
Manuscript prepared for Biogeosciences
with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls.
Date: 21 December 2016

Environmental control of natural gap size distribution
in tropical forests
Youven Goulamoussène1, Caroline Bedeau2, Laurent Descroix2, Laurent Linguet1,
and Bruno Hérault3

1Université de Guyane – UMR Espace-Dev, BP 792, 97337 Cayenne, France
2Office National des Forêts (ONF),departement Departement RD, Cayenne, French Guiana
3Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ Antilles, Univ Guyane), Kourou, French
Guiana

Correspondence to: Youven Goulamoussène (youven.goulamoussene@ecofog.gf); Bruno Hérault
(bruno.herault@cirad.fr)

Abstract. Natural disturbances are the dominant form of forest regeneration and dynamics in un-

managed tropical forests. Monitoring the size distribution of treefall gaps is important to better un-

derstand and predict the carbon budget in response to land use and other global changes. In this

study, we model the size frequency distribution of natural canopy gaps with a discrete power law

distribution. We use a Bayesian framework to introduce and test, using Monte Carlo Markov Chain5

and Kuo-Mallick algorithms, the effect of local physical environment on gap size distribution. We

apply our methodological framework to an original Light Detecting and Ranging dataset in which

natural forest gaps were delineated over 30000 ha of unmanaged forest. We highlight strong links

between gap size distribution and environment, primarily hydrological conditions and topography,

with large gaps being more frequent in floodplains and on wind-exposed areas. In the future, we10

plan to apply our methodological framework on a larger scale using satellite data. Additionally, al-

though gap size distribution variation is clearly under environmental control, variation in gap size

distribution in time should be tested against climate variability.

1 Introduction

Natural disturbances caused by forest gaps play an important role in tropical rainforest dynamics.15

Canopy gaps caused by the death of one or more trees are the dominant form of forest regeneration

because the creation of canopy openings continuously reshapes forest structure as gaps are filled with

younger trees (Whitmore, 1989). The first, and perhaps most important, effect of gap occurrence is

an immediate increase in light intensity (Hubbell et al., 1999a), allowing sunlight to penetrate the

understory. This phenomenon has been widely studied because the opening of gaps contributes to20
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the establishment and growth of light-demanding trees (Denslow et al., 1998), thus contributing

to the maintenance of biodiversity. Another effect of canopy gaps is the local modification of the

forest nutrient balance (Rüger et al., 2009). When canopy gaps are created, large amounts of dead

leaves and wood will be decomposed and mineralised so that the availability of soil nutrients for

neighboring trees will increase (Brokaw, 1985). These nutrient patches are also linked to small-25

scale spatial variations in forest carbon balance, as shown by Feeley et al. (2007). The relationship

between gap formation and the population dynamics of trees or lianas is also quite well understood,

with increased liana basal area (Schnitzer et al., 2014) and low-wood-density pioneer species that

recruit exclusively in newly formed gaps (Molino and Sabatier, 2001).

Many studies have investigated the effect of treefall gaps on biodiversity, particularly animal com-30

munities (Bicknell et al., 2014; Puerta-Piñero et al., 2013), on the carbon cycles, and forest dynam-

ics. Some authors use field data to study natural gap dynamics, usually at plot scale (Hubbell et al.,

1999b). As these studies are quite limited in spatial extent (< 50 ha) and because gap formation is

largely unpredictable (Hubbell et al., 1999a; Lloyd et al., 2009), optical satellite imagery has been

widely promoted and proven adequate for monitoring forest gaps over space and time (Frolking et al.,35

2009). At high resolution (< 10 m), IKONOS satellite images may be well suited for evaluating gap

dynamics (Espírito-Santo et al., 2014). In French Guiana, the SPOT−4 satellite (20 m spatial reso-

lution) has successfully detected canopy gaps (Colson et al., 2006) using a combination of several

spectral bands, such as near and short-wave infrared. However, topographical variation, gap shape,

and shade may influence and bias gap detection with optical products. Moreover, persistent cloud40

cover, which is common in many tropical forests, limits their utility.

Airborne Light Detecting and Ranging (LiDAR) platforms therefore offer a solution to this prob-

lem. Recent developments in LiDAR have significantly advanced our ability to derive accurate mea-

surements of canopy forest structure, to detect gaps, and to assess the effect of spatial and temporal

variation in carbon balance (Asner and Mascaro, 2014). Kellner and Asner (2009) used remote Li-45

DAR sensing to quantify canopy height and gap size distributions in five tropical rain forest land-

scapes in Costa Rica and Hawaii. They showed that canopy gaps can be observed with the help of

LiDAR-derived digital canopy models (DCMs) and that gap size frequency distribution (GSFD) can

be fit with a power law distribution, suggesting a surprising similarity in canopy gap size frequency

distributions on diverse soil types with different geologic substrate ages. Asner et al. (2013) also50

used LiDAR data to analyze whether gap size frequency distribution is modified by topographic and

geologic characteristics and again showed that canopy gap size distribution is largely invariant be-

tween forests on erosional terra firme and depositional floodplain substrates in the Peruvian Amazon

basin. Finally, using airborne LiDAR, Lobo and Dalling (2014) have recently explored the effect of

forest age, topography, and soil type on canopy disturbance patterns across central Panama. For the55

first time, they highlighted significant effects of slope and of forest age, with a higher frequency of

large gaps associated with old-growth forests and gentle slopes.
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In the present study, we use a DCM derived from airborne LiDAR across a 30000 ha tropical forest

landscape in the Régina forest in French Guiana. This approach provides high-resolution maps of

canopy gaps and helps us to understand the environmental determinism of gap occurrence in tropical60

forests. Our specific aims were therefore:

– to define canopy gaps from canopy height data using a probabilistic approach

– to model gap size distribution by inferring a likelihood-explicit discrete power law distribution

in a Bayesian framework

– to introduce the environment into the scaling parameter of the power law distribution and test65

its predictive ability

2 Materials and Methods

The study site is located in the Régina forest (4◦N, 52◦W), where the most common soils are fer-

ralitic. The site is located on slightly contrasting plateau-type reliefs that are rarely higher than 150

m on average. The forest is typical of French Guianese rainforests. Dominant plant families in the70

Régina forest include Burseraceae, Mimosoideae, and Caesalpinoideae. The site receives 3,806 mm

of precipitation per year, with a long dry season from mid-August to mid-November, and a short dry

season in March (Wagner et al., 2011).

2.1 Data source

2.1.1 LiDAR data75

LiDAR data were acquired by aircraft in 2013 over 30,000 ha of forest by a private contractor, Altoa

(http://www.altoa.fr/), using a Riegl LMS-Q560 laser. This system was composed of a scanning laser

altimeter with a rotating mirror; a GPS receiver (coupled to a second GPS receiver on the ground);

and an inertial measurement unit to record the pitch, roll, and heading of the aircraft. The laser

wavelength was near-infrared (from about 800 nm to 2500 nm). Flights were conducted at 500 m80

above ground level with a ground speed of 180 km.h−1, and each flight derived two acquisitions.

The LiDAR was operated with a scanning angle of 60◦ and a 200 kHz pulse repetition frequency.

The laser recorded the last reflected pulse with a precision better than 0.10 m, with a density of 5

pulses.m−2.

The DCM was derived from the raw scatter plot consisting of the pooled dataset from the two85

acquisitions. Raw data points were first processed to extract ground points using the TerraScan

(TerraSolid, Helsinki) ground routine, which classifies ground points by iteratively building a tri-

angulated surface model. Ground points typically made up less than 1% of the total number of the

return pulses. The DCM has a resolution of 1 m. In order to avoid delineating ’false’ gaps due to
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river beds, we remove areas very close to natural rivers with a 20 m buffer applied to all shorelines.90

Additionally a 25 m buffer was applied to exclude anthropogenic tracks.

2.1.2 Environmental data

We use six environmental variables to synthesize the observed environmental gradients. All variables

were computed from a LiDAR digital terrain model (DTM) with 5 m2 cells.

Slope95

The slope was derived from the LiDAR DTM. Slope was computed at a grid cell as the maximum

rate of change in elevation from that cell to its 8 neighboring cells over the distance between them.

Topographic exposure

We use the TOPographic EXposure (TOPEX) index to measure topographic exposure to wind (Chap-

man, 2000). TOPEX is a variable that represents the degree of shelter assigned to a location. It was100

derived from quantitative assessment of horizon inclination. The values of this index are closely

correlated with wind-shape index (Mikita and Klimánek, 2012). Exposure is calculated based on the

height and distance of the surrounding horizon, which are combined to obtain the inflection angle.

We use this angle to quantify topographic exposure (pixel resolution 5 m× 5m). When a large to-

pographic feature, e.g. a mountain, is far off in the distance the inflection angle is low. When the105

same mountain is closer, the inflection angle is higher. Therefore, a higher inflection angle is equal

to lower exposure or higher sheltering (Mikita and Klimánek, 2012).

Drained area

Drained area (DA) measures the surface of the hydraulic basin that flows through a cell. A low value

indicates that a cell is located at the border between two basins, whereas high values indicate cells110

located downstream.

Hydraulic altitude

The hydraulic altitude (HA) of each cell, its altitude above the closest stream of its hydraulic basin,

was computed from the 3rd order hydraulic system. Low values, including 0, indicate that the forest

plot is potentially temporarily flooded, whereas high values indicate that it is located on a hilltop.115

Terrain ruggedness index

The terrain ruggedness index (TRI) captures the difference between flat and mountainous landscapes.

TRI was calculated using SAGA GIS SAGA (2013) as the sum of the altitude change between a pixel

and its eight neighboring pixels (Riley, 1999).
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The height above the nearest drainage120

The height above the nearest drainage (HAND) model normalizes topography with respect to drainage

network by applying two procedures to the DTM. The initial basis for the HAND model came from

the definition of a drainage channel: perennial streamflow occurs at the surface, where the soil sub-

strate is permanently saturated. It follows that the terrain at and around a flowing stream must be

permanently saturated, independently of the height above sea level at which the channel occurs.125

Streamflow indicates the localized occurrence of homogeneously saturated soils across the land-

scape. The second basis for the HAND model came from the distinctive physical features of water

circulation. Land flows proceed from the land to the sea in two phases: in restrained flows at the

hillslope surface and subsurface, and in freer flows (or discharge) along defined natural channels.

(Nobre et al., 2011)130

2.2 Forest gap definition

2.2.1 Height threshold

To identify discrete canopy gaps, we had to choose a gap threshold height. Some authors define this

threshold at 2 m (Brokaw, 1982). Runkle (1982) defines a gap as the ground area under a canopy

opening that extends to the base of the surrounding canopy trees, these usually being considered to135

be taller than 10 m, with a trunk diameter at breast height (DBH) > 20 cm. However, in practice,

defining gap boundaries is a tricky issue, even in the field. Here, we develop a probabilistic method

for detecting canopy gaps from LiDAR data. We used the DCM to model canopy height distribution

considering a mixture distribution of two ecological states: the natural variation of canopy height in

mature forests, modeled as a normal distribution, and the presence of forest gaps, which lead to a140

new normal distribution with lower values. We consider that the threshold between the two states is

equal to the 0.001 th percentile of the height distribution of the canopy, our results appeared robust

to the threshold value (see supplementary information). We then define canopy gaps as contiguous

pixels (in contact by edges or by vertices) at which the height is less than or equal to the height

threshold.145

2.2.2 Minimum gap size

In our study, we define the minimum area of a gap as xmin. We model the gap size frequency

distribution with a power law distribution. We use the Pareto distribution in a discrete power law

probability density function (Virkar and Clauset, 2014). These distributions have a negative slope

and their size frequencies are plotted on logarithmic scale, allowing us to infer the scaling parameter150

λ. A value close to 1 means a large number of large gaps. In other word, in forests dominated by

small canopy openings, values of λ are larger, whereas smaller values of λ indicate an increased
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frequency of large gap events (Fisher et al., 2008). In a discrete power law with parameter λ, the

probability for gap size x is given by:

p(x) =
x−λ

ζ(xmin,λ)
, (1)155

where xmin is the lower truncation point and λ is the scaling parameter.

The statistical analyses were performed in R (Team et al., 2013) and making use of poweRlaw

(Clauset et al., 2009) and VGAM (Yee et al., 2010) packages.

We use a Kolmogorov-Smirnov (KS) distance criterion order to determine the error between the

observed distribution and the Pareto distribution. KS is defined as the maximum distance between160

the cumulative distribution functions (CDFs) of the data and the fitted function (Virkar and Clauset,

2014). We retain, for the remainder of this study, a minimum gap size area xmin = 104 m2, which

minimized the KS distance in our dataset.

2.3 Modeling gap size distribution

Having set the height threshold and minimum gap size, the GSFD is modeled with a discrete Pareto165

distribution frequency.

2.3.1 Model inference

We use a Bayesian framework to estimate model parameters. Here, the value of a parameter is

estimated by its posterior distribution, which by definition, is proportional to the product of the

likelihood of the model and the parameter prior distribution. The prior distribution is based on prior170

knowledge of the possible values of a parameter. The posterior densities of the different parameters

were estimated using a Monte Carlo Markov Chain algorithm (MCMC).

2.3.2 Metropolis-Hastings algorithm

As the model contains many parameters, we built a Metropolis-Hastings (MH) algorithm in which

all parameters are updated together. Details on the algorithm are given below:175

• Y = y1,y2, . . . ,yn is the gap size vector

• X = xg1,xg2, . . . ,xgi is the vector of covariates (environmental variables) for gap g

• θ = θ1,θ2, . . . ,θi is the model parameter vector

The first values of the parameter vector are initialized as t= 1, θt ∼ π0
θ .

180

For each step t, a new parameter value is sampled from the proposition distribution and a new

vector of theta candidates is generated.

θcand ∼ πprop (2)
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Acceptance or rejection of the new candidate θcand is determined by computing the likelihood

ratio of the two discrete Pareto distributions:185

ρ(θt,θcand) =
L(Y |X,θcand)
L(Y |X,θt)︸ ︷︷ ︸

likelihood

π0
θ(θ

cand)

π0
θ(θ

t)︸ ︷︷ ︸
prior

πprop(θt)

πprop(θcand)︸ ︷︷ ︸
proposal

(3)

The candidate θcand is accepted or rejected as follows:

u∼ U[0,1],θcand
 θt+1 if u < ρ(θt,θcand)

θt if u > ρ(θt,θcand)
(4)

The algorithm is run for 1000 iterations. We use the median of the posterior densities to estimate

parameter values, and the distribution of the posterior densities to estimate parameter credibility190

intervals.

2.3.3 Univariate environmental effects

Variable transformation

To improve model inference, parameter significance and interpretation, we first transformed some

environmental variables:195

Slope = sqrt(slope) (5)

HAlt = log(HA+1) (6)

Topex = |max(TOPEX)− (TOPEX)| (7)

The environmental variables are then centered and scaled with R function : "scale".

We first consider each environmental covariate independently. These covariates are included one-200

by-one in the model to constrain the exponent λ. We use the exponential function to constrain λ,

because the Riemann’s zeta function only admits λ > 1.

λi = 1+exp(θ0i+ θi×X) (8)

where λig is the λ value dependent on the value of environmental variable i in gap g, θ0i is the

intercept, and θi quantifies the effect of covariates var on the gap size distribution varig .205

2.3.4 Multivariate model

Principal component analysis

We first investigated the collinearity of environmental data through principal component analysis

(PCA) on the normalized environmental dataset.
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Model210

To build the final model, we used the results of the univariate model (Table 1) and the PCA (Figure

3) and set:

λ= 1+exp(θ0 + θ1×Slope+ θ2×Topex

+θ3×HAlt+ θ4×HAND) (9)

Variables selection215

To select the significant covariates and build the final model, we used the method proposed by Kuo

and Mallick (1998) (KM). This method consists of associating an indicator with each variable vari

and parameter θi. This indicator can take two values: 1 or 0. If it is set to 1, the variable is included

in the model, but if the value is set to 0, it is not. We used the MH and KM algorithms to estimate

the indicators I and infer their a posteriori distribution in addition to θ.220

We start the KM algorithm with t= 1, θt ∼ π0
θ , I

t
j ∼ Ber(0.5) for j = 1,. . . , i. For each covariate j

(selected in random order), we use the MH algorithm to update θj . To update Ij , we compute the

ratio ρ (eq10) and generate It+1
j from a Bernoulli distribution Bern(ρ):

ρ =
1

1+
L(Y |X̃,θt,Ij=0,It−j)

L(Y |X̃,θt,Ij=1,It−j)

(10)

Model inference and data analysis were conducted with R software (R-Core-Team 2012). All225

maps and geographical information were computed with SAGA (SAGA, 2013) and ArcGIS 10.1.

3 Results

3.1 Gap delineation

In this study, we used a forest canopy height mixture model to define the maximum height of a given

pixel to be included in a forest gap. This probabilistic method produced results that fit the observed230

canopy height distribution. We retained the 11 m threshold that corresponds to the 0.001th percentile

of the canopy height distribution (Figure 1). Given this height, we retained the surface xmin = 104

m2 that minimized the KS distance between predictions and observations. Here, our gap definition

was therefore defined as an area > 104 m2, in which the LiDAR measured canopy height is always

≤ 11 m.235

3.2 Basic statistics

We mapped 12,293 gaps with vegetation ≤ 11 m in height. The mean gap size was 236 m2 with a

minimum gap size of 104 m2 and a maximum of 29,063 m2. The total gap area was about 290 ha,
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or 1% of the whole surveyed area. The observed gap size distribution was modeled with a Pareto

distribution (Figure 2), leading to a scaling parameter λxmin
of 2.6.240

Canopy height (m)
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Figure 1. Canopy height distribution. Canopy height considered as a mixture distribution of two ecological

features. The first (blue curve) is the natural variation in canopy height, modeled as a normal distribution. The

second (red curve) is linked to the presence of low heights in the total canopy height distribution, likely to be

due to a forest gap. We set the gap threshold to the 0.001th percentile of the blue curve density, i.e., 11 m.

3.3 Univariate models

All variables had an effect on gap size distribution (Table 1). The scaling coefficient λ is related to

the ratio of small gaps to large gaps, with values close to 1 indicating a higher frequency of large

gaps and vice versa. Parameter estimates for slope and TRI show high occurrence of small gaps for

large values of the two variables. Contrarily, the effect of DA, HAND, HAlt, and Topex on λ are245

clearly negative, meaning that the frequency of large gaps increases with large values.
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Figure 2. The observed gap size frequency distributions modeled as a power law function with λ= 2.6.

3.4 The multivariate model

To define the final multivariate predictive model, we used the significant results of the univariate

models together with the output of the PCA, in order to avoid multicollinearity.

3.4.1 Variable selection250

The first three PCA axes explained more than 80% of the data variance. The first axis, which ac-

counted for 36.45% of the variance, was positively correlated with relative HAlt and negatively

correlated to HAND and DA, and thus clearly highlighted the local altitudinal gradient. The second
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Table 1. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models.

Parameter Abbreviation Unit Posterior value
Confidence

interval

(CI 95%)

Slope Slope ◦ 0.0735 [-0.02 ; 0.15]

Terrain Ruggedness Index TRI - 0.0718 [0.04 ; 0.10 ]

TOPographic EXposure Topex - -0.082 [-0.12 ; -0.05 ]

Drained Area DA m2 -0.0176 [-0.09 ; 0.05 ]

The Hydraulic Altitude HA m -0.0177 [-0.05 ; 0.02]

HAND HAND - -0.003 [-0.08 ; 0.09 ]

axis explained an additional 28.5% of variance and was positively correlated with the TRI and Slope.

The third axis explained a further 15.2% of the variance and was correlated only with Topex (Figure255

3). The multivariate model was created using a Bayesian framework including four environmental

variables: slope, Topex, HAND, and HAlt, the explanatory variables that had an effect on λ. Finally,

the KM methodological framework was used to select the most parsimonious model.

Environmental covariates with posterior KM values close to 1, namely Slope, Topex, and HAND

(eqn 9) were retained in the final model (Figure 4). Parameter estimates of the final model indicated260

that the greatest effects on gap size distribution were caused by Topex and HAND.

4 Discussion

4.1 Methodology

4.1.1 Gap Detection

Delineating forest gaps is a persistent challenge for foresters and ecologists, among whom Brokaw’s265

gap definition (1982) has remained extensively used, in which "a ’hole’ in the forest extending

through all levels down to an average height of 2 m above the ground," must be defined by an

experienced observer. There are several studies that do not use this 2m-threshold definition of gaps,

but instead 10 m (e.g. Hubbell et al., 1999; Meer and Bongers, 1996; Welden et al., 1991). However,

in this study we have decided to use a probabilistic approach, modeling height distribution as a270

mixture of two normal laws. We found a height, 11 m, which is much higher than that in Brokaw’s

definition, but is consistent with our field experience, where woody debris, dead canopy tree boles,

and residual saplings (i.e., remnants that survive the gap formation event) may rise well above 2 m.

For example, Hubbell et al. (1999a) showed that small stems frequently remained in gaps up to 4-5

m in height, while Lieberman et al. (1985) reported broken and damaged stems up to 10 m tall within275

a gap. The choice of the values of height and threshold may be adapted to different forest types and
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Figure 3. Results of the principal component analysis on the environmental variables

topographic characteristics. In our case, the choice was fully data-driven using the DCM and DEM

and no ecological knowledge. Within our framework it is likely that in waterlogged areas, areas

covered with mature trees that do not exceed the height thresholds may appear in our analysis as

forest gaps. In order to clarify this question, an approach using time-series would allow to identify280
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Figure 5. Posterior distribution of the environmental variables in the final multivariate model.

these ’false’ gaps that never get filled and thus are not part of the forest endogeneous dynamics.

These are not gaps in the ecological meaning.
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Defining minimum gap size is also a delicate proposition. Some authors, working with high-

definition LiDAR data, have considered a minimum gap size (xmin) of 1 m2 (Asner et al., 2013)

(Kellner and Asner, 2009). This minimum gap size is unrealistic from an ecological perspective285

given that a hole of several square meters in the canopy may simply reflect the distance between two

crowns. Brokaw recommended a range from 20 m2 to 40 m2 based on his field experience. We have

worked with a minimum gap size of 104 m2, and based this value on the minimized Kolmogorov-

Smirnov distance between observed and predicted values.

We built on previous studies that show that gap size distribution follows a power law distribution.290

However, the underlying mechanisms that control this distribution are still unclear. The Bayesian

framework we developed allowed us to detail the contributions of each environmental variable to

the size of each individual gap. Because the precise environmental variables were explicitly taken

into account in the model likelihood of each gap, we were able to predict gap size distribution from

environmental covariates, a difficult task when the scale exponent is estimated once, at the forest295

level, and compared between forests. The global scale exponent that we estimated for an average

environment (λ= 2.6), is consistent with some previous studies (Kellner and Asner, 2009; Kellner

et al., 2011), though slightly larger than those of others Lobo and Dalling (2014) [1.97 ; 2.15] and

Asner et al. (2013) [1.70 ; 2.03].

4.2 Environmental effects on gap size frequency distribution300

For the first time, gap size distribution integrates environmental variables as a linear combination

of the scale parameter (λ) of a discrete Pareto distribution frequency. Our results suggest that three

covariates drive the gap size frequency distribution in our forest: Slope, HAND, and TOPEX

(Figure 5).

4.2.1 Slope305

Steep slopes are well-known to directly impact tropical forest canopy structure (Bianchini et al.,

2010). In this study, we found similar results to Lobo and Dalling (2014) in BCI, i.e., large gaps

(smallest λ) are more frequent on the gentle slopes. This may seem counter-intuitive at first, as

treefall may be (i) more prone to induce cascading effects when slopes are steep and (ii) more fre-

quent in slopes where soils are shallow with lateral drainage (Gourlet-Fleury et al., 2004), impeding310

deep rooting of trees. However, the forest turnover is more important in bottomlands where slopes

are gentle (Durrieu de Madron, 1994). Considering that large gaps may be created solely by con-

tiguous and independent treefalls, larger gaps may then be expected in bottomlands from a pure

probabilistic approach. And given the positive link between wood density and steep slopes (Ferry

et al., 2010), trees may be more resistant to cascading effects than they are in bottomlands.315
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4.2.2 Water Saturation

HAND is a binary variable that takes the value 1 on water-saturated soils. Because λ decreases

when HAND equals 1, the frequency of large gaps increases in floodplains and bottomlands. These

results support the findings of (Korning and Balslev, 1994), highlighting more dynamic forests in

floodplains subject to large flooding events that lead to cascading treefall events. Together with320

(Asner et al., 2013), our results suggest that we can effectively extend these results to bottomlands,

where we already know that aboveground biomass and mean wood density are 10% lower than on

hilltops (Ferry et al., 2010). Given its ease of implementation on a land-surface model and its high

predictive power, HAND covariates present great potential applicability for gap size distribution

prediction.325

4.2.3 Topographic Exposure

The effect of topographic exposure on λ is consistent with our a priori hypothesis that wind-exposed

areas would have a greater relative frequency of large gaps. Although hurricane damage does not oc-

cur in continental equatorial regions of the Amazon (Nelson et al., 1994), here we demonstrate that

tree exposure has a large impact on gap size distribution. Lobo and Dalling (2014) observed no clear330

effect of TOPEX, and suggested that this index has a slight negative effect on gap size distribution.

The results of this study are in line with the pioneering work of (Negrón-Juárez et al., 2014), which

showed that wind exposure is related to higher elevations that inflate the occurrence of larger gaps.

However, coastal French Guianese forests exhibit different landscapes and landforms (Guitet et al.,

2013). Our study area is made of dissected plateaus characterized by simple forms resembling hills335

(Guitet et al., 2013). It is possible that these characteristics, leading to unique combinations of land-

form elevations, may create complex terrain interactions that increase wind local speed and, in turn,

cause large gaps. We conclude that topographic exposure is an appropriate index for predicting gap

size distribution, but this must be confirmed in other landscape types.

5 Conclusions340

To our knowledge, this is the first study where the precise environmental descriptors associated to

each canopy gap were explicitly taken into account in the calculation of the model likelihood. We

were able to do so because we wrote the general model likelihood as the product of all the single

likelihoods (i.e. each gap had its own likelihood depending on the environmental covariate values).

Doing so, we were able to predict gap size distribution from the fine environmental covariates, an345

impractical task when the scale exponent is estimated once at the forest level (i.e. mixing all the found

gaps together) and compared between forests a posteriori. We also put forward an innovative method

to define a height threshold and minimum gap size using two probabilistic approaches. The modeled

distribution of canopy height as mixture of two distributions provides a clear height threshold, while
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the minimization of KS distance between observed and predicted data proves to be efficient for350

setting the minimum gap size. We use a Bayesian framework in which the model likelihood of

each gap is expressed as a function of the unique environment local to the gap, highlighting the

predominant role of the topographic exposure and waterlogging in determining gap size distribution.

We expected that slope would also play an important role, with steeper slopes leading to larger gap

sizes. However we found that a steeper slope lead to smaller gaps, as already highlighted by (Lobo355

and Dalling, 2014). We suggest that our modeling approach can be a basis for the development of

large-scale methodologies using satellite data to understand gap phase dynamics at a regional scale,

combining LiDAR and RaDAR remote sensing tools.

6 Supplementary information

Table 2. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models

for a height threshold equal to the 0.0001th percentile of the height distribution of the canopy.

Parameter Abbreviation Unit Posterior value
Confidence

interval

(CI 95%)

Slope Slope ◦ 0.119 [0.0416 ; 0.208]

Terrain Ruggedness Index TRI - 0.119 [0.083 ; 0.157 ]

TOPographic EXposure Topex - -0.128 [-0.188 ; 0.00202 ]

Drained Area DA m2 0.0843 [-0.0574 ; 0.179 ]

The Hydraulic Altitude HAlt m -0.0135 [-0.04 ; 0.042]

HAND HAND - -0.0615 [-0.152 ; 0.0162]

Table 3. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models

for a height threshold equal to the 0.001th percentile of the height distribution of the canopy.

Parameter Abbreviation Unit Posterior value
Confidence

interval

(CI 95%)

Slope Slope ◦ 0.0735 [-0.02 ; 0.15]

Terrain Ruggedness Index TRI - 0.0718 [0.04 ; 0.10 ]

TOPographic EXposure Topex - -0.082 [-0.12 ; -0.05 ]

Drained Area DA m2 -0.0176 [-0.09 ; 0.05 ]

The Hydraulic Altitude HAlt m -0.0177 [-0.05 ; 0.02]

HAND HAND - -0.003 [-0.08 ; 0.09 ]
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Table 4. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models

for a height threshold equal to the 0.01th percentile of the height distribution of the canopy.

Parameter Abbreviation Unit Posterior value
Confidence

interval

(CI 95%)

Slope Slope ◦ 0.0975 [-0.02 ; 0.17]

Terrain Ruggedness Index TRI - 0.089 [0.05 ; 0.12 ]

TOPographic EXposure Topex - -0.012 [-0.03 ; -0.32 ]

Drained Area DA m2 -0.004 [-0.08 ; 0.05 ]

The Hydraulic Altitude HAlt m 0.063 [-0.04 ; 0.08]

HAND HAND - -0.01 [-0.09 ; 0.06 ]
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