1	The effects of different environmental factors on biochemical composition of particulate	
2	organic matters in Gwangyang Bay, South Korea	
3		
4		
5	Jang Han Lee ¹ , Dabin Lee ¹ , Jae Joong Kang ¹ , Hui Tae Joo ¹ , Jae Hyung Lee ¹ , Ho Won	
6	Lee ¹ , So Hyun Ahn ¹ and <u>Chang Keun Kang², Sang Heon Lee¹</u>	 서식 있음: 위 첨자
7		
8	¹ Department of Oceanography, Pusan National University, Geumjeong-gu, Busan 46241,	
9	Korea	
10	² School of Environmental Science and Engineering, Gwangju Institute of Science and Techn	 서식 있음: 글꼴: (영어) Times New Roman
11	ology, Gwangju 500-712, Korea	
12		
13		
14	*Corresponding author: sanglee@pusan.ac.kr	
15		

16 Abstract

17 Biochemical composition of particulate organic matter (POM) through phytoplankton 18 photosynthesis is important to determine food quality for planktonic consumers as well as physiological conditions of phytoplankton. Major environmental factors controlling for the 19 20 biochemical composition were seasonally investigated in Gwangyang Bay which has only natural conditions (e.g., no artificial dams) in South Korea. Water samples for the biochemical compositions 21 22 were obtained from three different light depths (100%, 30%, and 1%) mainly at 3 sites in Gwangyang 23 bay from April 2012 to April 2013. Different biochemical classes (carbohydrates [CHO], proteins [PRT], and lipids [LIP]) were extracted and then the concentrations were determined by the optical 24 density measured with a spectrophotometer. The highest and lowest of PRT compositions among the 25 three biochemical classes were in April 2012 (58.0%) and August 2012 (21.2%), whereas the highest 26 27 and lowest LIP compositions were in August 2012 (49.0%) and April 2012 (24.8%), respectively. CHO composition was recorded high in January 2013 and maintained above 25% during the study 28 period. The calorific contents of food material (FM) ranged from 1.0 Kcal m⁻³ to 6.1 Kcal m⁻³ (annual 29 mean \pm S.D. = 2.8 Kcal m⁻³ \pm 1.1 Kcal m⁻³). Based on Pearson's correlation coefficient analysis, a 30 major governing factor for biochemical composition of POM was dissolved inorganic nitrogen 31 32 loading from river-input in Gwangyang bay. In conclusion, relatively larger amount of FM and higher 33 calorific contents of POM found in this study compared to other regions reflected good nutritive conditions for sustaining productive shellfish and fish populations in Gwangyang bay. Continuous 34 35 observations are needed for monitoring marine ecosystem response to potential environmental 36 perturbations in Gwangyang bay.

37

38 Key words:

39 Particulate organic matter, biochemical composition, phytoplankton, nitrogen source

40 1. Introduction

41 Particulate organic matter (POM) mostly from phytoplankton photosynthesis in the euphotic 42 layer is an important food source for planktonic consumers in water columns (Cauwet, 1978) and their 43 biochemical contents reaching the benthic environments are largely utilized by benthic organisms (Nelson and Smith, 1986; Rice et al., 1994). Therefore, POM is an essential link between surface and 44 45 benthic ecosystems (Graf, 1992). Previous studies showed that the biochemical composition of the POM such as protein (PRT), lipid (LIP) and carbohydrate (CHO) levels could provide useful 46 47 information on the nutritional value which is potentially available to consumers (Mayzaud et al, 1989; 48 Navarro et al., 1993; Navarro and Thompson, 1995). However, previous studies mainly focused on 49 the occurrence in the different patterns of biochemical composition of POM. It is noteworthy to 50 investigate how biochemical composition of POM responds to changes in various environmental factors, such as nutrients, light, temperature, and salinity and to assess food quantity for higher trophic 51 52 levels.

53 The coastal areas represent one of the world's most vital aquatic resources, supporting and providing food resources and habitats for large numbers of fish and shellfish species (Kwak et al., 54 55 2012; Wetz and Yoskowitz, 2013; references therein). In Gwangyang bay, the southern coast of Korea (Fig. 1), coastal fisheries and shellfish farming have been prevalence. Over the past decades, the bay 56 57 have become industrialized such as the construction of steel mill company, power plant and industrial 58 complex and environmental disturbances have been predicted. Also, estuaries have a high short-term 59 variability depending on many episodic events, such as freshwater inputs, tidal cycles (neap-spring), 60 and wind (storms) (Cloern and Nichols, 1985). These anthropogenic forces and environmental 61 changes drastically affect the estuarine habitat properties which can cause different biochemical compositions of POM. Unfortunately, little information is yet available on the biochemical 62 composition of POM in the bay, South Korea. Hence, this study tested the question of the main 63 64 environmental factors determining seasonal variation and of biochemical composition POM and assessed quantity of food material (FM) in the bay. Physical (temperature, salinity, irradiance, riverinput and rainfall data), chemical (nutrients), and biological (chlorophyll-*a* [chl-*a*], particulate organic carbon [POC] and nitrogen [PON]) parameters were measured in order to both characterize the origin of POM and understand their effects on the biochemical composition of POM. The aims of this study were to: (1) investigate seasonal variation of biochemical composition of POM, (2) identify the origin of POM, and (3) determine a major governing environmental factor for biochemical composition of POM in Gwangyang Bay, Korea.

72 2. Materials and methods

73 2.1. Study site and sampling procedure

The study site was located in Gwangyang Bay (34.9 $^{\circ}$ N, 127.8 $^{\circ}$ E), the southern coast of Korea (Fig. 1). The total area of the bay is 230 km² at mean sea level (Kang et al., 2003). The bay is characterized by semidiurnal tides with a maximal range of about 4.8 m at spring tides (Korea Hydrographic and Oceanographic Administration). Freshwater flows into the bay from the Seomjin River at the northern part of the bay (mean flow 27 m³ s⁻¹ and annually 1.9 x 10⁹ t during the study period; the National Institute of Environmental Research) and seawater enters through the narrow southern channel (Yeosu Channel).

81 To obtain data for seasonal variation of POM in the euphotic depth, the field samplings were undertaken at 3 stations of the bay (St.1 or St. 2A, St. 4, and St. 5; see Fig. 1) on a seasonal basis April, 82 June, August, and October in 2012 and January and April in 2013. St. 1 was changed to St. 2A after 83 April 2012 because of logistic problems. Both stations have similar environmental conditions at a 84 85 relatively close distance. Using a 5 L Niskin water sampler, water samples were collected at different depths of 3 light intensities (100%, 30%, and 1% of surface irradiances; hereafter 3 light depths) 86 87 which were determined by a secchi disk and transferred to brown sample bottles which were previously washed with a solution of 0.1 N HCl. The different 3 light depths were determined by a 88

서식 있음: 글꼴: 기울임꼴 서식 있음: 아래 첨자

89 secchi disk using vertical attenuation coefficient ($K_d = 1.7$ /secchi depth) from Poole and Atkins (1929) 90 which have been applied globally.

91 To obtain in situ physical parameters, water temperature and salinity were measured with 92 YSI-30 (YSI incorporated) and photosynthetically active radiation (PAR) was measured onboard 93 during the cruise. PAR was measured one time per each cruise at every 30 seconds during the 94 incubation hours for primary productivity by a quantum sensor (LI-190SA, LI-COR) with a data 95 logger (LI-1400, LI-COR) on deck. Since the main purpose of the PAR measurements was calculating 96 hourly primary productivity executed for 4~5 hours during day time around local noon time, the 97 irradiance values in this study might be not representative for our sampling periods. Rainfall and 98 river_-input data during the study period were obtained from the Korea Meteorological Administration 99 (http://www.kma.go.kr/index.jsp) and the National Institute of Environmental Research 100 (http://water.nier.go.kr/main/mainContent.do). For relationships between river-input and other factors, 101 river-inputs were integrated from 20 days prior to our sampling dates since phytoplankton productivity is recovered after 20 days after rainfall in Gwangyang Bay according to Min et al. (2011). 102

103

2.2. Chl-a and major inorganic nutrient analysis

104 In order to determine chl-a concentration, water samples from 3 light depths were filtered 105 through 25 mm GF/F (Whatman, 0.7 µm) which were kept frozen immediately and returned to the 106 laboratory at Pusan National University, Korea for a further analysis. The filters for chl-a 107 concentration were extracted in 90% acetone in a fridge (4 °C) for 24 h and centrifuged for 20 108 minutes at 4000 rpm. Using a fluorometer (Tuner Designs, 10-AU) which had been calibrated with 109 commercially purified chl-a preparations, chl-a concentrations were measured and calculated (Parsons 110 et al., 1984). Water samples for inorganic nutrient concentrations from surface and bottom waters 111 were obtained from Niskin bottles. The samples were kept frozen (-70 °C) and sent for analysis to the 112 laboratory in the East Sea Fisheries Research Institute (QUAATRO, Seal Analytical).

113 2.3. Particulate organic carbon and nitrogen analysis

114	The water samples (300 ml) for POC, PON, and δ^{13} C of POM were collected from surface at		
115	the 3 stations at every sampling time. The water samples were filtered through pre-combusted (450 °C.		
116	<u>4 h</u>) 25 mm GF/F (Whatman, 0.7 μ m) using a low vacuum pressure less than 5 in. Hg. The filters for		
117	POC, PON, and δ^{13} C values were preserved frozen (-20 °C) <u>for further analysis at home laboratory.</u>		
118	For stable isotope analysis, the preserved filters were acidified by concentrated hydrochloric acid		서식 있음: 글글 Roman, 11 pt
119	fumes overnight to remove carbonate (Hama et al., 1983)and and the abundances of ¹³ C and ¹⁵ N and	$\langle \rangle$	서식 있음: 글글 Roman, 11 pt
120	the total amounts of POC and PON were determined using a Thermo Finnigan Delta + XP mass	\sim	서식 있음: 글글
121	spectrometer at the stable isotope laboratory of the University of Alaska Fairbanks, USA.	\bigwedge	지역 있음 · 콜륨 Roman, 11 pt
122	2.4. Biochemical composition analysis	$\left \right\rangle$	서식 있음: 글을 Roman, 11 pt
TTT	2.4. Divenennear composition analysis	```	서식 있음: 글글 Roman, 11 pt

The water samples for the biochemical composition (carbohydrates, proteins, and lipids) of POM were collected from 3 light depths. The water samples were filtered through 47 mm GF/F (Whatman, 0.7 μm pore), which were immediately frozen at -70 °C and preserved for biochemical composition analysis at the home laboratory.

127 Protein analysis

128 Protein (PRT) concentrations were assessed according to a modified method of Lowry at el. 129 (1951). The filters for PRT analysis were transferred into 12 mL centrifuge tubes with 1 mL DH₂O, 130 respectively. The filters were grounded (using a glass rod) in the tubes with a 5 ml alkaline copper solution (a mixture of 2% Na₂CO₃ in 0.1 N NaOH with 0.5% CuSO₄·5H₂O in 1 % sodium or 131 132 potassium tartrate; 50:1, v/v). The solutions for PRT concentrations were mixed well (using a vortex) 133 and allowed to stand for 10 min at room temperature in the hood. After 10 min, 0.5 mL of diluted 134 Folin-Ciocalteu phenol reagent (1:1, v/v) was added into the solution, mixed occasionally with a 135 vortex mixer, and allowed to sit for 1 h 30 min. The solutions with a blue color were centrifuged at 136 3,000 rpm for 10 min. Absorbance of the supernatant was measured at 750 nm. Bovine Serum 서식 있음: 글꼴: (영어) Times New Roman, 11 pt 서식 있음: 글꼴: (영어) Times New Roman, 11 pt 서식 있음: 글꼴: (영어) Times New Roman, 11 pt 서식 있음: 글꼴: (영어) Times New Roman, 11 pt 서식 있음: 글꼴: (영어) Times New

137 Albumin (2 mg mL⁻¹, SIGMA) was used as a standard for the PRT concentration.

138 Lipid analysis

139 Lipid (LIP) concentrations were extracted according to a column method modified from 140 Bligh and Dyer (1959), and Marsh and Weinstein (1966). The filters for LIP analysis were transferred 141 into 16 mL glass tubes with 3 mL of chloroform-methanol (1:2, v/v). The filters in the tubes were 142 grounded, and then the mixtures were mixed using a vortex mixer. For LIP extraction, glass tubes 143 with samples were stored in the fridge (4 °C) to prevent the solvents from evaporating. After 1 h, the 144 solvents were centrifuged at 2,000 rpm for 10 min and the supernatants were collected and stored in 145 new tubes. This extraction procedure was performed once again immediately. When the extractions 146 were completed, 4 mL of DH₂O was added to the solution in the new tubes, and the solution was 147 homogenized using a vortex mixer. After mixing, the tubes were centrifuged at 2,000 rpm for 10 min, 148 and the solvents were separated into two phases (the chloroform phase for lipids and methanol + 149 DH₂O phase). The methanol + DH₂O phase was removed from the solvent using a Pasteur pipette. 150 The chloroform phase was placed in a dry oven at 40 °C for 48 h. After it totally dried for 151 carbonization analysis (Marsh and Weinstein 1966), 2 mL of H₂SO₄ was added to the tubes and they 152 were placed in a heating block at 200 °C for 15 min. After this heating procedure, the tubes were 153 quickly placed in a water bath at room temperature; 3 ml of DH₂O was added to the tubes and the 154 solvents were homogenized (with a vortex mixer) and stood for 10 min or until all bubbles had 155 disappeared. Absorbance of the supernatant was measured at 375 nm. Tripalmitin solutions were used 156 as a standard for the LIP concentration.

157 Carbohydrate analysis

158 Carbohydrate (CHO) concentrations were measured according to Dubois et al. (1956). The 159 POM samples for carbohydrate analysis were transferred individually into 15 mL polypropylene (PP) 160 tubes. After 1 mL of DH₂O was added to the PP tubes, the samples were grounded using a glass rod. 161 One ml of 5 % phenol for CHO extraction was added additionally, and the solutions were allowed to 162 stand for 40 min at room temperature in the hood. After the extraction, 5 mL of sulfuric acid (H₂SO₄) 163 was added to the solutions, mixed using a vortex mixer, and allowed to stand for 10 min. The 164 solutions with an orange-yellow color were centrifuged at 3,500 rpm for 10 min. Absorbance of the 165 supernatant was measured at 490 nm using UV spectrophotometer (Labomed, Germany). D (+) glucose solutions (1 mg mL⁻¹, SIGMA) were used as a standard for the CHO concentration. 166

167 2.5. Statistical analyses and calorific value calculation

168 Statistical tests were carried out using the statistic software "SPSS" (t-test, ANOVA and Pearson's Correlation Coefficient). The level of significance was set at p < 0.05. The calorific value 169 (Kcal g⁻¹) of the food material (FM) (FM was defined by Danovaro et al. (2000); PRT + LIP + CHO 170 concentrations; hereafter FM) and the calorific content of FM (Kcal $m^{-3} = Kcal g^{-1} \times g FM m^{-3}$) were 171 calculated using the Winberg (1971) equation. 172

173 3. Results

174 3.1. Seasonal distribution and variation of environmental factors and chl-a concentrations

175	The values of environmental factors were summarized in Table 1. The temperature ranged
176	from 5.5 <u>°C</u> to 26.1 °C The temperature increased from April to August (the highest temperature in
177	August 2012 at St. 4: 26.1 °C) and decreased from August to January (the lowest temperature in
178	January 2013 at St. 2A: 5.5 °C). Tand the salinity ranged from 14.5 <u>‰</u> to 32.9 ‰ during our sampling
179	period Generally, the salinity increased from St. 1 or St. 2A to St. 5. Relatively lower salinity, which
180	is mainly affected by fresh water input from the Seomjin River, was observed at St. 2A. The annual
181	average euphotic depth was 6.5 ± 3.4 m, ranging from 2 m to 12 m.

182 The highest nutrient concentrations were measured in April 2012, when the concentrations of $NO_2 + NO_3$, SiO₂, NH₄, and PO₄ were above 5.0 μ M, 2.0 μ M, and 0.2 μ M, respectively, except at 1% 183

184	light depth at St. 4. All inorganic nutrients except SiO ₂ were nearly depleted in August 2012 (Table 1).
185	During the rest of our study period, $NO_2 + NO_3$ and SiO_2 concentrations were observed with similar
186	decreasing patterns from St.1 or St. 2A to St. 5. NH ₄ concentrations averaged from October 2012 to
187	April 2013 were 1.1 μ M \pm 0.4 μ M, ranging from 0.5 μ M to 1.9 μ M. PO ₄ concentrations (average \pm
188	S.D. = 0.1 \pm 0.1 μ M) ranged from 0 to 0.4 μ M throughout the water columns at all stations except at
189	St. 2A in April 2012-during the study period.
190	Surface irradiance averaged from each measurement for 4-5 hours ranged from 167.9 ±
191	<u>133.5 to 1593.3 \pm 414.5 μmols m⁻² s⁻¹ (average \pm S.D.) from April 2012 to April 2013. The highest</u>
192	and lowest irradiance were recorded in April 2013 and April 2012, respectively. Chl-a concentrations
193	in the euphotic depth ranged from 0.8 μ g L ⁻¹ to 14.2 μ g L ⁻¹ during the study period (annual mean \pm
194	<u>S.D. = $3.4 \ \mu g L^{-1} \pm 2.8 \ \mu g L^{-1}$; Table 1).</u>
195	Monthly rainfall and river-input in the study location ranged from 15.6 mm to 559.0 mm
196	(annual mean \pm S.D. = 151.0 mm \pm 155.5 mm) and 42.3 to 447.2 x 10 ⁶ t (annual mean = 144.4 x 10 ⁶ t),
197	respectively (Table 2). Rainfall and river-input were recorded as high during summer and low during
198	winter (Table 2) . Average
199	irradiance during our incubation hour ranged from 167.9 \pm 133.5 to 1593.3 \pm 414.5 μ mols m ⁻
200	2 -s ⁺ (average ± S.D.) from April 2012 to April 2013. The highest and lowest irradiance were recorded
201	in April 2013 and April 2012, respectively.
202	Chl-a concentrations in the euphotic depth ranged from 0.8 μ g L ⁴ -to 14.2 μ g L ⁴ -during the
203	study period (annual mean \pm S.D. = 3.4 µg L ⁴ \pm 2.8 µg L ⁴ ; Table 1). There were no significant
204	differences of chl-a concentrations among 3 light depths and spatial distribution. However, there was
205	seasonal variation of chl-a concentrations during study period. Chl a concentrations were increased
206	from April to August and decreased from August to October in 2012 and increased slightly again in
207	January and April 2013.
	9

208 **3.2.** δ^{13} C values and carbon to nitrogen ratios of POM

209 δ^{13} C values of sea surface POM ranged from - 23.1 ‰ to - 16.5 ‰ and the annual average 210 δ^{13} C value was -20.9 ‰ (S.D. = ± 3.2 ‰). The annual average carbon to nitrogen (C:N) ratio of POM 211 was 7.0 ± 0.4 (average ± S.D.), ranging from 6.8 to 7.7 (Table 3).

212 **3.3. Seasonal variation of biochemical composition**

213 The contents of CHO, PRT, and LIP of POM in the water column ranged from were 14.2-ug 214 L^{+} to-_412.3 µg L⁻¹ (129.5 ± 87.2 µgL⁻¹), from 22.8 µg L⁺ to -_382.4 µg L⁻¹ (155.0 ± 73.3 µgL⁻¹), and $\frac{1}{100} - 21.4 - \mu g L^{-1} - to - 401.4 \mu g L^{-1} (154.9 \pm 78.9 \mu g L^{-1})$, respectively (Table 4). The FM contents of 215 POM ranged from 170.9 μ g L⁻¹ to 915.7 μ g L⁻¹ (435.5 ± 175.5 μ gL⁻¹). Since there were no significant 216 differences in biochemical concentrations of POM and FM among 3 light depths and spatial 217 218 distributions, On monthly basis, we averaged each biochemical compound and FM from every depths 219 and stations (Fig. 2)-on-monthly basis. The biochemical compositions varied seasonally. The CHO 220 and LIP concentrations increased from April to August and decreased from August to October in 2012. 221 In contrast, the PRT concentrations decreased from April to October in 2012 and increased from 222 October in 2012 to April in 2013. The seasonal pattern of FM concentrations was similar to the 223 pattern of chl-a concentrations (r = -0.36, p < 0.05, Pearson's Correlation Coefficient).-

224 In order to estimate the biochemical composition as food quality, we obtained relative 225 contributions of each biochemical concentration of POM to FM, based on percentage basis. The 226 biochemical composition of each class (CHO, PRT and LIP) ranged from were 8.3% to _59.1%, from 227 6.8% to _74.9% and from 9.4% to _68.3%, respectively (annual mean ± S.D. of CHO, PRT, and LIP 228 composition = $26.4 \pm 9.4\%$, $37.8 \pm 16.1\%$, and $35.7 \pm 13.9\%$, respectively; Table 4). We found the seasonal variation of biochemical composition based on monthly basis of biochemical composition 229 (Fig. 2). To illustrate these variations of biochemical composition of POM, the highest and lowest 230 231 PRT compositions were in April 2012 and August 2012. In contrast to PRT compositions, the highest

서식 있음: 글꼴: 기울임꼴

and lowest LIP compositions were in August 2012 and April 2012. CHO composition was recorded
 high in January 2013, but to compare CHO composition to PRT and LIP composition, CHO
 composition was not strong varied during the study period.

235 3.4. Seasonal variations of the calorific values and contents of FM

The calorific values and contents of FM ranged from were 5.4-Keal g^{-1} to 7.9 Kcal g^{-1} (annual mean ± S.D. = 6.6 Kcal g^{-1} ± 0.6 Kcal g^{-1}) and 1.0-Keal m^{-3} -to 6.1 Kcal m^{-3} (annual mean ± S.D. = 2.8 Kcal m^{-3} ± 1.1 Kcal m^{-3}), respectively (Table 4). The calorific values of FM-had no apparent seasonal pattern, whereas the calorific contents of FM-had a seasonal pattern similar to the seasonal variation of FM concentrations.

241 **3.5. Relationship between biochemical pools and environmental conditions**

242 Relationships between biochemical pools and environmental conditions were performed 243 using Pearson's correlation matrix. Based on the results, we found a significant, positive relationships between PRT composition and river-input (r = 0.84, p < 0.01, Table 5, Fig. 3) and PRT composition 244 245 and dissolved nitrogen concentrations (NH₄ : r = 0.69, p < 0.01; NO₂+NO₃ : r = 0.54, p < 0.01, Table 246 5). Lipid composition had an inverse relationships with river-input (r = -0.63, p < 0.01) and dissolved 247 nitrogen concentrations (NH₄ : r = -0.59, p < 0.01; NO₂+NO₃ : r = -0.53, p < 0.01). These 248 relationships led to a significant reverse relationship between PRT composition and LIP composition 249 (r = -0.81, p < 0.01, Fig. 4). PRT composition was negatively correlated with temperature (r = -0.52, p 250 < 0.01), whereas LIP composition was positively correlated with temperature (r = 0.72, p < 0.01). 251 There were no significant relationships between PRT composition and irradiance and LIP composition 252 and irradiance.

253 4. Discussion and conclusion

254 **4. 1. Environmental conditions and chl**–*a* concentration

The annual average chl-a concentration during the research period was 3.4 μ g L⁻¹ (S.D.= 255 $\pm 2.8 \ \mu g \ L^{-1}$) with a range from 0.8 to 14.2 $\ \mu g \ L^{-1}$ which is in a similar range of chl-*a* concentrations 256 257 reported previously in Gwangyang bay, although it varied across different seasons and sampling depths (Cho et al., 1994; -Choi and Nohet al., 1998; Lee et al., 2001a; Kwon et al., 20012002; Jang 258 259 et al., 2005; Yang et al., 2005; Beak et al., 2011; Min et al., 2011; Beak et al., 2015). Previous studies 260 reported that chl-a concentration was influenced mainly by salinity, temperature, and nutrients (nitrate 261 and phosphate) depending on freshwater input from the Seomjin River. Our results in this study were 262 similar to former studies (r = 0.34 and -0.41, p < 0.05, n = 48 and 28 for salinity and NH₄, 263 respectively). However, high chl-a concentrations were previously recorded in spring and fall, 264 whereas the highest concentrations were observed in summer (August 2012) from this study. In fact, 265 Baek et al. (2015) reported that high chl-a concentrations were found in summer similarly, although 266 there was difference between environmental factors and chl-a concentrations as compared with our 267 results. The high levels of chl-a were observed with high nutrient concentrations and low salinity 268 levels in the surface water by Baek et al. (2015), whereas the high values existed with low nutrient 269 concentrations and high salinity levels in our results.

270 Despite this dissimilarity of environmental factors with high chl-a concentrations, we also 271 found the highest chl-a concentrations observed in summer. According to Shaha and Cho (2009), 272 there is a tendency with increasing precipitation and river-input in Gwangyang Bay during summer. 273 This trend could increase loading nutrients from freshwater for maintaining phytoplankton growth in 274 summer. In addition, a strong light intensity during summer could be favorable for phytoplankton 275 growth since our study area was extremely turbid conditions during almost all seasons due to 276 freshwater discharge and a strong spring-neap tidal oscillation. As a result, the combination of these 277 factors is believed to enhance chl-a concentration and primary production of phytoplankton during 278 summer in Gwangyang Bay.

279 4. 2. POM characterization

280	In general, POM consists of a mixture of living as well as detritus materials (phytoplankton,
281	bacteria, zooplankton, fecal pellets, terrestrial matters, etc.) originating from freshwater and estuarine
282	and marine environments. POM samples can be characterized or determined for source of the major
283	contributor(s). The C:N ratio generally ranges between 6 and 10 for phytoplankton, whereas the ratios
284	are between 3 and 6 for zooplankton and bacteria (Savoye et al, 2003; references therein). For
285	terrestrial organic matters, the C:N ratios are normally over 12 (Savoye et al, 2003; references therein).
286	Therefore, it is useful to classify phytoplankton from heterotrophs and terrestrial materials (Lobbes et
287	al., 2000; Savoye et al., 2003; Lee and Whitledge, 2005). In this study, the mean C:N ratios of POM
288	was 7.0 (S.D. = \pm 0.4), which indicates that this POM is mainly phytoplankton (Table 3). However,
289	the original C:N ratio mustcan be used with cautionchanged because of its variation in caused by the
290	process of POM degradationbiochemical alterations (Savoye et al, 2003). For example, PON is
291	preferentially degraded compared to POC of phytoplankton, which causes an increase of the C:N ratio
292	(Thornton and McManus, 1994; Savoye et al, 2003). In contrast, #terrestrial organic matters (with
293	high C:N ratios) colonized by bacteria (with low C:N ratios) could lowers their initial high C:N ratio
294	(Savoye et al, 2003; references therein). Therefore, similar C:N ratios of POM could be produced by
295	degraded phytoplankton and bacteria-colonized terrestrial organic matters (Lancelot and Billen 1985;
296	Savoye et al, 2003). In addition to C:N ratios, δ^{13} C of POM can be <u>alternatively</u> used for determining
297	their origin. Kang et al. (2003) reported that the mean δ^{13} C signature of phytoplankton in Gwangyang
298	Bay was -20.8 ‰ (S.D. = ± 1.1 _‰). In this study, our mean δ^{13} C signature of POM was -20.9 ‰ (S.D.
299	= \pm 3.2‰), which also indicates that POM was mostly phytoplankton during the study periods (Table
300	3). However, some large contributions of benthic microalgae were seasonally found in our samples
301	with relatively higher δ^{13} C values on August and October 2012 (Table 3). According to Kang et al.
302	(2003), the mean δ^{13} C value of benthic microalgae is approximately -14.1 ‰ in Gwangyang Bay.
303	Based on our C:N ratio and δ^{13} C value in this study, we confirmed that our POM samples were
304	primarily comprised of phytoplankton (seasonally benthic microalgae) in Gwangyang Bay. This is
305	interesting that river-derived terrestrial organic matters were not important component of the POM in
	13

Gwangyang Bay with a large river runoff. Indeed, several previous studies reported a small fraction of
 terrestrial particulate matter in the same bay as well as in the southeastern coastal bays in Korea
 (Kang et al., 1993; Lee et al., 2001b; Kwon et al., 2002). Currently, we do not have solid mechanisms
 for the low contribution of terrestrial organic matters. A further investigation is needed for this
 paradoxical process.

4. 3. Environmental conditions and biochemical pools

312 Biochemical pools of POM originating from phytoplankton are influenced by various 313 environmental factors, such as temperature, salinity, nutrients, and light conditions (Morris et al., 1974; 314 Smith and Morris, 1980; Rivkin and Voytek, 1987; Boëchat and Giani, 2008; Cuhel and Lean, 1987; 315 Mock and Kroon, 2002; Khotimchenko and Yakoleva, 2005; Ventura et al., 2008; Sterner et al. 1997). 316 In this study, significant relationships were found between environmental conditions and biochemical 317 pools, especially PRT and LIP (Table 5). Temperature was positively and negatively correlated with 318 LIP and PRT. Previous studies reported that higher temperature stress mainly affects nitrogen metabolism (Kakinuma et al., 2006) which is related to significant decrease of PRT with increases of 319 320 LIP and CHO content (Tomaselli et al., 1988; Oliveira et al., 1999). In a high temperature-stressed 321 condition of phytoplankton, the decrease in PRT content is related to breakdown of protein structure 322 and interference with enzyme regulators (Pirt, 1975), whereas LIP is predominant because LIP is more 323 closely associated with cell structure such as thickened cell walls (Smith et al., 1989; Kakinuma et al., 324 2001, 2006). Our results are in agreement with other works, as described above.

The relationships between nutrients and biochemical pools could be explained by nutrient limitation and the characteristics of each biochemical compound. A combination of nutrient concentrations and ratios can be used to assess nutrient limitation (Dortch and Whitledge, 1992; Justić et al., 1995). Dortch and Whitledge (1992) suggested that nutrient limitations are existed in the Mississippi river plume and Gulf of Mexico, if the dissolved inorganic phosphorus (DIP), dissolved inorganic nitrogen (DIN), and dissolved silicon (DSi) concentrations in water column are less than 0.2,

331	1.0 and 2.0 μ M, respectively, depending on the half-saturation constant (K _s) that the threshold value is
332	required for the uptake and growth of phytoplankton (Eppley et al., 1969; Fisher et al 1988) In
333	addition, molar ratios of the DIN:DIP-and, DSi:DIN and DSi:DIP -can be indicators of nutritional
334	status and the physiological behavior of phytoplankton (Redfield et al., 1963; Goldman et al., 1979;
335	Elrifi and Turpin, 1985; Dorch and Whiteledge 1992; Roelke et al. 1999). According to Dortch and
336	Whitledge (1992), the following criteria of their molar ratios were (a) DIN:DIP ratio < 10 and
337	DSi:DIN ratio > 1 for nitrogen (N) limitation; (b) DIN:DIP ratio > 30 and DSi:DIP ratio > 3 for
338	phosphorus (P) limitation; (c) DSi:DIN ratio < 1 and DSi:DIP ratio < 3 for silicate (Si) limitation. In
339	this study, nutrient limitation conditions were observed by absolute nutrient concentrations or/and
340	their molar ratios depending on seasons (Table 6). Previous studies of biochemical composition in
341	relation to nutrient limitation reported that PRT production of phytoplankton was enhanced under
342	abundant N conditions (Fabiano et al., 1993; Lee et al., 2009). In contrast, LIP production and storage
343	were dominant (Shifrin and Chisholm, 1981; Harrison et al., 1990) and PRT contents decreased
344	(Kilham et al., 1997; Lynn et al., 2000; Heraud at al., 2005) under N-depleted conditions. High LIP
345	contents have also been detected in phytoplankton under P or/and Si limitation (Lombardi and
346	Wangersky, 1991; Lynn et al. 2000; Heraud et al., 2005; Sigee et al., 2007). Under N or P-limited
347	conditions, triglyceride content (energy storage) increases and shifts from PRT to LIP metabolism
348	since proteins are nitrogenous compounds whereas LIP and CHO are non-nitrogenous substrates
349	(Lombardi and Wangersky, 1991; Smith et al., 1997; Takagi et al., 2000). In our study, Si and P
350	concentrations may not significantly impact on biochemical composition of phytoplankton. Si
351	concentrations were almost above 2.0 μ M except in April 2013 during the study period. P limitation
352	was observed based on the absolute concentration and molar ratios during study period. However,
353	under P limitation, phytoplankton can relocate the cellular P pool to maintain their P requirements for
354	the maximum growth rate (Cembella et al., 1984; Ji and Sherrell, 2008). In this respect, we suggest
355	that DIN could be significantly impact on biochemical composition of phytoplankton in our study
356	area. DIN was initially believed to be the most important limiting factor for phytoplankton growth in 15

357 marine ecosystems (Ryther and Dunstan, 1971; Howarth, 1988). In fact, DIN was strongly positively 358 correlated with PRT composition, whereas it was negatively correlated with LIP composition. The 359 most of DIN loading came from freshwater input of the Seomjin River (Table 5, river-input vs NH₄ 360 and NO₂+NO₃; r = 0.91 and 0.55, p < 0.01, respectively) influences on PRT and LIP synthesis and 361 subsequently macromolecular composition of phytoplankton. As a result, the amount of river-input 362 was also strongly correlated with PRT composition (Table 5 and Fig. 3). Therefore, DIN is an 363 important controlling factor for biochemical composition, especially PRT and LIP composition of 364 phytoplankton in Gwangyang bay.

365 Although irradiance is also known for an important governing factor for biochemical 366 composition, irradiance was not significantly-statistically correlated with biochemical pools in this 367 study (Table 5). We measured irradiance-PAR during our short incubation time (4~5h) for phytoplankton productivity as a parallel study. Since Fthis short time of measured irradiance can be 368 369 largely variable by a local weather, it might be not enough to reflect and detect the change of biochemical composition in phytoplankton with irradiance. The irradiance between April 2012 and 370 371 April 2013 was largely different (approximately 10 times lower in April 2012 than in April 2012; Table 1). Increasing synthesis of proteins is found as light intensity decrease because a relatively 372 373 lower irradiance saturation level is required for protein synthesis than that of other biochemical 374 components (Lee et al., 2009; Suárez and Marañón, 2003; Morris et al., 1974, 1978). Consistently, the 375 protein compositions were significantly higher in April 2012 than in April 2013 (*t*-test, p < 0.01; Fig. 376 2) in this study. The proteins accounted approximately 62 % and 37 % of biochemical compositions in 377 April 2012 and April 2013, respectively. However, the main reason for no consistent relationships between irradiance and biochemical components along seasons might be the PAR measurements as 378 379 discussed previously in this study.

380

The structure and composition of phytoplankton assemblages and species could have a 381 significant influence on the seasonal variation of biochemical composition. Although we did not

16

서식 있음: 글꼴: 기울임꼴

382 conduct a study of phytoplankton community structure, there is seasonal succession of phytoplankton 383 community structure in the bay. Previous studies showed that the dominant phytoplankton community 384 was diatoms and dominant diatom species were Skeletonema spp. during summer and winter in 385 Gwangyang bay (Choi et al., 1998; Baek et al., 2015). Kim et al. (2009) also reported that diatom and 386 dinoflagellate communities have experienced a considerable change because of increased nutrient 387 loadings from both domestic sewage and industrial pollution during summer. Therefore, the seasonal 388 change of phytoplankton species composition and community structure could lead to determining 389 different biochemical pools on seasonal basis.

However, other studies in different regions reported that environmental conditions, such as temperature, nutrients and irradiance are more important controlling factors in biochemical composition than variation of phytoplankton community and species composition (Lindqvist and Lingnell, 1997; Suárez and Marañón, 2003). In this study, we also concluded that DIN from riverinput was a primary governing factor for the seasonal variation of biochemical composition of phytoplankton in Gwangyang Bay as discussed above.

396 4.4. Total FM and energy content of POM in a global context

The annual average of FM was 434.5 μ g L⁻¹ (S.D. = \pm 175.5 μ g L⁻¹) in this study. Since there 397 398 were no comparable data available in South Korea, we compared our results with other regions (Table 399 7), although they were conducted in different seasons and sampling depths. PRT contents in this study 400 were as high as in the Ross Sea (Fabiano and Puscceddue, 1998; Fabiano et al., 1999a), the Amundsen 401 Sea (Kim et al., 20152016) and the Humboldt Current System (Isla et al., 2010). A similar range of 402 LIP contents was observed in Bedford Basin (Mayzaud et al., 1989), Yaldad Bay (Navarro et al., 1993) 403 and the Humboldt Current System (Isla et al., 2010). CHO contents were comparatively higher in this 404 study than other studies except Bedford Basin (Mayzaud et al., 1989) and Yaldad Bay (Navarro et al., 1993). One of the highlights is that the calorific contents of FM in this study were generally higher 405 than those of other areas except several regions. The FM values were comparatively higher than other 406

regions such as the northern Chuekchi Sea (Kim et al., 20142015; Yun et al., 20142015), Ross Sea 407 (Fabiano et al., 1996; Fabiano and Pusceddu, 1998; Fabiano et al., 1999a; Pusceddu et al., 1999), 408 409 Amundsen Sea (Kim et al., 20152016) and the northern part of the East/Japan Sea (Kang et al., 410 unpublished) or similar to the Humboldt Current System which is known as an important spawning 411 sites for pelagic fishes and the highest abundance of anchovy eggs (Isla et al., 2010). Actually, the 412 southern coastal sea (including our study area) in Korea represents calm seas, an indented coastline, 413 and numerous bays, which have high diversities of habitat for fishes and shellfishes (Kwak et al., 414 2012) and give a favorable condition for mariculture (Kwon et al., 2004). The high quantity of FM 415 and the calorific contents of POM found in this study reflected good nutritive conditions of primary 416 food materials mainly provided by phytoplankton for the maintenance of productive shellfish and fish 417 populations in Gwangyang bay.

418 **5. Summary and Conclusion**

419 This study is the first report that was investigated the biochemical composition of POM on 420 onal basis in Gwangyang Bay, South Korea and we determined major controlling factors for 421 biochemical composition which is influenced by various environmental factors (Morris et al., 1974; 422 Smith and Morris, 1980; Rivkin and Voytek, 1987; Boëchat and Giani, 2008; Cuhel and Lean, 1987; 423 Mock and Kroon, 2002; Khotimchenko and Yakoleva, 2005; Ventura et al., 2008; Sterner et al. 1997). Among different factors, temperature was positively correlated with LIP whereas negatively 424 425 correlated with PRT in this study (Table 5), which is consistent with previous works. In addition, we 426 found that PRT and LIP compositions were strongly correlated with DIN loading largely depending on 427 the amount of river input from the Seomjin river which influences on PRT and LIP synthesis and 428 subsequently macromolecular composition of phytoplankton in Gwangyang bay. The concentrations 429 and the calorific contents of FM found in this study were relatively higher in comparison to previous 430 studies in various regions, which reflecting that POM (mainly from phytoplankton) provides a good 431 nutritive condition to maintain this highly productive estuarine ecosystem in Gwangyang bay.

432	Recently, significant environmental perturbations in their watersheds and externally from
433	elimatic forcings have been reported in various estuaries (Wetz and Yoskowitz, 2013). More intense
434	but less frequent tropical cyclones are expected over the coming century (e.g., Elsner et al., 2008;
435	Knutson et al., 2010) and many changes in drought and flood cycles have been proceeding globally
436	(e.g., Min et al., 2011; Pall et al., 2011; Trenberth and Fasullo, 2012; Trenberth, 2012). The
437	cumulative effects of these perturbations could alter the quantity and quality of biochemical
438	composition of POM and cause subsequent changes in ecosystem structure and trophic dynamics in
439	estuaries (Cloern, 2001; Paerl et al., 2006; Rabalais et al., 2009; Wetz and Yoskowitz, 2013).
440	Therefore, continuous field measurements and observations on biochemical composition of POM as
441	food quality are needed to monitor for better understanding future response of marine ecosystem on
442	potential environmental perturbations in Gwangyang Bay.

444 Acknowledgements

445	We thank the anonymous reviewers who greatly improved an earlier version of the
446	manuscript. This research was supported by "Long-term change of structure and function in marine
447	ecosystems of Korea" funded by the Ministry of Oceans and Fisheries, Korea.

References

450	Adolf, J. E. and Harding Jr, L. W.: Anthropogenic and climatic influences on the eutrophication of
451	large estuarine ecosystems, Limnol. Oceanogr., 51, 448-462, 2006.
452	Baek, S. H., Kim, D., Son, M., Yun, S. M. and Kim, Y. O.: Seasonal distribution of phytoplankton
453	assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of
454	phytoplankton growth in Gwangyang Bay, Korea, Estuar. Coast. Shelf Sci., 163, 265-278,
455	2015.
456	Baek, S., Kim, D., Hyun, B., Choi, H. and Kim, Y.: Characteristics of horizontal community
457	distribution and nutrient limitation on growth rate of phytoplankton during a winter in
458	Gwangyang Bay, Korea, Ocean and Polar Research, 33, 99-111, 2011.
459	Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and purification, Canadian
460	journal of biochemistry and physiology, 37, 911-917, 1959.
461	Boëchat, I. G. and Giani, A.: Seasonality affects diel cycles of seston biochemical composition in a
462	tropical reservoir, J. Plankton Res., 30, 1417-1430, 2008.
463	Cauwet, G.: Organic-chemistry of sea-water particulates concepts and developments, Oceanol. Acta,
464	1, 99-105, 1978.
465	Cembella, A. D., Antia, N. J., Harrison, P. J. and Rhee, G.: The utilization of inorganic and organic
466	phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary
467	perspective: part 2, CRC Crit. Rev. Microbiol., 11, 13-81, 1984.
468	Cho, K., Wui, I. and Choi, C.: Ecological study of phytoplankton in the Kwang-Yang Bay, Korean
469	J.Environ.Biol, 12, 137-150, 1994.
470	Choi, S. and Noh, I.: A Study of the Environmental Characteristics and the Structure of the
471	Phytoplankton Community, The Korean S. Marine Environ. Eng., Spring meeting, 213-220,
472	1998.
473	Cloern, J. E.: Our evolving conceptual model of the coastal eutrophication problem, Mar. Ecol. Prog.
474	Ser., 210, 223-253, 2001.

4/5	Cloern, J. E. and Nichols, F. H.: Time scales and mechanisms of estuarine variability, a synthesis
476	from studies of San Francisco Bay, Hydrobiologia, 129, 229-237, 1985.
477	Cuhel, R. L. and Lean, D. R.: Influence of light intensity, light quality, temperature, and daylength on
478	uptake and assimilation of carbon dioxide and sulfate by lake plankton, Can. J. Fish. Aquat.
479	Sci., 44, 2118-2132, 1987.
480	Danovaro, R. and Fabiano, M.: Seasonal changes in quality and quantity of food available for benthic
481	suspension-feeders in the Golfo Marconi (North-western Mediterranean), Estuar. Coast.
482	Shelf Sci., 44, 723-736, 1997.
483	Danovaro, R., Della Croce, N. and Fabiano, M.: Biochemical composition of particulate organic
484	matter and bacterial dynamics at the sediment-water interface in a Mediterranean seagrass
485	system, in: Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental
486	Cycling, Springer, 241-251, 1998.
487	Danovaro, R., Dell'Anno, A., Pusceddu, A., Marrale, D., Della Croce, N., Fabiano, M. and Tselepides,
488	A.: Biochemical composition of pico-, nano-and micro-particulate organic matter and
489	bacterioplankton biomass in the oligotrophic Cretan Sea (NE Mediterranean), Prog.
490	Oceanogr., 46, 279-310, 2000.
491	De Oliveira, M., Monteiro, M., Robbs, P. and Leite, S.: Growth and chemical composition of
492	Spirulina maxima and Spirulina platensis biomass at different temperatures, Aquacult. Int.,
493	7, 261-275, 1999.
494	Dhargalkar, V., Matondkar, S. P. and Verlecar, X.: Seasonal variations in carbon budget in water
495	column off Princess Astrid coast, Antarctica, 1996.
496	Díaz, E., Valencia, V. and Villate, F.: Size-fractionated seston abundance and biochemical
497	composition, over the anchovy spawning period in the Basque shelf (Bay of Biscay), during
498	years 2000 and 2001, J. Exp. Mar. Biol. Ecol., 341, 45-59, 2007.
499	Dortch, Q. and Whitledge, T. E.: Does nitrogen or silicon limit phytoplankton production in the
500	Mississippi River plume and nearby regions?, Cont. Shelf Res., 12, 1293-1309, 1992. 21

501	Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. and Smith, F.: Colorimetric method for		
502	determination of sugars and related substances, Anal. Chem., 28, 350-356, 1956.		
503	Elrifi, I. R. and Turpin, D. H.: Steady-state luxury consumption and the concept of optimum nutrient	(서식 있음: 글꼴: (한글) 굴림
504	ratios: A study with phosphate and nitrate limited Selenastrum Minutum (Chlorophyta), J.		서식 있음: 글꼴: (한글) 굴림, 강조 없음
505	Phycol., 21, 592-602, 1985,	\backslash	서식 있음: 글꼴: (한글) 굴림, 기울임꼴, 강조 없음
506	STEADY-STATE LUXURY CONSUMPTION AND THE CONCEPT OF OPTIMUM NUTRIENT-	N	서식 있음: 글꼴: (한글) 굴림, 강조
507	RATIOS: A STUDY WITH PHOSPHATE AND NITRATE LIMITED SELENASTRUM		<u>없음</u> 서식 있음: 강조 없음
508	MINUTUM (CHLOROPHYTA) 1, J. Phycol., 21, 592-602, 1985.		
509	Elsner, J. B., Kossin, J. P. and Jagger, T. H.: The increasing intensity of the strongest tropical		
510	cyclones, Nature, 455, 92-95, 2008.		
511	Eppley, R. W., Rogers, J. N., and McCarthy, J. J.: Half-saturation constants for uptake of nitrate and		서식 있음: 글꼴: (영어) Times New
512	ammonium by marine phytoplankton. Limnol. Oceanogr., 14, 912-920, 1969.		Roman, 11 pt 서식 있음: 글꼴: (영어) Times New
513	Fabiano, M., Danovaro, R. and Povero, P.: Vertical distribution and biochemical composition of pico-		Roman, 11 pt
514	and microparticulate organic matter in the Ross Sea (Antarctica), in: Oceanography of the		서식 있음: 글꼴: (영어) Times New Roman, 11 pt
515	Ross Sea Antarctica, Springer, 233-246, 1999.		서식 있음: 들여쓰기: 왼쪽: 0 cm, 내어쓰기: 4 글자
516	Fabiano, M., Povero, P. and Danovaro, R.: Particulate organic matter composition in Terra Nova Bay		
517	(Ross Sea, Antarctica) during summer 1990, Antarct. Sci., 8, 7-14, 1996.		
518	Fabiano, M., Povero, P., Danovaro, R. and Misic, C.: Particulate organic matter composition in a		
519	semi-enclosed Periantarctic system: the Straits of Magellan, Scientia Marina, 63, 89-98,		
520	1999.		
521	Fabiano, M., Zavattarelli, M. and Palmero, S.: Observations sur la matiere organique particulaire en		서식 있음: 프랑스어(프랑스)
522	Mer Ligure (chlorophylle, proteines, glucides, lipides), Tethys, 11, 133-140, 1984.		
523	Fabiano, M., Povero, P. and Danovaro, R.: Distribution and composition of particulate organic matter		
524	in the Ross Sea (Antarctica), Polar Biol., 13, 525-533, 1993.		

525	Fabiano, M. and Pusceddu, A.: Total and hydrolizable particulate organic matter (carbohydrates,	
526	proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica), Polar	
527	Biol., 19, 125-132, 1998.	
528	Fichez, R.: Suspended particulate organic matter in a Mediterranean submarine cave, Mar. Biol., 108,	
529	167-174, 1991.	
530	Fisher, T. R., Harding Jr., L. W., Stanley, D. W. and Ward, L. G.: Phytoplankton, nutrients, and	
531	turbidity in the Chesapeake, Delaware, ad Hudson Estuaries. Estuar. Coast. Shelf Sci., 27,	
532	<u>61-93, 1988.</u>	
533	Goldman, J. C., McCarthy, J. J. and Peavey, D. G.: Growth rate influence on the chemical	
534	composition of phytoplankton in oceanic waters, Nature, 279, 1, 1979.	
535	GRAFraf, G.: Benthic-pelagic coupling: a-A benthic view, Oceanography and Marine Biology, 30,	
536	149-190, 1992.	
537	Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A., Ichimura, S.;	서식 있음: 글꼴: (영어) Times New
538	Measurement of photosynthetic production of a marine phytoplankton population using a stable	Roman, (한글) 맑은 고딕, 11 pt
539	¹³ C Isotope. Mar. Biol. 73, 31–36, 1983.	서식 있음: 글꼴: (영어) Times New Roman, (한글) 맑은 고딕, 11 pt
540	Harrison, P., Thompson, P. and Calderwood, G.: Effects of nutrient and light limitation on the	서식 있음: 글꼴: (영어) Times New Roman, (한글) 맑은 고딕, 11 pt
541	biochemical composition of phytoplankton, J. Appl. Phycol., 2, 45-56, 1990.	서식 있음: 글꼴: (영어) Times New Roman, (한글) 맑은 고딕, 11 pt
542	Heraud, P., Wood, B. R., Tobin, M. J., Beardall, J. and McNaughton, D.: Mapping of nutrient-induced	서식 있음: 글꼴: 11 pt
543	biochemical changes in living algal cells using synchrotron infrared microspectroscopy,	
544	FEMS Microbiol. Lett., 249, 219-225, 2005.	
545	Howarth, R. W.: Nutrient limitation of net primary production in marine ecosystems, Annu. Rev. Ecol.	
546	Syst., 89-110, 1988.	
547	Isla, E., Homs, P., Sañé, E., Escribano, R., Claramunt, G. and Teixidó, N.: Biochemical composition	
548	of seston in two upwelling sites within the Humboldt Current System (21 S to 23 S):	
549	Summer conditions, J. Mar. Syst., 82, 61-71, 2010.	
549	Summer conditions, J. Wat. Syst., 62, 01-71, 2010.	

550	Jang, P., Lee, W., Jang, M., Lee, J., Lee, W., Chang, M., Hwang, K. and Shin, K.: Spatial and					
551	temporal distribution of inorganic nutrients and factors controlling their distributions in					
552	Gwangyang Bay, Ocean and Polar Research, 27, 359-379, 2005.					
553	Ji, Y. and Sherrell, R. M.: Differential effects of phosphorus limitation on cellular metals in Chlorella					
554	and: I Microcystis, Limnol. Oceanogr., 53, 1790, 2008.					
555	JULIAN, B. M. and DAVID, B. W.: Simple charring method for determination of lipids, 1966.					
556	Justić, D., Rabalais, N. N., Turner, R. E. and Dortch, Q.: Changes in nutrient structure of river-					
557	dominated coastal waters: stoichiometric nutrient balance and its consequences, Estuar.					
558	Coast. Shelf Sci., 40, 339-356, 1995.					
559	Kakinuma, M., Coury, D., Kuno, Y., Itoh, S., Kozawa, Y., Inagaki, E., Yoshiura, Y. and Amano, H.:					
560	Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant					
561	of Ulva pertusa (Ulvales, Chlorophyta), Mar. Biol., 149, 97-106, 2006.					
562	Kakinuma, M., Shibahara, N., Ikeda, H., Maegawa, M. and Amano, H.: Thermal stress responses of a					
563	sterile mutant of Ulva pertusa (Chlorophyta), Fisheries science, 67, 287-294, 2001.					
564	Kang, C. K., Lee, P. Y., Kim, P. J., and Choi, H. G.: Daily variation of particulate organic carbon in					
565	Wonmun Bay on the south coast of Korea in late summer. J. Kor. Fis. Soc., 26, 279-287,					
566	<u>1983.</u>					
567	Kang, C. <u>K.</u> , Kim, J. B., Lee, K., Kim, J. B., Lee, P. and Hong, J.: Trophic importance of benthic					
568	microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N					
569	isotope analyses, Mar. Ecol. Prog. Ser., 259, 79-92, 2003.					
570	Kang, J. J.: (unpublished)					
571	Khotimchenko, S. V. and Yakovleva, I. M.: Lipid composition of the red alga Tichocarpus crinitus					
572	exposed to different levels of photon irradiance, Phytochemistry, 66, 73-79, 2005.					
573	KilhamHHAM, S., KREEGERKreeger, D., GOULDENGoulden, C. and LYNNLynn, S.: Effects of		서식	있음:	글꼴: (한	글) 굴림
574	nutrient limitation on biochemical constituents of Ankistrodesmus falcatus, Freshwat. Biol.,	\times	$ \geq $		강조 없을 글꼴: (한	
575	38, 591-596, 1997.		<u> </u>	<u> </u>	글 글 · (안	리/ 친김

5/6	Kim, B. K., Lee, J. H., Joo, H., Song, H. J., Yang, E. J., Lee, S. H. and Lee, S. H.: Macromolecular
577	compositions of phytoplankton in the Amundsen Sea, Antarctica, Deep Sea Research Part II:
578	Topical Studies in Oceanography, 123, 42-49, 2016.
579	Kim, B. K., Lee, J. H., Yun, M. S., Joo, H., Song, H. J., Yang, E. J., Chung, K. H., Kang, S. and Lee,
580	S. H.: High lipid composition of particulate organic matter in the northern Chukchi Sea,
581	2011, Deep Sea Research Part II: Topical Studies in Oceanography, 120, 72-81, 2015.
582	Kim, S., Moon, C., Cho, H. and Lim, D.: Dinoflagellate cysts in coastal sediments as indicators of
583	eutrophication: a case of Gwangyang Bay, South Sea of Korea, Estuaries and Coasts, 32,
584	1225-1233, 2009.
585	Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P.,
586	Srivastava, A. and Sugi, M.: Tropical cyclones and climate change, Nature Geoscience, 3,
587	157-163, 2010.
588	Kwak, S., Huh, S. and Kim, H.: Change in Fish Assemblage Inhabiting Around Dae Island in
589	Gwangyang Bay, Korea, Journal of the Korean Society of Marine Environment & Safety,
590	18, 175-184, 2012.
591	Kwon, H., Lee, C., Jun, B., Weon, S. and Koopman, B.: Recycling waste oyster shells for
592	eutrophication control, Resour. Conserv. Recycling, 41, 75-82, 2004.
593	Kwon, K. Y., Moon, C. H., Kang, C. K., and Kim, Y. N.: Distribution of particulate organic matters
594	along salinity gradients in the Seomjin river estuary. J. Kor. Fis. Soc., 35, 86-96, 2002.
595	Lancelot, C. and Billen, G.: Carbon-nitrogen relationships in nutrient metabolism of coastal marine
596	ecosystems, Advances in aquatic microbiology, 3, 263-321, 1985.
597	Lee, J., Jung, R., Kim, S., Go, W., Kim, K., Park, J. and Lee, Y.: Limiting nutrient on phytoplankton
598	growth in Gwangyang Bay, The Sea, 6, 201-210, 2001.
599	Lee, P. <u>Y.</u> , Park, C., Moon, C., Park, M. and Gwon, K.: Biomass and species composition of
600	phytoplankton and zooplankton along the salinity gradients in the Seomjin River Estuary,
601	The Sea, 6, 93-102, 2001 <u>a</u> .
	25

602	Lee, P. Y., Kang, C. K., Choi, W. J., and Yang, H. S.: Temporal and spatial variations of particulate
603	organic matter in the southeastern coastal bays of Korea. J. Kor. Fis. Soc., 34, 57-69, 2001b.
604	
605	Lee, S. H., Kim, H. and Whitledge, T. E.: High incorporation of carbon into proteins by the
606	phytoplankton of the Bering Strait and Chukchi Sea, Cont. Shelf Res., 29, 1689-1696, 2009.
607	Lee, S. H. and Whitledge, T. E.: Primary and new production in the deep Canada Basin during
608	summer 2002, Polar Biol., 28, 190-197, 2005.
609	Lindqvist, K. and Lignell, R.: Intracellular partitioning of 14CO2 in phytoplankton during a growth
610	season in the northern Baltic, Mar. Ecol. Prog. Ser., 152, 41-50, 1997.
611	Lobbes, J. M., Fitznar, H. P. and Kattner, G.: Biogeochemical characteristics of dissolved and
612	particulate organic matter in Russian rivers entering the Arctic Ocean, Geochim.
613	Cosmochim. Acta, 64, 2973-2983, 2000.
614	Lombardi, A. and Wangersky, P.: Influence of phosphorus and silicon on lipid class production by the
615	marine diatom Chaetoceros gracilis grown in turbidostat cage cultures., Marine ecology
616	progress series.Oldendorf, 77, 39-47, 1991.
617	Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.: Protein measurement with the Folin
618	phenol reagent, J. Biol. Chem., 193, 265-275, 1951.
619	Lynn, S. G., Kilham, S. S., Kreeger, D. A. and Interlandi, S. J.: Effect of nutrient availability on the
620	biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus
621	minutulus (Bacillariophyceae), J. Phycol., 36, 510-522, 2000.
622	Marsh, J. B. and Weinstein, D. B.: Simple charring method for determination of lipids, 1966.
623	Mayzaud, P., Chanut, J. P. and Ackman, R. G.: Seasonal changes of the biochemical composition of
624	marine particulate matter with special reference to fatty acids and sterols., Marine ecology
625	progress series.Oldendorf, 56, 189-204, 1989.

626	Min, J. O., Ha, S. Y., Choi, B. H., Chung, M. H., Yoon, W. D., Lee, J. S. and Shin, K. H.: Primary
627	productivity and pigments variation of phytoplankton in the Seomjin River estuary during
628	rainy season in summer, Korean J. Limnol, 44, 303-313, 2011.
629	Min, S., Zhang, X., Zwiers, F. W. and Hegerl, G. C.: Human contribution to more-intense
630	precipitation extremes, Nature, 470, 378-381, 2011.
631	Mock, T. and Kroon, B. M.: Photosynthetic energy conversion under extreme conditions-II: the
632	significance of lipids under light limited growth in Antarctic sea ice diatoms,
633	Phytochemistry, 61, 53-60, 2002.
634	Modica, A., Scilipoti, D., La Torre, R., Manganaro, A. and Sarà, G.: The effect of mariculture
635	facilities on biochemical features of suspended organic matter (southern Tyrrhenian,
636	Mediterranean), Estuar. Coast. Shelf Sci., 66, 177-184, 2006.
637	Morris, I., Glover, H. and Yentsch, C.: Products of photosynthesis by marine phytoplankton: the
638	effect of environmental factors on the relative rates of protein synthesis, Mar. Biol., 27, 1-9,
639	1974.
640	Morris, I. and Skea W.: Products of photosynthesis in natural populations of marine phytoplankton
641	from the Gulf of Maine. Marine Biology 47, 303-312, 1978.
642	Navarro, J., Clasing, E., Urrutia, G., Asencio, G., Stead, R. and Herrera, C.: Biochemical composition
643	and nutritive value of suspended particulate matter over a tidal flat of southern Chile, Estuar.
644	Coast. Shelf Sci., 37, 59-73, 1993.
645	Navarro, J. and Thompson, R.: Seasonal fluctuations in the size spectra, biochemical composition and
646	nutritive value of the seston available to a suspension-feeding bivalve in a subarctic
647	environment, Mar. Ecol. Prog. Ser., 125, 95-106, 1995.
648	Nelson, D. M. and Smith, W. O.: Phytoplankton bloom dynamics of the western Ross Sea ice edge-
649	II. Mesoscale cycling of nitrogen and silicon, Deep Sea Research Part AOceanographic
650	Research Papers, 33, 1389-1412, 1986.

651	Oliveira, M. d., Monteiro, M., Robbs, P. and Leite, S.: Growth and chemical composition of Spirulina	
652	maxima and Spirulina platensis biomass at different temperatures, Aquacult. Int., 7, 261-	
653	<u>275, 1999.</u>	
654	Paerl, H. W., Valdes L. M., Peierls B. L., Adolf, J. E. and Harding Jr., L. W.: Anthropogenic and	
655	climatic influences on the eutrophication of large estuarine ecosystems, Limnol. Oceanogr.,	
656	<u>51, 448-462, 2006.</u>	
657	Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G., Lohmann, D. and Allen, M.	
658	R.: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in	
659	autumn 2000, Nature, 470, 382-385, 2011.	
660	Parsons, T. R., Maita, Y. and Lalli, C. M.: A manual of biological and chemical methods for seawater	
661	analysis, Publ.Pergamon Press, Oxford, 1984.	
662	Pirt, S. J.: - Principles of microbe and cell cultivation. <u>Blackweell</u> Scientific <u>Publications</u> , 1976 <u>1975</u> .	서식 있음: 글꼴: (한글
663	Pusceddu, A., Cattaneo-Vietti, R., Albertelli, G. and Fabiano, M.: Origin, biochemical composition	
664	and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross	
665	Sea, Antarctica) during late summer 1995, Polar Biol., 22, 124-132, 1999.	
666	Rabalais, N. N., Turner, R. E., Díaz, R. J. and Justić, D.: Global change and eutrophication of coastal	
667	waters, ICES Journal of Marine Science: Journal du Conseil, 66, 1528-1537, 2009.	
668	Redfield, A. C.: The influence of organisms on the composition of sea-water, The sea, 26-77, 1963.	
669	Rice, A., Thurston, M. and Bett, B.: The IOSDL DEEPSEAS programme: introduction and	
670	photographic evidence for the presence and absence of a seasonal input of phytodetritus at	
671	contrasting abyssal sites in the northeastern Atlantic, Deep Sea Research Part I:	
672	Oceanographic Research Papers, 41, 1305-1320, 1994.	
673	Rivkin, R. B. and Voytek, M. A.: Photoadaptations of photosynthesis and carbon metabolism by	
674	phytoplankton from McMurdo Sound, Antarctica. 1. Species-specific and community	
675	responses to reduced irradiances., Limnol. Oceanogr., 32, 249-259, 1987.	

굴림

676	Roelke, D., Eldridge, P. and Cifuentes, L.: A model of phytoplankton competition for limiting and		
677	nonlimiting nutrients: implications for development of estuarine and nearshore management		
678	schemes, Estuaries, 22, 92-104, 1999.		
679	Ryther, J. H. and Dunstan, W. M.: Nitrogen, phosphorus, and eutrophication in the coastal marine		
680	environment, Science, 171, 1008-1013, 1971.		
681	Savoye, N., Aminot, A., Treguer, P., Fontugne, M., Naulet, N. and Kérouel, R.: Dynamics of		
682	particulate organic matter δ 15N and δ 13C during spring phytoplankton blooms in a		
683	macrotidal ecosystem (Bay of Seine, France), Mar. Ecol. Prog. Ser., 255, 27-41, 2003.		
684	Shaha, D. and Cho, Y.: Comparison of empirical models with intensively observed data for prediction		
685	of salt intrusion in the Sumjin River estuary, Korea, Hydrology and Earth System Sciences,		
686	13, 923-933, 2009.		
687	Shifrin, N. S. and Chisholm, S. W.: Phyptonplankton lipids: interspecific differences and effects of	 서식 있음: 글꼴: (한글)	굴림
688	nitrate silicate and light-dark cycles, J. Phycol., 17, 374-384, 1981, HYTOPLANKTON-	서식 있음: 강조 없음	
689	LIPIDS: INTERSPECIFIC DIFFERENCES AND EFFECTS OF NITRATE, SILICATE	서식 있음: 글꼴: (한글)	굴림
690	AND LIGHT-DARK CYCLES1, J. Phycol., 17, 374-384, 1981.		
691	Sigee, D. C., Bahrami, F., Estrada, B., Webster, R. E. and Dean, A. P.: The influence of phosphorus		
692	availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-		
693	based FTIR analysis, Phycologia, 46, 583-592, 2007.		
694	Smith, A. and Morris, I.: Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean,		
695	Limnol. Oceanogr., 25, 865-872, 1980.		
696	Smith, R. E., Clement, P. and Head, E.: Biosynthesis and photosynthate allocation patterns of arctic		
697	ice algae, Limnol. Oceanogr., 34, 591-605, 1989.		
698	Smith, R., Gosselin, M. and Taguchi, S.: The influence of major inorganic nutrients on the growth and		
699	physiology of high arctic ice algae, J. Mar. Syst., 11, 63-70, 1997.		

/00	Sterner, R. W., Elser, J. J., Fee, E. J., Guildford, S. J. and Chrzanowski, T. H.: The light: nutrient ratio	
701	in lakes: the balance of energy and materials affects ecosystem structure and process, Am.	
702	Nat., 150, 663-684, 1997.	
703	Suárez, I. and Maranón, E.: Photosynthate allocation in a temperate sea over an annual cycle: the	
704	relationship between protein synthesis and phytoplankton physiological state, J. Sea Res.,	
705	50, 285-299, 2003.	
706	Takagi, M., Watanabe, K., Yamaberi, K. and Yoshida, T.: Limited feeding of potassium nitrate for	
707	intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999, Appl.	
708	Microbiol. Biotechnol., 54, 112-117, 2000.	
709	Tanoue, E.: Distribution and chemical composition of particulate organic matter in the Pacific sector	
710	of the Antarctic Ocean, Transactions of the Tokyo University of Fisheries (Japan), 1985.	
711	Tomaselli, L., Giovannetti, L., Sacchi, A. and Bocci, F.: Effects of temperature on growth and	
712	biochemical composition in Spirulina platensis strain M2, Algal biotechnology/edited by-	
713	T.Stadler[et al.], 1988.	서식 있음: 글꼴: (한글)
714	Thornton, S. F. and McManus, J.: Application of organic carbon and nitrogen stable isotope and C/N	
715	ratios as source indicators of organic matter provenance in estuarine systems: evidence from	
716	the Tay estuary, Scotland, Estuar. Coast. Shelf Sci., 38, 219-233, 1994.	
717	Trenberth, K. E.: Framing the way to relate climate extremes to climate change, Clim. Change, 115,	
718	283-290, 2012.	
719	Trenberth, K. E. and Fasullo, J. T.: Climate extremes and climate change: The Russian heat wave and	
720	other climate extremes of 2010, Journal of Geophysical Research: Atmospheres, 117, 2012.	
721	Ventura, M., Liboriussen, L., Lauridsen, T., Søndergaard, M. and Jeppesen, E.: Effects of increased	
722	temperature and nutrient enrichment on the stoichiometry of primary producers and	
723	consumers in temperate shallow lakes, Freshwat. Biol., 53, 1434-1452, 2008.	
724	Wetz, M. S. and Yoskowitz, D. W.: An 'extreme'future for estuaries? Effects of extreme climatic	

굴림

726 Winberg, G.: Symbols, units and conversion factors in studies of fresh water productivity,

727 International Biological Programme Control Office, 1971.

728	YANGYang, S., R., SongONG, H., S., KIMKim, K., PARKPark, C. and MOONMoon, C.: Changes	_
729	in environmental factors and primary productivity in the Seomjin River Estuary, The Sea,	
730	10, 164-170, 2005.	
731	Yun, M. S., Lee, D. B., Kim, B. K., Kang, J. J., Lee, J. H., Yang, E. J., Park, W. G., Chung, K. H. and	
732	Lee, S. H.: Comparison of phytoplankton macromolecular compositions and zooplankton	
733	proximate compositions in the northern Chukchi Sea, Deep Sea Research Part II: Topical	

734 Studies in Oceanography, 120, 82-90, 2015.

	서식 있음: 글꼴: (한글) 굴림, 프랑스어(프랑스)
	서식 있음: 프랑스어(프랑스), 강조 없음
\ \	서식 있음: 글꼴: (한글) 굴림, 프랑스어(프랑스)
/	서식 있음: 프랑스어(프랑스), 강조 없음
	서식 있음: 글꼴: (한글) 굴림, 프랑스어(프랑스)
	서식 있음: 프랑스어(프랑스), 강조 없음
	서식 있음: 글꼴: (한글) 굴림, 프랑스어(프랑스)
1	서식 있음: 글꼴: (한글) 굴림

736	Table	captions
-----	-------	----------

- Table 1. Environmental factors and chl-a concentrations in Gwangyang bay during the research period 737 738 (- : no data). Table 2. <u>Monthly patterns of Rr</u>ainfall and river input. 739 Table 3. δ^{13} C values and C:N ratios of POM <u>at surface</u> in Gwangyang bay (surface). 740 741 Table 4. Biochemical concentrations and composition, calorific values and contents in Gwangyang 742 bay (- : no data). 743 Table 5. Significant correlation coefficient (r) among proteins (PRT), lipids (LIP) and environmental factors (ns; no significance, **; p<0.01). River-inputs were integrated from 20 days prior to 744 745 our sampling dates.
- Table 6. Observed nutrient limitations during the study period.
- 747 Table 7. Comparison of biochemical quantity of POM, FM and the calorific contents.

748 Figure captions

Fig. 1. Sampling location in Gwangyang bay, Korea ; Maps of Korea (a), Southern Co	stal Sea	(b)
--	----------	-----

- 750 and main sampling stations (c).
- 751 Fig. 2. Seasonal variation of biochemical composition in Gwangyang bay.

- Fig. 3. The positive relationship between river-input and protein composition. <u>River-inputs were</u>
 integrated from 20 days prior to our sampling dates.
- 754 Fig. 4. The inverse relationship between lipid compositions and protein compositions.

Year	Date	Irradiance (µmols m ⁻² s ⁻¹)	Station	Light depth (%)	Temperature (°C)	Salinity (‰)	Depth (m)	NH4 ¹ (μM)	NO ₂ +NO (µM)	SiO ₂ (µM)	ΡO ₄ (μΜ)	Chl-a (µg L ⁻¹)
2012	April	167.9 ± 133.5	St.1	100	13.9	14.5	0	3.6	56.4	26.0	80.9	1.89
	-	(average ± S.D.)		30	13.3	25.6	1	-	-	-	-	1.9
				1	13.5	28.0	3	2.4	16.0	9.8	0.2	2.0
			St.4	100	15.0	24.4	0	2.6	15.1	16.3	0.2	1.8
				30	13.6	31.4	1	-	-	-	-	
				1	12.3	32.9	5	1.9	2.1	2.1	0.1	2.0
			St.5	100	12.6	31.7	0	3.1	9.5	7.1	0.3	2.0
				30	12.3	31.6	1	-	-	-	-	
				1	12.2	32.4	5	3.0	6.4	5.1	0.3	2.0
	June	1158.1 <u>+</u> 627.6	St.2A	100	22.9	27.6	0	-	-	-	-	1.7
				30	22.8	27.6	1	-	-	-	-	0.7
				1	22.9	28.7	3	-	-	-	-	0.7
			St.4	100	23.6	31.5	0	-	-	-	-	1.0
				30	22.6	31.9	3	-	-	-	-	1.6
				1	22.1	32.3	11	-	-	-	-	1.0
	August	1320.0 ±316.9	St.4	100	25.8	30.6	0	0.1	0.1	10.6	0.1	8.1
				30	25.7	31.6	2	-	-	-	-	8.4
				1	25.7	31.7	8	0.1	0.1	11.9	0.1	5.9
			St.5	100	25.6	31.6	0	0.7	0.3	8.2	0.0	14.2
				30	26.1	31.5	2	-	-	-	-	9.8
				1	25.7	31.7	8	0.1	0.1	10.1	0.1	3.1
	October	-	St.2A	100	20.6	29.8	0	1.4	3.0	11.3	0.1	1.0
				30	20.5	29.8	1	-	-	-	-	1.3
				1	21.9	30.2	3	1.3	1.3	8.1	0.1	1.2
			St.4	100	20.9	30.3	0	1.6	3.1	14.0	0.1	2.6
				30	20.7	30.3	1	-	-	-	-	2.9
				1	20.6	30.6	5	1.1	0.6	7.4	0.1	1.7
			St.5	100	19.1	30.4	0	1.0	0.4	6.5	0.1	2.4
				30	18.5	30.5	2	-	-	-	-	1.9
				1	18.1	30.4	8	1.2	0.2	5.3	0.0	2.2

Table 1. Environmental factors and chl-a concentrations in Gwangyang Bay during the research period (- : no data).

757	
758	

Year D	Date	Irradiance (µmols m ⁻² s ⁻¹)	Station	Light depth (%)	Temperature (°C)	Salinity (‰)	Depth (m)	NH4 (µM)	NO ₂ +NO (µM)	SiO ₂ (µM)	ΡO ₄ (μΜ)	Chl-a (µg L ⁻¹)
2013 Jan	uary	297.4 ± 310.5	St.2A	100	5.5	20.5	0	0.5	4.2	4.0	0.1	1.39
				30	7.0	28.0	1	-		-	-	1.52
				1	7.3	29.4	4	0.5	3.7	3.6	0.1	1.4
			St.4	100	7.7	31.1	0	1.0	3.8	3.4	0.1	2.7
				30	7.4	31.3	4	-		-	-	3.4
				1	7.3	32.8	12	0.6	5 3.1	2.5	0.0	5.3
			St.5	100	6.3	31.8	0	0.8	3.3	2.6	0.1	5.7
				30	6.6	31.9	3	-		-	-	5.2
				1	6.4	32.5	11	1.0	3.0	3.6	0.2	5.3
Aj	pril	1593.3 ± 414.5	St.2A	100	14.3	26.2	0	1.9	3.7	3.1	0.1	1.8
				30	14.4	27.5	1	-		-	-	1.7
				1	14.3	29.1	3	1.5	2.5	2.3	0.1	2.0
			St.4	100	14.7	32.0	0	1.6	5 2.0	2.5	0.1	2.2
				30	15.3	32.0	1	-		-	-	4.4
				1	15.2	32.6	5	1.5	1.7	1.6	0.1	7.3
			St.5	100	16.1	31.9	0	1.1	1.3	1.3	0.1	4.3
				30	16.1	32.0	3	-		-	-	5.2
				1	16.6	32.3	11	1.1	0.7	1.0	0.1	5.9

Table 2. Monthly rainfall and river input.

	-		
Veer	Data	Rainfall	River input
Year	Date	(mm)	(10 ⁶ t)
	April	195.5	149.4
	May	44.4	148.9
	June	69.6	42.3
	July	235.8	223.3
2012	August	559.0	228.9
	September	360.1	447.2
	October	38.0	98.5
	November	52.5	83.4
	December	96.7	89.4
	January	15.6	79.3
2013	February	116.4	94.6
2013	March	79.9	91.5
	April	99.1	100.3

Veer	Data	$\delta^{13}C$	C:N
Year	Date	(‰)	(molar:molar)
2012	April	-22.8 ± 2.9	7.0 ± 1.2
	June	-23.1 ± 1.3	6.8 ± 0.2
	August	-16.5 ± 2.4	$6.7~\pm~0.5$
	October	-17.1 ± 0.9	6.9 ± 0.6
2013	January	-22.5 ± 0.6	$7.7~\pm~0.6$
	April	-23.1 ± 0.2	6.8 ± 0.7
(8	average ± S.D.)	-20.9 ± 3.2	$7.0~\pm~0.4$

Table 3. δ^{13} C values and C:N ratios of POM in Gwangyang Bay (surface).

Year	Date	Station	Light depth (%)	СНО (µg L ⁻¹)	PRT (μg L ⁻¹)	$\begin{array}{c} LIP \\ (\mu g \ L^{-1}) \end{array}$	FM (μg L ⁻¹)	CHO/FM (%)	PRT/FM (%)	LIP/FM (%)	Kcal g ⁻¹	Kcal m⁻³
2012	April	St.1	100	45.0	144.2	22.9	212.1	21.2	68.0	10.8	5.6	1.1
	-		30	53.1	218.6	51.9	323.6	16.4	67.6	16.0	5.9	
			1	53.1	220.4	84.2	357.6	14.8	61.6	23.5	6.2	2.2
		St.4	100	14.2	128.1	28.6	170.9	8.3	74.9	16.7	6.1	1.0
			30	50.0	155.1	21.4	226.5	22.1	68.5	9.4	5.6	1.
			1	20.2	146.0	37.3	203.5	9.9	71.8	18.3	6.1	1.1
		St.5	100	60.2	198.0	143.0	401.2	15.0	49.3	35.7	6.7	2.
			30	132.4	198.0	42.8	373.2	35.5	53.1	11.5	5.5	2.0
			1	146.7	265.3	210.0	622.1	23.6	42.7	33.8	6.5	4.
	June	St.2A	100	170.7	99.7	233.5	503.8	33.9	19.8	46.3	6.9	3.:
			30	135.5	108.0	251.9	495.4	27.3	21.8	50.9	7.2	3.:
			1	163.5	85.0	225.1	473.7	34.5	17.9	47.5	6.9	3.
		St.4	100	99.1	44.6	199.5	343.2	28.9	13.0	58.1	7.4	2.
			30	133.4	142.4	203.5	479.3	27.8	29.7	42.4	6.8	3.
			1	91.6	110.8	232.3	434.6	21.1	25.5	53.5	7.3	3.
	August	St.4	100	69.3	73.9	213.5	356.7	19.4	20.7	59.9	7.6	2.
			30	61.2	56.5	173.8	291.5	21.0	19.4	59.6	7.6	
			1	127.2	77.9	162.2	367.3	34.6	21.2	44.2	6.8	2.
		St.5	100	155.5	289.4	204.7	649.6	23.9	44.6	31.5	6.4	4.2
			30	412.3	102.0	401.4	915.7	45.0	11.1	43.8	6.6	6.
			1	83.3	22.8	228.3	334.4	24.9	6.8	68.3	7.9	2.0
	October	St.2A	100	71.0	82.2	104.1	257.3	27.6	32.0	40.5	6.7	1.
			30	42.7	62.4	100.3	205.4	20.8	30.4	48.8	7.2	1.:
			1	74.3	111.6	98.5	284.4	26.1	39.2	34.6	6.5	1.9
		St.4	100	51.6	105.2	105.3	262.2	19.7	40.1	40.2	6.8	1.
			30	119.4	121.9	144.4	385.6	31.0	31.6	37.4	6.6	2.:
			1	78.5	169.0	134.4	381.9	20.6	44.2	35.2	6.6	2.:
		St.5	100	37.2	70.0	86.5	193.6	19.2	36.1	44.7	7.0	1
			30	42.3	92.5	112.0	246.7	17.2	37.5	45.4	7.1	1.
			1	33.9	108.4	97.3	239.7	14.2	45.2	40.6	6.9	1.

Table 4. Biochemical concentrations and composition, calorific values and contents in Gwangyang Bay (- : no data).

continued)

Year	Date	Station	Light depth (%)	СНО (µg L ⁻¹)	PRT (µg L ⁻¹)	LIP (µg L ⁻¹)	FM (μg L ⁻¹)	CHO/FM (%)	PRT/FM (%)	LIP/FM (%)	Kcal g ⁻¹	Kcal m ⁻³
2013	January	St.2A	100	150.3	139.3	115.5	405.2	37.1	34.4	28.5	6.1	2.5
			30	347.0	131.1	109.2	587.3	59.1	22.3	18.6	5.4	3.2
			1	331.3	127.1	-	-	-	-	-	-	· -
		St.4	100	171.6	164.0	-	-	-	-	-	-	· -
			30	183.5	168.7	139.7	491.9	37.3	34.3	28.4	6.1	3.0
			1	115.9	182.3	107.1	405.2	28.6	45.0	26.4	6.2	2.5
		St.5	100	113.6	212.0	133.4	459.0	24.7	46.2	29.1	6.3	2.9
			30	264.1	204.8	120.5	589.4	44.8	34.8	20.4	5.7	3.4
			1	99.3	195.5	104.2	399.0	24.9	49.0	26.1	6.2	2.5
	Apirl	St.2A	100	237.7	262.9	189.9	690.5	34.4	38.1	27.5	6.1	4.2
			30	185.5	308.0	198.7	692.3	26.8	44.5	28.7	6.3	4.3
			1	274.8	382.4	180.3	837.5	32.8	45.7	21.5	5.9	4.9
		St.4	100	115.0	141.9	181.4	438.4	26.2	32.4	41.4	6.8	3.0
			30	116.4	187.0	191.0	494.5	23.5	37.8	38.6	6.7	3.3
			1	205.2	222.1	185.7	612.9	33.5	36.2	30.3	6.2	3.8
		St.5	100	160.4	176.3	289.1	625.7	25.6	28.2	46.2	7.0	4.4
			30	146.9	217.8	253.3	618.0	23.8	35.2	41.0	6.8	4.2
			1	171.3	204.9	272.6	648.8	26.4	31.6	42.0	6.8	4.4

Table 5. Significant correlation coefficient (r) among
proteins (PRT), lipids (LIP) and environmental factors
(ns ; no significance, **; $p < 0.01$).

Variables	r	р	n
%PRT × Temp.	- 0.52	**	46
%LIP × Temp.	0.72	* *	46
$\text{%PRT} \times \text{NH}_4$	0.69	**	28
$\text{\%LIP} \times \text{NH}_4$	-0.59	**	28
%PRT × NO ₂ +NO ₃	0.54	**	28
%LIP \times NO ₂ +NO ₃	-0.53	**	28
%PRT × River-input	0.84	**	46
%LIP × River-input	-0.63	**	46
$NH_4 \times River-input$	0.91	**	28
$NO_2+NO_3 \times River-input$	0.55	**	28
%PRT × %LIP	-0.81	**	46
%PRT × Irradiance	-0.22	ns	39
%LIP × Irradiance	0.24	ns	39

		Based on abs	sed on absolute concentrations (µM)			Based on m	olar ratios		
Year	Date	DIN	SiO_2	PO ₄	Limitation	DIN:DIP	DSi:DIP	DSi:DIN	Limitation
2012	April	20.3 ± 20.2	11.1 ± 8.8	13.6 ± 32.9	nd	56.8 ± 45.5	37.5 ± 36.9	0.6 ± 0.2	Р
	June	-	-	-	-	-	-	-	-
	August	$0.4~\pm~0.4$	10.2 ± 1.5	0.1 ± 0.0	N, P	9.8 ± 14.2	173.4 ± 56.5	42.7 ± 23.7	Ν
	October	2.7 ± 1.5	8.8 ± 3.3	0.1 ± 0.0	Р	40.4 ± 20.8	142.2 ± 74.0	3.6 ± 0.8	Р
2013	January	4.2 ± 0.4	3.3 ± 0.6	$0.1~\pm~0.1$	Р	69.5 ± 63.1	50.6 ± 41.4	$0.8~\pm~0.1$	Р
	April	3.4 ± 1.3	2.0 ± 0.8	0.1 ± 0.0	Si, P	27.1 ± 8.9	$15.5~\pm~5.5$	$0.6~\pm~0.1$	nd

Table 6. Observed nutrient limitations during the study period (nd ; not detected).

	Regions (depth)	PRT (μg l ⁻¹)	LIP (µg l ⁻¹)	СНО (µg l ⁻¹)	FM (μg l ⁻¹)	Kcal m ⁻³ (average ± S.D.)	Authors
	Gwangyang Bay, South Korea (Euphotic depth)	23-382	21-401	14-412	171-916	2.8 ± 1.1	This study
Arctic regions	Bedford Basin, Canada(2.5 m)	200-650	130-440	160-630	660-1570		Mayzaud et al. (1989)
	Logy Bay, Newfoundland (6 m)	80-740	20-75	8-120	130-1030	2.7 ± 2.8	Navarro & Thompson (1995)
	The Northern Chukchi Sea, 2011 (Euphotic depth)	1-86	50-105	22-147	94-246	1.0 ± 0.2	Kim et al. (2014)
	The Northern Chukchi Sea, 2012 (Euphotic depth)	9-183	37-147	16-253	90-373	1.2 ± 0.2	Yun et al. (2014)
Antarctic regions	Pacific Sector Antarctic Ocean (0-1500 m)	14-100	3-60	3-66	25-220		Tanoue (1985)
	Off Princess Astrid Coast, Antarctica (0-100m)	24-200	15-174	22-147	148-393		Dhargalkar et al. (1996)
	Ross Sea, Antarctica (10m)	11-402	91	91-187	193-680	2.6 ± 1.8	Fabiano and Pusceddu (1998
	Ross Sea, Antarctica (0-200 m)	40-406	18-115	22-251	110-660		Fabiano et al. (1999a <u>)</u>
	Terra Nova Bay, Antarctica (0-750 m)	10-620	2-77	8-144	19-885	1.3 ± 1.0	Fabiano et al. (1996)
	Terra Nova Bay, Antarctica (under pack ice)	96-201	38-112	10-68	145-382	1.7 ± 1.1	Pusceddu et al. (1999)
	Amundsen Sea (Euphotic depth)	6-396	13-37	3-216	43-639	1.2 ± 0.8	Kim et al. (2015)
Other regions	W-Mediterranean (0-200 m)	72-105	37-51	33-88	143-246		Fabiano et al. (1984)
	W-Mediterranean submarine cave (10m)	4-77	4-104	1-75	15-220	0.4 ± 0.2	Fichez (1991)
	Mediterranean seagrass (4 m)	25-135	50-180	40-110	125-395		Danovaro et al. (1998)
	Ligurian Sea (10 m) NW-Mediterranean	32-107	21-140	21-131	74-378	1.5 ± 1.4	Danovaro & Fabiano (1997)
	Mediterranean (30m)	70-90	90-110	10-20	177-213	1.4 ± 0.2	Modica et al. (2006)
	Cretan Sea (0-1500 m)	7-92	4-63	13-149	54-200	0.6 ± 0.2	Danovaro et al. (2000)
	Bay of Biscay, 2000 (0-30m)	109-2426	26-2037	2-345	961 (a.v.)	6.7 ± 5.0	Díaz et al. (2007)
	Yaldad Bay, Chile (10 cm a.b.)	300-2250	30-560	50-1050	3310-2960	10.0 ± 10.9	Navarro et al. (1993)
	The Humboldt current system, Northern Chile (5-89m)	40-470	60-390	70-510	24-1282	3.5 ± 3.3	Isla et al. (2010)
	Magellan Strait (0-50m)	60-150	30-70	20-40	110-256	1.0 ± 0.5	Fabiano et al. (1999b)
	The northern part of the East Sea (Euphotic depth)	28-425	12-180	19-206	109-810	1.5 ± 0.6	Kang et al. (unpublished)

Table 7. Comparison of biochemical quantity of POM, FM and the calorific contents.

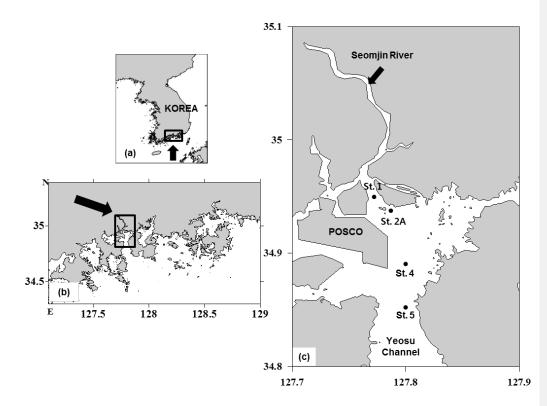


Fig. 1. Sampling location in Gwangyang Bay, Korea ; Maps of Korea (a), Southern Coastal Sea (b) and main sampling stations (c).

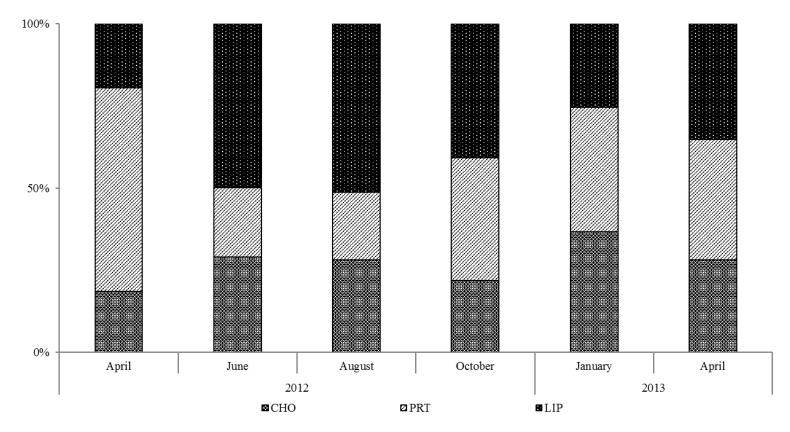


Fig. 2. Seasonal variation of biochemical composition in Gwangyang Bay.

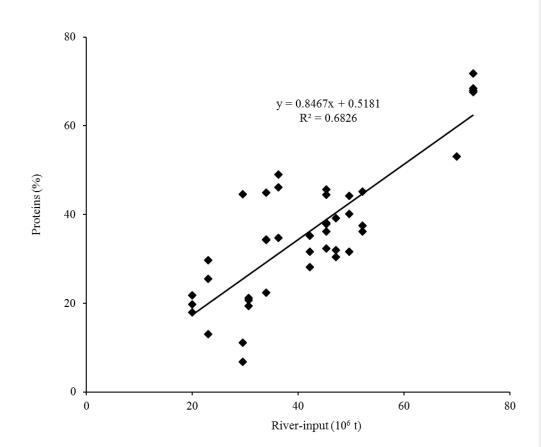


Fig. 3. The positive relationship between river-input and protein composition.

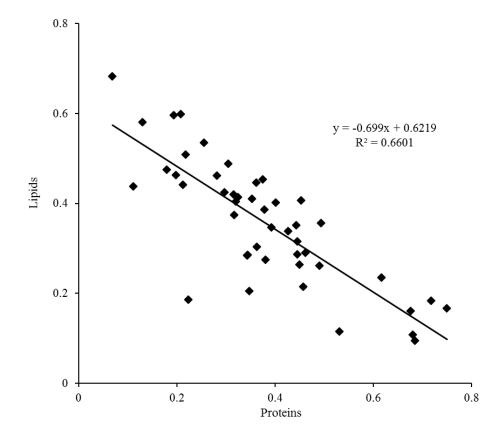


Fig. 4. The inverse relationship between lipid compositions and protein compositions.