1	Vertical profiles of sediment methanogenic potential and communities in two plateau
2	freshwater lakes
3	
4	
5	Yuyin Yang ¹ , Ningning Li ¹ , Wei Wang ¹ , Bingxin Li ¹ , Shuguang Xie ^{1,*} , Yong Liu ^{2,*}
6	
7	¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control,
8	College of Environmental Sciences and Engineering, Peking University, Beijing
9	100871, China
10	
11	² Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of
12	Environmental Sciences and Engineering, Peking University, Beijing 100871, China
13	
14	
15	* Corresponding author. Tel: 86-10-62751923. Fax: 86-10-62751923.
16	Email: xiesg@pku.edu.cn (S Xie); yongliu@pku.edu.cn (Y Liu)
17	
18	
19	
20	
21	
22	

Abstract

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Microbial methanogenesis in sediment plays a crucial role in CH₄ emission from freshwater lake ecosystem. However, knowledge on the layer depth-related changes of methanogen community structure and activities in freshwater lake sediment is still limited. The present study was conducted to characterize the methanogenesis potential in different sediment layer depths and the vertical distribution of microbial communities in two freshwater lakes at different trophic status on the Yunnan Plateau (China). Incubation experiments and inhibitor studies were carried out to determine the methanogenesis potential and pathways. McrA and 16S rRNA genes were used to investigate the abundance and structure of methanogen and archaeal communities, respectively. Hydrogenotrophic methanogenesis was mainly responsible for methane production in sediments of both freshwater lakes. The layer depth-related changes of methanogenesis potential, and the abundance and community structure of methanogens were observed in either Dianchi Lake or Erhai Lake. mcrA and archaeal 16S rRNA genes displayed the similar abundance change pattern in either lake, and the relative abundance of methanogens decreased with increasing sediment layer depth. Archaeal communities differed considerably in Dianchi Lake and Erhai Lake, but methanogen communities showed a slight difference between in these two lakes. However, methanogen communities illustrated a remarkable layer depth-related change. Order *Methanomicrobiales* was the dominant methanogen group in all sediments, while *Methanobacteriales* showed high proportion only in upper layer sediments. The trophic status of lake might have a notable influence on the depth-

45	related change pattern of methangenesis activity, while the methanogen community
46	structure was mainly influenced by sediment depth.
47	
48	Keywords: Methanogenesis pathways; Freshwater lake sediment; <i>Archaea</i> ; <i>mcrA</i> ;
49	Trophic status
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

1. Introduction

67

Methane (CH₄) is an effective greenhouse gas in atmosphere, and lacustrine 68 69 ecosystems may be responsible for 6–16% of natural methane emission (Bastviken et al., 2004). In anoxic sediment of freshwater lake, a large amount of methane can be 70 71 produced through microbial methanogenesis (Bastviken et al., 2008; Gruca-Rokosz and Tomaszek, 2015). Biogenic methane is produced by the activity of methanogens, 72 a strictly anaerobic microbial group belonging to the archaeal phylum Euryarchaeota. 73 Methanogens from seven archaeal orders have been reported (Garcia, 1990; Paul et al., 74 75 2012; Sakai et al., 2008), and their substrate is generally the end products of organic matter degradation by fermentative bacteria and archaea (Borrel et al., 2011). In 76 freshwater lake, organic matter is fermented to acetate, CO₂ and H₂, which are further 77 78 converted to CH₄ by methanogens. There are two major methanogenic pathways, namely hydrogenotrophic pathway (using H₂/CO₂) and acetoclastic pathway (using 79 acetate, i.e. the methyl group) (Conrad et al., 2010). The relative contribution of these 80 81 two pathways varies in different lakes (Conrad, 1999). To determine the contribution of both methanogenic pathways, approaches including isotope labeling, δ^{13} C analysis 82 83 and inhibitor study have been applied (Conrad, 2005). Despite the theoretical ratio of 2:1 (acetoclastic pathway: hydrogenotrophic pathway) when carbohydrates or other 84 similar form of organic matter is degraded (Conrad, 1999), hydrogenotrophic pathway 85 can account for a considerable proportion of methane production in freshwater lake 86 87 sediment (Borrel et al., 2011). However, the relative significance of hydrogenotrophic pathway remains unclear, because it can vary considerably with lake (Conrad, 1999). 88

89	To identify the methanogens involved in methanogenesis, both archaeal 16S rRNA
90	gene and functional mcrA gene have been used (Conrad et al., 2007; Luton et al.,
91	2002; Orphan et al., 2008). The dominance of Methanomicrobiales and
92	Methanosarcinale have been reported in a variety of freshwater lakes (Biderre-Petit et
93	al., 2011; Conrad et al., 2007; Youngblut et al., 2014). In freshwater lakes, both
94	methanogenesis pathway and methanogenic community structure can change with
95	sediment layer depth (Chan et al., 2005; Liu et al., 2016; Lofton et al., 2015).
96	
97	Many previous studies have investigated methanogenesis in humic lakes (Youngblut
98	et al., 2014), oligotrophic lakes (Lofton et al., 2015), and meromictic lakes
99	(Biderre-Petit et al., 2011; Gies et al., 2014), while shallow meso- and eutrophic lakes
100	have attracted poor attention. Substrate plays an important role in methanogenesis,
101	and has a considerable effect on pathway preference (Liu et al., 2016; Nozhevnikova
102	et al., 2007). Methanogenesis in meso- and eutrophic lakes that have abundant
103	substrate might be different from that in other previously studied lakes. Therefore, for
104	sediments of mesotrophic and eutrophic lakes, the following questions have attracted
105	our attention, (1) How do the methanogenesis activity and contribution of different
106	pathways change with the increasing sediment layer depth? (2) How do methanogen
107	community structure and the dominant methanogens change along the sediment layer
108	depth? (3) Are these changing patterns similar in lakes at different trophic status?

2. Materials and methods

2.1. Sampling sites and samples

Dianchi Lake (with an area of 309 km² and an average water depth of 4.4 m) and Erhai Lake (with an area of 250 km² and an average water depth of 10 m) are the first and second largest freshwater lakes on Yunnan Plateau, China, and are of eutrophic and mesotrophic status, respectively (Wang et al., 2015). The characteristics and trophic status of these two lakes have been overviewed in detail by Wang (et al., 2015), and some key features were listed in the Table 1.

In this study, five replicate sediment cores (0–20 cm) were collected at the profundal area of both Dianchi Lake and Erhai Lake with a columnar sediment sampler in December 2015. The water depths at the sampling sites were 6.4 and 11 m in Dianchi Lake and Erhai Lake, respectively. The in-situ sediment temperature were 16.4°C in Dianchi Lake and 14.8°C in Erhai Lake, respectively. Meanwhile, a total of 500 mL bottom water at each sampling site was collected for the subsequent incubation experiments.

The five replicate sediment cores were sliced into the layers (sample D1 or E1:0–5 cm, sample D2 or E2:5–8 cm, sample D3 or E3:8–11 cm, sample D4 or E4:11–14 cm, and sample D5 or E5:14–17 cm, sample D6 or E6:17–20 cm). Samples D1–D6 and E1–E6 were from Dianchi Lake and Erhai Lake, respectively. Replicate sediment samples from the same layer depth in a given lake were mixed and then subsampled for physicochemical and molecular analyses and incubation experiments. Sediment

samples for physicochemical and molecular analyses were stored at -20°C, while those for incubation experiments were kept in gas-tight bottles under anoxic condition at 4°C. The sediment samples were transported to laboratory within one week, which would have no considerable effect on methanogenic activity (N üsslein et al., 2001).

2.2. Methane production potential measurement

The incubation experiments for methane production measurement were performed with reference to the standard procedure described in the literature (Conrad et al., 2010). Uppermost sediment (0–5 cm) was centrifuged at 4000 rpm for 5 min to obtain the similar water content with the samples from other layers. For each sediment layer, a total of six sediment samples (1.5 g) and 8 mL bottom water were transferred into a 50-mL sterile serum bottle, flushed with N₂, and then closed with a butyl rubber stopper. After incubation at 16°C overnight, the bottles were flushed with N₂ again, and half of them were added with CH₃F (1 mL) to inhibit the aceticlastic methanogenesis. Incubation was carried out at 16°C at 100 rpm for 28 days. At the end of incubation, gas samples were taken from the headspace using a gas-tight syringe, and then were analyzed using GC126 gas chromatography (INESA instrument, Shanghai) with a flame ionization detector.

2.3 Molecular analysis

DNA was extracted using the Powersoil DNA extraction kit (Mobio Laboratories,

USA). The quality of DNA was checked using 1.0% agarose gel electrophoresis. For

quantitative PCR (qPCR), the primer sets mcrF 155 (5'-GGTGGTGTMGGATTCACACARTAYGCWACAGC-3') /mcrR 156 (5'-TCATTGCRTAGTTWGGRTAGTT-3') (Luton et al., 2002) and Arch344F 157 (5'-GYGCAGCAGCGCGA-3') /Arch915R (5'-GTGCTCCCCGCCAATTCCT-3') 158 (Casamayor et al., 2002; Conrad et al., 2014) were used for the quantification of mcrA 159 and archaeal 16S rRNA genes, respectively. The qPCR assay was carried out using an 160 ABI 7500 FAST (Applied Biosystems). The reaction mixture included 2×SYBR Green 161 PCR master mix (12.5 µL), 10 µM of each primer (1 µL), and template DNA (2 ng). 162 163 The PCR conditions were as described in the literatures (Casamayor et al., 2002; Luton et al., 2002). Standard curves ranging from 10³ to 10⁷ gene copies/µL were 164 generated using serial dilutions of linearized plasmids (pGEM-T, Promega) containing 165 166 cloned target gene amplified from environmental DNA. The coefficient (r^2) for archaeal 16S rRNA gene and mcrA gene were 0.9995 and 0.9998, respectively. 167 Significance was tested using one-way analysis of variance (ANOVA), followed by 168 169 S-N-K's post-hoc analysis (when the variances were homogenous) or Dunnett's post-hoc analysis (when the variances were not homogenous). 170 171 For Illumina MiSeq sequencing, archaeal 16S rRNA gene was amplified using primer 172 set Arch519f (5'-CAGCCGCCGCGGTAA-3')/Arch915R 173 (5'-GTGCTCCCCGCCAATTCCT-3') (He et al. 2016; Herfort et al., 2009; Long et 174 175 al. 2016). The PCR products from triplicate samples were mixed in equal amounts and were subjected to Illumina MiSeq sequencing. Raw reads were merged and the 176

quality filtering was carried out using Trimmomatic (Bolger et al., 2014) and FLASH (Magoc and Salzberg, 2011). The obtained raw reads were deposited in the NCBI SRA (short-read archive) under accession SRP076837. After subsampling to the lowest number of sequences, sequences from each sediment sample were checked for chimeras and grouped into OTUs (operational taxonomic units) using Usearch (version 7.1, http://drive5.com/uparse/) at 97% similarity. Diversity analysis was carried out using the MOTHUR program (version v.1.30.1) (Schloss et al., 2011). The taxonomic identities of representative sequences for each OTU were assigned according to the Silva 16S rRNA database (Quast et al., 2013). For mcrA gene clone library analysis, primer set mcrF/mcrR was used, and the PCR conditions were as previously described (Luton et al., 2002). The obtained mcrA sequences were deposited in the GenBank database under accession numbers KU997795-KU997842, KX196972-KX197020 and KX093502-KX093920. The mcrA gene sequences were grouped into OTUs at the similarity level of 89% (Webster et al., 2014) using the MOTHUR program. OTU-based diversity was also calculated using the MOTHUR program (Schloss et al., 2009). Phylogenetic analysis of the mcrA gene sequences was carried out with the MEGA 6.0 software (Tamura et al., 2013). Weighted Unifrac distance between samples was calculated using R library GUniFrac, and cluster analysis were conducted based on Weighted Unifrac distance using R (version i386, 3.3.0).

197

198

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

3. Results

3.1. Total methane production

In this study, total methane production (TMP) varied remarkably with both lake and sediment depth except for the uppermost sediments layers which were remarkably similar between Dianchi Lake and Erhai Lake (Figure 1). The change pattern of TMP differed in the two lakes. In Dianchi Lake, the TMP generally increased with increasing depth, varying from 68.9 to 315.3 nmol/gDW in 5–20 cm layer (DW stands for dry weight, which was determined gravimetrically), while in Erhai Lake, the MPP decreased from 59.6 to 11.2 nmol/gDW. The sediment samples from Dianchi Lake showed a significantly higher TMP than those from Erhai Lake (*P*<0.05).

The inhibited methane production (IMP) was measured under the condition of 2% CH₃F. IMP showed a similar change trend with TMP in either of the studied two freshwater lakes. With increasing depth, IMP generally increased in Dianchi Lake but tended to decrease in Erhai Lake. Dianchi Lake had the IMP of 47.0–182.8 nmol/gDW, but Erhai Lake had a much lower IMP (9.5–38.1 nmol/gDW). Besides, uninhibited methane production (mainly produced through aceticlastic pathway) varied greatly in different layers (2.0-84.0 nmol/gDW in Dianchi Lake, 1.7–13.7 nmol/gDW in Erhai Lake), and showed a notable difference between these two freshwater lakes.

3.2. Community abundance of Archaea and methanogen

The depth-related change pattern of either archaeal 16S rRNA or mcrA gene differed

in Dianchi Lake and Erhai Lake (Figure 2). The density of archaeal 16S rRNA gene fluctuated between $2.9\pm0.1 \times 10^7$ and $8.4\pm0.8 \times 10^8$ copies/gDW in Dianchi Lake. In Erhai Lake, the archaeal community abundance ranged from $2.7\pm0.1 \times 10^7$ to 3.4 ± 0.1 ×10⁸ copies/gDW, and showed an increase with depth followed by a significant decrease (P<0.05), with the peak value in the 5–8-cm layer. As for mcrA gene, its highest density was observed at the uppermost layer (0–5 cm) in either Dianchi Lake (1.06 $\pm 0.06 \times 10^6$ copies/gDW) or Erhai Lake (5.6 $\pm 0.2 \times 10^5$ copies/gDW), while the lowest one occurred in Dianchi Lake sample D6 (17–20cm, $2.5 \pm 0.3 \times 10^4$ copies/gDW) or Erhai Lake sample E5 (14–17 cm, $3.7 \pm 0.1 \times 10^4$ copies/gDW). The gene abundance generally decreased with increasing depth. In addition, either Archaea or methanogens showed greater abundance in Dianchi Lake than in Erhai Lake. 3.3. Diversity of archaeal and methanogen communities In this study, after subsampling, a total of 16,028 archaeal sequences were retrieved from each sediment sample. The number of OTUs in each library ranged between 547 and 1194, and library coverage was 98.07–99.64% (Table 2). Archaeal community diversity of most sediment samples varied slightly (Shannon index=4.51-5.13), whereas samples D2 and D3 had much lower Shannon diversity (3.98 or 3.88). The samples from Erhai Lake showed higher archaeal diversity (Shannon index=4.81-5.13) than those from Dianchi Lake (Shannon index=3.88–4.75).

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

A total of 516 *mcrA* gene sequences were retrieved from *mcrA* clone library, and could be assigned into 30 OTUs (at 89% similarity). For each sample, the number of sequences ranged from 35 to 49, while the number of OTUs varied between 6 and 11. The coverage for each clone library was no less than 85.7%, indicating that the *mcrA* OTUs of each sample had been well captured. The Shannon indices were 1.49–1.72 for Dianchi Lake and 1.25–1.84 for Erhai Lake, respectively. In Dianchi Lake, sample D1 had the highest *mcrA* gene diversity, but sample D6 had the lowest diversity. In Erhai Lake, sample E2 had the highest *mcrA* gene diversity followed by sample E1, but E5 showed the lowest diversity.

3.4. 16S rRNA-based community composition

Bathyarchaota (formally known as Miscellaneous Crenarchaeotic_Group, MCG) and Euryarchaeota dominated the archaeal communities in both Dianchi Lake and Erhai Lake (Figure 3). In the uppermost sediment layer in either lake, Bathyarchaota accounted for nearly 20% of the total archaeal community. However, in Dianchi Lake, with increasing layer depth, the proportion of Bathyarchaota showed a remarkable decrease followed by a rise. Bathyarchaota organisms showed high proportion (44–55%) in Dianchi Lake samples D4–D6 and Erhai Lake samples E2–E6. In contrast, Euryarchaeota illustrated an opposite change trend. In Dianchi Lake, the proportion of Euryarchaeota organisms was higher in samples D2 and D3 (63% or 67%) than in sample D1 (47%), but displayed a notable decrease in deeper layers (26–27%). In

Erhai Lake, the *Euryarchaeota* proportion in sample E1 was 32.5% but became lower in samples E2–E6 (9–23%). In addition, *Woesearchaeota* showed a greater abundance in Dianchi Lake (8–13%) than in Erhai Lake (4–9%), while *Crenarchaeota* was mainly distributed in Erhai Lake (3–29%).

Based on 16S rRNA gene analysis, methanogens comprised 3–17% of the total archaeal community (Figure S1). The relative abundance of methanogens tended to decrease with increasing sediment layer depth. Order *Methanobacteriales* dominated the methanogen community in the uppermost layer samples (samples D1 or E1), and also had a considerable proportion in samples D2 and D3. In contrast, *Methanomicrobiales* was the dominant methanogen group in the lower layer sediments (Dianchi Lake samples D2–D6 and Erhai Lake samples E2–E6). *Methanocellales* and *Methanosarcinales* could also be detected in all sediment samples, but their proportions were less than 2%. At genus level, *Methanobacterium* (within *Methanobacteriales*) had the greatest proportion, followed by *Methanosaeta* (within *Methanosarcinales*) and *Methanoregula* (within *Methanomicrobiales*), and the proportion of each archaeal genus decreased with increasing layer depth in either lake (data not shown).

3.5. mcrA-based community composition

In the present study, the 516 *mcrA* sequences from all sediment samples fell into 30 OTUs, 12 of which had only one sequence. The representative sequences from the

OTUs with at least two sequence members were further used to construct the phylogenic tree with their close mcrA sequences reported in the NCBI database (Figure 4). All of the sequences were grouped into five clusters (clusters 1–5). Cluster 1 contained most of the obtained mcrA sequences (440), and could be affiliated with the mcrA sequences from Methanomicrobiales. Cluster 2 consisted of 29 mcrA sequences related to those from *Thermoplasmatales* and *Methanoplasmatales*. Cluster 3 (with 13 sequence members) and cluster 5 (with 12 sequence members) were related to Methanobacteriales and Methanosarcinale, respectively. Cluster 4 was the smallest group and only contained 9 sequences. The sequences in this cluster were not related to the mcrA sequences from known methanogens, but showed a close relation to an uncultured sequence from paddy soil. In addition, the sequences affiliated to cluster 1 could be further divided into 3 clades. OTU7 was grouped together with the sequences from two Methanomicrobiaceae strains. OTU8 showed a close relation to a Methanolinea-like mcrA sequence, and OTU1, OTU2 and OTU6 were closely related to Methanoregula-like mcrA sequence.

302

303

304

305

306

307

308

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

Methanoregula-like mcrA sequences (OTU1 and OTU2) were detected in all sediment layer depths, but the proportion of OTU1 decreased with increasing layer depth (Figure S2). Methanomicrobiaceae-like mcrA sequences (OTU7) were not detected in Dianchi Lake samples D1, D2 and D3, but they dominated in the other samples and their proportion increased with increasing sediment layer depth. Methanoplasmatales -like mcrA sequences (OTU13) mainly existed in Dianchi Lake, but were also

detected in the uppermost sediment layer in Erhai Lake. *Methanolinea*-like *mcrA* sequences (OTU8) were present in all sediment layers in both lakes, but their change pattern was not evident. In addition, other genotypes of *mcrA* gene sequences comprised less than 22% of the total sequences in each sample.

313

314

315

316

317

318

319

320

321

309

310

311

312

3.6. Comparison of archaeal and methanogen communities

The difference among archaeal assemblages was discriminated using

Weighted-Unifrac distance-based cluster analysis (Figure 5a). In either Dianchi Lake

or Erhai Lake, the sample from the uppermost layer (sample D1 or E1) was separated

from the samples in other sediment layers. In Dianchi Lake, samples D2 and D3 were

also grouped into one clade, and the other three samples fell into another one.

However, in Erhai Lake, samples E2, E3, E4, E5 and E6 were grouped together, and

the samples from neighboring layers tended to have a relatively similar archaeal

322 community structure.

323

324

325

326

327

For methanogen communities, the studied 12 sediment samples fell into two groups (Figure 5b). Samples D1, D2, D3 and E1 were clustered together. For other samples,

samples at similar layer depth tended to have relatively similar methanogen

community structure. Moreover, the sediment samples from two lakes were not

328 clearly separated.

329

330

4. Discussion

4.1 Methane production potential in freshwater lake sediment

The TMP in Erhai Lake decreased with increasing sediment depth, which was in accordance with the literatures (Chan et al., 2005 (top 20 cm sliced at 3–5 cm interval); Liu et al., 2016 (top 50 cm depth sliced at 5 cm interval); Lofton et al., 2015 (top 5 cm sliced at 1 cm interval)). Lofton et al (2015) also documented a slight TMP shift followed by a sharp decrease in vertical sediment layers. However, to the authors' knowledge, Dianchi Lake was the first lake that illustrated the increase of TMP with increasing sediment layer depth.

Several previous studies had investigated the inter-lake difference of methanogenesis. Methane production rate could differ drastically between the two geomorphologically similar oligotrophic lakes, and the quantity and quality of water dissolved organic carbon (DOC) might be an influential factor (Lofton et al., 2015). Other environmental factors, including geological constitute (e.g., calcareous or not), geographical regions (Rinta et al., 2015) as well as water type (e.g., black water, clear water or something else) (Conrad et al., 2014), were also found to have considerable influences on methane production rate in freshwater lake sediment. Moreover, lake characteristics could influence the methane production rate both directly and indirectly (Borrel et al., 2011). In this study, the methanogenesis potential in Dianchi Lake was found to be much higher than that in Erhai Lake. Dianchi Lake had a larger amount of nutrient than Erhai Lake, and a high level of organic matter could exist in lower sediment layers (Figure S3). TMP was found to be related to the availability of

organic matter (Liu et al., 2016; Lofton et al., 2015; Nozhevnikova et al., 2007), so the abundant substrate in Dianchi Lake could favor higher TMP. In addition, although methanogen communities in Dianchi Lake and Erhai Lake had similar structure, either archaeal or bacterial community differed greatly in these two lakes (Dai et al., 2016; Yang et al., 2016). Bacterial and non-methanogen archaeal community played important roles in decomposing organic matter, and thus influenced the availability of substrate.

In the current study, IMP accounted for only 24.2% of TMP, so it could be inferred that hydrogenotrophic pathway might play a major role in Dianchi Lake. The result was consistent with previous studies (Conrad et al., 2010; Liu et al., 2013; Liu et al., 2016). However, in Erhai Lake, IMP was comparable to uninhibited methane production. In this study, the layer depth-related difference in the relative contribution of two methanogenic pathways was not clear, though acetoclastic methangenesis's relative contribution was found to decrease with increasing lake sediment depth in severtal studies (Chan et al., 2005; Liu et al., 2016). The depth-related change of acetoclastic methangenesis's relative contribution might be attributed to the decreasing availability of organic matter (Liu et al., 2016). However, in eutrophic Dianchi Lake, organic matter could be at a high level even at the depth of 20 cm. As a result, acetoclastic methangenesis might not decrease considerably with increasing depth.

4.2. Abundance of Archaea and methanogen in freshwater lake sediment

In the current study, the density of archaeal 16S rRNA gene tended to decrease with increasing depth in Erhai Lake but considerably fluctuated in Dianchi Lake.

According to the previous studies, the abundance of archaeal 16S rRNA gene generally decreased with increasing depth in stratified lake sediments (Chan et al., 2005; Zhu et al., 2012 (top 21 cm at 3 cm interval)). But in shallow and eutrophic lakes, both archaeal 16S rRNA gene and mcrA gene abundance could fluctuate along the sediment depth gradient (Ye et al., 2009 (top 30 cm at 5 cm interval); Zhu et al., 2012). The water depth, as well as trophic status, might have an influence on the depth-related change.

The abundance of methanogens could be assessed using either order-specific archaeal 16S rRNA gene primers or *mcrA* gene primers. Methanogen abundance was usually found to rise at first followed by a decrease with the increasing depth in top 50 cm, and its peak occurred at the surface layer or 5–10 cm beneath the sediment surface (Borrel et al., 2012; Milferstedt et al., 2010; Zhu et al., 2012), which consisted with the results found in this study.

In the current study, the abundance of archaeal 16S rRNA gene was comparable to that reported in the literatures (about $1 \times 10^7 - 2 \times 10^9$ copies/gDW in top 20 cm) (Borrel et al., 2012; Zhu et al., 2012). However, for each sample, the *mcrA*/16S ratio was less than 3% according to the results of qPCR, while the sequences affiliated with

methanogen-like organisms accounted for 3–17% of total 16S rRNA sequences. The result suggested either the bias of amplification of *mcrA* gene or the difference between the two archaeal 16S rRNA primer sets used in the current study.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

397

398

399

4.3. Diversity of archaeal and methanogen communities in freshwater lake sediment The diversity of archaeal community displayed a slight fluctuation along the sediment layer depth gradient, which was in agreement with literatures considering different sampling depth, e.g., top 14 cm sliced at 2–3 cm interval (Koizumi et al., 2004), top 180 cm sliced at 20 cm interval (Lim et al., 2011), and top 60 cm sliced at 3–9 cm interval (Nam et al., 2008). To date, the diversity of mcrA gene was unclear, partly due to the usage of order-specific primers of methanogens in the previous studies (Borrel et al., 2012; Zhu et al., 2012). Moreover, information on the diversity of methanogen 16S rRNA gene was lacking. In this study, relatively higher diversity of mcrA gene was observed in the samples from upper layers (sample D1 in Dianchi Lake and sample E2 in Erhai Lake), but mcrA gene diversity did not show a clear change pattern. In addition, both community diversity and evenness of methanogens could vary with lake (Milferstedt et al., 2010; Youngblut et al., 2014). In this current study, the sediment samples from Erhai Lake had slightly lower mcrA gene diversity than those from Dianchi Lake (Table 2).

416

417

418

4.4 Composition of methanogen community in freshwater lake sediment based on 16S rRNA gene

In the present study, hydrogenotrophic *Methanomicrobiales* had high proportion in sediment from each layer depth, which agreed with previous studies (Biderre-Petit et al., 2011; Youngblut et al., 2014). It had been detected in a variety of environments, and was the most frequently observed archaeal order in freshwater lake sediment. Methanobacteriales was mainly distributed in Dianchi Lake samples D1, D2 and D3 and Erhai Lake sample E1. Abundance of Methanobacteriales has also been observed in hypereutrophic Priest Pot (Earl et al., 2003) and eutrophic Taihu Lake (Ye et al., 2009). The distribution of *Methanobacteriales* indicated that it might have a preference to high levels of nutrients. *Methanosarcinales* showed lower proportion in Dianchi Lake and Erhai Lake than in other previous reported freshwater lakes (Biderre-Petit et al., 2011; Borrel et al., 2012; Zhu et al., 2012). Methanogens from order *Methanosarcinales* mainly participated in reducing acetate and methyl compounds (Borrel et al., 2011), so their low proportion might partly account for the small contribution of hydrogenotrophic pathway.

In this study, the result of UniFrac-based cluster analysis (Figure 5a) indicated that archaeal community structure differed evidently in Dianchi Lake and Erhai Lake. In either Dianchi Lake or Erhai Lake, layer depth was found to be a key determinant to archaeal community structure. However, the abrupt shift in archaeal community structure occurred at different layer depths in these two lakes. In Dianchi Lake, the structures of archaeal communities at layer depth 0–11 cm (including samples D1, D2 and D3) were much different from those at layer depth 11–20 cm (including samples

D4, D5 and D6). However, in Erhai Lake, a remarkable difference lay between the sample from uppermost layer (D1) and those from other five layers. So far, only Ye et al. (2009) documented the layer depth-related change of archaeal community structure in Taihu Lake, while its change pattern was not clear.

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

441

442

443

444

4.5. Composition of methanogen community in freshwater lake sediment based on mcrA gene

Based on mcrA gene clone library analysis, Methanomicrobiales was found to be the dominant methanogen group in both lakes, which agreed with other studies (Biderre-Petit et al., 2011; Youngblut et al., 2014). In the current study, the proportion of Methanoregula-like mcrA sequences tended to decrease with increasing sediment layer depth, while the proportion of methanolinea-like mcrA sequences did not show a clear change pattern. Methanoregula and Methanolinea, affiliated within Methanomicrobiales, were among the most frequently detected archaeal genera in freshwater lake (Borrel et al., 2011). So far, the change pattern of methanogen community at genus level along the layer depth gradient has not been addressed. In this study, Methanoplasmatales-like methanogens were detected in both Dianchi Lake and Erhai Lake, but the distribution pattern along sediment layer depth in these two lakes was different. Methanoplasmatales-like methanogens were related to Thermoplasmatales archaeons. It was usually present in termite guts and high-salinity environments (e.g., marine sediment), and was the latest found order of methanogens (Paul et al., 2012). Only several previous studies reported their existence in

freshewater lake sediment (Conrad et al., 2014; Liu et al., 2013; Webster et al., 2014). *Methanosarcinales* and *Methanobacteriales* were also detected in different sediment layers in both lakes. However, their change patterns were not clear because of their low relative abundance. In addition, compared with other freshwater lake sediments (Borrel et al., 2012; Zhu et al., 2012), sediments in Dianchi Lake and Erhai Lake showed much higher *Methanomicrobiales* proportion but lower *Methanosarcinales* proportion.

In this study, the results based on *mcrA* gene clone library were not always consistent with that based on 16S rRNA Illumina MiSeq sequencing. For an example, *Methanosarcinales* organisms accounted for 7–20% of the total methanogens according to 16S rRNA sequencing, but showed a very low proportion in *mcrA* clone library (less than 3% in 11 out of 12 samples). *Methanobacteriales* was abundant in uppermost layer sediments based on 16S rRNA sequencing, but it was a minor group in *mcrA* clone library. Since the phylogeny of *mcrA* gene was congruent with that of 16S rRNA gene (Luton et al., 2002; Springer et al., 1995), the difference between the results base on the two molecular approaches might be attributed to PCR bias.

UniFrac-based cluster analysis indicated that methanogen communities in sediments of Dianchi Lake and Erhai Lake were not phylogenetically separated. Sediment depth could shape methanogen community structure, although methanogen communities in surface sediment were usually found to be lake-dependent (Milferstedt et al., 2010;

485	Youngblut et al., 2014).
486	
487	5. Conclusions
488	The MPP and abundance of sediment methanogens differed greatly in Dianchi Lake
489	and Erhai Lake, while these two lakes had the similar methanogen community
490	structure, with the dominance of Methanomicrobiales and Methanobacteriales.
491	Hydrogenotrophic methanogenesis was the major methane production pathway in
492	sediments of both lakes. The layer depth-related changes of methanogenesis potential,
493	and the abundance and community structure of methanogens were observed in either
494	Dianchi Lake or Erhai Lake. Sediment methanogen community and activity might be
495	influenced by lake tropic status.
496	
497	Acknowledgments
498	This work was financially supported by National Natural Science Foundation of
499	China (No. 41571444), National Basic Research Program of China (2015CB458900),
500	special fund of State Key Joint Laboratory of Environment Simulation and Pollution
501	Control (15L02ESPC).
502	
503	Competing interests
504	The authors declare that they have no conflict of interest.
505	
506	References

- Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes:
- Dependence of lake characteristics, two regional assessments, and a global
- estimate, Global Biogeochem. Cy., 18, GB4009, 2004.
- Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C.: Fates of methane
- from different lake habitats: Connecting whole-lake budgets and CH₄ emissions,
- J. Geophys. Res., 113, G02024, 2008.
- Biderre-Petit, C., J & équel, D., Dugat-Bony, E., Lopes, F., Kuever, J., Borrel, G.,
- Viollier, E., Fonty, G., and Peyret, P.: Identification of microbial communities
- involved in the methane cycle of a freshwater meromictic lake, FEMS Microbiol.
- 516 Ecol., 77, 533-545, 2011.
- Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: a flexible trimmer for
- Illumina sequence data, Bioinformatics, 30, 2114-2120, 2014.
- Borrel, G., Jezequel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J. P., Peyret,
- P., Fonty, G., and Lehours, A. C.: Production and consumption of methane in
- freshwater lake ecosystems, Res. Microbiol., 162, 832-847, 2011.
- Borrel, G., Lehours, A.-C., Crouzet, O., Je guel D, and Rockne K: Stratification of
- Archaea in the Deep Sediments of a Freshwater Meromictic Lake: Vertical Shift
- from Methanogenic to Uncultured Archaeal Lineages, PLoS ONE, 7, e3346,
- 525 2012.
- Casamayor, E., Massana, R., Benlloch, S., Øvre ås, L., D éz, B., Goddard, V., Gasol, J.,
- Joint, I., Rodr guez-Valera, F., and Pedr &-Ali & C.: Changes in archaeal,
- bacterial and eukaryal assemblages along a salinity gradient by comparison of

genetic fingerprinting methods in a multipond solar saltern, Environ. Microbiol., 529 4, 338-348, 2002. 530 Chan, O. C., Claus, P., Casper, P., Ulrich, A., Lueders, T., and Conrad, R.: Vertical 531 distribution of structure and function of the methanogenic archaeal community in 532 Lake Dagow sediment, Environ. Microbiol., 7, 1139-1149, 2005. 533 Conrad, R.: Contribution of hydrogen to methane production and control of hydrogen 534 concentrations in methanogenic soils and sediments, FEMS Microbiol. Ecol., 28, 535 193-202, 1999. 536 537 Conrad, R.: Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal, Org. Geochem., 36, 739-752, 2005. 538 Conrad, R., Chan, O.-C., Claus, P., and Casper, P.: Characterization of methanogenic 539 540 Archaea and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany), Limnol. 541 Oceanogr., 53, 1393-1406, 2007. 542 Conrad, R., Klose, M., Claus, P., and Enrich-Prast, A.: Methanogenic pathway, C-13 543 isotope fractionation, and archaeal community composition in the sediment of 544 two clear-water lakes of Amazonia, Limnol. Oceanogr., 55, 689-702, 2010. 545 Conrad, R., Ji, Y., Noll, M., Klose, M., Claus, P., and Enrich-Prast, A.: Response of 546 the methanogenic microbial communities in Amazonian oxbow lake sediments to 547 desiccation stress, Environ. Microbiol., 16, 1682-1694, 2014. 548

- Dai, Y., Yang, Y., Wu, Z., Feng, Q., Xie, S., and Liu, Y.: Spatiotemporal variation of
- planktonic and sediment bacterial assemblages in two plateau freshwater lakes at
- different trophic status, Appl. Microbiol. Biotechnol., 100, 4161-4175, 2016.
- Dan, J., Kumai, T., Sugimoto, A., and Murase, J.: Biotic and abiotic methane releases
- from Lake Biwa sediment slurry, Limnology, 5, 149-154, 2004.
- Duc, N. T., Crill, P., and Bastviken, D.: Implications of temperature and sediment
- characteristics on methane formation and oxidation in lake sediments,
- Biogeochemistry, 100, 185-196, 2010.
- Earl, J., Hall, G., Pickup, R., Ritchie, D., and Edwards, C.: Analysis of methanogen
- diversity in a hypereutrophic lake using PCR-RFLP analysis of *mcr* sequences,
- 559 Microbiol. Ecol., 46, 270-278, 2003.
- Garcia, J. L.: Taxonomy and ecology of methanogens, FEMS Microbiol. Rev., 87,
- 561 297-308, 1990.
- Gies, E. A., Konwar, K. M., Beatty, J. T., and Hallam, S. J.: Illuminating Microbial
- Dark Matter in Meromictic Sakinaw Lake, Appl. Environ. Microbiol., 80,
- 564 6807-6818, 2014.
- Gruca-Rokosz, R., and Tomaszek, J. A.: Methane and Carbon Dioxide in the
- Sediment of a Eutrophic Reservoir: Production Pathways and Diffusion Fluxes at
- the Sediment–Water Interface, Water Air Soil Poll., 226, 16, 2015.
- He, T., Guan, W., Luan, Z., Xie, S.: Spatiotemporal variation of bacterial and archaeal
- communities in a pilot-scale constructed wetland for surface water treatment.
- 570 Appl. Microbiol. Biotechnol., 100, 1479-1488, 2016.

- Herfort, L., Kim, J. H., Coolen, M. J. L., Abbas, B., Schouten, S., Herndl, G. J.,
- Damste, J. S. S.: Diversity of *Archaea* and detection of crenarchaeotal *amoA*
- genes in the rivers, Rhine and Tet, Aquat. Microb. Ecol., 55, 189-201, 2009.
- Koizumi, Y., Takii, S., and Fukui, M.: Depth-related change in archaeal community
- structure in a freshwater lake sediment as determined with denaturing gradient
- gel electrophoresis of amplified 16S rRNA genes and reversely transcribed rRNA
- fragments, FEMS Microbiol. Ecol., 48, 285-292, 2004.
- Lim, J., Woodward, J., Tulaczyk, S., Christoffersen, P., and Cummings, S. P.: Analysis
- of the microbial community and geochemistry of a sediment core from Great
- 580 Slave Lake, Canada, Anton. Leeuw., 99, 423-430, 2011.
- Liu, Y., Yao, T., Gleixner, G., Claus, P., and Conrad, R.: Methanogenic pathways, ¹³C
- isotope fractionation, and archaeal community composition in lake sediments
- and wetland soils on the Tibetan Plateau, J. Geophys. Res. Biogeo., 118, 650-664,
- 584 2013.
- Liu, Y., Conrad, R., Yao, T., Gleixner, G., and Claus, P.: Change of methane
- production pathway with sediment depth in a lake on the Tibetan plateau,
- Paleogeogr. Paleoclimatol. Paleoecol., doi: 10.1016/j.palaeo.2016.06.021, 2016.
- Lofton, D. D., Whalen, S. C., and Hershey, A. E.: Vertical sediment distribution of
- methanogenic pathways in two shallow Arctic Alaskan lakes, Polar Biol., 38,
- 590 815-827, 2015.
- Long, Y., Zhang, Z., Pan, X., Li, B., Xie, S., Guo, Q.: Substrate influence on
- archaeal and bacterial assemblages in constructed wetland microcosm, Ecol.

- 593 Eng., 94, 437-442, 2016.
- Luton, P. E., Wayne, J. M., Sharp, R. J., and Riley, P. W.: The mcrA gene as an
- alternative to 16S rRNA in the phylogenetic analysis of methanogen populations
- in landfill, Microbiology, 148, 3521-3530, 2002.
- Magoc, T., and Salzberg, S.: FLASH Fast Length Adjustment of Short Reads to
- Improve Genome, Bioinformatics, 27, 2957-2963, 2011.
- Milferstedt, K., Youngblut, N. D., and Whitaker, R. J.: Spatial structure and
- persistence of methanogen populations in humic bog lakes, ISME J., 4, 764-776,
- 601 2010.
- Nüsslein, B., Chin, K.-J., Eckert, W., and Conrad, R.: Evidence for anaerobic
- syntrophic acetate oxidation during methane production in the profundal
- sediment of subtropical Lake Kinneret (Israel), Environ. Microbiol., 3, 460-470,
- 605 2001.
- 606 Nam, Y. D., Sung, Y., Chang, H. W., Roh, S. W., Kim, K. H., Rhee, S. K., Kim, J. C.,
- Kim, J. Y., Yoon, J. H., and Bae, J. W.: Characterization of the depth-related
- changes in the microbial communities in Lake Hovsgol sediment by 16S rRNA
- gene-based approaches, J. Microbiol., 46, 125-136, 2008.
- Nozhevnikova, A. N., Nekrasova, V., Ammann, A., Zehnder, A. J. B., Wehrli, B., and
- Holliger, C.: Influence of temperature and high acetate concentrations on
- methanogenensis in lake sediment slurries, FEMS Microbiol. Ecol., 62, 336-344,
- 613 2007.

- Orphan, V. J., Jahnke, L. L., Embaye, T., Turk, K. A., Pernthaler, A., Summons, R. E.,
- and DJ, D. E. S. M.: Characterization and spatial distribution of methanogens
- and methanogenic biosignatures in hypersaline microbial mats of Baja California,
- Geobiology, 6, 376-393, 2008.
- Paul, K., Nonoh, J. O., Mikulski, L., and Brune, A.: "Methanoplasmatales,"
- Thermoplasmatales-related archaea in termite guts and other environments, are
- the seventh order of methanogens, Appl. Environ. Microbiol., 78, 8245-8253,
- 621 2012.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and
- Glockner, F. O.: The SILVA ribosomal RNA gene database project: improved
- data processing and web-based tools, Nucleic Acids Res., 41, D590-596, 2013.
- Rinta, P., Bastviken, D., van Hardenbroek, M., Kankaala, P., Leuenberger, M.,
- Schilder, J., Stätter, T., and Heiri, O.: An inter-regional assessment of
- concentrations and δ^{13} C values of methane and dissolved inorganic carbon in
- small European lakes, Aquat. Sci., 77, 667-680, 2015.
- Sakai, S., Imachi, H., Hanada, S., Ohashi, A., Harada, H., and Kamagata, Y.:
- 630 Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the
- first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order
- 632 *Methanocellales* ord. nov, Int. J. Evol. Syst. Micr., 58, 929-936, 2008.
- 633 Schloss, P. D., Gevers, D., and Westcott, S. L.: Reducing the Effects of PCR
- Amplification and Sequencing Artifacts on 16S rRNA-Based Studies, PLoS
- 635 ONE, 6, e27310, 2011.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., 636 Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., 637 Stres, B., Thallinger, G. G., Van Horn, D. J., Weber, C. F.: Introducing mothur, 638 open-source, platform-independent, community-supported software for 639 describing and comparing microbial communities. Appl. Environ. Microbiol., 640 75, 7537-7541, 2009. 641 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular 642 evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30, 2725-2729, 643 644 2013. Springer, E., Sacks, M., Woese, C., and Boone, D.: Partial gene sequences for the a 645 subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the 646 647 family Methanosarcinaceae, Int. J. Syst. Evol. Micr., 45, 554-559, 1995. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S.: MEGA6: molecular 648 evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725-2729, 649 2013. 650 Wang, S., Zheng, B., Chen, C., Dohmann, M., and Kolditz, O.: Thematic issue: water 651 of the Erhai and Dianchi Lakes, Environ. Earth. Sci., 74, 3685-3688, 2015. 652 Webster, G., O'Sullivan, L. A., Meng, Y., Williams, A. S., Sass, A. M., Watkins, A. J., 653 Parkes, R. J., and Weightman, A. J.: Archaeal community diversity and 654

30

abundance changes along a natural salinity gradient in estuarine sediments,

FEMS Microbiol. Ecol., 91, 1-18, 2014.

655

Yang, Y., Dai, Y., Wu, Z., Xie, S., and Liu, Y.: Temporal and spatial dynamics of 657 archaeal communities in two freshwater lakes at different trophic status, Front. 658 Microbiol., 7, 451, 2016. 659 Ye, W., Liu, X., Lin, S., Tan, J., Pan, J., Li, D., and Yang, H.: The vertical distribution 660 of bacterial and archaeal communities in the water and sediment of Lake Taihu, 661 FEMS Microbiol. Ecol., 70, 107-120, 2009. 662 Youngblut, N. D., Dell'Aringa, M., and Whitaker, R. J.: Differentiation between 663 sediment and hypolimnion methanogen communities in humic lakes, Environ. 664 Microbiol., 16, 1411-1423, 2014. 665 Zhu, D.-L., Sun, C., and He, H.: Detection Methanogens in Newly Settled Sediments 666 from Xuanwu Lake in Nanjing, China, Curr. Microbiol., 64, 539-544, 2012. 667 668 669

Table 1 Characteristics and trophic stauts of Dianchi Lake and Erhai Lake. sTOC, sTN, sTP and wTOC, wTN, wTP were referred to average levels of total organi carbon (TOC), total nitrogen (TN) and total phosphrous (TP) of sediment and water, respectively. The locations of sampling sites were as illustrated in the literature (Yang et al, 2016).

Lake	Location	sTOC	sTN	sTP	wTOC	wTN	wTP	Trophic status
		(g/kg)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	
Dianchi	102°42' E, 24°51' N	0.13	1027.44	320.44	4.4	1.65	0.114	eutrophic
Erhai	100°11' E, 25°45' N	0.10	818.15	183.79	6.4	0.56	0.018	mesotrphic

Table 2 diversity and library coverage of archaeal 16S rRNA and *mcrA* genes. Samples D1–D6 and E1–E6 were retrieved from Dianchi Lake and Erhai Lake, respectively. Digits "1" – "6" were referred to sediment depth 0–5, 5–8, 8–11, 11–14, 14–17 and 17–20 cm, respectively.

Sample	Coverage		Number of	OTUs	Shannon index		
	Arch 16S mcrA		Arch 16S mcrA		Arch 16S	mcrA	
D1	98.35%	97.92%	1120	8	4.51	1.72	
D2	98.70%	91.30%	897	8	3.98	1.50	
D3	98.45%	94.87%	995	6	3.88	1.54	
D4	98.38%	91.43%	1060	8	4.73	1.59	
D5	98.14%	85.71%	1194	11	4.75	1.65	
D6	98.53%	90.00%	959	9	4.53	1.49	
E1	98.12%	93.88%	1261	8	5.00	1.51	
E2	98.17%	90.00%	1256	10	5.13	1.84	
E3	98.07%	95.65%	1234	6	4.88	1.32	
E4	98.39%	93.02%	1104	7	4.81	1.31	
E5	98.33%	93.18%	1162	6	4.99	1.25	
E6	99.64%	95.45%	547	8	5.03	1.60	

Figure captions

Figure 1 Uninhibited (TMP) and 2% CH₃F inhibited (IMP) methane production potential in different depths. *Error bars* represent standard deviation of mean (n=3).

Figure 2 Abundance of archaeal 16S rRNA and mcrA genes in different depths. Error bars represent standard deviation of mean (n=3).

Figure 3 Compositions of archaeal communities at phylum level based on 16S rRNA gene. Samples D1–D6 and E1–E6 were retrieved from Dianchi Lake and Erhai Lake, respectively. Digits "1" – "6" were referred to sediment depth 0–5, 5–8, 8–11, 11–14, 14–17 and 17–20 cm, respectively.

Figure 4 Phylogenetic tree of representative archaeal *mcrA* sequences and reference sequences from GenBank. The sequences beginning with "D1"–"D6" and "E1"–"E6" were referred to the sequences retrieved from sample D1–D6 and E1–E6, respectively. The number in parentheses, as well as the size of circle represents the numbers of the total sequences in the libraries of a certain lake. Numbers at the nodes indicate the levels of bootstrap support based on neighbor-joining analysis of 1,000 resampled datasets. The values less than 0.5 are not listed. The bar represents 5% sequence divergence.

Figure 5 Environment clusters for archaeal 16S rRNA gene (a) and mcrA gene (b)

assemblages based on Unifrac distance. The scale represented Unifrac distance. Samples D1–D6 and E1–E6 were retrieved from Dianchi Lake and Erhai Lake, respectively. Digits "1" – "6" were referred to sediment depth 0–5, 5–8, 8–11, 11–14, 14–17 and 17–20 cm, respectively.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

(a)

(b)

