1500 m^2 94 each. The location, height and the diameter at breast height of all trees having a dbh > 10 cm were assessed. The 95 basal area was calculated for each tree species. Standing volume was estimated based on species specific volume 96 equations developed by Paul Lawmans (1994), Forest Survey of India (1996) and Department. of Forests and Park 97 Services, Bhutan (2005). Aboveground litter-fall was collected monthly (since December 2014) using mesh-traps (n 98 = 10) per site, with an area of 1.0 m² (100 × 100 cm). Litter was dried at 80 °C and the C content was assumed to be 99 50 % of the dry weight (de Wit et al., 2006). Soil samples were collected from the 0-10, 10-20 and 10-30 cm mineral 100 soil layers of four locations at both sites in May 2014. Soil samples were sieved (2 mm) and dried (105 °C, 48 h). 101 Soil organic C (SOC) of a grinded (Pulverisette 5, Fritsch, Germany), 0.1 g subsample was measured by means of 102 the dry combustion technique using a CN Analyser (TruSpec® CN, LECO Inc., Michigan, USA). Soil organic C 103 stocks (t ha⁻¹) were calculated for each horizon by multiplying the SOC concentration (%) by the bulk density (g cm 104 ⁻³) and the depth of the horizon (cm). Samples from the forest floor layer were collected in September 2015 and SOC 105 contents were determined as described above.

106 Rs was measured regularly in the two forest types (coniferous, broadleaved) once every three weeks, from May 2014 to December 2014 and from April 2015 to December 2015. We randomly set 10 plots (n = 10) at each forest type for 107 108 Rs measurements. To cover the within-plot variability, Rs was measured at four positions within each plot (total 40 109 positions per site). We used a portable infrared gas analyzer (EGM-4, PP-Systems, Amesbury, USA) with an attached 110 soil respiration chamber (SRC-1, PP-Systems, Amesbury, USA) for Rs measurements. In spring 2015 we installed 111 four permanent collars (total height 5 cm, 2-3 cm inserted into the soil, diameter 10 cm) at each plot which served as 112 a base for Rs measurements thereafter. Due to logistic reasons, collars were not available in 2014. During the 2014 113 season, the SRC-1 chamber was directly placed on the ground surface and slightly pressed into the soil to produce 114 sufficient sealing during Rs measurements. Rs was estimated by a linear fit to the increasing headspace CO₂ 115 concentration over time (chamber closure time 90 seconds). A soil respiration measurement campaign lasted for ~ 116 5 h at each site. Measurement order among plots and collars was fully random to avoid any error from temporal 117 variations in Rs. 118 We installed two trenching plots at each site in 2014 to estimate the relative contributions of Ra and Rh. Two

additional trenching plots per site were installed in 2015 to increase replication. Trenches (1.5 x 1.5 m squares) were
dug down ~ 1 m, and all the roots within the trenches were cut. The trenches were sealed with double layered plastic
foil in order to restrict tree root ingrowth. Adjoining to each trenched plot, a corresponding control plot of the same

size was established. Each trenched and control plot hosted three collars for Rs measurements.

123 Volumetric soil water content (0 - 20 cm soil depth) was measured in the center of each plot using a portable Field 124 Scout TDR meter (Spectrum Technologies, Inc. Aurora, USA) during Rs measurements. Soil temperature at 5 cm 125 soil depth was measured with a handheld thermometer probe (Hanna Instruments, Germany) at each Rs measurement 126 location during 2015. For 2014 only soil temperature records from permanently installed sensors were available. Soil temperature and soil moisture were measured continuously at soil profile pits (two pits per forest type) with five 127 128 combined soil temperature- moisture sensors (TM-5; Decagon Devices, Inc., Pullman, WA, USA) at soil depths 129 ranging from 5 to 120 cm. Data was recorded at 15 min intervals on Decagon-EM50 data loggers (Decagon Devices, 130 Inc., Pullman, WA, USA).

131

132 2.3 Laboratory incubation

133

134 About 500 g of mineral soil (0-10 cm depth) and approximately 250 g of forest floor material were sampled at six 135 random locations (n = 6) at each forest type in mid of September 2015. The mineral soil was homogenized and sieved 136 (2 mm mesh) and stored at 4 °C, at field moisture for one week prior to transport from Bhutan to Austria for further 137 processing. Forest floor material was not sieved. Upon arrival in Austria, samples from mineral soil were further 138 divided into 3 sub-samples to account for potential soil heterogeneity at the individual sampling locations. Samples 139 were filled into 200 cm³ stainless steel cylinders at approximate field bulk density (~ 0.5 g dry weight cm⁻³ for mineral 140 soil; ~ 0.1 g dry weight cm⁻³ for forest floor). In total, we incubated 36 sub-samples (cylinders) for mineral soil and 141 12 sub-samples for the forest floor. Filled cylinders were kept at 4 °C for 5 days for equilibration before incubation. 142 During incubation, CO₂ efflux (= Rh) was measured using a fully automated incubation system. Samples were put

143 into 2 l containers and their CO₂ efflux was determined by a dynamic closed - chamber system (Pumpanen et al., 144 2009). For CO₂ measurements, containers were sequentially connected to an infrared gas analyzer (SBA-4, PP 145 Systems International Inc., Amesbury, MA, USA) by means of a tubing system. In the meanwhile, disconnected 146 containers were ventilated in order to prevent internal CO2 enrichment. CO2 concentration within connected 147 containers were measured for 6 minutes with a recording interval of 10 sec. Rates of CO₂ efflux were calculated from 148 the headspace CO_2 increase during 2-6 minutes, after Pumpanen et al. (2009). Incubation proceeded in two steps. We first incubated at different soil temperatures to assess the temperature 149 150 sensitivity of Rh. In a second step, we incubated under different soil moisture contents to assess the sensitivity of Rh 151 to changes in soil moisture. In addition, we repeated the temperature-runs with wet (140 % Grav.) and dry (30 % 152 Grav.) soil in order to test for effects of soil moisture on the temperature sensitivity of Rh. 153 Temperature-incubation started with mineral soil. Soil temperature was increased from 5 °C until 25 °C in 5 °C steps, 154 with each temperature step lasting for 6 h. At each temperature step, efflux measurements were repeated three times 155 for each cylinder; to account for a warm up period between the individual temperature steps only a calculated mean 156 value of the latter two measurements was used for further analysis. After finishing the temperature run, we re-157 measured Rh at 10 °C to assess and correct for potential effects of labile C loss during the ~ 30 h incubation. The 158 forest floor was incubated under the same procedure as mineral soil. 159 After the temperature-incubations, we set soil moisture of all mineral soil sub-samples to 80 % (gravimetric), 160 incubated at constant 15 °C for 6 h and measured Rh as described above. Afterwards, the three sub-samples from 161 each sampling location were split into (i) a sub-sample was kept at constant soil moisture (80 % Grav.), (ii) a sub-162 sample was allowed to dry out (60 %, 40 % and 20 % Grav.), and (iii) a sub-sample was progressively watered (100 163 %, 120 % and 140 % Grav.). In-between repeated incubations (all at 15 °C for 6 h) cylinders were stored at 4 °C. 164 The whole moisture-incubation procedure lasted for 10 weeks with ~ two-weekly intervals between incubations (time 165 limiting step was soil drying). We used Rh from the sub-samples which had been kept at constant moisture to correct 166 for potential decreases in Rh due to a loss in labile C throughout the experiment. After finishing incubations, samples 167 were dried and actual bulk density, as well as gravimetric and volumetric soil moisture of each sub-sample (cylinder), 168 was calculated and their total C content was determined (TruSpec® CN, LECO Inc., Michigan, USA). Rh rates were

169 expressed as μ mol CO₂ kgC⁻¹ s⁻¹.

170 3 Data analysis

171

Effects of forest type on field Rs, soil temperature and moisture were tested by means of repeated-measures ANOVA
with a mixed-effects model structure (Pinheiro and Bates, 2000) separately for each year. The significance level for
this and all other analyses was set at P < 0.05. The relationship between field soil temperature and Rs was fitted by
an exponential function (Janssens and Pilegaard, 2003):

177
$$R = R_{10} \times Q_{10}^{(T-10)/10}$$
 (1)
178

179 where R (μ mol CO₂ m⁻² s⁻¹) is the measured Rs, T (°C) is the soil temperature at 5 cm depth, R_{10} (μ mol CO₂ m⁻² s⁻¹) 180 is the Rs rate at 10 °C and Q_{10} is the apparent temperature sensitivity (Rs change with a proportional change of 10 °C 181 in soil temperature). Equation (1) was fitted to the individual plot data for 2014 and 2015 separately for calculating 182 O_{10} and R_{10} . One sampling date (2015 Jul 16) was excluded from this analysis because heavy rain occurred during 183 measurements. The relationship between Rs and soil moisture was tested by linear regression analyses. To investigate 184 the influence of both, soil temperature and soil moisture on Rs, and to account for a possible correlation between 185 these variables, we used a structural equation modelling approach (Grace, 2006). To consider an exponential relation 186 between soil temperature and Rs, the latter was log transformed prior to analysis. Data from both years were 187 incorporated in this analysis. 188 Cumulative annual Rs of both sites and both years were calculated by linear interpolation of field Rs between 189 measurement dates of each individual plot (the area beneath the curves in Fig. 1 d). In addition, model parameters of 190 Eq. (1), together with daily field soil temperatures at 5 cm depth were used to calculate daily field Rs. To account for 191 a spatial variation in soil temperature, continuously measured data were adjusted to discontinuously measured plot-

data by linear modelling. Cumulative annual Rs rates were calculated by averaging the summed-up daily plot Rs
values. Since full season Rs data and continuous soil temperature data were only available for 2015, annual Rs sums
were only determined for 2015 using this approach.

195Average Rh rates from laboratory incubations were calculated for each site, soil horizon (mineral soil, forest floor)196and temperature step $(5 - 25 \,^{\circ}\text{C})$, respectively. Equation 1 was fitted to the temperature-incubation data to determine197 Q_{10} and R_{10} of Rh. To determine the relationship between soil moisture and Rh, we fitted a Gaussian function to the198moisture-incubation data:

199

200
$$R = \beta_0 + \beta_1 e^{(-0.5 \left(\frac{VWC - \beta_2}{\beta_3}\right)^2)}$$
(2)

201

202 where R is the measured CO₂ efflux from soil samples (Rh), β i are model coefficients and VWC is the volumetric 203 water content of the samples. This specific function showed the best fit when compared to a set of other response 204 functions tested.

We followed two approaches to estimate the contribution of Ra and Rh in the field. In a first approach, we used the
trenching data, assuming that the CO₂ efflux from the trenched plots represented solely Rh, while the CO₂ efflux
from adjacent control plots represented Rs, and accordingly, the difference between trenched and control plot CO₂
efflux represented Ra. As trenched plots lack water uptake by tree roots, they were regularly wetter than control plots.
We accounted for that by correcting the soil CO₂ efflux for the difference in soil moisture by using Eq. (2).

210 In a second approach, we applied the response functions of Rh which we had derived during laboratory incubations 211 together with field soil C stocks and field climate data. This allowed an alternative way to estimate the contribution 212 of Rh in the field (Gough et al., 2007; Kutsch et al., 2010). Equation (1) and Eq. (2) of each site and soil horizon 213 were combined:

214

$$215 \qquad R = f(T) f(VWC)$$

(3)

216

217	in order to account for both a Rh response to temperature $(f(T))$ and moisture $(f(VWC))$. The moisture term in Eq.
218	(3) was rescaled to relative Rh rates between 0 and 1 (Fig. S1). For that, Eq. (2) was used to predict Rh for a moisture
219	range between $10 - 70$ Vol.%. Predicted Rh rates were then scaled to the asymptote of the curve which represents a
220	maximum Rh rate. Since no specific moisture response function was obtained for the litter layers, we applied the
221	same parameters as for mineral soil, combined with R_{10} and Q_{10} parameters for the litter layer. In a second step,
222	model parameters derived from Eq. (3), together with continuously measured temperature and moisture data from 5
223	cm soil depth were used to model daily Rh from the litter layer and from the mineral soil in $0-10$ cm depth
224	respectively. Model parameters for mineral soils together with continuous measurements of soil temperature and
225	moisture in 20 cm depth were further used to model daily Rh from the mineral soil in $10 - 30$ cm depth. In the last
226	step, predicted Rh rates (μ mol CO ₂ kgC ⁻¹) were multiplied by the C stocks (kg C m ⁻²) of the respective soil layer,
227	which enabled us to upscale Rh to the whole soil profile in the field (Kutsch et al., 2010).

229 230	4. Results
231	Air and soil temperatures were ~ 4° C higher at the lower elevation broadleaved forest (Table 1) with a stable trend
232	throughout both study years (Fig. 1). Air temperatures reached a maximum of 29.6 $^{\circ}$ C and 22.6 $^{\circ}$ C at the broadleaved
233	and coniferous forest, respectively. Winter air temperatures dropped slightly below freezing at the coniferous forest
234	which showed ephemeral snow cover. Soil temperatures remained above freezing at both sites during the full study
235	period (Fig. 1). Precipitation was higher at the coniferous forest (coniferous 883 mm; broadleaved 688 mm) during
236	precipitation measurements in 2014 (12th Jun - 31st Dec). Annual precipitation in 2015 was similar at both forest
237	types (coniferous 1167 mm, broadleaved 1120 mm). Both sites received the maximum rainfall (60-75 % of annual
238	precipitation) during the peak monsoon months (Jun, Jul and Aug). Soil moisture remained at a similar range (~ 40
239	Vol. %) at both sites during the summer of 2014, whereas soil moisture was significantly higher at the broadleaved
240	forest during summer 2015 (Fig. 1). During the dry season (Nov - Apr), manually measured soil moisture decreased
241	to < 20 Vol. % at both sites. Continuous soil moisture records indicated accelerated drying at the broadleaved forest
242	(Fig. 1).
243	Aboveground and below ground C stocks were markedly higher in the coniferous forest (Table 1). Standing volume
244	was 1066 and 464 m^3 ha ⁻¹ , at the coniferous and broadleaved forest, respectively. Mineral soil organic C stocks down
245	to 30 cm soil depth were 127 and 91 t ha ⁻¹ and leaf litter inputs (2015) were 3.5 and 3.4 t C ha ⁻¹ at the coniferous and
246	broadleaved forest, respectively. Fine root biomass (0-30 cm mineral soil) was lower at the coniferous forest (2.3 t C
247	ha ⁻¹) when compared to the broadleaved forest (3.2 t C ha ⁻¹).
248	Rs did not differ significantly among the two forest types during both years. Rs was generally higher during 2014
249	(mean Rs broadleaved: 6.7 \pm 1.2 μmol CO ₂ -C m ⁻² s ⁻¹ , coniferous: 5.6 \pm 0.9 μmol CO ₂ -C m ⁻² s ⁻¹) than during 2015
250	(mean Rs broadleaved: $4.2 \pm 0.7 \mu mol CO_2$ -C m ⁻² s ⁻¹ , coniferous: $4.0 \pm 0.6 \mu mol CO_2$ -C m ⁻² s ⁻¹). This difference was
251	not explained by soil climate, nor did we observe any variations in specific above ground dynamics or in litter input
252	during the two study years. We, therefore, attribute the higher Rs rates in 2014 to the methodological differences in
253	Rs measurements. In 2014, Rs was measured without the use of base-collars by inserting the soil respiration chamber

into the soil surface. Chamber insertion could have pumped CO₂ out of the soil thereby overestimating Rs. We
therefore only refer to the cumulative annual Rs from 2015 for further site comparison. Cumulative annual (2015)

256Rs were 14.3 ± 0.5 t C ha⁻¹ for broadleaved and 13.0 ± 0.5 t C ha⁻¹ for the coniferous forest when calculated by linear257interpolation between measurement dates. These values were very close to the ones obtained by the modeling258approach (Eq. (1)), (14.5 \pm 1.2 t C ha⁻¹ for broadleaved and 12.8 ± 1.0 t C ha⁻¹ for coniferous forest) and indicate that

a three-week measurement interval is sufficient to explain most of the temporal variability in Rs. Rs showed a higher
spatial variability at the coniferous forest (21 - 87 % CV) than at the broadleaved forest (23 - 46 % CV). Between 89

and 96 % of the annual temporal variation in measured Rs could be explained by field soil temperature (Eq. 1, Fig.
2). Q₁₀ values of Rs ranged between 3.95 and 5.03 (Fig. 2). Rs showed a weak linear relationship with soil moisture

263 at the broadleaved forest, whereas there was no significant correlation between Rs and soil moisture at the coniferous

264 forest (Fig. 2). For both sites structural equation modelling revealed a strong influence of soil temperature on Rs, bu

264 forest (Fig. 2). For both sites structural equation modelling revealed a strong influence of soil temperature on Rs, but 265 no influence of soil moisture (Fig. 3). At both sites, soil temperature and moisture were strongly correlated with each

other during both years (Fig. 3).

267 Laboratory incubations showed a strong positive, exponential, relationship between soil temperature and Rh (Fig. 2). 268 Temperature sensitivity of mineral soil Rh was similar among forest types (coniferous $Q_{10} = 2.32$, 269 broadleaved $Q_{10} = 2.36$; Fig. 2) and slightly lower for forest floor material (coniferous $Q_{10} = 1.97$; 270 broadleaved $Q_{10} = 2.28$). Q_{10} values of dry soil (coniferous, 1.59; broadleaved, 1.60) were significantly lower than 271 Q_{10} from the soil which had been kept at intermediate moisture content (P < 0.05, Table 2). Q_{10} values obtained from 272 dry and wet soil did not differ significantly among the two forest sites (Table 2). Rh and soil moisture showed a 273 unimodal relationship with highest rates of Rh at intermediate soil moisture (35 - 45 % Vol.) and decreasing rates at 274 lower and higher moisture levels (Fig. 2). Soil from both forest types responded overall similarly to changes in soil 275 moisture. Coniferous forest soil showed a slightly sharper decrease in Rh at lower and at higher soil moisture (Fig. 2). 276 Plots which had been trenched in spring 2014 indicated an average autotrophic contribution of 24 and 30 % at the 277 coniferous and broadleaved forest during the 2015 season, respectively (Fig. 4). The additional plots, which had been 278 trenched during spring 2015, did not produce any meaningful Ra values, as the trenched plots showed similar or even 279 higher CO₂ efflux rates than the untreated control plots. 280 Modelled Rh (Eq. 3) was slightly lower than field Rs during the cold season (Fig. 4). The gap between Rh and Rs 281 (measured and modelled) became larger during the growing season, implying highest contribution of Ra during the 282 warm monsoon months at both sites (Fig. 4 and 5). The modelling approach yielded generally higher annual 283 autotrophic contribution (Ra = 43 %, coniferous, 45 % broadleaved) when compared to the trenching experiment. At 284 the broadleaved forest, a larger fraction of Rh was attributed to the 0-10 cm mineral soil layer, whereas all three 285 layers (organic, 0-10, and 10-30) contributed similarly to Rh at the coniferous forest (Fig. 5). Modelled cumulative 286 annual (2015) Rh and Ra were 7.3 and 5.5 t C ha⁻¹ at the coniferous and 8.0 and 6.5 t C ha⁻¹ at the broadleaved forest

287 respectively.

288	5. Discussion
289	Our hypothesis, that Rs was higher at the lower elevation broadleaved forest site was not confirmed although soils
291	had been consistently about 4°C warmer than at the higher elevation coniferous forest. Annual Rs was similar among
292	both forest types $(12.8 - 14.5 \text{ t C ha}^{-1})$ and was in the range of values reported for similar ecosystems $(10.1-13 \text{ t C})$
293	ha ⁻¹ (Dar et al., 2015); 10-12 t C ha ⁻¹ (Li et al., 2008); 13.7 t C ha ⁻¹ (Yang et al., 2007) and 14.7 t C ha ⁻¹ (Wang et al.,
294	2010)). The higher altitude coniferous forest had double tree basal area and standing stock, indicating that this specific
295	forest type is exceptionally productive (Singh et al., 1994; Wangda and Ohsawa, 2006b; Sharma et al., 2010a; Tashi
296	et al., 2016). Soil C stocks of ~ 127 t ha ⁻¹ (0-30 cm depth mineral soil) indicate that these mixed coniferous forests
297	are likely among those ecosystems with the highest C storage capacity in the eastern Himalayas (Wangda and
298	Ohsawa, 2006a; Sheikh et al., 2009; Dorji et al., 2014a; Tashi et al., 2016). High soil C contents and stocks were
299	reflected in generally higher basal respiration (R_{10}) at the coniferous forest explaining the comparatively high annual
300	Rs rates at this cooler, higher altitude, site.
301	At both forests, Rs followed the seasonal course of soil temperature and showed high apparent temperature
302	sensitivities (field Q_{10} between 4 and 5). Field Q_{10} values, however, not only reflect the effects of soil temperature
303	but manifest all interacting drivers of Rs throughout the season (Davidson and Janssens, 2006; Schindlbacher et al.,
304	2009; Ruehr and Buchmann, 2010). Soil temperature and soil moisture co-varied during both study years with dry
305	and cold winters and optimal soil moisture during the warm summer months. To account for this co-variation, we
306	normalized all Rs measurements using Eq. (2), to the corresponding optimal soil moisture of the sites (39 and 43 %)
307	and re-calculated the Q_{10} values. Moisture normalization Rs had a Q_{10} of ~ 3 at both sites which show that co-variation
308	between soil temperature and moisture was one reason for the high apparent temperature sensitivity of Rs. The
309	moisture normalized field Q_{10} of ~ 3 came already closer to the intrinsic temperature sensitivity of Rh (Q_{10} ~ 2.3 at
310	both sites) which was determined under controlled lab conditions at soil temperatures from 5 to 25 °C. Since Q_{10} tend
311	to decrease with decreasing temperatures (Leifeld and Fuhrer, 2005; Tuomi et al., 2008; Schindlbacher et al., 2010),
312	we further calculated lab Q_{10} at temperature ranges which came closest to the soil temperature range in the field (5-
313	15 °C coniferous, 5-20 °C broadleaved). As expected, Q_{10} were slightly higher (2.6 ± 0.5 coniferous, 2.7 ± 0.3
314	broadleaved) as the ones calculated over the whole 5-25 $^\circ$ C range, but were still below the moisture normalized field
315	Q_{I0} values. The remaining difference between lab (Rh) and field (Rs) Q_{I0} can result from a higher apparent
316	temperature sensitivity of Ra (Boone et al., 1998) driven by accelerated below ground transport of labile C during
317	the growing season (Schindlbacher et al., 2009). Enhanced priming of SOM decomposition (Bader and Cheng, 2007;
318	Dijkstra and Cheng, 2007; Kuzyakov, 2010; Bengtson et al., 2012) during the growing season could further add to
319	the strong apparent temperature response of Rs.
320	Q_{10} of Rh was similar between sites but decreased when the soil became dry. Such dry conditions were only reached
321	during winter, during which Rs was generally low. Our simple empirical temperature-driven Rs model explained
322	most of the temporal variation in Rs under typical monsoon weather patterns during 2014 and 2015. However,
323	monsoon failures and drought periods have occurred in the past and may even increase in frequency and/or severity

325 model such drought effects, it is necessary to further develop the model by integrating potential soil moisture response

of Rs (as we already did for Rh). To do so, longer Rs time series which include dry years and/or data from artificial drought experiments are needed for model parameterization and testing. It is intended to continue Rs measurements at both sites and Rs data from the ongoing throughfall manipulation experiment is in preparation for further model development. Our last hypotheses that Rs decreased during water logging at peak monsoon was not confirmed as soils at both sites were well drained and water logging did not occur even during periods of high precipitation (Fig. 1).

332 The two approaches to estimate the autotrophic contribution to Rs performed differently. While the trenching method 333 showed ambivalent outcome, the modeling approach did well. Modelled Rh in the field remained slightly below Rs 334 during the cold season. This can be expected as the contribution of Ra is generally lower during the dormant season 335 than during the growing season (Hanson et al., 2000; Rey et al., 2002). During the growing season, the two-336 component model, Eq. (3) predicted an increase in the contribution of Ra. Such a pattern has frequently been observed 337 in other forest ecosystems and reflects the higher downward allocation of labile C during the growing season. Our 338 model estimated ~ 45 % contribution of Ra to Rs falls well within estimates from other forest sites. The modeling 339 approach holds some uncertainty. C stocks from deeper soil layers were not accounted for and a single Q_{10} (0-10 cm 340 depth, lab incubation) was used for the whole 10 - 30 cm mineral soil layer. Furthermore, potential effects of priming 341 were not accounted for in our modelling approach. In contrast to our modeling approach, which was based on 342 incubation results and soil C stocks, trenching was applied as an attempt to estimate Ra in situ. The trenching method, 343 although highly invasive, can provide reasonable estimates of Ra for several forest types (Hanson et al., 2000; Subke 344 et al., 2006) considered that all the caveats of the method were accounted for. Our trenching approach, however, 345 largely failed at both study sites. There might be several reasons, albeit the trenching effects on soil moisture, which 346 we had accounted for. Fine roots can maintain respiration for a comparatively long time after cutting (Lee et al., 347 2003) and if roots die, their decomposition adds to the soil CO₂ efflux (Hanson et al., 2000). This was likely the main 348 reason for the absence of any effect at plots which had been trenched during spring of the same year as of subsequent 349 Rs measurements (year 2015). Plots which had been trenched one year earlier, already showed decreased Rs, but the 350 estimated autotrophic contribution was on average < 30 % and highly variable. Considering a dead fine root mass 351 loss of roughly one-third during the second year after trenching (Díaz-Pinés et al., 2010) and accounting for the 352 corresponding effects on soil CO₂ efflux (additional efflux ~ 1 t C ha⁻¹), the estimated contribution of Ra increased 353 to ~ 40 % which is in the range of our modeling results. 354 Soil C input via aboveground litter-fall was almost similar between forest types (~ 3.5 t C ha⁻¹) although tree basal 355 area was substantially lower at the broadleaved forest. This can be attributed to a generally higher leaf litter 356 production in broadleaved ecosystems (Bisht et al., 2014; Tiwari and Joshi, 2015). Fine root stocks at both forest

types fall within the upper range of estimates from other surveys in the Himalayan region (Adhikari et al., 1995;

- Usman et al., 1999; Garkoti, 2008; Rana et al., 2015), especially if it is considered that fine root contents in this study
- were estimated solely for 0-30 cm mineral soil depth. Assuming a mean fine root turnover time of one year (Brunner
- et al., 2013), the annual fine root litter input from 0-30 cm soil layer was ~ 2 and ~ 3 t C ha⁻¹ at the coniferous and
 broadleaved forest, respectively. During 2015, the estimated soil C input (leaf litter and fine root litter of the top 30

broadleaved forest, respectively. During 2015, the estimated soil C input (leaf litter and fine root litter of the top 30
 cm soil) was, therefore, ~ 1.5 tons lower than the estimated annual gaseous soil C loss via Rh. This, however, is only

a first rough approximation of the real soil C budget, since fine root turnover was not adequately determined and
important C fluxes, such as for instance, DOC leaching, root litter production below 30 cm depth, and C input from
vigorously growing herbaceous ground vegetation were not accounted for in our study, which primarily aimed at a
detailed characterization of the soil CO₂ efflux.

367

368 **6.** Conclusion 369

370 The monsoon climate allows for highly productive mountain forests in the eastern Himalayas. Such forests can store 371 high amounts of C in plant biomass and soil, which was particularly evident in the high altitude coniferous forest in 372 our study. The high-temperature sensitivity of Rs (Q_{10} 4-5) suggests that soil C cycling could react particularly 373 vulnerable to global warming. Deeper analyses, however, showed that Rh had similar temperature sensitivities as 374 other forest soils (Q_{10} 2-3) and that co-variation of soil moisture and Ra led to the high field Q_{10} . At both forests 375 studied, a simple temperature-driven model was sufficient to explain most of the temporal variation in Rs during the 376 two study years. Both study years had typical monsoon climate with dry and cold winters and monsoon rain during 377 the warm season. Further research and model development is, however, warranted to better understand how infrequent/extreme events such as monsoon failure and drought affect soil/ecosystem C cycling and Rs in these forest 378 379 ecosystems.

380

381 7. Author contribution382

N. Wangdi carried out the research and data analysis and drafted the manuscript. M P. Nirola carried out the
incubation experiment and analysed the data. N. Zangmo and K. Orong collected the data and continuously monitored
the research sites. I.U Ahmed carried out the root and the soil sampling study within our research sites. M. Mayer
performed modelling and contributed to writing the manuscript. A. Darabant, R. Jandl, G. Gratzer designed the
experiment and provided feedback on the manuscript. A. Schindlbacher supervised the overall work, designed the
experiment and critically revised the manuscript.

389

390 8. Acknowledgements

391

We are highly grateful to the all the staff of Renewable Natural Resources Research and Development Centre,
Yusipang for all the support for the field work. We also thank the management and staff of the Ugyen Wangchuck
Institute for Conservation and Environment, Bumthang for providing additional support for the study. This study was
part of the work package I of the BC-CAP project (Climate Change Adaptation potentials of forests in Bhutan –
Building human capacities and knowledge base) jointly implemented by the Department of Forest and Park Services,
Bhutan and University of Natural Resources and Applied Life Sciences (BOKU), Austria with funding from
Government of Austria, through the Ministry of Agriculture, Forestry, Environment and Water Management.

400 401	9. Disclaimer
402	The views and opinions expressed in this article are those of the authors and do not necessarily reflect the views of
403	any institutions of the Royal Government of Bhutan or the Government of Austria.
404 405	
406	

Biogeosciences Discussions

407 References

408

- Adhikari, B., Rawat, Y., and Singh, S.: Structure and function of high altitude forests of central Himalaya I. Dry
 matter dynamics, Ann. Bot., 75, 237-248, 1995.
- Bader, N. E. and Cheng, W.: Rhizosphere priming effect of *Populus fremontii* obscures the temperature sensitivity
 of soil organic carbon respiration, Soil Biol. Biochem., 39, 600-606, 2007.
- 413 Bengtson, P., Barker, J., and Grayston, S. J.: Evidence of a strong coupling between root exudation, C and N
- 414 availability, and stimulated SOM decomposition caused by rhizosphere priming effects, Ecology and Evolution, 2,
 415 1843-1852, 2012.
- Bisht, V. K., Nautiyal, B. P., Kuniyal, C. P., Prasad, P., and Sundriyal, R. C.: Litter Production, Decomposition,
 and Nutrient Release in Subalpine Forest Communities of the Northwest Himalaya, J. Ecosyst., 2014, 2014.
- Bolstad, P., Davis, K., Martin, J., Cook, B., and Wang, W.: Component and whole-system respiration fluxes in northern deciduous forests, Tree Physiol., 24, 493-504, 2004.
- 420 Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915-1926,
 421 2010.
- 422 Boone, R. D., Nadelhoffer, K. J., Canary, J. D., and Kaye, J. P.: Roots exert a strong influence on the temperature 423 sensitivity of soil respiration, Nature, 396, 570-572, 1998.

Brunner, I., Bakker, M. R., Björk, R. G., Hirano, Y., Lukac, M., Aranda, X., Børja, I., Eldhuset, T. D., Helmisaari,
H. S., Jourdan, C., Konôpka, B., López, B. C., Miguel Pérez, C., Persson, H., and Ostonen, I.: Fine-root turnover
rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores, Plant and Soil,
362, 357-372, 2013.

- 428 Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian
 429 monsoon failure and megadrought during the last millennium, Science, 328, 486-489, 2010.
- 430 Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184-187, 2000.
- 432 Dar, J. A., Ganie, K. A., and Sundarapandian, S.: Soil CO2 efflux among four coniferous forest types of Kashmir
 433 Himalaya, India, Environmental monitoring and assessment, 187, 715, 2015.
- 434 Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate
 435 change, Nature, 440, 165-173, 2006.
- de Wit, H. A., Palosuo, T., Hylen, G., and Liski, J.: A carbon budget of forest biomass and soils in southeast
 Norway calculated using a widely applicable method, For. Ecol. Manage., 225, 15-26, 2006.
- 438 Díaz-Pinés, E., Schindlbacher, A., Pfeffer, M., Jandl, R., Zechmeister-Boltenstern, S., and Rubio, A.: Root
- trenching A useful tool to estimate autotrophic soil respiration? Case study in an Austrian mountain forest,
 European Journal of Forest Research, 129, 101-109, 2010.
- 441 Dijkstra, F. A. and Cheng, W.: Interactions between soil and tree roots accelerate long-term soil carbon
 442 decomposition, Ecology Letters, 10, 1046-1053, 2007.
- Dixon, R. K., Solomon, A., Brown, S., Houghton, R., Trexier, M., and Wisniewski, J.: Carbon pools and flux of
 global forest ecosystems, Science, 263, 185-190, 1994.

Biogeosciences Discuss., doi:10.5194/bg-2016-291, 2016 Manuscript under review for journal Biogeosciences Published: 8 August 2016

© Author(s) 2016. CC-BY 3.0 License.

- 445 DoFPS: Forestry Facts, Figures & Trends. Department of Forest and Park Services, Ministry of Agriculture and 446 Forests, Royal Government of Bhutan, Thimphu, 2011.
- 447 Dorii, T., Odeh, I., and Field, D.: Vertical Distribution of Soil Organic Carbon Density in Relation to Land
- 448 Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas, Land, 3, 1232-1250, 2014a.
- 449 Dorji, T., Odeh, I. O., Field, D. J., and Baillie, I. C.: Digital soil mapping of soil organic carbon stocks under
- 450 different land use and land cover types in montane ecosystems, Eastern Himalayas, For. Ecol. Manage., 318, 91-451 102, 2014b.
- 452 FAO: Global Forest Resources Assessment :Country Report -Bhutan, Food and Agriculture Organization of the 453 United Nations, Rome, 56 pp., 2010.
- 454 FRDD: Local Volume Table, Forest Resources Development Division, Department of Forests and Park Services, 455 Bhutan, 2005.
- 456 FSI: Volume Equations for Forests of India, Nepal and Bhutan, Ministry of Environment and Forests, Govt. of 457 India, 1996.
- 458 Garkoti, S.: Estimates of biomass and primary productivity in a high-altitude maple forest of the west central 459 Himalayas, Ecol. Res., 23, 41-49, 2008.
- 460 Gough, C. M., Vogel, C. S., Harrold, K. H., George, K., and Curtis, P. S.: The legacy of harvest and fire on 461 ecosystem carbon storage in a north temperate forest, Global Change Biol., 13, 1935-1949, 2007.
- 462 Grace, J.: Structural equation modeling and natural systems, Cambridge University Press, Cambridge, UK, 2006.
- 463 Grierson, A. J. C. and Long, D. G.: Flora of Bhutan, Royal Botanical Garden Edinburgh, Edinburgh, U.K., 1983.
- 464 Hanson, P., Edwards, N., Garten, C., and Andrews, J.: Separating root and soil microbial contributions to soil 465 respiration: a review of methods and observations, Biogeochemistry, 48, 115-146, 2000.
- 466 Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and Reichstein, M.: Global spatiotemporal 467 distribution of soil respiration modeled using a global database, Biogeosciences, 12, 4121-4132, 2015.
- 468 Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R. W.,
- 469 Ceulemans, R., and Schulze, E.-D.: Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic 470 CO2 emissions, Science, 300, 1538-1542, 2003.
- 471 Janssens, I. A. and Pilegaard, K.: Large seasonal changes in Q10 of soil respiration in a beech forest, Global 472 Change Biology, 9, 911-918, 2003.
- 473 Kutsch, W. L., Persson, T., Schrumpf, M., Moyano, F. E., Mund, M., Andersson, S., and Schulze, E.-D.:
- 474 Heterotrophic soil respiration and soil carbon dynamics in the deciduous Hainich forest obtained by three 475 approaches, Biogeochemistry, 100, 167-183, 2010.
- 476 Kuzyakov, Y.: Priming effects: Interactions between living and dead organic matter, Soil Biology and 477 Biochemistry, 42, 1363-1371, 2010.
- 478 Laumans, P.: Height -Diameter Functions form a Country Level Site classification and Local Volume Table
- 479 Selection., UNDP/FAO Forest Resources Management and Institutional
- 480 **Development Project**
- 481 Thimphu, Bhutan, 1994.

- 482 Lee, M.-s., Nakane, K., Nakatsubo, T., and Koizumi, H.: Seasonal changes in the contribution of root respiration to 483 total soil respiration in a cool-temperate deciduous forest. In: Roots: The Dynamic Interface between Plants and the
- 484 Earth: The 6th Symposium of the International Society of Root Research, 11–15 November 2001, Nagoya, Japan,
- 485 Abe, J. (Ed.), Springer Netherlands, Dordrecht, 2003.
- 486 Leifeld, J. and Fuhrer, J.: The temperature response of CO₂ production from bulk soils and soil fractions is related
- 487 to soil organic matter quality, Biogeochemistry, 75, 433-453, 2005.
- 488 Li, H.-j., Yan, J.-x., Yue, X.-f., and Wang, M.-b.: Significance of soil temperature and moisture for soil respiration 489 in a Chinese mountain area, Agric. For. Meteorol., 148, 490-503, 2008.
- 490 Liang, E., Wang, Y., Piao, S., Lu, X., Camarero, J. J., Zhu, H., Zhu, L., Ellison, A. M., Ciais, P., and Peñuelas, J.:
- 491 Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau, Proceedings of the 492
- National Academy of Sciences, 113, 4380-4385, 2016.
- 493 Menon, A., Levermann, A., Schewe, J., Lehmann, J., and Frieler, K.: Consistent increase in Indian monsoon
- 494 rainfall and its variability across CMIP-5 models, Earth Syst. Dynam. Discuss., 4, 1-24, 2013.
- 495 Ohsawa, M. (Ed.): Life zone ecology of the Bhutan Himalaya, Chiba University, Chiba, Japan, 1987.
- 496 Ohsawa, M. (Ed.): Life Zone ecology of the Bhutan Himalaya, Chiba University, Chiba, 1991.
- 497 Pandey, R., Sharma, G., Singh, T., and Tripathi, S.: Factors influencing soil CO2 efflux in a north eastern Indian 498 oak forest and plantation, Afr. J. Plant Sci., 4, 280-289, 2010.
- 499 Pinheiro, J. C. and Bates, D. M.: Mixed-Effects Models in S and S-Plus, Springer - Verlag, New York Berlin 500 Heidelberg, 2000.
- 501 Pumpanen, J., Longdoz, B., and Kutsch, W.: Field measurements of soil respiration: principles and constraints,
- 502 potentials and limitations of different methods. In: Soil Carbon Dynamics - An Integrated Methodology, Kutsch,
- 503 W., Bahn, M., and Heinemeyer, A. (Eds.), Cambridge University Press, Cambridge, 2009.
- 504 Rana, S., Bargali, K., and Bargali, S.: Assessment of plant diversity, regeneration status, biomass and carbon stock 505 in a Central Himalayan cypress forest, Int. J. Biodivers. Conserv., 7, 321-329, 2015.
- 506 Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P., Cheng, Y., Grünzweig, J.
- 507 M., Irvine, J., Joffre, R., Law, B. E., Loustau, D., Miglietta, F., Oechel, W., Ourcival, J. M., Pereira, J. S.,
- 508 Peressotti, A., Ponti, F., Qi, Y., Rambal, S., Rayment, M., Romanya, J., Rossi, F., Tedeschi, V., Tirone, G., Xu, M.,
- 509 and Yakir, D.: Modelling temporal and large-scale spatial variability of soil respiration from soil water availability,
- 510 temperature and vegetation productivity indices, Global Biogeochemical Cycles, 17, 1104, 2003.
- 511 Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P. G., and Valentini, R.: Annual variation in soil respiration 512 and its components in a coppice oak forest in Central Italy, Global Change Biol., 8, 851-866, 2002.
- 513 Ruehr, N. K. and Buchmann, N.: Soil respiration fluxes in a temperate mixed forest: seasonality and temperature 514 sensitivities differ among microbial and root-rhizosphere respiration, Tree Physiology, 30, 165-176, 2010.
- 515 Schewe, J. and Levermann, A.: A statistically predictive model for future monsoon failure in India, Environ. Res. 516 Lett., 7, 044023, 2012.
- 517 Schickhoff, U.: The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and 518 ecological aspects. In: Mountain Ecosystems, Springer, 2005.
- 519 Schild, A.: ICIMOD's Position on Climate Change and Mountain Systems, Mountain Research and Development, 520 28, 328-331, 2008.

Biogeosciences Discuss., doi:10.5194/bg-2016-291, 2016 Manuscript under review for journal Biogeosciences Published: 8 August 2016

© Author(s) 2016. CC-BY 3.0 License.

- 521 Schindlbacher, A., De Gonzalo, C., Díaz-Pinés, E., Gorría, P., Matthews, B., Inclán, R., Zechmeister-Boltenstern,
- 522 S., Rubio, A., and Jandl, R.: Temperature sensitivity of forest soil organic matter decomposition along two
- 523 elevation gradients, Journal of Geophysical Research, 115, G03018, 2010.
- 524 Schindlbacher, A., Zechmeister-Boltenstern, S., and Jandl, R.: Carbon losses due to soil warming: Do autotrophic 525 and heterotrophic soil respiration respond equally?, Global Change Biol., 15, 901-913, 2009.
- 526 Schlesinger, W. H. and Andrews, J. A.: Soil respiration and the global carbon cycle, Biogeochemistry, 48, 7-20, 527 2000.
- 528 Sharma, C. M., Baduni, N. P., Gairola, S., Ghildiyal, S. K., and Suyal, S.: Tree diversity and carbon stocks of some 529 major forest types of Garhwal Himalaya, India, For. Ecol. Manage., 260, 2170-2179, 2010a.
- 530 Sharma, E., Chettri, N., and Oli, K. P.: Mountain biodiversity conservation and management: a paradigm shift in 531 policies and practices in the Hindu Kush-Himalayas, Ecol. Res., 25, 909-923, 2010b.
- 532 Sharma, P. and Rai, S. C.: Carbon sequestration with land-use cover change in a Himalayan watershed, Geoderma, 533 139, 371-378, 2007.
- 534 Sharmila, S., Joseph, S., Sahai, A. K., Abhilash, S., and Chattopadhyay, R.: Future projection of Indian summer
- 535 monsoon variability under climate change scenario: An assessment from CMIP5 climate models, Global Planet. 536 Change, 124, 62-78, 2015.
- 537 Sheikh, M. A., Kumar, M., and Bussmann, R. W.: Altitudinal variation in soil organic carbon stock in coniferous 538 subtropical and broadleaf temperate forests in Garhwal Himalaya, Carbon balance and management, 4, 1-6, 2009.
- 539 Shrestha, U. B., Gautam, S., and Bawa, K. S.: Widespread climate change in the Himalayas and associated changes 540 in local ecosystems, PLoS One, 7, e36741, 2012.
- 541 Singh, S. B. K., Isabella; Singh Karky, Bhaskar; Sharma, Eklabya: Climate change in the Hindu Kush-Himalayas: 542 the state of current knowledge, ICIMOD, 2011. 88 2011.
- 543 Singh, S. P., Adhikari, B. S., and Zobel, D. B.: Biomass, productivity, leaf longevity, and forest structure in the 544 central Himalaya, Ecol. Monogr., 1994. 401-421, 1994.
- 545 Stocker, T. F.: Climate change 2013: the physical science basis: Working Group I contribution to the Fifth 546 assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2014.
- 547 Subke, J.-A., Inglima, I., and Francesca Cotrufo, M.: Trends and methodological impacts in soil CO2 efflux 548 partitioning: A metaanalytical review, Global Change Biology, 12, 921-943, 2006.
- 549 Sundarapandian, S. and Dar, J.: Variation in Soil CO2 Efflux in Pinus Wallichiana and Abies Pindrow Temperate 550 Forests of Western Himalayas, India. Forest Res, 3, 2, 2013.
- 551 Tashi, S., Singh, B., Keitel, C., and Adams, M.: Soil carbon and nitrogen stocks in forests along an altitudinal 552 gradient in the eastern Himalayas and a meta-analysis of global data, Global Change Biol., 2016. 2016.
- 553 Tiwari, S. and Joshi, R.: Litter-fall production in cool-temperate forests of the Nanda Devi Biosphere Reserve, 554 Uttarakhand Himalaya, India, Braz. J. Biolo. Sci., 2, 147-154, 2015.
- 555 Tsering, K., Sharma, E., Chettri, N., and Shrestha, A.: Climate Change Impact and Vulnerability in the Eastern 556 Himalayas - Synthesis Report. ICIMOD, Kathmandu, Nepal2010, 110.
- 557 Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., and Liski, J.: Heterotrophic soil respiration - Comparison of
- 558 different models describing its temperature dependence, Ecological Modelling, 211, 182-190, 2008.

Biogeosciences Discuss., doi:10.5194/bg-2016-291, 2016 Manuscript under review for journal Biogeosciences Published: 8 August 2016

© Author(s) 2016. CC-BY 3.0 License.

- 559 Usman, S., Singh, S., and Rawat, Y.: Fine root productivity and turnover in two evergreen central Himalayan 560 forests, Ann. Bot., 84, 87-94, 1999.
- 561 Verma, A., Tewari, A., and Shah, S.: Carbon storage capacity of high altitudeQuercus semecarpifolia, forests of
- 562 Central Himalayan region, Scand. J. For. Res., 27, 609-618, 2012.
- 563 Wang, X., Jiang, Y., Jia, B., Wang, F., and Zhou, G.: Comparison of soil respiration among three temperate forests in Changbai Mountains, China, Can. J. For. Res, 40, 788-795, 2010. 564
- 565 Wangda, P. and Ohsawa, M.: Gradational forest change along the climatically dry valley slopes of Bhutan in the 566 midst of humid eastern Himalaya, Plant Ecology, 186, 109-128, 2006a.
- 567 Wangda, P. and Ohsawa, M.: Structure and regeneration dynamics of dominant tree species along altitudinal 568 gradient in a dry valley slopes of the Bhutan Himalaya, For. Ecol. Manage., 230, 136-150, 2006b.
- 569 Wikramanayake, E. D.: Terrestrial ecoregions of the Indo-Pacific: a conservation assessment, Island Press, 2002.
- 570 Xu, J. and Grumbine, R. E.: Building ecosystem resilience for climate change adaptation in the Asian highlands, 571 Wiley Interdisciplinary Reviews: Climate Change, 5, 709-718, 2014.
- 572 Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., and Wilkes, A.: The melting Himalayas: 573 cascading effects of climate change on water, biodiversity, and livelihoods, Conserv. Biol., 23, 2009.
- 574 Yang, Y.-S., Chen, G.-S., Guo, J.-F., Xie, J.-S., and Wang, X.-G.: Soil respiration and carbon balance in a
- 575 subtropical native forest and two managed plantations, Plant Ecol., 193, 71-84, 2007.
- 576

577 Table 1 Site characteristics of the two studied forests types

2	a 10	
Parameter	Coniferous forest	Broadleaved forest
Elevation (m)	3260	2460
Latitude	27°28' 00" N	28°28'51.06" N
Longitude	89°44'30.79''E	89°51'27.73'' E
Annual Precipitation 2015 (mm)	1167	1120
Mean Air Temperature 2015 (°C)	7.8	12.0
Dominant Overstorey species		Quercus lanata (63.5%)
	Tsuga dumosa (59.5%)	Quercus griffithii (29.6%)
	Quercus semecarpifolia (29.3%)	
	Picea spinulosa (6.3%) Abies densa (4.1%) Taxus baccata (0.3%)	
Dominant Understory species	Ilex dipreyana (0.2%) Rhododendron arboreum (0.1%)	Symplocus sp. (0.8%) Lyonia ovalifolia, (2.2%) Rhododendron arboreum (3.4%)
Tree density (No. ha ⁻¹)	364 ± 50	569 ±19
Mean Tree height (m) Overstorey Mean Tree Height (m)	24.4 ± 2.1	23.6 ± 1.4
Understorey	7.8 ± 3.5	9.8 ± 0.4
Mean DBH (cm) Overstorey	50.7 ± 5.8	37.8 ±2.3
Mean DBH (cm) Understorey	13.8 ± 1.4	16.1 ± 0.9
Tree basal area (m ² ha ⁻¹)	77.5 ± 4.6	39.9 ± 4.4
Standing volume (m ³ ha ⁻¹)	1066 ± 2.3	464 ± 25
Soil organic carbon (t ha ⁻¹) 0-30		
cm	127.2 ± 17.4	91.2 ± 6.2
Soil organic nitrogen (t ha-1) 0-30		
cm	6.8 ± 0.6	4.2 ± 0.1
pH (0-10 cm)	5.2 ± 0.1	5.0 ± 0.1
Bulk density (g cm ⁻³) 0-10 cm	0.61 ± 0.02	0.61 ± 0.01
Fine Root biomass (t C ha ⁻¹) 0-30		
cm	2.3 ± 0.3	3.2 ± 0.5
Litter input (t C ha ⁻¹ yr ⁻¹)	3.5 ± 0.10	3.4 ± 0.03

578 *All stand and soil parameters are expressed as the mean ± standard error.

588

Site	Soil moisture levels	Temperature Range (°C)	Q10	R ₁₀ (µmol CO ₂ kgC ⁻¹ S ⁻¹)
	Intermediate (32 Vol. %)	5.0 - 25.0	$2.58\pm0.22^{\rm a}$	0.09 ± 0.01^{a}
Coniferous forest	Dry (12 Vol. %) Wet (56 Vol. %)	5.0 - 25.0 5.0 - 25.0	$\begin{array}{l} 1.59 \pm 0.07^{b} \\ 2.12 \pm 0.14^{a} \end{array}$	$\begin{array}{l} 0.07 \pm 0.00^{a} \\ 0.12 \pm 0.01^{b} \end{array}$
Broadleaved forest	Intermediate (31 Vol. %) Dry (12 Vol. %) Wet (55 Vol. %)	5.0 - 25.0 5.0 - 25.0 5.0 - 25.0	$\begin{array}{l} 2.35 \pm 0.09^a \\ 1.60 \pm 0.11^b \\ 2.05 \ \pm 0.14^a \end{array}$	$\begin{array}{l} 0.13 \pm 0.01^a \\ 0.09 \pm 0.01^a \\ 0.16 \ \pm 0.01^b \end{array}$

589

590 Table 2. Q_{10} and R_{10} parameters (Eq. (1)) derived from laboratory incubation. Letters indicate significant

591 differences in R_{10} and Q_{10} between soil moisture levels of the mineral soil samples.

Figure 1. Seasonal course of air temperature and precipitation (a), soil temperature (b), volumetric soil water content (c),
 and soil respiration (d) measured at a coniferous and a broadleaved forest in Bhutan Himalayas in 2014 and 2015. Circles
 represent daily mean values of manual measurements. Solid lines (a, b, c) represent daily mean values of continuous
 measurements. Error bars indicate standard error of the mean.

- 604 Figure 3. Structural equation models for a broadleaved (a) and a coniferous (b) forest in Bhutan Himalayas, describing
- the soil climatic drivers of soil CO₂ efflux during measurement campaigns in 2014 and 2015.

606

Figure 4: Monthly contribution of autotrophic soil respiration to total soil CO₂ efflux at a broadleaved and coniferous forest in Bhutan Himalayas. Data on autotrophic respiration are derived from the difference of modelled daily soil CO₂ efflux and modelled heterotrophic soil respiration rates (a, b, solid lines), measured soil CO₂ efflux and modelled heterotrophic soil respiration rates (a, b, bars), and measured soil CO₂ efflux from control and trenched plots (c, d) of the respective site.

612

Figure 5: Seasonal course of modelled soil CO₂ efflux (Rs) and heterotrophic soil respiration rates (Rh) from different soil

614 layers at a broadleaved and coniferous forest in Bhutan Himalayas in 2015. Open circles are measured soil CO₂ efflux

615 rates. Error bars and shaded area represent standard error of the daily mean.