# The point-by-point response to the reviews and the relevant changes made in the manuscript

Dear Dr. Guenet,

thank you for your comments and for your accurate studying of the manuscript.

Here are the author's responses:

- General comment 1. We extracted DNA from each independent sample (see below). This means that for each variant of treatment (A, B, C, D and E) we had 6 independent DNA extracts. Before performing Illumina sequencing, we screened diversity of the 16S rRNA gene fragments for soils sampled on the 7th, 42th and 84th days, using PCR-DGGE method (data not presented in the manuscript). Since no significant differences between the samples were observed, we mixed DNA from the samples of each variant and sequenced them as one replicate.

- General comment 2. We did not sterilize biochar before amendment. However, we sampled biochar immediately after its preparation from the pyrosysis chamber directly into sterile containers. Therefore we suppose that biochar was free of microbes. Indirectly, sterility of biochar is proved by SEM pictures, both presented and not presented in the manuscript. We will add this information into the manuscript, L. 70-71: "Biochar used in the study was obtained by slow pyrolysis of birch wastes at 450°C. Immediately after preparation and cooling, biochar was sampled from the pyrolysis chamber under sterile conditions. Biochar characteristics are presented in Table S1." L 92-96. In our study, 4 variants of treatments of oil polluted soil (A, B, C, D) as well as one non-treated sample (variant E) were analyzed. For each variant, we had 3 independent containers, and two samples were taken from each container for further analysis. Further, we analyzed these samples in replicates as described on L.136. According to your comment, we will rewrite the sentence on L.92 as follows: "The remediated soil samples were taken on days 1, 7, 14, 28, 42, 56, 70 and 84 of the study. On each sampling day, thirty samples (5 variants of treatments (A-E) x 3 containers for each treatment x 2 samples from each container) were examined,..."

- L103. Indeed, there are several understandings, what the germination index (GI) is. In our study we understood GI as relative seed germination (sample to control) multiplied by relative root elongation (sample to control), expressed in %. According to your comment, we will improve the text as follows: "Germination index (GI) was calculated as described by Zucconi et al. (1981) and used as a phytotoxicity parameter. GI (%) combined measures of relative seed germination and relative root elongation."

- L163. We consider the differences to be significant, when the p-value is  $\leq 0.05$ . According to your comment, we will add "(p $\leq 0.05$ )" into the sentence on L. 163 and in the other parts of the manuscript, when we are writing about significant differences.

- L167. Here we mean that the petroleum concentration rapidly decreases in soil in the process of biodegradation. If biodegradation will not be performed, no decrease may happen. Besides, we mention that after this rapid decrease, the concentration does not fall at all or does slowly.

- L198-L200. The microbial stress was not measured in our study indeed. However here we just cite the work of Tahhan et al., 2011, who suggested that low effect of bioagumentation may be caused by microbial stress. We think that being introduced on biochar, microbes can survive better in the soil as compared with direct addition of microbial cultures to soil.

- L212. In the work of Labud et al., 2007 two types of soil (sandy and clayey ones) contaminated by 5% and 10% of gasoline, 5% and 10% of diesel, and 5% and 10% of petroleum were analyzed. The microbial biomass carbon on the first day of experiment was about 0.08 mg g-1 in all the samples in the clayey soil, and ranged between 0.025 and 0.08 mg g-1 in the sandy soil. In the work of Tejada et al., 2008 soil was contaminated by 5% and 10% of gasoline, and microbial biomass level was measured during 270 days. As a whole, 14 values of microbial biomass were obtained, the minimum level was equal to 0.025 mg g-1, and the maximum level - 0.093 mg g-1. Since both works cited contain a lot of data (many numbers that are not readable), we did not find it relevant to give the values in the manuscript.

- L252-254. According to your suggestion, we will add one sentence on the L256. "Besides, increase of microbial respiration could be caused by massive death of the introduced bacteria, and decomposition of the dead biomass by soil indigenous microflora."

Dear prof. Romantschuk,

Thank you for your attention to our manuscript, for your accurate reading and comments.

Here are the answers:

1. Comment 1. This sentence will be reworded as follows: "Many authors report high efficiency of biostimulation and low additional benefit from bioagumentation"

2. Comment 2. We checked the viability in the growth test (data not shown in the manuscript). We introduced biochar with immobilized stains into LB, and observed the changes of optical density. Biochar without microbes was used as a control.

3. Comment 3. We checked carefully lines 160-163 as well as Fig. 2. All the data presented are correct.

4. Comment 4. We will rephrase this sentence as follows: "Petroleum hydrocarbons may not be fully used by microbes since they contain a lot of recalcitrant compounds"

5. Comment 5. We agree. PAHs belong to toxic compounds, therefore this comment does not contradict to what is written on lines 180-181.

6. Comment 6. According to your suggestion, this sentence was rephrased as follows: "In our case, biochar addition resulted in an increase of Actinobacteria (day one) and Proteobacteria (days 28 and 84) which is in line with data presented by other authors Thus, Proteobacteria, especially Alpha- and Gamma-, were predominant in oil polluted soils because many proteobacterial species are capable to degrade hydrocarbons. The relative abundance of Actinobacteria usually increases after oil pollution because species belonging to this phylum are known as degraders of recalcitrant organic compounds (Khodadad et al., 2011; Qin et al., 2013; Shahi et al., 2016; Xu et al., 2016)".

7. We will meet your requirement after correction of the manuscript according to your comments and to the comments of the other reviewers.

Dear anonymous Referee,

Thank you for your attention to our manuscript, for your accurate reading and comments.

Here are the answers:

1. General comment 1. The soil was sampled in the meadow zone in Tatarstan Republic (Russia). Unfortunately, before sampling, we did not analyze the plant species growing in the oil polluted soil. It should be mentioned that the plants were typical for these zone, but they looked more inhibited as compared with those on non-polluted territories. Besides, plants' diversity was visually lower on the polluted sites. The dominating plant species was Onobrychis arenaria.

2. General comment 2. We analyzed soil parameters using ISO methods. The manuscript will be corrected as follows (L66-70): The soil showed the following characteristics: 40.5% sand, 54.1% silt, and 5.4% clay (as revealed by laser diffraction according to ISO 13320:2009 and ISO/TS 17892-4:2004); pH – 6.5 (as revealed by ISO 10390:2005 method); organic carbon content – 9.1% (as revealed by ISO 14235:1998 method); total nitrogen content – 0.15% (as revealed by ISO 11261:1995 method); hydrocarbon content (HC) as revealed by infrared spectroscopy – 4.7% (of this, 15.5% saturated hydrocarbon, 23.4% aromatics, 58.4% resins, and 2.7% asphaltenes).

3. General comment 3. We did not sterilize biochar before amendment. However, we sampled biochar immediately after its preparation from the pyrosysis chamber directly into sterile containers. Therefore we suppose that biochar was free of microbes. Indirectly, sterility of biochar is proved by SEM pictures, both presented and not presented in the manuscript. Inoculation and further storage of biochar was conducted under sterile conditions. We will add this information into the manuscript: L. 70-71: "Biochar used in the study was obtained by slow pyrolysis of birch wastes at 450 °C. Immediately after preparation and cooling, biochar was sampled from the pyrolysis chamber under sterile conditions. Biochar characteristics are presented in Table S1". L. 80: "All the manipulations with biochar before bioremediation were conducted under sterile conditions".

4. General comment 4. Since we needed about 60-70 g soil for analysis, we mixed the soil, and then took three soil cores about 20-25 g each. We mixed them in order to obtain the sample for further analysis. We tried to sample the soil: i) from the top, ii) from the middle and iii) from the bottom of the container.

5. General comment 5. No, we do not. Therefore we will write microbial biomass carbon.

6. General comment 6. Control variant E was the polluted soil as it was, without any treatment. We wanted to compare the efficiency of bioremediation with no remediation, therefore we did not maintain the moisture level in this variant. In the beginning of the experiment, the moisture content was equal to 37%

7. General comment 7. R function cmdscale() used to calculate MDS uses linear method. It calculates an eigenanalysis of the dissimilarity matrix, and does not employ "stress" per se. Rather, it attempts to maximize variability along axes. MDS provide only variability, explained by first two axis: 34.5% and 29.2%, 63.7% by two axis. Only NMDS can provide stress value. Bray-Curtis dissimilarity is of common use and has clear ecological interpretation. If one try mechanically use some exhausting search to get "best fit", one usually get meaningless results hard to interpret.

8. General comment 8. We made the plots in Microsoft Excel program and used the smoothed line to connect the dots. Do you suggest to connect the lines without smoothing?

9. General comment 9. We were thinking about the graph instead of Table 2. However, there will be four different graphs instead of one table, since the data presented in the table are measured in different units. Therefore we decided that this table, despite on its complexity, is still better for the reader than 4 graphs. Besides, diversity indexes are presented in table forms in many published articles.

10. Technical note 1. The sentence will be rewritten as follows: "It was demonstrated that moistening and aeration were the main factors influencing microbial biomass, while implementation of biochar and introduction of microbes were the main factors influencing microbial respiration"

11. Technical note 2. The technical correction will be done as suggested.

12. Technical note 3. The word "indeed" will be removed as suggested.

13. Technical note 4. The sentence will be rewritten as follows: "Poor data concerning the use of biochar for immobilization of hydrocarbon degrading microbes can be found in literature (Qin et al., 2013)"

14. Technical note 5. The word "estimated" will be replaced by "measured" as suggested.

- 15. Technical note 6. Punctuation will be improved.
- 16. Technical note 7. "SE" will be replaced by "S.E." as suggested.

17. Technical note 8. Space will be added.

18. Technical note 8. LSD analysis showed that before day 28 variants are grouped into 2-3 groups because of the high variability of the process. This shows significance of the differences. On the day 84 data of different variants can not be divided into groups which suggests about absence of significant differences. For LSD test, default parameters were used. In order to make these sentences more clear, we will rephrase them as follows: "In the process of bioremediation that lasted for 84 days, hydrocarbon content decreased in all the variants, except the control, as presented in Figure 2. The maximal decrease rate was observed during the first 14 days, but this rate was different for different variants. Thus, on day 14, decrease of hydrocarbon content was estimated to be 13, 42, 49, and 53% of the initial content (47 g kg-1) in the variants A, B, C, and D, respectively. However, at the end of the experiment, the decrease of amounts of hydrocarbon in the four variants did not differ significantly and were 56, 59, 66, and 66% of the initial content, respectively ( $p \le 0.05$ )".

19. Technical note 9. The idea the biochar helps microbes to overcome the stress was firstly suggested by other authors, we think that our study confirmed this conclusion. It should be also mentioned that the introduced microbes were isolated from the oily waste, but not from that which was later remediated. Therefore, introduced microbes potentially were under stress conditions.

20. Technical note 10. The significant test results will be added.

21. Technical notes 11 and 12. The blue elipses were drawn by hand just to make it easier for the reader to recognize the groups of samples. However, these elipses have statistical basis. Thus, we used time covariate with values 1, 28 and 84 in adonis() function to test the bacterial community structure dependence on time, and got p-value less than 1% on 9999 permutations. Similar result we get is define Time as a factor fTime.

Call:

adonis(formula = spec.mtr.bin ~ env.Time, permutations = 9999)

Permutation: free Number of permutations: 9999 Terms added sequentially (first to last) Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) env.Time 1 0.12567 0.125673 3.8996 0.28055 0.0011 \*\* Residuals 10 0.32227 0.032227 0.71945 Total 11 0.44794 1.00000 ---Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 Call: adonis(formula = spec.mtr.bin ~ env.fTime, permutations = 9999) Permutation: free Number of permutations: 9999 Terms added sequentially (first to last) Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) env.fTime 2 0.18407 0.092033 3.1389 0.41091 0.0014 \*\* Residuals 9 0.26388 0.029320 0.58909 Total 11 0.44794 1.00000 ---Signif. codes: 0 ·\*\*\*<sup>,</sup> 0.001 ·\*\*' 0.01 ·\*' 0.05 ٠, 0.1 ۲ , 1

## The marked-up manuscript version

## Biochar carrying hydrocarbon decomposers promotes degradation during the early stage of bioremediation

P. Galitskaya<sup>1</sup>, L. Akhmetzyanova<sup>1</sup> and S. Selivanovskaya<sup>1</sup>

<sup>1</sup>Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia

### Correspondence to: P. Galitskaya (gpolina33@yandex.ru)

#### Abstract

Oil pollution is one of the most serious current environmental problems. In this study, four strategies of bioremediation of oil polluted soil were tested in the laboratory over a period of 84 days: (A) aeration and moistening; (B) 10 amendment with 1% biochar (w/w) in combination with A; amendment with 1% biochar with immobilized Pseudomonas aeruginosa (C) or Actinetobacter radioresistens (D) in combination with A. All strategies used resulted in a decrease of the hydrocarbon content, while biochar addition (B, C, D strategies) led to acceleration of decomposition in the beginning. Microbial biomass and respiration rate increased significantly at the start of bioremediation. It was demonstrated that moistening and aeration were the main factors influencing microbial biomass, while implementation of biochar and 15 introduction of microbes were the main factors influencing microbial respiration. All four remediation strategies altered bacterial community structure and phytotoxicity. Illumina MiSeq method revealed 391 unique OTUs belonging to 40 bacterial phyla and a domination of Proteobacteria in all investigated soil samples. The lowest alpha-diversity was observed in the samples with introduced bacteria on the first day of remediation. Metric multidimensional scaling demonstrated that in the beginning and at the end, microbial community structures were more similar than those on the 28th day of 20 remediation. Strategies A and B decreased phytotoxicity of remediated soil between 2.5 and 3.1 times as compared with

untreated soil. C and D strategies led to additional decrease of phytotoxicity between 2.1 and 3.2 times.

\_0

#### **1** Introduction

25

Soil pollution with petroleum is one of the most serious problems nowadays. Despite the fact that many methods of remediation of petroleum pollution have been proposed, development of effective and environmentally friendly methods of hydrocarbon removal from soil ecosystems is still highly required. As such a method, many authors propose bioremediation, which is easily implemented into practice, cost-effective, and environmentally relevant (Agnello et al., 2015; Kauppi et al., 2011; Suja et al., 2014; Wu et al., 2016). The soil microbiota provides several ecosystem services, such as organic compounds decomposition, including the degradation of organic toxicants (Beesley et al., 2011). Currently, two strategies of 30 bioremediation are actively used - biostimulation and bioaugmentation (Kauppi et al., 2011; Wu et al., 2016). The first strategy includes activities that stimulate the indigenous microflora of oil polluted site, the second one introduces active microbial decomposers into remediated site. Many authors report high efficiency of biostimulation and low additional benefit from bioagumentation (Kauppi et al., 2011; Taccari et al., 2012; Tahhan et al., 2011). Some authors report that the best treatment method of oil polluted soils as a combination of biostimulation and bioaugmentation (Wu et al., 2016).

35 Biochar, a product of thermic degradation of organic matter under anaerobic conditions (pyrolysis), is often used for soil quality improvement (Beesley et al., 2011; Kuppusamy et al., 2016; Lehmann et al., 2011; Liu et al., 2016; Tang et al., 2013). Biochar has several positive effects on soil: it leads to carbon sequestration and, consequently, decreased  $CO_2$ emission rates, increases soil porosity and water holding capacity, and improves soil pH (Awad et al., 2012; Kuśmierz et al., 2016; Lehmann and Joseph, 2009). Because of its high surface area and porosity, biochar can be a good substrate for 40 colonization and active functioning of soil indigenous microflora (Quilliam et al., 2013). Therefore, besides abiotic factors, biochar addition may change the structure of the microbial community, enzyme activity, decomposition of carbon substrates, and cycling of other elements in soils (Kuzyakov et al., 2009; Lehmann et al., 2011; Rutigliano et al., 2014; Tang et al., 2013; Wang et al., 2015). Biochar can absorb organic and inorganic compounds on its surface. According to several authors, this is an advantage as sorption decreases liability and availability of toxicants in soils (Beesley et al., 2010; Lu et 45 al., 2015), leading to a decrease of phytotoxicity (Butnan et al., 2015). Thus, the absorption ability of biochar is used for bioremediation of soils polluted by petroleum hydrocarbons such as alkanes, polycyclic aromatic hydrocarbons, and asphaltenes (Beesley et al., 2011; Qin et al., 2013). The effect of biochar on oil polluted soils is different and dependent e.g. on doses and time of use, type of biochar (initial substrates and way of preparation), and soil quality (Domene et al., 2015; Jones et al., 2012; Lehmann et al., 2011).

50

55

60

Biochar can be introduced into the soil not only as a soil conditioner, but also as carrier of microbial inoculates. Several authors agree that the influence of biochar on immobilized microbes is different and depends on the biochar itself as well as on the microorganisms; therefore, the decision concerning its use as a carrier should be made individually in each particular case. In the literature, results about immobilization effects of biochar on rhizosphere and symbiotic microbes which promote plant growth are presented (Lehmann et al., 2011). Poor data concerning the use of biochar for immobilization of hydrocarbon degrading microbes can be found in literature (Qin et al., 2013). However, biochar with immobilized hydrocarbon degraders can potentially be an efficient tool of oil polluted soil remediation.

The objective of this study was to estimate the efficiency of biochar as a biostimulating tool as well as a carrier for hydrocarbon-degrading bacteria for remediation of oil polluted soil in a laboratory experiment. Two bacterial strains isolated previously from oil polluted soils on the basis of their high degrading potential were used for biochar inoculation. Hydrocarbon content, phytotoxicity, microbial respiration and biomass, as well as bacterial community structure were used

2 Material and methods

#### 2.1 Contaminated soil and biochar

as parameters for efficiency estimation of the bioremediation methods used.

Oil contaminated soil was sampled in the area of an one year old oil spill situated close to Niznekamsk (Tatarstan Republic, Russia). Prior to sampling, plants were removed and soil was sampled to a depth of 10 cm. Five replicates were sampled, and one representative sample was prepared. The sample was air dried, sieved (2 mm mesh size) and stored at 4°C in the dark for further use. The soil showed the following characteristics: 40.5% sand, 54.1% silt, and 5.4% clay (as revealed by laser diffraction according to ISO 13320:2009 and ISO/TS 17892-4:2004); pH – 6.5 (as revealed by ISO 10390:2005 method); organic carbon content – 9.1% (as revealed by ISO 14235:1998 method); total nitrogen content – 0.15% (as revealed by ISO 11261:1995 method); hydrocarbon content (HC) as revealed by infrared spectroscopy – 4.7% (of this,

70

15.5% saturated hydrocarbon, 23.4% aromatics, 58.4% resins, and 2.7% asphaltenes).

Biochar used in the study was obtained by slow pyrolysis of birch wastes at 450°C. Immediately after preparation and cooling, biochar was sampled from the pyrolysis chamber under sterile conditions. Biochar characteristics are presented in Table S1.

75

80

#### 2.2 Immobilization of microbes on biochar

Two strains of microorganisms able to actively degrade hydrocarbons and previously isolated from oil polluted soils sampled in the Tatarstan Republic (Russia) were used - *Pseudomonas aeruginosa* and *Acinetobacter radioresistens*. Before immobilization on biochar, the strains were cultivated for seven days at 28°C and with a rotation of 130 rpm on liquid medium with the following composition: (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (1.0 g l<sup>-1</sup>), MgSO<sub>4</sub> (0.2 g l<sup>-1</sup>), KH<sub>2</sub>PO<sub>4</sub> (3.0 g l<sup>-1</sup>), Na<sub>2</sub>HPO<sub>4</sub> (4.5 g l<sup>-1</sup>); 2% of oil (v/v) was used as a sole carbon source. For immobilization, biochar was plunged into the bacterial culture, stored for one day, and then used for further bioremediation. The final concentration of bacterial cells on biochar was equal to 5- $9\times10^8$  CFU. All the manipulations with biochar before remediation were conducted under sterile conditions.

For screening of the biochar surface as well as the immobilized bacteria, the universal analytical complex of scanning autoemission microscopy *Merlin (Carl Zeiss, Germany)* was used. Before scanning, biochar samples were dewatered in 1% glutare aldehyde solution and an ascending alcohol series.

#### 2.3 Experimental design

The oil polluted soil sample was treated using four different methods for 84 days. For each treatment method, three incubation containers with 1 kg of soil were prepared. Soil samples were brought up to 60% water holding capacity. We used the following four treatment methods: (A) soil with no biochar, (B) soil amended with biochar 1% (w/w), (C) soil amended with biochar 1% (w/w) which was previously inoculated with *Pseudomonas aeruginosa*, (D) soil amended with biochar 1% (w/w) which was previously inoculated with *Acinetobacter radioresistens*. Once a week, each remediation trial was mixed for aeration, and water content was restored by weighing. (E) variant without any treatment was used as a control (Table 1).

The remediated soil samples were taken on days 1, 7, 14, 28, 42, 56, 70 and 84 of the study. On each sampling day,
thirty samples (5 variants of treatments (A-E) x 3 containers for each treatment x 2 samples from each container) were examined, each sample was obtained by mixing together three soil cores. Soil microbial biomass carbon and respiration as well as phytotoxicity were estimated in fresh soil samples immediately after sampling. Hydrocarbon content was measured in air dried soil. DNA for further analysis of bacterial diversity was extracted from fresh soil and stored at -20°C.

#### 2.4 Chemical and biological analyses

100

Hydrocarbon content was estimated using IR-spectrometry with an AN-2 analyser (LLC Neftehimavtomatika-SPb, Russia). Basal respiration activity of soil was determined on the basis of  $CO_2$  emission from soil during 24 h, according to ISO 16072 (2002). Soil microbial biomass carbon was determined by fumigation of the samples with  $C_2H_5OH$ -free CHCl<sub>3</sub> and extraction with 0.5 M K<sub>2</sub>SO<sub>4</sub>. The extracted C content was determined by bichromate oxidation in accordance with ISO 14240-2 (1998). Phytotoxicity was estimated using oat plants (*Avena sativa*) via the contact method according to ISO

105 11269-1 (2012) and ISO 11269-2 (2012). Germination index (GI) was calculated as described by Zucconi et al. (1981) and used as a phytotoxicity parameter. GI (%) combined measurement of relative seed germination and relative root elongation.

#### 2.5 Quantitative ≤CR and next generation sequencing

DNA was extracted using the FastDNA® SPIN Kit for Soil (Bio101, Qbiogene, Germany), according to the instructions provided, and purified using QIAquick PCR Purification Kit (Quiagen, Germany). After a quality check on 110 agarose gel, 16S rDNA genes were amplified by real-time polymerase chain reaction (PCR) in triplicate on a BioRad CFX-96 cycler (BioRad, Munich, Germany). The 25 µl reaction mixture contained 5 U µl<sup>-1</sup> SynTag Polymerase, 10 x Buffer with SYBR Green, 10 mM dNTPs each, 10 µM primer (16S 984f and 1378r) each, and 1 µl of DNA template. The amplification protocol was as follows: initial denaturation at 95°C for 5 min, followed by 39 three-step cycles at 62-60°C for 45 s, 95°C for 15 s, and 72°C for 30 s. The standard curves for bacteria were generated using serial DNA dilutions of DNA of Bacillus 115 pumilus. The concentration of template DNA and amplicons was quantified on the Qubit fluorimeter (Invitrogen, USA) using Quant-iT<sup>™</sup> dsDNA High-Sensitivity Assay Kit (Thermo Fisher, USA).

Preparation of the libraries was performed in accordance with the 16S Metagenomic Sequencing Library Preparation Protocol recommended for Ilumina MiSeq. The first round of amplification of V3-V4 region of 16sRNA gene was DNA Tetrad® performed on Engine 2 cycler (BioRad, Germany) with specific primers А 120 (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) and В (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC), using the following protocol: initial denaturation for 3 min at 95°C, 27 cycles of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C; and final extension for 5 min at 72°C. Further purification of amplicons was performed with Agencourt AMPure XP purification kit (Beckman Coulter, USA). The second round of amplification was performed for double indexing of samples using the same

125 cycle parameters with primers presented in Table S2.

> The library obtained was validated on Bioanalyzer 2100 using the Agilent DNA 1000 Kit (Agilent, USA) and quantified on Qubit Fluorometer (Invitrogen, USA) using Quant-iT<sup>™</sup> dsDNA High-Sensitivity Assay Kit (Thermo Fisher, USA). Purified amplicons were pooled at equal concentration. Further preparation of samples and sequencing were performed using MiSeq Reagent Kit v2 (300 cycles) on MiSeq-device (Illumina, USA) according to the manufacturer's protocol.

130

135

After sequencing process, previously added adapter sequence was removed, and then samples were determined using index sequence by means of Illumina BaseSpace software (basespace.illumina.com). QIIME platform (Caporaso et al., 2010) was used for further analysis of the sequence data. After quality filtering step (Q < 20) chimeras were removed using usearch61 algorithm. Operational taxonomic units (OTUs) clustering against the Greengenes database (2013-08 release) was done using implemented USEARCH pipeline (Edgar, 2010) with 97% sequence identity threshold. Only OTUs being represented by at least five reads were kept. Taxonomic classification was performed using implemented RDP classifier with PyNAST (Wang et al., 2007).

#### 2.6 Statistical analysis

Sampling and chemical analyses were carried out in triplicate, biological analyses in five replicates in order to 140 decrease the experimental errors and to increase the experimental reproducibility. All results were expressed on an air-dry soil basis. The data from the experiment were statistically processed on a computer using Origin 8.5 (OriginLab, Northampton, USA). The confidence of data generated in the present investigations has been analyzed by standard statistical methods to determine the mean values and standard errors (S.E.). The means were compared using Fisher's Protected Least Significant Difference at  $\alpha = 0.05$ . The values in figures and tables were expressed as mean  $\pm$  SE of the corresponding 145 replicates.

Alpha- and beta-diversities of bacterial communities were estimated using the Vegan package of the R software (R Core Development Team, 2015). Alpha-diversity was expressed using several indices: Shannon-Weaver (H-index) and Simpson (D-index) indices were calculated according to Shannon and Weaver (1963) and Simpson (1949), respectively; the simple index (I -index) was calculated as the number of OTUs revealed by Illumina sequencing. To visualize the differences in microbial communities, metric multidimensional scaling (MDS) plots were created, where matrices of band abundance

were assembled, and similarity matrices were calculated according to the Bray-Curtis coefficient (Faith et al., 1987).

150

155

160

165

170

175

#### **3 Results and discussion**

Two bacterial strains – P. *aeruginosa* and A. *radioresistens* – were immobilized on biochar. These strains were previously isolated from oil polluted sites and used in this study because of their high efficiency in hydrocarbon decomposition (Rocha et al., 2013; Tang et al., 2010; Wu et al., 2016). Figure 1 shows the pictures confirming inoculation of biochar by the two strains.

Initial biochar as well as biochar with immobilized microbes was introduced to the soil at an amount of 1%. A comparable quantity of biochar for soil conditioning was used in both lab scale and field scale experiments in other studies (Qin et al., 2013; Rutigliano et al., 2014; Smith et al., 2010); some authors used quantities of 5 to 10% biochar (Bhaduri et al., 2016; Xu et al., 2016).

In the process of bioremediation that lasted for 84 days, hydrocarbon content decreased in all the variants, except the control, as presented in Figure 2. The maximal decrease rate was observed during the first 14 days, but this rate was different for different variants. Thus, on day 14, decrease of hydrocarbon content was estimated to be 13, 42, 49, and 53% of the initial content (47 g kg-1) in the variants A, B, C, and D, respectively. However, at the end of the experiment, the decrease of amounts of hydrocarbon in the four variants did not differ significantly and were 56, 59, 66, and 66% of the

#### initial content, respectively (p≤0.05).

In variant A, which was moistened and aerated, hydrocarbon decomposition reached a plateau on day 42, when the content was 23 g kg<sup>-1</sup>. Petroleum hydrocarbons may be used by microbes not fully since they contain a lot of recalcitrant compounds (Alexander, 1995; Atlas, 1995). Many authors agree that intensive decomposition of petroleum hydrocarbons occurs in the first 15-50 days; after this, the biodegradation rate decreases (Al-Mutairi et al., 2008; Beškoski et al., 2011; Jørgensen et al., 2000; Liu et al., 2009; Marin et al., 2005). Hydrocarbon decrease rates in our study are in line with those presented by other researchers. For example, Jørgensen et al. (2000) observed a 58-66% decrease of hydrocarbon content during 35 days with an initial oil concentration of 2.4 g kg<sup>-1</sup>, and Beškoski et al. (2011) found a 60% decrease in 150 days with an initial concentration of 5.2 g kg<sup>-1</sup>. The decrease of hydrocarbon content in variant A was due to the soil indigenous microflora that becomes more active because of optimal environmental conditions in the study. Indeed, aeration and moistening were widely described as effective remediation tools (Gumerova et al., 2013; Jørgensen et al., 2000;

Selivanovskaya et al., 2012; Suja et al., 2014).

As mentioned above, in variants B, C, and D, hydrocarbon content decreased more rapidly than in A and reached a plateau on day 14. Therefore, at the beginning of the remediation phase (up to day 42), significant differences in hydrocarbon contents between variant A and the other variants were observed. The additional accelerative effect of biochar on hydrocarbon decomposition is most likely connected with the fact that labile components of biochar are good sources of organic matter and inorganic nutrients for microbes (Lehmann et al., 2011). These components can be co-substrates that initiate hydrocarbon metabolism. Additionally, biochar can adsorb toxic compounds, such as polycyclic aromatic

are in agreement with a study by Qin et al. (2013) who demonstrated that biochar stimulated hydrocarbon decomposition in oil polluted soil. The authors observed that in addition to stimulate degradation of bioavailable compounds, such as alkanes

hydrocarbons, and therefore decrease soil toxicity (Beesley et al., 2010; Qin et al., 2013; Rutigliano et al., 2014). Our results

and aromatics, biochar may improve decomposition of recalcitrant compounds, such as polar oil fractions (Qin et al., 2013). From a practical point of view, the acceleration effect of biochar on hydrocarbon content decrease may be used in cases when time is a significant factor, e.g. when oil spills occur in regions with cold climates and soil remediation needs to be performed within a limited period of time.

190

195

Immobilization of microbes on biochar (C and D variants) resulted in slightly different hydrocarbon decomposition rates for 28 days compared with variant B. We observed no further significant differences between the three variants ( $p \le 0.05$ ). Bioaugmentation as a method of bioremediation that includes introduction of microbes with specific abilities is widely discussed in the scientific literature and compared with biostimulation. Previous studies reported both positive effects of bioaugmentation as well as no effects (Kauppi et al., 2011; Liu et al., 2009; Tahhan et al., 2011). Wu et al. (2016) showed that the introduction of Acinetobacter sp. is useful in the early stages of remediation, whereas biostimulation is a more effective tool. Suja et al. (2014) demonstrated high decomposition activity of bacterial consortia containing Pseudomonas sp., Acinetobacter sp., and Rhodococcus sp. isolated from oil polluted soil, effectiveness was higher in combination with biostimulation. Nikolopoulou et al. (2013) found that indigenous microbial degraders in combination with lipophilic nutrients are effective for rapid clean-ups of oil spills. Authors who did not observe positive effects of

- 200 bioaugmentation explain this by the low survival rates and changes of the destructive ability of introduced microbes. These microbes are preliminary cultivated on cultural media in favorable conditions and subject to stress when introduced into the environment (Tahhan et al., 2011). From this point of view, the use of biochar as a carrier that, as described in our study, may help to overcome this problem.
- 205

Since hydrocarbon degradation is driven by microorganisms, integral indexes of the microbial community state may be useful to assess the efficiency of the remediation process. Apart from this, oil components and metabolites produced during bioremediation may influence the functioning and structure of microbial communities. Negative impacts on the microbial community may cause alteration of nutrient cycles and degradation of soil quality and vegetation growth. Soil microbial respiration, biomass, and other parameters can provide valuable information about the presence and activity of 210 microorganisms in remediated soil (Tang et al., 2011, 2012; Tejada et al., 2008).

215

Results of estimation of microbial biomass carbon during bioremediation are presented in Figure 3. Microbial biomass is an important component of soil organic matter; it is very labile and sensitive to environmental changes (Demisie et al., 2014; Labud et al., 2007). In the non-treated variant E, microbial biomass carbon level was consistently low (0.10-0.18 mg g<sup>-1</sup>). Comparable data were presented by other researchers for soil contaminated with 5-10% of oil (Labud et al., 2007) and 5% of gasoline (Tejada et al., 2008).

Aeration and moistening (variant A) led to an approximately eightfold increase of microbial biomass carbon on day seven. This may be explained by an improvement of the conditions for indigenous microbes. Similarly, other authors have observed increased microbial biomass levels during remediation of soil polluted with 5-10% oil (Marin et al., 2005). From day seven, microbial biomass carbon level decreased in variant A, but was still higher than in variant E during the duration of the experiment.

220

The level of microbial biomass carbon in variant B was similar to that in variant A. In the literature, a wide spectrum of responses of soil microbial biomass carbon to biochar is presented. For example, Demisie et al. (2014) did not observe any effects on microbial biomass of biochar addition in doses of 1 and 2%. Xu et al. (2016) reported no effects of biochar added to soil in doses lower than 8%. Chan et al. (2008)., Durenkump et al. (2010) and Kuppusamy et al. (2016) did not observe any effect either, stating that biochar may even inhibit microbes because of its ability to alter soil pH and electric conductivity, to liberate toxicants, including heavy metals and polyaromatic hydrocarbons, and to provide excess of nutrients. In contrast, other authors reported a stimulating effect of biochar on soil microbial biomass stating that biochar

provides a good habitat for beneficial microbes (Kuppusamy et al., 2016) by adsorbing soluble organic carbon, which is a substrate for the microflora (Beesley et al., 2011).

- 230 Levels of microbial biomass carbon in variants C and D did not differ significantly from those in variants A and B (p≤0.05). In all four variants, the values were higher than in the control. Apart from that, trends of microbial biomass carbon dynamics were similar in variants A to D, suggesting that neither biochar addition nor the introduction of degraders strains immobilized on biochar have higher effects than aeration and moistening.
- The intensity of CO<sub>2</sub> production is one of the most important and most widely used microbial indexes of soil quality, reflecting metabolic activity of microbes and their responses to pollution or other stressful factors as well as to stimulation (Domene et al., 2015; Ros et al., 2010; Tejada et al., 2008). CO<sub>2</sub> emissions from soil during bioremediation are presented in Figure 4. Minimal respiration activity of soil microbes was found in the untreated control (0.14-0.26 mg C-CO<sub>2</sub> g<sup>-1</sup> 24 h<sup>-1</sup>). Aeration and moistening in variant A led to 1.7-fold increase of microbial respiration. For three variants, B, C, and D, increase of microbial respiration was observed at the beginning of remediation, while the respiration peaks in variants C and
- 240 D with introduced microbes were more significant. Thus, on day seven, microbial respiration in variant B was 2.6 times higher and in variants C and D, 3.6 times higher than in the control. Further, respiration activity in the three variants decreased, and on day 28, no differences between these three and variant A were observed.
- Previous studies have described a short-term increase of microbial respiration after biochar addition (Domene et al., 2015; Lehmann et al., 2011; Rutigliano et al., 2014; Smith et al., 2010; Xu et al., 2016). For example, Smith et al. (2010)
  demonstrated that microbial respiration increased for six days after the addition of biochar obtained by pyrolysis at 500°C. Rutigliano et al. (2014) showed an increase in substrate-induced respiration as well as specific substrate activity (to succinic, citric, ascorbic, gluconic, ketoglutaric, and fumaric acids) for three months after biochar addition at doses of 30 and 60 t ha<sup>-1</sup>. The authors explain the temporary increase of respiration by direct use of biochar components as a substrate (e.g. volatile organic compounds produced in the process of pyrolysis and located in biochar pores) or by creating soil conditions more favorable for microbial activity (Domene et al., 2015; Lehmann and Joseph, 2009; Rutigliano et al., 2014; Smith et al., 2010). In studies which found negative effects of biochar on soil respiration, the authors explain this by sorption of soil organic compounds on the biochar surface and consequent decrease of availability of these compounds. Another reason of respiration decrease while maintaining microbial biomass levels may be the thigh availability of nutrients on the biochar (Lehmann et al., 2011).
- 255

The additional increase of microbial respiration in variants C and D observed in our experiment may be explained by the introduction of microbes that were specifically isolated to decompose hydrocarbons. Indeed, in these two variants, we observed slightly higher hydrocarbon degradation rates (Figure 2). Another reason might be the state of microbes introduced. In comparison with indigenous soil microflora that overcomes the lag-phase for metabolic activation after the beginning of remediation, immobilized microbes are active and start to function immediately after introduction. Besides, increase of microbial respiration could be caused by massive death of the introduced bacteria, and decomposition of the dead biomass by soil indigenous microflora.

265

Changes of metabolic activity of soil microbes may be a result of an altered microbial community structure, and in the process of bioremediation of oil pollution, bacteria play a more important role (Atlas, 1995; Galitskaya et al., 2015a; Qin et al., 2013). That is why, in the next stage of investigation, we estimated the structure of bacterial communities in remediating variants. For analysis, soil was sampled on days one, 28, and 84, for the following reasons: days 1 and 84 represent the beginning and the end of remediation, and on day 28, significant differences in hydrocarbon content between variants B-D and A were observed ( $p \le 0.05$ ): apart from this, on day 28, main fluctuations of microbial biomass carbon and respiration ended, indicating the change from an actively functioning microbial community to stabilization.

After sequence filtering and rarefying, there were 156,760 high-quality sequences in total from all 12 samples. The

- 270 average read length was 455 bp. Sequence number per sample ranged from 12,726 to 13,224. The histogram representing dominating phyla in the remediated variants is shown in Figure 5. Day one in variant A represents the bacterial community in the contaminated soil without any kind of treatment. We found 7×10<sup>5</sup> bacterial 16S rDNA copy numbers and 290 OTUs in this variant, and Proteobacteria (mainly, Gamma- and Alpha-), Actinobacteria, Bacteroidetes, Gemmatimonadetes, and Acidobacteria were the dominating phyla, with 88.86% abundance in total. On the OTU level, Pseudoxantomonas sp.,
- 275 Gemm-5 strain, Ectothiorhodosphiraceae, Xylanomicrobium, and Marinicellaceae, with 28.27% in total, dominated. Close relatives of bacteria belonging to the same taxa were previously found in oil contaminated sites (Abed et al., 2015; Patel et al., 2012), soils (D'haeseleer et al., 2013; Schumann and Stackebrandt, 2014), and sediments with high salt content (Koo et al., 2015).
- Aeration and moistening of the contaminated soil (samples A28 and A84) did not lead to changes in bacterial alpha-280 diversity as revealed by simple I-, Shannon-Weaver H- and Simpson D-indexes presented in Table 2. However, it slightly increased bacterial copy numbers and altered OTU composition. Thus, the abundance of Bacteroidetes and Acidobacteria increased, while the abundance of Actinobacteria, Gemmatimonadetes, and Proteobacteria decreased. Pseudoxantomonas sp., Gemm-5 strain, Marinicellaceae, and Xylanomicrobium decreased in abundance, while Ectothiorhodosphiraceae remained abundant. Apart from this, several new OTUs became dominant: Bacteroidales, BD7-3 strain, 285 Xanthomonadaceae, LD19 strain, TM7-1 strain, EW055 strain, and Optitus sp. The last three ones, with 24.99% and 15.54% in total on day 28 and 84, respectively, were described as facultative anaerobic oil contaminated soil and sediment inhabitants able to degrade hydrocarbons, whereas the LD19 strain from the order Methylacidiphilales order is a soil living methanotroph. Possibly, active consumption of oxygen from hydrocarbon decomposers together with non-sufficient aeration caused by pore occlusion in oil contaminated soil led to the development of anaerobic hotspots within remediated soil.
- 290
- In comparison with variant A, the addition of biochar to contaminated soil (samples B1, B28, B84) did not lead to alteration of bacterial counts as revealed by 16S rDNA copy number estimation, but caused a slight decrease in bacterial alpha-diversity (simple I-, Shannon-Weaver H- and Simpson D-indexes) (Table 2). In the literature, controversial data about biochar influence on soil microbial community composition are published; however, in all the cases described, the changes observed were not significant (Khodadad et al., 2011; O'Neill et al., 2009; Rutigliano et al., 2014). This suggests that the 295 effect of biochar is individual in each case and depends on biochar characteristics as well as on initial soil physical and chemical parameters and the original microbial community structure. In our case, biochar addition resulted in an increase of Actinobacteria (day one) and Proteobacteria (days 28 and 84), which is in line with data presented by other authors. Thus, Proteobacteria, especially Alpha- and Gamma-, were predominant in oil polluted soils because many proteobacterial species are capable to degrade hydrocarbons. The relative abundance of Actinobacteria usually increases after oil pollution
- 300 because species belonging to this phylum are known as degraders of recalcitrant organic compounds (Khodadad et al., 2011; Qin et al., 2013; Shahi et al., 2016; Xu et al., 2016). Biochar amendment resulted in the decrease of relative abundance of several bacterial phyla - Gemmatimonadetes (day 1), Chloroflexi and TM7 (day 28), and Bacteroidetes (days 28 and 84). This could be explained by alteration of soil porosity and moisture content caused by biochar. Gemmatimonadetes usually prefer drier conditions, and *Chloroflexi* are usually effective biodestructors; in our study, their abundance may decrease with 305 substrate exhaustion. TM7 prefer acidic soils with partly anaerobic conditions. The relative abundance of all the taxa
- mentioned increased and decreased after biochar addition in different studies (Khodadad et al., 2011; Xu et al., 2016). In terms of dominating OTUs, biochar, immediately after addition, led to an increase of Nocardioides strain and *Xylanimicrobium sp.*, whereas abundance of the other OTUs decreased or remained stable. OTU abundance was very low on days 28 and 84. Nocardioides strains are able to degrade alkanes as well as polycyclic aromatic compounds (Hamamura

- 310 and Arp, 2000; Harayama et al., 1999; Vazquez-Duhalt and Quintero-Ramirez, 2004), thus their development might play an important role for intensification of oil degradation after using biochar. Their abundance decreased on day 28 possible because they finished to decompose the substrate they preferred. Another reason could be the alteration of abiotic factors, growth of other strains in the altered conditions, and competitive exclusion. Several strains were abundant only on day 28: *Olivibacter sp. Parvibaculum sp.*, two *Pseudomonaceae* strains, two *Sphingopyxis* strains, *Achromobacter sp.*, and one
- Chromatiaceae strain (Table 3). The bacterial community on day 28 reflects the end of active hydrocarbon decomposition in biochar amended soil. All the bacterial taxa that were abundant at this time were previously described as efficient degraders of hydrocarbons (Abed et al., 2015; Agnello et al., 2015; Cappello et al., 2016; Dashti et al., 2015; Galitskaya et al., 2015b; Kauppi et al., 2011; Shahi et al., 2016). Therefore, we conclude that the higher decomposition rate in variant B is due to stimulation of degraders by biochar. This may be caused by optimization of oxygen supply or by providing bioavailable compounds which are contained in biochar and may be used for the growth of degrader populations. On day 84, the relative abundance of OTUs close to those able to degrade hydrocarbons or inhabit oil polluted soils decreased significantly. Besides, many dominating OTUs were altered. In overall, the list of dominating OTUs was quite similar in A1/B1 and A84/B84 sample pairs, but different in the A28/B28 pair. This corresponds to the hydrocarbon content and microbial parameter dynamics: significant differences after biochar addition were observed during the first month of bioremediation
- 325 (<u>p≤0.05</u>).

Immobilization of hydrocarbon degrader strains – *P. aeroginosa* and *A. radioresistens* – on biochar significantly altered the microbial community of soil after biochar addition ( $p \le 0.05$ ). As expected, these strains highly dominated - with 76.08% and 47.16% in C1 and D1 samples, respectively. The second abundant OTU in both samples was *Pseudoxanthomonas sp.*, which dominated A1 and B1 samples (Table 3). In comparison with the A1 sample, after addition of biochar with immobilized microbes, bacterial copy numbers raised about ten and four times in C1 and D1 samples, respectively. Strong domination of only one strain led to a significant decrease of alpha-biodiversity in both C1 and D1 samples, while this effect was more pronounced in the first one (Table 2). The number of strains in the C1 sample was 1.92 times lower, and Shannon-Weaver index was 2.77 lower than in the A1 sample.

- The dynamics of bacterial communities in C and D variants showed several common trends. Thus, neither *P. putida*nor *A. radioresistens* added to soil on biochar dominated in the corresponding bacterial communities on days 28 and 84. *Proteobacteria* (including dominating strains) was the dominating phyla in both soils after addition of biochar with immobilized microbes at all sampling times. *Actinobacteria* was second abundant on day one in both C1 and D1, but its amount decreased over time. In contrast, abundance of *Bacteroidetes* and *TM7* phyla increased over time in both variants. In comparison with variants A and B, in both variants C and D, two new dominating OTUs were observed: one OTU
  representing the family Porphyromonadaceae and one representing *Alcanivorax sp* (in C2, D2, and D3 samples). Members of the family Porphyromonadaceae are usually anaerobic sugar fermenting bacteria. As in the case of variant A, anaerobic species may grow in bioremediated aerated soil because of the high oxygen demand of other microbes. *Alcanivorax sp*. was described previously as a species that inhabits oil polluted soil and as degrader of aliphatic hydrocarbons. Its abundance increases during biostimulation.
- 345

350

However, dynamics of bacterial community composition in variants C and D were not similar. Differences between these communities as well as between those in variants A and B are presented in the MDS plot in Figure 6.

As shown in the plot, dots representing bacterial communities may be grouped according to sampling days. This means that contaminated soil properties and initial microbial composition play a major role in community dynamics during bioremediation, while biochar addition as well as the introduction of microbes on biochar are less important. Dots representing bacterial communities on day 28 are situated further away from each other than those sampled on days one and

84, suggesting that biochar and introduced microbes altered the initial microbial community structure mainly during the first month of bioremediation. This corresponds with the differences in hydrocarbon content and microbial parameters that were higher in the first month. Variant C differed from the other variants at all sampling dates; this may be explained by the higher concentration of *P. putida* cells that were introduced. Interestingly, variant C was different from the others on days 28 and 84, despite the fact that counts of introduced bacteria decreased. This may be because introduced bacteria significantly altered the abundance of the other species.

355

360

365

Hydrocarbon polluted soil is toxic for plants, possibly due to direct inhibiting effects of hydrocarbons or their metabolites as well as to changed soil conditions (Al-Mutairi et al., 2008; Morelli et al., 2005; Tahhan and Abu-Ateih, 2009). Apart from this, oil pollution may lead to changes of the microbial community structure, favoring the dominance of phytotoxin producing species (Labud et al., 2007; Steliga et al., 2012). In the literature, phytotoxicity estimation is often recommended to control the efficiency of remediation measures as well as to access biochar quality (Labud et al., 2007; Morelli et al., 2005; Steliga et al., 2012). Figure 7 shows the of phytotoxicity estimation in the remediated soil expressed as

GI.

GI level in variant E (control) was consistently low during the whole experiment (38-68%), whereas GI values in the other variants increased during bioremediation. At the end of the study, GI was estimated to be 205% in variants C and D and 110% in variants A and B.

The difference between the two pairs of variants appeared already at the beginning of remediation, when GI in variants C and D increased more rapidly compared to variants A and B. After day one, GI in variants C and D was about 1.7-fold higher and further increased significantly. Notably, respiration activity in variants C and D was higher than in the other variants at that time (Figure 4), whereas hydrocarbon decomposition was more intensive in variant B, C, and D as compared to variant A (Figure 2). Possibly, aeration and moistening in variant A and biochar addition in variant B only stimulated hydrocarbon degraders that were present in the soil microbial pool, while the biochar addition effect was more pronounced. Addition of active hydrocarbon decomposers, such as *P. aeroginosa* and *A. radioresistens* with several enzymes for different metabolic pathways of hydrocarbon degradation (Agnello et al., 2015; Atlas, 1995), altered the process of oxidation into full oxidation direction with CO<sub>2</sub> as the final product. The introduced strains consumed both initial hydrocarbons and metabolites of degradation produced by the soil microflora, which resulted in a significant increment of microbial respiration against the background of a slight increment of initial hydrocarbon decomposition.

#### **4** Conclusion

- Amendment of oil polluted soil by biochar causes acceleration of hydrocarbon decomposition as compared with remediation by means of mixing and moistening. This may be caused by stimulation of microorganisms able to degrade hydrocarbons due to alteration of soil conditions or due to providing them with nutrients present in the biochar. From a practical point of view, this acceleration may be useful in regions where remediation time is limited (e.g. regions with a cold climate). Immobilization of hydrocarbon degraders leads to an additional effect of biochar on soil phytotoxicity and microbial respiration. This may be due to differences of metabolic pathways of introduced and indigenous microbes.385 Bioaugmentation may be recommended as an additional tool of remediation used in combination with biochar. All the strategies of bioremediation used caused changes in the bacterial community structure. However, as revealed by MDS analysis, differences between the communities were higher at different sampling times as compared with different remediation variants. This suggests that initial bacterial composition is a main factor that influences changes which the bacterial community overcomes during bioremediation.
- 390

Acknowlegements. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. The research was performed using the equipment of Interdisciplinary centre for shared use of

Kazan Federal University. Tatiana Grigoryeva's help with the sequencing is gratefully acknowledged. In addition, the time and effort of the anonymous reviewers, who contributed to improvement of the article, are gratefully acknowledged.

#### References

395

Abed, R. M. M., Al-Kharusi, S. and Al-Hinai, M.: Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil, Int. Biodeterior. Biodegrad., 98, 43–52, doi:10.1016/j.ibiod.2014.11.018, 2015.

Agnello, A. C., Bagard, M., van Hullebusch, E. D., Esposito, G. and Huguenot, D.: Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation

400

and bioaugmentation-assisted phytoremediation., Sci. Total Environ., 563-564, 693-703, doi:10.1016/j.scitotenv.2015.10.061, 2015.

Akhmetzyanova, L. G., Kuritsyn, I. N. and Selivanovskaya, S. J.: Comparative analysis of the effectiveness of oilcontaminated soil remediation by microbial isolates of Pseudomonas aeruginosa and commercial preparation "Devoroil," Res. J. Pharm. Biol. Chem. Sci., 5(5), 1555–1559, 2014.

405 Alexander, M.: How toxic are toxic chemicals in soil?, Environ. Sci. Technol., 29, 2713–2717, 1995.

Al-Mutairi, N., Bufarsan, A. and Al-Rukaibi, F.: Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels, Chemosphere, 74(1), 142–148, doi:10.1016/j.chemosphere.2008.08.020, 2008.

Atlas, R. M.: Petroleum biodegradation and oil spill bioremediation, Mar. Pollut. Bull., 31(4), 178–182, doi:10.1016/0025-326X(95)00113-2, 1995.

410 Awad, Y. M., Blagodatskaya, E., Ok, Y. S. and Kuzyakov, Y.: Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities, Eur. J. Soil Biol., 48, 1–10, doi:10.1016/j.ejsobi.2011.09.005, 2012.

Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Moreno-Jiménez, E. and Gomez-Eyles, J. L.: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic
contaminants in a multi-element polluted soil, Environ. Pollut., 158(6), 2282–2287, doi:10.1016/j.envpol.2010.02.003, 2010.

Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B. and Sizmur, T.: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils, Environ. Pollut., 159(12), 3269–3282, doi:10.1016/j.envpol.2011.07.023, 2011.

420

Beškoski, V. P., Gojgić-Cvijović, G., Milić, J., Ilić, M., Miletić, S., Šolević, T. and Vrvić, M. M.: Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) - A field experiment, Chemosphere, 83(1), 34–40, doi:10.1016/j.chemosphere.2011.01.020, 2011.

Bhaduri, D., Saha, A., Desai, D. and Meena, H. N.: Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study, Chemosphere, 148, 86–98, doi:10.1016/j.chemosphere.2015.12.130, 2016.

Butnan, S., Deenik, J. L., Toomsan, B., Antal, M. J. and Vityakon, P.: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy, Geoderma, 237, 105–116, doi:10.1016/j.geoderma.2014.08.010, 2015.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G.,
Goodrich, K., Gordon, J. I., Huttley, G. a, Kelley, S. T., Knights, D., Jeremy, E., Ley, R. E., Lozupone, C. a, Mcdonald, D., Muegge, B. D., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J. and Walters, W. a: QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7(5), 335–336, doi:10.1038/nmeth.f.303., 2010.

Cappello, S., Volta, A., Santisi, S. and Torregrossa, M.: Oil-degrading bacteria from a membrane bioreactor (BF-

MBR) system for treatment of saline oily waste: Isolation, identification and characterization of the biotechnologicalpotential, Int. Biodeterior. Biodegradation, 110, 235–244, 2016.

Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. and Joseph, S.: Using poultry litter biochars as soil amendments, Soil Res., 46, 437–444, 2008.

D'haeseleer, P., Gladden, J. M., Allgaier, M., Chain, P. S. G., Tringe, S. G., Malfatti, S. A., Aldrich, J. T., Nicora, C. D., Robinson, E. W., Paša-Tolić, L., Hugenholtz, P., Simmons, B. A. and Singer, S. W.: Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass, edited by Y. Xu, PLoS One, 8(7),

doi:10.1371/journal.pone.0068465, 2013.

440

470

Dashti, N., Ali, N., Khanafer, M., Al-Awadhi, H., Sorkhoh, N. and Radwan, S.: Olive-pomace harbors bacteria with the potential for hydrocarbon-biodegradation, nitrogen-fixation and mercury-resistance: Promising material for waste-oil-bioremediation, J. Environ. Manage., 155, 49–57, doi:10.1016/j.jenvman.2015.03.010, 2015.

445 Demisie, W., Liu, Z. and Zhang, M.: Catena Effect of biochar on carbon fractions and enzyme activity of red soil, Catena, 121, 214–221, doi:10.1016/j.catena.2014.05.020, 2014.

Domene, X., Enders, A., Hanley, K. and Lehmann, J.: Ecotoxicological characterization of biochars: Role of feedstock and pyrolysis temperature, Sci. Total Environ., 512-513, 552–561, doi:10.1016/j.scitotenv.2014.12.035, 2015.

Durenkamp, M., Luo, Y. and Brookes, P. C.: Impact of black carbon addition to soil on the determination of soil 450 microbial biomass by fumigation extraction., 2010.

Edgar, R. C.: Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26, 2460–2461, 2010.

Faith, D. P., Minchin, P. R. and Belbin, L.: Compositional dissimilarity as a robust measure of ecological distance, Vegetatio, 69, 57–68, 1987.

Galitskaya, P., Gumerova, R., Ratering, S., Schnell, S., Blagodatskaya, E. and Selivanovskaya, S.: Oily waste
 containing natural radionuclides: Does it cause stimulation or inhibition of soil bacterial community?, J. Plant Nutr. Soil Sci., 178(6), 825–833, doi:10.1002/jpln.201400641, 2015a.

Galitskaya, P., Biktasheva, L., Saveliev, A., Ratering, S., Schnell, S. and Selivanovskaya, S.: Response of soil microorganisms to radioactive oil waste: Results from a leaching experiment, Biogeosciences, 12(12), 3681–3693, doi:10.5194/bg-12-3681-2015, 2015b.

460 Gumerova, R. K., Selivanovskaya, S. Y. and Galitskaya, P. Y.: Changes of hydrocarbon and oil fractions in oily waste treated by different methods of bioremediation, Neft. Khozyaistvo – Oil Ind., 9, 118–120, 2013.

Hamamura, N. and Arp, D. J.: Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8, FEMS Microbiol. Lett., 186(1), 21–26, doi:10.1016/S0378-1097(00)00109-9, 2000.

Harayama, S., Kishira, H., Kasai, Y. and Shutsubo, K.: Petroleum Biodegradation in Marine Environments, Molec.Microbiol. Biotechnol, 1(1), 63–70, 1999.

ISO 14240-2: Soil quality - Determination of soil microbial biomass -- Part 2: Fumigation-extraction method, , 10p., 1998.

ISO 16072: Soil quality -- Laboratory methods for determination of microbial soil respiration, , 19, 2002.

ISO11269-1: Soil quality -- Determination of the effects of pollutants on soil flora -- Part 1: Method for the measurement of inhibition of root growth, 2012.

ISO11269-2: Soil quality -- Determination of the effects of pollutants on soil flora -- Part 2: Effects of contaminated soil on the emergence and early growth of higher plants, 2012.

Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V.: Biochar-mediated changes in soil

quality and plant growth in a three year field trial, Soil Biol. Biochem., 45, 113-124, doi:10.1016/j.soilbio.2011.10.012,

475 2012.

> Jørgensen, K. S., Puustinen, J. and Suortti, A. M.: Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles, in Environmental Pollution, vol. 107, pp. 245-254., 2000.

Kauppi, S., Sinkkonen, A. and Romantschuk, M.: Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: Comparison of biostimulation and bioaugmentation, Int. Biodeterior. Biodegrad., 65(2), 359-368, doi:10.1016/j.ibiod.2010.10.011, 2011.

480

Khodadad, C. L. M., Zimmerman, A. R., Green, S. J., Uthandi, S. and Foster, J. S.: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments, Soil Biol. Biochem., 43(2), 385-392, doi:10.1016/j.soilbio.2010.11.005, 2011.

Koo, H., Mojib, N., Huang, J. P., Donahoe, R. J. and Bej, A. K.: Bacterial community shift in the coastal Gulf of 485 Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252), 3 Biotech, 5(4), 379-392, doi:10.1007/s13205-014-0233-x, 2015.

Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K. and Naidu, R.: Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions, Environ. Int., 87, 1-12, doi:10.1016/j.envint.2015.10.018, 2016.

- 490 Kuśmierz, M., Oleszczuk, P., Kraska, P., Pałys, E. and Andruszczak, S.: Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil, Chemosphere, 146, 272-279, doi:10.1016/j.chemosphere.2015.12.010, 2016.
- Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. and Xu, X.: Black carbon decomposition and incorporation into soil microbial biomass
  - 14C estimated by labeling, Soil Biol. Biochem., 41(2), 210-219,495 doi:10.1016/j.soilbio.2008.10.016, 2009. Labud, V., Garcia, C. and Hernandez, T.: Effect of hydrocarbon pollution on the microbial properties of a sandy and

a clay soil, Chemosphere, 66(10), 1863–1871, doi:10.1016/j.chemosphere.2006.08.021, 2007.

Lehmann, J. and Joseph, S.: Biochar for environmentalmanagement: an introduction, in Biochar for Environmental Management: Science and Technology, edited by J. Lehmann and S. Joseph, Earthscan, London., 2009.

500 Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. and Crowley, D.: Biochar effects on soil biota - A review, Soil Biol. Biochem., 43(9), 1812–1836, doi:10.1016/j.soilbio.2011.04.022, 2011.

Liu, W., Luo, Y., Teng, Y., Li, Z. and Christie, P.: Prepared bed bioremediation of oily sludge in an oilfield in northern China, J. Hazard. Mater., 161(1), 479-484, doi:10.1016/j.jhazmat.2008.03.123, 2009.

Liu, X., Zheng, J., Zhang, D., Cheng, K., Zhou, H., Zhang, A., Li, L., Joseph, S., Smith, P., Crowley, D., Kuzyakov, 505 Y. and Pan, G.: Biochar has no effect on soil respiration across Chinese agricultural soils, Sci. Total Environ., 554, 259-265, doi:10.1016/j.scitotenv.2016.02.179, 2016.

Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G. and Paz-Ferreiro, J.: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd, Chemosphere, 119, 209-216, doi:10.1016/j.chemosphere.2014.06.024, 2015.

510 Marin, J. A., Hernandez, T. and Garcia, C.: Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity, Environ. Res., 98(2), 185-195, doi:10.1016/j.envres.2004.06.005, 2005.

Morelli, I. S., Del Panno, M. T., De Antoni, G. L. and Painceira, M. T.: Laboratory study on the bioremediation of petrochemical sludge-contaminated soil, Int. Biodeter. Biodegrad., 55, 271-278, 2005.

Nikolopoulou, M., Pasadakis, N. and Kalogerakis, N.: Evaluation of autochthonous bioaugmentation and

515 biostimulation oil spills, Pollut. Bull.. 165-173. during microcosm-simulated Mar. 72(1), doi:10.1016/j.marpolbul.2013.04.007, 2013.

O'Neill, B., Grossman, J., Tsai, M. T., Gomes, J. E., Lehmann, J., Peterson, J., Neves, E. and Thies, J. E.: Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification, Microb. Ecol., 58, 23-35, 2009.

520 Patel, V., Cheturvedula, S. and Madamwar, D.: Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India., J. Hazard. Mater., 201-202, 43-51, doi:10.1016/j.jhazmat.2011.11.002, 2012.

Qin, G., Gong, D. and Fan, M. Y.: Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar, Int. Biodeterior. Biodegrad., 85, 150-155, doi:10.1016/j.ibiod.2013.07.004, 2013.

525 Quilliam, R. S., Glanville, H. C., Wade, S. C. and Jones, D. L.: Life in the "charosphere" - Does biochar in agricultural soil provide a significant habitat for microorganisms?, Soil Biol. Biochem., 65, 287-293, doi:10.1016/j.soilbio.2013.06.004, 2013.

R Core Development Team: R: a language and environment for statistical computing, 3.2.1, Doc. Free. available internet http://www.r-project.org, doi:10.1017/CBO9781107415324.004, 2015.

530 Rocha, L. L., Colares, G. B., Angelim, A. L., Grangeiro, T. B. and Melo, V. M. M.: Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments, Mar. Pollut. Bull., 76(1-2), 214-219, doi:10.1016/j.marpolbul.2013.08.040, 2013.

Ros, M., Rodríguez, I., García, C. and Hernández, T.: Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments, Bioresour. Technol., 101(18), 6916-6923, 535 doi:10.1016/j.biortech.2010.03.126, 2010.

Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F. and Castaldi, S.: Effect of biochar addition on soil microbial community in a wheat crop, Eur. J. Soil Biol., 60, 9–15, doi:10.1016/j.ejsobi.2013.10.007, 2014.

Schumann, P. and Stackebrandt, E.: The Family Promicromonosporaceae, in The Prokaryotes: Actinobacteria, edited by E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson, pp. 701-724, Springer Berlin Heidelberg, Berlin, Heidelberg., 2014.

540

Selivanovskaya, S. Y., Kuritsin, I. N., Akhmetzyanova, L. G., Galitskaya, P. Y. and Solovjev, D. A.: Use of biological activity index for determination of oil polluted area meant for remediation, Neft. Khozyaistvo - Oil Ind., 6, 102-103, 2012.

Shahi, A., Aydin, S., Ince, B. and Ince, O.: Evaluation of microbial population and functional genes during the 545 bioremediation of petroleum-contaminated soil as an effective monitoring approach, Ecotoxicol. Environ. Saf., 125, 153-160, doi:10.1016/j.ecoenv.2015.11.029, 2016.

Shannon, C. E. and Weaver, W.: The mathematical theory of communication, Urbana, IS., University of Illinois Press., 1963.

Simpson, E. H.: Measurement of diversity, Nature, 163-688, 1949.

550 Smith, J. L., Collins, H. P. and Bailey, V. L.: The effect of young biochar on soil respiration, Soil Biol. Biochem., 42(12), 2345-2347, doi:10.1016/j.soilbio.2010.09.013, 2010.

Steliga, T., Jakubowicz, P. and Kapusta, P.: Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons, Bioresour. Technol., 125, 1–10, 2012.

Suja, F., Rahim, F., Raihan, M., Hambali, N., Razali, M. R., Khalid, A. and Hamzah, A.: International 555 Biodeterioration & Biodegradation Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and fi eld observations, Int. Biodeterior. Biodegradation, 90, 115–122, doi:10.1016/j.ibiod.2014.03.006, 2014.

Taccari, M., Milanovic, V., Comitini, F., Casucci, C. and Ciani, M.: Effects of biostimulation and bioaugmentation on diesel removal and bacterial community, Int. Biodeterior. Biodegradation, 66(1), 39–46, doi:10.1016/j.ibiod.2011.09.012, 2012.

Tahhan, R. A. and Abu-Ateih, R. Y.: Biodegradation of petroleum industry oily-sludge using Jordanian oil refinery contaminated soil, Int. Biodeterior. Biodegrad., 63(8), 1054–1060, doi:10.1016/j.ibiod.2009.09.001, 2009.

Tahhan, R. A., Ammari, T. G., Goussous, S. J. and Al-Shdaifat, H. I.: Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy, Int. Biodeterior. Biodegradation, 65(1), 130–134, doi:10.1016/j.ibiod.2010.09.007, 2011.

Tang, J., Wang, R., Niu, X. and Zhou, Q.: Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms, Soil Tillage Res., 110(1), 87–93, doi:10.1016/j.still.2010.06.010, 2010.

560

570

Tang, J., Wang, M., Wang, F., Sun, Q. and Zhou, Q.: Eco-toxicity of petroleum hydrocarbon contaminated soil, J. Environ. Sci., 23(5), 845–851, doi:10.1016/S1001-0742(10)60517-7, 2011.

Tang, J., Lu, X., Sun, Q. and Zhu, W.: Aging effect of petroleum hydrocarbons in soil under different attenuation conditions, Agric. Ecosyst. Environ., 149, 109–117, doi:10.1016/j.agee.2011.12.020, 2012.

Tang, J., Zhu, W., Kookana, R. and Katayama, A.: Characteristics of biochar and its application in remediation of contaminated soil, J. Biosci. Bioeng., 116(6), 653–659, doi:10.1016/j.jbiosc.2013.05.035, 2013.

575 Tejada, M., Gonzalez, J. L., Hernandez, M. T. and Garcia, C.: Application of different organic amendments in a gasoline contaminated soil: Effect on soil microbial properties, Bioresour. Technol., 99(8), 2872–2880, doi:10.1016/j.biortech.2007.06.002, 2008.

Vazquez-Duhalt, R. and Quintero-Ramirez, R.: Petroleum Biotechnology: Developments and Perspectives, edited by R. Vazquez-Duhalt and R. Quintero-Ramirez., 2004.

580 Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R.: Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 73(16), 52–61, 2007.

Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C. and Zhou, W.: Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil, Appl. Soil Ecol., 96, 265–272, doi:10.1016/j.apsoil.2015.08.018, 2015.

585 Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M. and Chen, L.: Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil, Int. Biodeterior. Biodegrad., 107, 158–164, doi:10.1016/j.ibiod.2015.11.019, 2016.

Xu, N., Tan, G., Wang, H. and Gai, X.: Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure, Eur. J. Soil Biol., 74, 1–8, doi:10.1016/j.ejsobi.2016.02.004, 2016.

590 Zucconi, F., Pera, A., Forte, M. and de Bertoldi, M.: Evaluating toxicity of immature compost, Biocycle, 22, 54–57, 1981.

#### 595 Table 1: Treatments of oil polluted soil used in the study. Treatment and В С D А Е method of remediation Mixing and moisteningFigure $^+$ + + +-Amendment with biochar 1% (w/w) + ++ --Amendment with biochar 1% (w/w) which was previously \_ + -\_ \_ inoculated with Pseudomonas aeruginosa Amendment with biochar 1% (w/w) which was previously +\_ \_ -\_ inoculated with Acinetobacter radioresistens

Table 2: Alpha-biodiversity indexes and 16S rDNA copy number in bioremediated soil samples.

| Parameter           | Variant name (letter) and day of sampling (number) |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|---------------------|----------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                     | A1                                                 | A28               | A84               | B1                | B28               | B84               | C1                | C28               | C84               | D1                | D28               | D84               |
| I-index             | 290                                                | 270               | 263               | 278               | 230               | 244               | 190               | 151               | 192               | 253               | 281               | 259               |
| H-index             | 4.251                                              | 4.009             | 4.250             | 4.277             | 3.809             | 4.013             | 1.533             | 3.061             | 3.534             | 2.958             | 3.840             | 3.937             |
| D- index            | 0.966                                              | 0.957             | 0.974             | 0.965             | 0.958             | 0.964             | 0.419             | 0.916             | 0.947             | 0.770             | 0.947             | 0.958             |
| Number<br>of copies | 7×10 <sup>5</sup>                                  | 3×10 <sup>6</sup> | 2×10 <sup>6</sup> | 1×10 <sup>6</sup> | 3×10 <sup>6</sup> | 3×10 <sup>6</sup> | 7×10 <sup>6</sup> | 7×10 <sup>6</sup> | 5×10 <sup>6</sup> | 3×10 <sup>6</sup> | 2×10 <sup>6</sup> | 2×10 <sup>6</sup> |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative abundance, % (letters - names of the variants, numbers - days of sampling) |       |      |       |       |      |       |       |       |       |       |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|------|-------|-------|------|-------|-------|-------|-------|-------|------|
| Name of the OTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                                                                                  | A28   | A84  | B1    | B28   | B84  | C1    | C28   | C84   | D1    | D28   | D84  |
| p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Nocardioidaceae;g_Nocardioides;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.57                                                                                | 0.42  | 0.12 | 3.43  | 0.06  | 0.05 | 0.94  | 0.00  | 0.00  | 1.25  | 0.09  | 0.07 |
| $p\_Actinobacteria; c\_Actinobacteria; o\_Actinomycetales; f\_Promicromonosporaceae; g\_Xylanimicrobium; Otherwise the second second$                                                                                                   | 3.68                                                                                | 0.15  | 0.03 | 6.28  | 0.12  | 0.03 | 1.74  | 0.10  | 0.01  | 2.62  | 0.15  | 0.02 |
| p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24                                                                                | 2.43  | 4.15 | 0.19  | 0.13  | 0.72 | 0.03  | 0.04  | 7.45  | 0.39  | 3.65  | 1.44 |
| p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.79                                                                                | 1.74  | 1.20 | 0.92  | 0.14  | 0.41 | 0.44  | 0.07  | 11.63 | 2.85  | 15.15 | 9.77 |
| p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;f_Flavobacteriaceae;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.56                                                                                | 1.48  | 0.92 | 0.35  | 0.58  | 0.22 | 0.19  | 0.01  | 0.83  | 0.27  | 3.01  | 1.01 |
| p_Bacteroidetes;c_Sphingobacteriia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Olivibacter;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35                                                                                | 0.09  | 0.02 | 0.54  | 3.00  | 0.02 | 0.13  | 5.51  | 0.28  | 0.17  | 0.13  | 0.03 |
| p_Gemmatimonadetes;c_Gemm-5;o_;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.04                                                                                | 0.53  | 0.67 | 0.95  | 0.25  | 0.50 | 0.10  | 0.02  | 0.01  | 0.51  | 0.33  | 0.44 |
| p_Proteobacteria;c_Alphaproteobacteria;o_;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.06                                                                                | 2.10  | 1.01 | 1.11  | 0.80  | 2.29 | 0.14  | 0.08  | 0.78  | 0.63  | 2.25  | 1.75 |
| p_Proteobacteria;c_Alphaproteobacteria;o_BD7-3;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                                                                                | 4.49  | 2.80 | 0.11  | 2.38  | 2.84 | 0.00  | 0.01  | 7.64  | 0.14  | 0.78  | 2.71 |
| $p\_Proteobacteria; c\_Alphaproteobacteria; o\_Rhizobiales; f\_Hyphomicrobiaceae; g\_Parvibaculum; s\_restriction and the second seco$                                                                                                  | 0.10                                                                                | 0.11  | 0.06 | 0.05  | 12.90 | 0.02 | 0.02  | 20.06 | 5.59  | 0.04  | 0.59  | 0.18 |
| $p\_Proteobacteria; c\_Alphaproteobacteria; o\_Sphingomonadales; f\_Sphingomonadaceae; g\_Sphingopyxis; s\_restriction and the second second$                                                                                                  | 0.05                                                                                | 0.01  | 0.01 | 0.04  | 3.82  | 0.02 | 0.01  | 5.13  | 1.59  | 0.01  | 0.16  | 0.01 |
| $p\_Proteobacteria; c\_Alphaproteobacteria; o\_Sphingomonadales; f\_Sphingomonadaceae; g\_Sphingopyxis; s\_alaskensising and the second seco$                                                                                                  | 0.12                                                                                | 0.17  | 0.03 | 1.01  | 3.38  | 0.01 | 0.01  | 3.48  | 0.23  | 0.09  | 0.74  | 0.17 |
| $p\_Proteobacteria; c\_Beta proteobacteria; o\_Burkholderiales; f\_Alcaligenaceae; g\_Achromobacter; s\_restriction and the second se$                                                                                                  | 0.09                                                                                | 0.16  | 0.04 | 0.09  | 3.02  | 0.05 | 0.01  | 3.32  | 0.98  | 0.03  | 0.28  | 0.04 |
| p_Proteobacteria;c_Gammaproteobacteria;o_[Marinicellales];f_[Marinicellaceae];g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.63                                                                                | 0.09  | 0.01 | 0.34  | 0.00  | 0.00 | 0.23  | 0.00  | 0.00  | 0.33  | 0.26  | 0.00 |
| p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_[Chromatiaceae];g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                | 0.38  | 0.04 | 0.00  | 5.20  | 0.04 | 0.00  | 10.53 | 0.61  | 0.00  | 0.47  | 0.16 |
| p_Proteobacteria;c_Gammaproteobacteria;o_Chromatiales;f_Ectothiorhodospiraceae;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.79                                                                                | 2.93  | 5.19 | 2.49  | 6.96  | 7.86 | 0.74  | 11.45 | 6.04  | 1.78  | 8.31  | 7.10 |
| $p\_Proteobacteria; c\_Gamma proteobacteria; o\_Oceanos pirillales; f\_Alcanivoracaceae; g\_Alcanivorax; s\_restriction and the second secon$                                                                                                  | 0.00                                                                                | 0.00  | 1.28 | 0.01  | 0.01  | 0.03 | 0.00  | 0.03  | 9.80  | 0.01  | 2.53  | 4.75 |
| $p\_Proteobacteria; c\_Gamma proteobacteria; o\_Pseudomonadales; f\_Moraxellaceae; g\_Acinetobacter; s\_rational structure and struct$                                                                                                  | 0.02                                                                                | 0.01  | 0.09 | 0.00  | 0.00  | 0.32 | 0.02  | 0.00  | 0.12  | 47.16 | 0.34  | 0.24 |
| p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Moraxellaceae;g_Alkanindiges;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                | 0.00  | 0.01 | 0.02  | 2.19  | 0.00 | 0.00  | 4.39  | 0.03  | 0.01  | 0.02  | 0.00 |
| p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.88                                                                                | 0.09  | 0.09 | 1.87  | 4.75  | 0.11 | 2.06  | 4.48  | 0.77  | 1.62  | 1.28  | 0.28 |
| $p\_Proteobacteria; c\_Gamma proteobacteria; o\_Pseudomonadales; f\_Pseudomonadaceae; g\_Pseudomonas; s\_Pseudomonadaceae; g\_Pseudomonas; s\_Pseudomonadaceae; g\_Pseudomonadaceae; g\_Pseudomonad$ | 0.09                                                                                | 0.03  | 0.02 | 0.24  | 6.20  | 0.02 | 76.08 | 3.82  | 0.03  | 0.78  | 0.37  | 0.01 |
| p_Proteobacteria;c_Gammaproteobacteria;o_PYR10d3;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.14                                                                                | 1.89  | 4.35 | 2.21  | 0.53  | 7.64 | 0.40  | 0.09  | 5.84  | 1.71  | 5.07  | 3.57 |
| p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Sinobacteraceae;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.30                                                                                | 0.95  | 0.87 | 1.46  | 1.27  | 0.78 | 0.19  | 1.13  | 0.32  | 0.55  | 0.46  | 0.36 |
| p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Xanthomonadaceae;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00                                                                                | 8.47  | 3.08 | 1.83  | 2.55  | 4.78 | 0.28  | 0.38  | 2.68  | 1.00  | 7.69  | 7.50 |
| $p\_Proteobacteria; c\_Gamma proteobacteria; o\_Xan thomonadales; f\_Xan thomonadaceae; g\_Pseudoxan thomonas; Otherwise the set of the $                                                                                                   | 13.86                                                                               | 1.90  | 0.25 | 14.40 | 1.21  | 0.22 | 2.11  | 1.25  | 0.83  | 4.67  | 1.47  | 0.21 |
| p_TM7;c_TM7-1;o_;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.59                                                                                | 12.94 | 7.79 | 1.43  | 4.01  | 6.09 | 0.16  | 0.07  | 1.03  | 0.69  | 8.12  | 4.15 |
| p_TM7;c_TM7-3;o_;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                | 1.25  | 0.76 | 3.49  | 0.37  | 1.41 | 0.13  | 0.00  | 0.29  | 0.66  | 0.36  | 0.48 |
| p_TM7;c_TM7-3;o_EW055;f_;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.22                                                                                | 8.82  | 4.53 | 0.46  | 2.16  | 8.11 | 0.07  | 0.04  | 6.53  | 0.21  | 3.82  | 9.18 |
| p_Verrucomicrobia;c_[Methylacidiphilae];o_Methylacidiphilales;f_LD19;g_;s_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                | 0.15  | 4.07 | 0.00  | 0.01  | 5.43 | 0.00  | 0.00  | 0.20  | 0.00  | 0.03  | 2.03 |
| p Verrucomicrobia:c Opitutae:o Opitutales:f Opitutaceae:g Opitutus:s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.14                                                                                | 3.23  | 3.22 | 0.21  | 3.05  | 4.30 | 0.02  | 6.45  | 1.23  | 0.04  | 0.71  | 0.84 |



Figure 1: SEM pictures of initial biochar (a-d), biochar with immobilized cells of *P. aeruginosa*(e,f), and biochar with immobilized cells of *A. radioresistens* (g,h).



607 608 Figure 2: Changes of hydrocarbon content in remediated soil (A - soil that was moistened and 609 aerated, B - soil that was moistened, aerated, and amended with 1% biochar, C - soil that was moistened, aerated, and amended with 1% biochar with P. aeroginosa, D - soil that was 610 611 moistened, aerated, and amended with 1% biochar with A. radioresistens, E - soil without 612 treatment).



614
615 Figure 3: Changes of microbial biomass carbon levels in remediated soil (A, B, C, D, E – as in 616 Figure 2).



618
619 Figure 4: Changes of microbial respiration in remediated soil (A, B, C, D, E – as in Figure 2).
620





624 Figure 5: Relative abundance of different phyla in bioremediated soil samples (A, B, C, D names of the variant, as in Figure 2; 1, 28, 84 – days of sampling). 





Figure 6: Metric multidimensional scaling analysis based on distance matrix of OTU relative abundance in bioremediated soil samples (A, B, C, D – names of the variants, as in Figure 2; 1, 28, 84 - days of sampling).





636 Figure 7: Changes of phytotoxicity in the remediated soil (A, B, C, D, E – as in Figure 2).