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Abstract.

Earth Observation (EO) land surface products have been demonstrated to provide a constraint on

the terrestrial carbon cycle that is complementary to the record of atmospheric carbon dioxide. We

present the Joint Research Centre Two-stream Inversion Package (JRC-TIP) for retrieval of variables

characterising the state of the vegetation-soil system. The system provides a set of land surface vari-5

ables that satisfy all requirements for assimilation into the land component of climate and numerical

weather prediction models. Being based on a one dimensional representation of the radiative transfer

within the canopy-soil system such as those used in the land surface components of advanced global

models, the JRC-TIP products are not only physically consistent internally, but also achieve a high

degree of consistency with these global models. Furthermore, the products are provided with full10

uncertainty information. We describe how these uncertainties are derived in a fully traceable manner

without any hidden assumptions from the input observations, which are typically broadband white

sky albedo products. Our discussion of the product uncertainty ranges, including the uncertainty re-

duction, highlights the central role of the leaf area index which describes the density of the canopy.

We explain the generation of products aggregated to coarser spatial resolution than that of the na-15

tive albedo input and describe various approaches to validation of JRC-TIP products, including the

comparison against in-situ observations. We present a JRC-TIP processing system that satisfies all

operational requirements and explain how it delivers stable climate data records. As many aspects of

JRC-TIP are generic the package can serve as an example of a state-of-the-art system for retrieval

of EO products, and this contribution can help the user to understand advantages and limitations of20

such products.
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1 Introduction

This special issue addresses the consistent assimilation of multiple data streams into biogeochemical

models. Among the available data streams, long-term high precision observations of the atmospheric

carbon dioxide concentration (see, e.g., Houweling et al., 2012) provide an indispensable constraint25

for the (process parameter) calibration of terrestrial biosphere models in Carbon Cycle Data As-

similation Systems (CCDAS, Rayner et al., 2005). The strength of this constraint is quantified by

significant reductions of uncertainty in simulated terrestrial carbon fluxes diagnosed over (Kaminski

et al., 2002; Rayner et al., 2005) or predicted after (Scholze et al., 2007; Rayner et al., 2011) the

assimilation window. In recent multi-data stream assimilation studies at global scale (Scholze et al.,30

2016; Schürmann et al., 2016) the constraint through the flask sampling network has proven essential

to achieve realistic magnitudes of the terrestrial carbon sink. The flask sampling network alone does,

however, only constrain a sub-space of the space of unknown process parameters. Thus, additional,

complementary, constraints are required to further reduce uncertainties in the system. Such comple-

mentarity has been demonstrated for Earth Observation (EO) products (Gobron et al., 2007; Pinty35

et al., 2011b) of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), which pro-

vide information on, e.g., the vegetation phenology and colour. The effect on carbon and water fluxes

of assimilating FAPAR in addition to atmospheric carbon dioxide samples is, for example, quantified

by Kaminski et al. (2012) and Schürmann et al. (2016).

The assimilation of an EO product such as FAPAR requires a so-called observation operator. The40

task of an observation operator is to simulate the counterpart of an observation from the model’s

prognostic variables, i.e. the variables that the integration scheme of the model’s dynamical equa-

tions steps forward in time (Kaminski and Mathieu, 2016). For a land product such as FAPAR, the

construction of the observation operator requires to solve the equations for the radiative transfer (RT)

within the canopy-soil system. The RT within the canopy is complicated as the leaves, which scatter45

the solar radiation, are large (compared to the wavelength) and vary in their orientation and optical

properties. For large-scale terrestrial models it is (at least computationally) infeasible to resolve the

small-scale three-dimensional heterogeneity of the canopy. The most advanced RT representations

in such models are one-dimensional approximations relying on so-called two-stream or (two-flux)

approaches.50

The retrieval of a set of EO products describing the evolution of the canopy-soil system, e.g. leaf

area index (LAI) or FAPAR, also has to rely on a RT model, in EO terminology called forward model,

to simulate the partitioning of the incoming solar radiation into contributions from the individual

radiative fluxes, i.e. those absorbed in, transmitted trough, and reflected by the canopy. In order to

exploit the full potential of the retrieved variables, this forward model should be as close as possible55

to the RT model used in the observation operator for assimilation. The joint retrieval of a set of

EO products with the same RT model is a pre-requisite to ensure physical consistency (including

conservation of energy) of the retrieved products. The use in a CCDAS requires the retrieval product
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to be provided with a (typically space- and time-dependent) uncertainty estimate. For assimilation

of multiple products from a joint retrieval the correlation of their uncertainty is also required to60

allow the extraction of the true information content from the jointly retrieved products. The retrieved

products must be quality assured, i.e. they need to be validated against independent information.

Finally, the retrieval algorithm must be efficient enough to allow global-scale processing, preferably

near real time.

The Joint Research Centre Two-stream Inversion Package (JRC-TIP, Pinty et al., 2007, 2008) is a65

retrieval package that fulfils the above conditions. It is built around a two-stream model (Pinty et al.,

2006) of the RT in the canopy soil system (see section 2) and applies a joint inversion (Tarantola,

2005) approach (see section 3) that combines the information in observed radiative fluxes with prior

information on the model parameters (see section 4.1). Its products are posterior estimates of the

model parameters and all radiant fluxes. The model parameters are the effective LAI, spectrally vari-70

ant background reflectance, effective canopy reflectance and transmittance (where effective indicates

model-dependence, see section 2). The radiant fluxes include (but are not limited to) model coun-

terparts to the ones that have been observed. The retrieved products are available with uncertainty

estimates and their covariance (sometimes termed error covariance). The package is highly flexible:

It can be operated for any combination of narrowband, broadband, or hyperspectral radiation flux75

observations (Lavergne et al., 2006) and on all spatial scales above 100 m (when lateral flux compo-

nents can safely be neglected) even for heigh canopies. The radiative flux that is accessible to obser-

vations from space is the reflected sunlight, i.e. the albedo, once a complex series of procedures to

remove atmospheric effects has been applied together with performing the required integration over

exiting and/or sun illumination angles. Hence, for EO applications JRC-TIP is typically set up to use80

observed albedo as input. Healthy green vegetation is characterised by a strong albedo difference be-

tween the visible (VIS) and near infrared (NIR) domains of the spectrum. Accordingly, the system is

typically operated on albedo input in these two wavebands. In this configuration it has been applied

to broadband albedos derived from MODIS (Pinty et al., 2007, 2008, 2011a, b), MISR (Pinty et al.,

2007, 2008), and Globalbedo (Disney et al., 2016). Section 4 describes enhancements of robust-85

ness and efficiency through the use of so-called TIP tables, i.e. look up tables of quality-controlled

retrievals over a fine discretisation of the input space (Clerici et al., 2010; Voßbeck et al., 2010).

Section 4 discusses products from a large-scale processing exercise (Pinty et al., 2011a, b) based

on MODIS collection 5 broadband albedo input, with a focus on the reported uncertainty estimates.

Validation of JRC-TIP products is described in section 5.90

2 Radiative Transfer Model

The two-stream model at the core of JRC-TIP is described in full detail by Pinty et al. (2006).

We, hence, restrict ourselves to a brief summary of the main features. The model is designed to
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Figure 1: Schematic partitioning of the incoming solar radiation in the canopy-soil system.

Figure 2: Decomposition of the total flux into three contributing fractions. The two-stream solution

by Meador and Weaver (1980) applies to the Black background contribution (left hand side) only.

solve the radiation balance for the canopy-soil system (see figure 1). It simulates the solar radiant

fluxes scattered by, transmitted through, and absorbed in a vegetation canopy that is composed of95

so-called bi-Lambertian leaves (i.e., the radiation scattered from and transmitted through the leaves

– featured as flat disks – does not have any angular dependency around the leaf normal vectors),

possibly exhibiting a preferred orientation. The bi-Lambertian leaf scattering property is such that

the fraction of radiation that is not absorbed is scattered as a cosine distribution around the leaf

normal vectors. The top and bottom boundary conditions are specified by the downwelling of direct100

and diffuse radiant fluxes and the albedo of the background, respectively. This model is constructed

from dedicated solutions to three separate problems involving 1) the scattering by the vegetation
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layer only, identified as the black-background contribution, 2) the flux transmitted directly through

the vegetation layer involving only the background, that is the black-canopy contribution and finally

3) the contribution to the upward and downward scattered and transmitted fluxes involving multiple105

interactions between both the vegetation layer and its underlying background (see figure 2).

The solution to the Black background contribution follows the formulation established originally

by Meador and Weaver (1980). It ensures the correct balance between the scattered, transmitted and

absorbed radiant fluxes not only for structurally homogeneous but also for heterogeneous canopies.

The applicability to heterogeneous canopies relies on the finding that a solution to a 3-D flux problem110

satisfying the conditions imposed by a “radiatively independent volume” can always be achieved us-

ing a 1-D representation (Pinty et al., 2004, section 3.3). The model’s canopy state variables required

for the correct flux representation are, however, so-called effective variables. They deviate from the

true canopy variables and are thus only meaningful in the context of this model.

These effective variables are a spectrally invariant quantity, namely the Leaf Area Index (LAI)115

and, spectrally dependent parameters. The latter are the leaf single scattering albedo wl = rl + tl

and the ratio dl = rl/tl (identified here as the asymmetry factor). rl and tl correspond to the leaf

reflectance and transmittance, respectively. The albedo of the background, rg, is itself defined as the

true (by contrast to effective) value and retrieved as such. And clearly, for all fluxes true values are

simulated.120

The possibility to use a (1D) two-stream representation to solve a flux problem irrespective of

the 3D complexity of the scene conditions means that the model can be operated in inverse mode

to retrieve a set of state variables for the canopy-soil system that allows an accurate flux representa-

tion. The model is implemented in numerically efficient, modular, and portable form, to simplify its

integration into climate and numerical weather prediction (NWP) models.125

3 Inverse Model

JRC-TIP applies the joint inversion approach of Tarantola (2005) (discussed as Bayesian inversion

by Rayner et al. (2016) in this special issue): It estimates the state vector (in the following also called

parameter vector) from a given set of observations and the available prior information. The a priori

state of information is quantified by a probability density function (PDF) in parameter space, the130

observational information by a PDF in observation space, and the information from the model by a

PDF in the joint space, i.e. the Cartesian product of parameter and observation spaces. The inversion

combines all three sources of information and yields a posterior PDF in the joint space.

Prior and observational PDFs are difficult to specify. We use Gaussian shapes with respective

mean values denoted by x0 and d and respective covariance matrices denoted by C(x0) (prior pa-135

rameter uncertainty) and C(d) (data uncertainty). The data uncertainty is the sum of uncertainties
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due to errors in the observational process, C(dobs) and errors in our ability to correctly model the

observations, C(dmod):

C(d) = C(dobs) +C(dmod) (1)

Some observational products provide uncertainty ranges and their correlation, i.e. the entireC(dobs).140

If this is not the case, we often assume uncorrelated uncertainties, i.e. zero off-diagonal elements.

The diagonals are populated with the squares (i.e. variances) of the 1-sigma uncertainty ranges, for

which we typically proceed as follows: In C(dobs) we often use values proportional to d with a floor

value. As the value in C(dobs) typically considerably exceeds that in C(dmod) (see section 5) we

neglect the latter. The exception is for small values of d, where the floor value is supposed to rep-145

resent C(dmod). Note that, in the typical setup, with d being broadband albedo products, there is no

additional contribution from representation error (see, e.g., Heimann and Kaminski, 1999; Kaminski

et al., 2010), as the model and the observations are defined on the same space-time grid.

For later use it is convenient to have two separate notations for the model simulation of a flux

vector from a given state vector x. For simulation of the full vector of all flux components y we use150

N and when the flux vector is restricted to those components for which we have observations yobs

we use M , i.e.

yobs = M(x) or (2)

y = N(x) . (3)

The inverse model is flexible with respect to the number and width of spectral bands that are155

simulated and the subset of simulated fluxes yobs that are observed. Every combination is feasible;

Lavergne et al. (2006) provide examples.

Since the model is only weakly non-linear, we can approximate the posterior PDF by a Gaussian

PDF. The corresponding marginal PDF in parameter space is thus also Gaussian, with mean value

x and covariance C(x)−1. The mean x is approximated by the maximum likelihood point, i.e. the160

minimum of the misfit function:

J(x) =
1

2
[(M(x)− d)TC(d)−1(M(x)− d) + (x−x0)TC(x0)−1(x−x0)] (4)

C(x) is approximated by the inverse of the misfit function’s Hessian, H , evaluated at x:

C(x) ≈H(x)−1 . (5)

To understand this relation it is instructive to look at the case of a linear model (denoted by M ′),165

for which differentiating J(x) (equation 4) twice yields
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H(x) =M ′
T
C(d)−1M ′+C(x0)−1 . (6)

The Hessian is the sum of two terms, one reflecting the strength of the constraint by the prior

information, and the other reflecting the observational constraint. Typically adding the observational

constraint increases the curvature of the cost function which via equation 6 translates to a reduction170

in uncertainty compared to the prior. One of the uncommon counter-examples for the reduction in

uncertainty is provided by (Lavergne et al., 2006).

From the optimal parameter set we can simulate (see equation 3) all radiant fluxes (including the

non-observed ones). To assess the strength of the observational constraint on a simulated radiant

flux, we use N ′, the first derivative of n to propagate the posterior parameter uncertainties forward175

the uncertainty in simulated vector of radiant fluxes C(y):

C(y) =N ′C(x)N ′
T (7)

Equation 7 is particularly useful for comparing the TIP results with independent observations.

Evaluating 7 for the prior uncertainty C(x0) instead of the posterior uncertainty C(x), i.e. for a

case without observational constraint, yields a prior uncertainty for the flux:180

C(y0) =N ′C(x0)N ′
T (8)

For any component of the flux vector we can quantify the added value/impact of the observations

by the uncertainty reduction (later also termed knowledge gain or k-gain) relative to the prior.

σ(yi,0)−σ(yi)

σ(yi,0)
= 1− σ(yi)

σ(yi,0)
, (9)

where, σ(yi) and σ(yi,0) respectively denote the 1 sigma uncertainty ranges, the squares of which185

populate the diagonals of C(y) and C(y0). For example, if σ(yi) is 90 % of σ(yi,0), then the uncer-

tainty reduction is 10%; i.e. we have increased our knowledge on y by 10 %.

The simultanous retrieval of all state variables and the associated fluxes within a single model

ensures physical consistency between the derived products. This includes simulated counterparts

yobs of the observed flux components.190

This inversion approach is relatively generic, i.e. it similarly applies to further RT models in the

optical domain (see, e.g., Lavergne et al., 2007; Lewis et al., 2012) or other spectral domains, e.g.

the passive microwave domain (see also Kaminski and Mathieu, 2016).

Equation 4 is minimised by a so-called gradient algorithm that relies on code for evaluation of J

and its gradient. Further derivative code is used to evaluate equations 5 and 7.195
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4 Operational Processing

4.1 Prior Information

Table 1: Mean values x0 and associated standard deviations σ(x0) used to set the diagonal of the

prior uncertainty covariance matrix C(x0). ∆λ1 and ∆λ2 correspond to the broadband visible (0.3–

0.7 µm) and near-infrared (0.7–3.0 µm) spectral domains, respectively. ωl(∆λ1,2
), dl(∆λ1,2

) and

rg(∆λ1,2
) refer to the effective canopy single scattering albedo, asymmetry factor and background

albedo, respectively.

Variable identification x0 σ(x0)

LAI 1.5000 5.0

ωl(∆λ1) 0.1700 and 0.1300 a 0.1200 and 0.0140 a

dl(∆λ1) 1.0000 0.7000

rg(∆λ1) 0.1000 b and 0.50 c 0.0959 b and 0.346 c

ωl(∆λ2) 0.7000 and 0.7700 a 0.1500 and 0.0140 a

dl(∆λ2) 2.0000 1.5000

rg(∆λ2) 0.1800 b and 0.350 c 0.2000 b and 0.25 c

a Value associated with the ‘green’ leaf scenario, as opposed to the standard “polychromatic” leaf scenario.
b Value adopted for the bare soil case with a correlation between the two spectral domains of 0.8862 set in

C(x0).
c Value adopted under occurrence of snow with a correlation between the two spectral domains of 0.8670 set

in C(x0).

The radiative flux component that is accessible to observations from space is the reflected flux

(albedo). As photosynthesis is driven by absorption in the VIS, our focus is on the flux partitioning in

this domain of the spectrum. Pinty et al. (2009) demonstrate that under typical, non-snow conditions200

and with known optical properties at leaf-level the background reflectance largely determines the

albedo in the VIS and the effective LAI the albedo in the NIR. Hence, it is favourable to operate

JRC-TIP in both VIS and NIR, with albedo observations in these two broad bands. Including the

NIR brings in one additional observational constraint but also adds three spectrally variant state

variables to the inverse problem. This is partly compensated by (approximately) known relations of205

the background reflectance across the VIS and NIR domains. This relation translates to our inversion

formalism as a correlated uncertainty and is visualised by the ellipsoids (indicating the 1.5 sigma

uncertainty ranges) shown in figure 3. We note that this relation, known as the soil line (see, e.g. Chi
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Figure 3: Prior 1.5 sigma uncertainty for effective canopy single scattering albedo (denoted by

“leaves”) and background reflectance (denoted by “snow” in case of snow and by “soils” otherwise).

Modified version of Figure 1 from Pinty et al. (2008).

(2003)), changes with the occurrence of snow. Figure 3 further shows the components of the prior

PDF describing the effective canopy single scattering albedo, which is based on a combination of210

modelled (Jacquemoud and Baret, 1990) and observed (Hosgood et al., 1995) leaf optical properties.

They were further modified to best account for the overall effects on the domain-averaged radiant

fluxes, of needle clumping into shoots, shoots or leaves clumping into crowns as well as the presence

of woody elements in the canopy (see Pinty et al., 2008, for details).
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This ellipsoid describes the 1.5 uncertainty range of our standard prior, denoted as polychromatic215

leaf scenario. We also operate the system with an alternative prior, denoted as green leaf scenario

(not shown in figure 3), which is characterised by a much lower uncertainty and a slight shift in

the mean value. Both scenarios are operated with snow and non-snow priors for the background

reflectance, depending on additional snow information (both shown in figure 3). A summary of the

prior information is provided in table 1. We stress the high prior variance of 25 for the effective LAI,220

a deliberately conservative assumption that results in a low weight on the prior term in equation (4).

4.2 Observations

The specific quantities to be discussed in section 4.4 have been retrieved (as described by Pinty

et al. (2011a)) from the MODIS collection V005 (MCD43B3) broadband white sky albedo (WSA)

products at 1 km resolution (Schaaf et al., 2002). The WSA product uses a synthesis period of 16225

days, in which observed reflectances under various illumination angles are used to calculate the

spherical integral (isotropic illumination). The albedo product provides a data set every 8 days such

that filtering out every second data set yields a sequence of data sets, in which each member is based

on its individual 16 day synthesis period. This procedure maximises the temporal independence of

the observational input for JRC-TIP. The MODIS collection V005 WSA product provides a quality230

flag associated with all spectral bands, but no covariance of uncertainty. As described in section 3

we populate the non-diagonal elements of C(d) with 0. For the diagonal elements the quality flag

’good quality’ (’other quality’) is mapped onto a one sigma uncertainty range of 5% (7%) relative

to the flux and a floor value is set of 2.5 10−3. All other observations are discarded. In addition, the

MODIS snow indicator is used to trigger a swich of the prior for the background reflectance from235

the non-snow to the snow version (see section 4.1).

4.3 Robustness and Efficiency

In the above-described setup all observations are restricted to broadband VIS/NIR albedo pairs,

which can theoretically take values in the two dimensional domain [0,1]x[0,1] (albedo plane). Ob-

servations retained for processing with JRC-TIP fall either in the 5% or the 7% uncertainty case. For240

both uncertainty cases we now apply JRC-TIP over a discretisation of the albedo plane with step

size of 10−3 (i.e. a factor of 2.5 below the minimum uncertainty) on both axes (Clerici et al., 2010;

Voßbeck et al., 2010). This provides us with a set of 2 x 103 x 103 = 2 million JRC-TIP retrievals

which populate the 2D space of theoretically possible albedo input observations in a form dense

enough for all practical purposes. We note that, in practice, only a subdomain of the albedo plane is245

covered by observations. Figure 4 shows the location in the albedo plane of all albedo pairs used by

Pinty et al. (2011a) for their processing of the year 2005, excluding those with snow-flag. Switching

from a non snow to a snow prior adds a factor of 2, i.e. there are in total 4 million retrievals for the

polychromatic leaf scenario.
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We denote the above-described set of retrievals as the TIP table. Once the TIP table is generated,250

a retrieval for any given albedo input pair can be performed through a look up in the TIP table. We

stress that the role of the TIP table is different from the traditional use of look up tables (LUTs)

in retrieval schemes: While traditional LUTs relate input to output of the forward model (i.e. state

variables to albedos), the TIP table relates input to output of the inverse model JRC-TIP (i.e. albedos

to the complete set of variables retrieved by the JRC-TIP, including uncertainty ranges and auxillary255

information). The use of the TIP table in a processing system has four advantages over the use of a

standard JRC-TIP retrieval.

1. First, it is faster. For example, processing of one global WSA albedo input field (covering a

16-day period) in 500m spatial resolution takes less than 2 hours in a single core of a standard

desktop computer equipped with an Intel Core-i5 CPU running at a maximum frequency of260

3.3GHz. The value of 2 hours covers the full I/O (including generation of output files) and

yields an average processing time per pixel of less than 0.004ms.

2. Second, it simplifies quality control: Clerici et al. (2010) and Voßbeck et al. (2010) describe

a number of iterative procedures to enhance the quality of the retrievals in TIP table. They

exploit, for example, the requirement of a smooth dependence of the solution on the input265

albedos to detect outliers.

3. Third, the TIP table approach ensures stability of any Climate Data Record (CDR) that is

generated from a stable albedo CDR. By construction, JRC-TIP will always retrieve the same

values for all variables and uncertainties from the same albedo input with the same uncer-

tainty range. For the standard JRC-TIP retrieval this is only guaranteed when the computing270

environment (e.g., platform, compiler, compiler flags, operating system and required libraries)

remains unchanged.

4. Fourth, a processing system relying on the TIP table is agile. When a component of the JRC-

TIP retrieval procedure is improved, the only change required in the processing system, is an

update of the TIP table.275

For albedo input products that provide per-pixel uncertainty ranges, the TIP table uses a finer

discretisation and further dimensions in the uncertainty space, but the same general approach applies.

For example, Disney et al. (2016) use a two-dimensional uncertainty space: One dimension each for

uncertainties in VIS and NIR, an extra dimension for their correlation was not included.
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4.4 Understanding Uncertainty280

We analyse the JRC-TIP products over the range of the albedo input plane that is actually covered

by observations, more specifically the range covered by the MODIS collection 5 albedo 1 km input

products for the year 2005 that were processed by Pinty et al. (2011a, b). We focus on snow-free

background conditions, i.e. all prior values and uncertainties are spatially invariant. We show for

effective LAI and background reflectance in the VIS (figure 4) as well as for effective canopy single285

scattering albedo in the VIS and FAPAR (figure 5) the retrieved mean values (top panels) and one

sigma uncertainty ranges (middle panels) as well as uncertainty reduction/knowledge gain as defined

by equation (9) (bottom panels) over the albedo plane. The first point to note is the limited sub-set

of the albedo plane that is covered by actual albedo observations. A further point to highlight is the

fundamental role of the effective LAI: High effective LAI values correspond to relatively high pos-290

terior LAI uncertainty and little knowledge gain, because the dense canopy can only be penetrated to

a limited extent. For the same reason, we can infer little information on the background under dense

canopies, i.e. there is a high posterior uncertainty and little knowledge gain. By contast, given the

large amount of canopy material, we can substantially reduce the uncertainty in the single scattering

albedo, i.e. we have a large knowledge gain for this variable. Low effective LAI characterises an295

almost transparent canopy: Uncertainty on LAI and background reflectance is low and there is high

knowledge gain from observations. The low amount of canopy material limits the knowledge gain

for the single scattering albedo, i.e. we are left with relatively high uncertainty. In this regime the

observed albedo is determined by the background reflectance (shown for the visible domain in panel

b of figure 4). The pattern of the mean value for FAPAR is similar to that for LAI. The uncertainty is,300

however, different. While the LAI uncertainty grows steadily with LAI itself, the FAPAR uncertainty

exhibits two separated domains with high uncertainty. On the line of constant WSA NIR, one peak

is located at WSA VIS around 0.03 and the other peak around 0.13. As pointed out by Pinty et al.

(2011b), this reflects the influence of the soil background, which for LAI values in the range from

0.3 to 0.5 exhibits an equally complex uncertainy structure (panel d of figure 4). In the minimum of305

the misfit function J of equation (4) that is displayed in panel f of figure 5 we can clearly distinguish

the two regimes. In the regime of low LAI (located on the soil line) the observations are primarily

fit by variation of the background reflectance, and the misfit primarily reflects the deviation from the

prior background reflectance shown in figure 3. Owing to the large prior uncertainty of 5 the contri-

bution of the effective LAI to the prior term of the misfit function is very small, and the remaining310

canopy variables remain close to the prior. By contrast, in the regime of high LAI the observations

are primarily fit through variation of the canopy variables, and the background reflectance is close to

the prior.
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Figure 4: Mean value (upper panel), Uncertainty (middle panel), and Uncertainy reduction (bottom

panel) here denoted as k-gain for knowledge gain of effective LAI (left) and background reflectance

in the VIS (right)
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Figure 5: Mean value (upper panel), Uncertainty (middle panel) of effective canopy single scattering

albedo (left) and FAPAR (right). Uncertainy reduction (here denoted as k-gain for knowledge gain)

of effective canopy single scattering albedo (bottom left) and misfit function (see equation (4)) at

minimum (bottom right).
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4.5 Aggregation

For data assimilation at global scale, products are required in lower spatial resolution than the native315

resolution of the albedo input product (which currently is in the order of 1 km). JRC-TIP retrieval and

aggregation are not commutative, i.e. it makes a difference whether we aggregate JRC-TIP products

generated at the native resolution of the albedo product or operate JRC-TIP on the aggregated albedo

input. This is illustrated on figure 6, which shows retrieved LAI and FAPAR over the albedo plane

(with 5% uncertainty) and indicates two albedo pairs by black points. If we assume the two albedo320

pairs describe observations over neighbouring pixels of the same area, running JRC-TIP on the

average albedo yields LAI and FAPAR values of 0.194 and 0.153, respectively. By contrast, the

average LAI and FAPAR for both pixels are 0.532 and 0.275, respectively.

Also, when aggregating at the level of JRC-TIP products it is not guaranteed that the aggregated

state variables are still consistent with the aggregated fluxes. Only by operating the JRC-TIP on325

the aggregated albedo input, we can ensure the physical consistency among the JRC-TIP products

and with the one dimensional representation of the radiation transfer process in the climate or NWP

model. Another point is that the aggregation also needs to be performed on the uncertainty. This

requires a specification of spatial uncertainty correlation and is certainly less complicated at the

albedo level than at the level to JRC-TIP products. The effect of changing the order of aggregation330

is quantified by figure 7 which shows on global scale and for a Northern Winter period in 2005

the relative differences of FAPAR products derived by either aggregation order. The pattern of the

differences suggests overestimation of FAPAR aggregated on the level of JRC-TIP products over

boreal regions and an underestimation over transitional regions. One reason may be that running

JRC-TIP on the aggregated albedo product does properly account for snow soil conditions at pixel335

level. Further analyses of underlying mechanisms are foreseen in a future study.

5 Validation

The validation of the JRC-TIP and its generated products is achieved through a number of comple-

mentary stages. The first one consists in assessing the performance of the direct model, namely the

two-stream model that is further used in inverse mode to generate the JRC-TIP products. This perfor-340

mance can be thoroughly benchmarked against comprehensive 3D Monte-Carlo models for a series

of virtual canopies exhibiting different levels of complexity regarding the radiation transfer regime

that these canopies can represent (see section 3 of Pinty et al., 2006). The RAdiation transfer Model

Intercomparison (RAMI) initiative (http://rami-benchmark.jrc.ec.europa.eu) offers such a platform

for a range of simple and very complex canopy scenarios (Pinty et al., 2001; Widlowski et al., 2007).345

The 1D model implemented in JRC-TIP was found to be in very good agreement, i.e., better than

3% in most cases, with albedos from accurate and realistic simulations of complex 3D scenarios in

both the red and near-infrared spectral regions.
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While this first set of RAMI excercises addressed the accuracy of simulated albedo, i.e. C(dmod)

in equation (1), a further exercise in the RAMI frame (termed RAMI4PILPS) addressed the accuracy350

and consistency of the absorbed, reflected, and transmitted radiative fluxes retrieved by inverse mod-

els of the soil-vegetation-atmosphere transfer (Widlowski et al., 2011). This exercise thus offers a

possibility to assess the performance of the JRC-TIP with regard to its ability to partition the incom-

ing solar radiation. This exercise is conducted for the extreme conditions of computer reconstructed

’actual’ canopy scenarios, with a range of sun zenith angle and vegetation background including355

snow covered conditions. For JRC-TIP, the vast majority of the absorbed flux values (i.e. FAPAR)

falls within +/- 10 % relative to those values estimated by the reference Monte-Carlo model (see

section 3 of Widlowski et al., 2011).

The capability of the JRC-TIP to reconstruct solar fluxes that can be currently measured in-situ

by dedicated instruments, e.g., direct or diffuse canopy albedos and transmission, offers a definite360

solution to assess the performance of the procedure. However, the crux of the matter with such an

exercise lies in the large spatial variability of the canopy at various scales such that the spatial and

temporal sampling of a given site must be achieved carefully and quite extensively. A first attempt to

evaluate the JRC-TIP products generated from MODIS white sky albedo input values over a fluxnet

site is described in Pinty et al. (2011c). In this study the authors have capitalised on an ensemble365

of LAI-2000 measurements systematically acquired over multiple years along a 400 m transsect as

well as series of photos taken from a tower emerging the top of this deciduous mid-latitude forest.

Such measurements from LAI-2000 correspond to estimates of the fraction of the radiation that is

transmitted through the vegetation canopy layers. When considering the direct radiation – which thus

has not collided with the vegetation elements – the transmitted fraction, TUnColl, can be expressed370

with the classical Beer-Bouger-Lambert Law, where the exponential attenuation is a function of the

effective LAI, ˜LAI:

TUnColl(µ0) = exp(−1

2

˜LAI(µ0)

µ0
), (10)

where µ0 denotes the cosine of sun zenith angle, i.e. µ0 = 1 when the sun is at nadir (Pinty et al.,

2006, 2009). Figure 8 shows these observations together with the direct transmission derived by375

JRC-TIP from MODIS collection 5 broadband WSA products at 500m and 1km resolution. Grey and

blue shaded ranges indicate the spatial variability along the transect at which the observations were

collected, and the red error bars indicate the uncertainty range that is part of the retrieved product.

The left-hand panel is based on 500m MCD43 input albedos and exhibits slightly better fit to the in

situ observed fluxes than the right-hand panel, which is based on the MCD43 1km albedo product.380

In this example the root mean squared error (RMSE) is used (see upper right corner in each panel)

as a simple metric that quantifies the fit. Temporal correlation or more sophisticated metrics that

take the uncertainty in products and in observations into account are possible alternatives. We point

out that the uncertainty ranges that are displayed for observed and retrieved transmittance capture

different aspects of uncertainty: While the ranges in the observations cover spatial variability along385
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the transect, the product error bars refer to the pixel average and indicate the one-sigma uncertainty

range that is consistent with the uncertainties in the prior and in the albedo input.

In general, the results show good consistency between the JRC-TIP products and this ensemble

of information given that the MODIS sub-pixel variability corresponds to a range of values that are

analogous to the uncertainties associated with the JRC-TIP retrievals. For a single period (from mid390

to end of January) the direct transmission derived by JRC-TIP from both products is completely

outside the observed range. For the 500m resolution, we trace this back to the input albedos (shown

in figure 9, panel a), where the VIS albedo shows an abnormal increase for this particular period,

which is very likely due to snowy background conditions that remained undetected in the MODIS

product, i.e. the snow flag was not raised. The inversion procedure, being operated with non-snow395

priors in this case, needs to minimise the misfit function J (see equation (4)) which quantifies the

misfit between modelled and observed albedos and the deviation of the parameters from their priors.

In order to best fit this high observed albedo in the VIS without being penalised by a high prior

term in J , the minimisation procedure increases the background reflectance in the VIS (panel (c) in

figure 9) and turns off the vegetation contribution by setting LAI close to zero (panel (b) in figure 9).400

This explains the high direct transmission derived for this period (figure 8), and also means that there

is no absorption of the incoming radiant flux by the vegetation (figure 9, panels (e) and (f)). For the

time period in question, the graphs also include, in magenta colour, a second retrieval with snow

prior. The corresponding LAI, transmission in the VIS, and the absorption in the VIS and the NIR

are then much closer to the values for the preceeding and succeeding periods, and the background405

reflectance closer to the soil line for snow. We note that our global-scale processing setup scans

non-snow retrievals using several conditions for outliers which may then be corrected by a snow

retrieval.

While proposing a simple protocol to validate the JRC-TIP products against in-situ data, Pinty

et al. (2011c) also highlighted the lack of critical, although not challenging, measurements of for410

instance the background albedo and its spatio-temporal variability at site level. This is a typical but

very unfortunate situation, as the combination of the direct transmission (i.e. effective LAI) and the

background reflectance, largely determines the partitioning of the incoming flux between the canopy

and the soil. It has been so far very challenging to identify other such sites where comparable datasets

acquired in-situ over time are available for in-depth validation exercises.415

Another element of the validation strategy consists in the comparison of JRC-TIP products derived

over the same location from multiple albedo input products. For example Pinty et al. (2007) analyse

differences between JRC-TIP products derived from MODIS and MISR broadband WSAs. Pinty

et al. (2008) apply the same strategy but to high- and mid-latitude sites, as their focus lies on the

behaviour of JRC-TIP products in the presence of snow. MISR is an instrument flying on the same420

platform (called Terra) as one of the MODIS instruments, and the procedure for deriving a WSA

comparable to the standard MODIS product is described by Pinty et al. (2007). As MISR observes
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each pixel from several angles, it can collect a high number of samples and thus provide a good

angular integral of reflectance, i.e. a good WSA reference.

Another level of validation is the comparison of JRC-TIP products against products derived with425

alternative retrieval approaches. An example is presented by Disney et al. (2016), who compare ef-

fective LAI and FAPAR products derived by JRC-TIP with the operational MODIS LAI and FAPAR

products (Knyazikhin et al., 1998) at site, regional, and hemispheric scales.

A final level of validation is implicitly performed by the product users in their respective appli-

cations. Such applications include analyses of the consistency of the long term CDR, and its inter-430

annual variability as demonstrated for FAPAR by Gobron (2015). Sippel et al. (2016) use a deviation

of the 2012 spring and late summer FAPAR from the respective long-term means to analyse the effect

of a drought event on vegetation activity over North America and explain the response mechanism

of the carbon balance as inferred from other data streams (Wolf et al., 2016). A consistency check

against other data streams and a process model is provided by simultaneous assimilation of the FA-435

PAR product with further data streams, in particular atmospheric carbon dioxide record (Kaminski

et al., 2013; Schürmann et al., 2016). Consistency to further data streams is also implicitly checked

in diagnostic model setups, for example when the FAPAR product is used as a forcing field for

simulation of photosynthesis (Kaminski et al., 2016).

6 Conclusions440

The JRC-TIP is a highly flexible retrieval system that delivers a set of radiatively consistent land

surface products. These products include all radiant fluxes (absorbed, transmitted, and reflected)

and the complete set of state variables that parameterise the two-stream model at its core. This

two-stream model provides a one-dimensional approximation of the radiative transfer within the

canopy soil system, typically implemented in advanced land components of climate models. This445

renders the retrieved (model dependent) state variables (such as the effective LAI) as compliant as

possible to climate model applications (climate model compliance). The retrieved fluxes have a clear

physical definition and are, thus, model independent. Hence, among the JRC-TIP products the fluxes

are particularly suitable for assimilation into terrestrial models. Even in this case it is, nevertheless,

crucial to have in the terrestrial model an observational operator that provides a correct mapping from450

the state variables onto the simulated counterpart of the flux component that is being assimilated.

All JRC-TIP products include estimates of uncertainty including their covariance that are consis-

tently derived in a fully traceable manner through rigorous uncertainty propagation from prior and

observational information in a two-step procedure. The first step derives uncertainty estimates for

the state variables, and the second step maps these uncertainty estimates forward to the simulated455

fluxes.
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For global-scale processing JRC-TIP is operated on broadband albedo products (including snow

information) derived from EO with space and time invariant prior (except in the event of snow) such

that the retrieved products are exclusively based on the EO input. Owing to this low-dimensional

space of observational input an operational system can be set up to retrieve products from a data460

base (TIP table) of pre-calculated quality-controlled JRC-TIP solutions (including full uncertainty

quantification). Such a system is computationally extremely efficient, robust, and agile. By construc-

tion it generates temporally stable climate data records from any albedo input record that fulfils this

condition.

JRC-TIP products are typically provided in the native resolution of the albedo input product, i.e.465

on grids that are much finer (e.g. a few 100 to a few 1000 m) than typical resolutions of continental to

global-scale terrestrial models. To ensure their radiative consistency and climate model compliance,

products on grids coarser than this native resolution have to be derived by first aggregating the albedo

input and then applying JRC-TIP.

The JRC-TIP methodology is to a large extent generic (see, e.g., Kaminski and Mathieu, 2016)470

and can be generalised to further RT schemes. This holds in particular for the two-step procedure

that first solves for the state variables and from there simulates a set of target quantities, both steps

including uncertainty propagation. The application of a solution data base requires a bounded, low-

dimensional space of observational inputs.
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Data and Code Availability

C and Fortran implementations of the two-stream code are available at http://fapar.jrc.ec.europa.eu.

The JRC-TIP product based on MODIS collection 5 in 1 km resolution is available upon request to635

the corresponding author.
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Figure 6: Effective LAI (upper panel) and FAPAR (lower panel) over albedo spectral plane retrieved

using no-snow prior parameters (table 1) and for albedo uncertainty of 5% in both wave-bands.

Retrievals yielding a misfit function value J above 3 have been masked out.
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Figure 7: Relative differences of JRC-TIP FAPAR differently aggregated to 0.5° . wrong denotes

aggregation of the JRC-TIP FAPAR generated at 0.01° , whereas correct denotes aggregation of the

input albedo products and subsequent application of JRC-TIP.
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Figure 8: Comparison of the fraction of solar radiation transmitted to the background as derived

by JRC-TIP applied to MODIS collection 5 input albedos and as observed in situ over the Hainich

deciduous forest site following the approach by Pinty et al. (2011c). The left-hand panel is based on

500m MCD43 input albedos and the right-hand panel is based on the MCD43 1km albedo product.

The shaded zones indicate the range (grey) and interquartile (blue) range estimated both from the

collected in situ measurements (using a LAI-2000 Plant Canopy Analyzer) from year 2002 to 2008

along a 400m transect using the so-called Random Forest Algorithm (RFA). Panel a also shows, in

magenta colour, a second retrieval for the period from mid to end of January using the snow prior.
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Figure 9: MCD43 500m input albedos over the pixel covering the 400m transect in the visible and

near infrared domain (a), retrieved effective LAI (b), background reflectance VIS (c) and NIR (d),

fluxes absorbed in the vegetation in VIS (e) and NIR (f). Additional snow prior retrieval in (b)-(f) in

magenta.
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