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Abstract 28	
	29	

The Arctic Ocean, especially the East Siberian Arctic Shelf (ESAS) has 30	
been proposed as a significant source of methane that might play an 31	
increasingly important role in the future. However, the underlying processes 32	
of formation, removal and transport associated with such emissions are to 33	
date strongly debated. 34	

CH4 concentration and triple isotope composition were analyzed on 35	
gas extracted from sediment and water sampled at numerous locations on the 36	
shallow ESAS from 2007 to 2013. We find high concentrations (up to 500μM) 37	
of CH4 in the pore water of the partially thawed subsea permafrost of this 38	
region. For all sediment cores, both hydrogen and carbon isotope data reveal 39	
the predominant occurrence of CH4 that is not of thermogenic/natural gas 40	
origin as it has long been thought, but resultant from microbial CH4 formation. 41	
At some locations meltwater from buried meteoric ice and/or old organic 42	
matter preserved in the subsea permafrost were used as substrates. 43	
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Radiocarbon data demonstrate that the CH4 present in the ESAS sediment is 44	
of Pleistocene age or older, but a small contribution of highly 14C-enriched 45	
CH4, from unknown origin, prohibits precise age determination for one 46	
sediment core and in the water column. Our sediment data suggest that at 47	
locations where bubble plumes have been observed, CH4 can escape 48	
anaerobic oxidation in the surface sediment.  49	
 50	
1.Introduction 51	
 52	

The Arctic subsea permafrost harbors a very large active carbon pool 53	
of similar size as the terrestrial Siberian permafrost reservoir (Shakhova et al., 54	
2010a). Between 12 and 5kyr Before Present (BP), the Holocene 55	
transgression (Bauch et al, 2001) submerged extensive parts of the 56	
Pleistocene age terrestrial permafrost in Northern Siberia, forming the very 57	
shallow ESAS (Romanovskii et al., 2005). As a result, the formerly terrestrial 58	
permafrost has been continuously exposed to increasing seawater 59	
temperature, salt and anoxic conditions (Dimitrenko et al., 2011, Nicolsky et 60	
al., 2012) allowing the remobilization of carbon from the Pleistocene 61	
reservoirs. The four suggested key mechanisms controlling the release of 62	
Pleistocene carbon to the ESAS are the deepening of the permafrost level, 63	
gas hydrate degradation, coastal erosion and riverine discharge (e.g. 64	
Shakhova et al., 2005, 2009, 2010a,b, 2015; O’Connor et al., 2010, Wintereld 65	
et al., 2015, James et al., 2016). Holocene age carbon originating mainly from 66	
coastal erosion and riverine discharge (Charkin et al., 2011; Semiletov et al., 67	
2012; Karlsson et al., 2011, 2016) has accumulated on the ESAS shelf and 68	
overlays the Pleistocene age sediment (Vonk et al., 2012, 2014 ; Feng et al., 69	
2013).  70	

Under anaerobic conditions and depending on its type and quality 71	
(Schuur et al., 2013), the remobilized carbon can be used to produce CH4, a 72	
strong greenhouse gas (IPCC, 2013). Microbial CH4 is produced by 73	
methanogenesis using as main substrates carbon dioxide (CO2) or acetate 74	
according to the following reactions (Whiticar, 1999): 75	

 76	
(CO2 reduction) CO2 + 4H2  → CH4 + 2H2O 77	

(Acetate fermentation) CH3CO2
- + H2O →CH4 + HCO3

- 78	

In the deep Earth layers, CH4 can also be formed through thermal 79	
degradation of organic matter (e.g. Schoell, 1988) and migrate towards the 80	
surface. This CH4 is considered thermogenic. A large part of the CH4 formed 81	
in the seafloor is removed by anaerobic oxidation with seawater sulfate in 82	
sediments (e.g. Reeburgh, 2007, Knittel and Boetius, 2009) or in the water 83	
column where CH4 can be consumed by aerobic methanotrophic bacteria 84	
under specific nutrient and redox conditions (e.g. Kessler et al., 2011, Mau et 85	
al., 2013, Steinle et al., 2015). Each type of CH4 formation/removal pathway 86	
produces CH4 with a characteristic isotopic signature (δ13C and δD) 87	
depending on the isotopic composition of the substrate and the kinetic isotope 88	
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effect associated with the respective chemical reaction involved. 89	
Microorganisms need less energy to metabolize molecules with smaller bond 90	
energy, which leads to discrimination against heavy isotopes. Therefore, CH4 91	
produced by methanogenesis has a lighter isotopic signature than its 92	
substrates but when it is consumed, its remaining reservoir will become more 93	
enriched in heavy isotopes (e.g. Whiticar 1999, Conrad, 2005). Diffusive 94	
transport can also cause isotopic discrimination, because lighter 95	
isotopologues diffuse faster than heavier ones. However, this fractionation is 96	
considered to be relatively small (<5‰: Fuex, 1980, <20‰: Prinzhofer and 97	
Pernaton, 1997 and 3‰: Chanton et al. 2005) compared to the isotopic 98	
fractionation associated with methanogenesis (7-95‰ for δ13C and 260-430‰ 99	
for δD) and with CH4 oxidation (2-39‰ for δ13C and 66-350‰ for δD) (Whiticar, 100	
1999, Holler et al., 2009).  101	

Shakhova et al., 2010b, have shown that CH4 concentrations in the 102	
ESAS water were anomalously high (up to 500 nM) compared to CH4 values 103	
generally observed in ocean waters (∼5 nM, Damm et al., 2008). Vigorous 104	
bubbling events (1.5 to 5.7 bubbles per second) were observed at some sites 105	
(Shakhova et al., 2013) as well as seepages of thermogenic CH4 (Cramer 106	
and Franke, 2005) indicating that part of the water column supersaturation 107	
likely results from a seabed source. The destabilization of gas hydrates is the 108	
most discussed CH4 source from this region (e.g. Kvenvolden, 1988, 109	
Romanovskii et al., 2005, Shakhova et al., 2010a), however, important gaps 110	
exist in the assessment of the quantity and the nature of the CH4 stored or 111	
formed in the Arctic seabed (e.g. Ruppel et al., 2014).  112	

To disentangle the origin(s) of this CH4 anomaly, we measured CH4 113	
concentration, stable isotope composition and (on selected samples) 114	
radiocarbon content on sediment and water samples from several winter 115	
campaigns and summer cruises from 2007 to 2013 on the ESAS shelf and 116	
shelf edge.  While stable isotope analyses help identify the chemical 117	
pathways involved in CH4 removal and formation processes, radiocarbon 118	
measurements give information on the age of the CH4 substrate. The 119	
combination of the isotope information thus helps determining the possible 120	
origin(s) of this gas.  121	

  122	
 123	

2.Method 124	
 125	
2.1.Drilling and sediment sampling 126	
 127	

Summer surface sediment drilling and water sampling campaigns were 128	
carried out on research vessels while the winter field campaigns were 129	
accomplished using an equipment caravan, which traveled over the sea ice to 130	
the drilling locations. In the latter case, casings were drilled through the fast 131	
ice into the seabed, allowing dry drilling using a rotary drill with 4 m casing 132	
with a newly built URB-4T drilling rig (made in 2011 by the Vorovskii Factory 133	
for Drilling Equipment, Ekaterinburg, Russia). Thawed and frozen sediments 134	
for each core were subsampled straight after (i.e. maximum a few minutes 135	
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after) the drilling using ice screws for frozen samples and a heavy plastic 136	
syringe-like sampler for thawed samples at 20 cm vertical resolution. 137	

2.2. Gas extraction and measurement in sediments 138	

 Sediment subsamples were subsequently immersed in glass vials filled 139	
with a saturated sodium chloride solution to drive gases out of solution and 140	
capped with a septum for equilibration in an ultrasonic water bath at a 141	
temperature of 20°C. The gas chromatograph (GC) used to measure CH4 142	
concentrations was equipped with two 10-Port gas sampling valves, a 2 m 143	
MolSieve 13X column, a 30 m capillary column and a 6 channel PeakSimple 144	
data system. A flame ionization detector (FID) was used for concentrations of 145	
CH4 <200 ppm and a thermal conductivity detector (TCD) for concentrations 146	
of CH4 >200 ppm. The GC oven was operated isothermally at 40˚C and the 147	
maximum detector temperature was held at ≈ 250˚C. The carrier gas used 148	
was helium. Daily calibration was performed with certified 1.96 ppm and 149	
99.999 ppm CH4 gas standards from Air Liquide, USA. The standard 150	
deviation of duplicate analyses (three to five replicates) was <2%. 151	
Reproducibility was ∼1% based on multiple standard injections during daily 152	
calibrations. The concentration of dissolved CH4 in the water and sediment 153	
samples was calculated with the Bunsen solubility coefficient for CH4 154	
(Wiesenburg and Guinasso, 1979) for the appropriate equilibration 155	
temperature, pressure and the volume of headspace and water/sediment in 156	
each vial. 157	

The stable isotope measurements were performed using a Continuous 158	
Flow Isotope Ratio Mass Spectrometry (CF-IRMS) system as described in 159	
Brass and Röckmann, 2010 and Sapart et al., 2011. Radiocarbon analyses 160	
could be performed only on the largest samples (containing more than 20 µg 161	
of CH4). In that case, CH4 was preconcentrated and combusted to CO2. The 162	
14C content of the CO2 was measured by accelerator mass spectrometry 163	
(Szidat et al., 2014) using a specific gas inlet (Ruff et al., 2010). 164	

 165	

2.3. Gas extraction and measurement from seawater samples 166	

 167	
Water samples were collected directly from the Niskin bottles. Gas 168	

from seawater samples was extracted using a modified headspace vacuum-169	
ultrasonic degassing method (Schmitt et al., 1991, Lammers et al., 1994). The 170	
gas released was accumulated in an evacuated burette to measure its 171	
quantity and was then transferred into a smaller flask for storage, and 172	
analysed as described in Section 2.2. 173	
 174	
3. Results and discussion 175	

 176	
We present results of CH4 concentrations, stable isotope composition 177	

and (on selected samples) radiocarbon content on four shallow sediment 178	
cores (<3m), four deep sediment cores (ID-11, IID-13, IIID-13, VD-13) (down 179	
to a maximum depth of 53m in the Buor-Khaya Bay (BKB)) and about fifty 180	
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water samples from four coastal areas of the ESAS: the Lena Delta (LD), 181	
BKB, the Dmitry Laptev Strait (DLS) and the Shelf Edge (SE) (Fig.1) (see 182	
Table S1 for more detailed on the sample locations). Because of the harsh 183	
field and weather conditions during this campaign, no sediment drilling was 184	
possible at the SE, hence only water data are presented for this site.  All 185	
water and sediment sampling, except for the ID-11 core, was performed at 186	
hotspot sites, i.e., at locations where active gas bubbling from the seafloor 187	
and high concentrations of dissolved CH4 were previously observed as 188	
discussed in Shakhova et al., 2010a. The location of core ID-11 is therefore 189	
referred to as ‘non-ebullition site’.  This core as well as the IIID-core were 190	
thawed all the way down (>50 m) while the IID-13, and VD-13 cores were 191	
thawed down to 19 and 12m, respectively. Note that for the two latter cores, 192	
sampling was continued through the deeper frozen sediment to 30 and 35m 193	
respectively. For more details on the lithology, the cryostructure and the 194	
sediment properties, see SI, section 1 and Fig.S1-S4.  195	
 196	
3.1 CH4 formation pathways in the sediment 197	

 198	
Depth profiles of CH4 concentration, stable isotope composition (δ13C 199	

and δD) and the radiocarbon content (in percent modern carbon, pmC) are 200	
presented in Fig.2. In both hotspot and non-ebullition cores, CH4 201	
concentrations are far above values observed in the water column and CH4 is 202	
strongly depleted in heavy stable isotopes in all sediment cores. CH4 in the 203	
hotspot cores IID-13, IIID-13 and VD-13 is more depleted in D and slightly 204	
more enriched in 13C than in the non-ebullition core. These differences can be 205	
caused by the distance of the drill sites from the coast, the amount of time 206	
each site has been inundated and the differences in lithology (SI, section 1). 207	
These factors will play a role on the substrate availability (Karlsson et al., 208	
2011, 2016, Tesi et al., 2014, 2016). We will focus the discussion on the 209	
origin of the substrate(s) for each core below. 210	

The expected stable isotope signatures of the three potential CH4 211	
formation pathways in marine sediment (e.g. Whiticar, 1999): CO2 reduction, 212	
acetate fermentation and thermal degradation of organic matter are depicted 213	
together with our water and sediment stable isotope data in a dual isotope 214	
plot (Fig.3). Overall, the deep sediment core data (diamonds) fall in between 215	
the isotope source signatures of the two main microbial CH4 formation 216	
pathways: carbonate reduction and acetate fermentation. These untypical 217	
stable isotope signatures could imply that CH4 is formed by a mixture of both 218	
microbial pathways or/and by using different substrates from the ones 219	
considered in Whiticar, 1999. It is unlikely to be explained by physical 220	
alteration (e.g. diffusion, gravitational settling) because these processes 221	
would result in equal fractionation for the CH3D and 13CH4 isotopologues.  222	

For the non-ebullition core ID-11, most of the δ13C values are typical 223	
(though on the light end side) of the reduction of carbonates, but about 2/3 of 224	
the samples show δD values that are considered too low (down to about -225	
60‰) for such a pathway. The most enriched δD data correspond to the top 226	
of this core and are discussed in section 3.2. For this core, salinity 227	
measurements (from 20 PSU at the surface to 13 PSU at depth) indicate the 228	
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presence of interstitial seawater all the way down the core. When the 229	
seawater sulfate enters the marine sediment, it provides sulfate reducing 230	
bacteria with the electron acceptor they need to outcompete methanogens for 231	
acetate (Lessner, 2009). This indicates that for this core in situ (i.e. at the 232	
depth where the samples were taken) acetoclastic CH4 formation may be 233	
suppressed, despite an abundance of organic material. CO2 and water 234	
remains therefore the most likely non-competitive substrate for methanogens 235	
if CH4 formation would occur in the thawed permafrost. In that case, the very 236	
light δD values can be due to 1) a mixture of carbonate reduced (formed in 237	
situ or not) and acetoclastic (migrating vertically or horizontally) CH4 or 2) the 238	
use of isotopically depleted hydrogen substrate for CH4 formation by 239	
carbonate reduction. On the dual isotope plot (Fig.2), the area of the 240	
carbonate reduction pathway considers modern seawater as water substrate 241	
for carbonate reduction. However the meltwater present in subsea permafrost 242	
originates from buried meteoric ice with a much more depleted δD(H2O) 243	
signatures. Chanton et al. (2006) and   Brosius et al. (2012) reported values 244	
for δD(H2O) of -135±25‰ and -220±30‰, respectively in old Arctic permafrost. 245	
This is about 200‰ to 105‰ more depleted in deuterium than modern Arctic 246	
seawater (Friedman et al., 1964).  We suggest that methanogens present in 247	
the thawing permafrost (Koch et al., 2009) use and/or have used such 248	
depleted permafrost meltwater or unfrozen porewater as a hydrogen source 249	
to form CH4 with low δD values as it is observed in the non-ebullition core.  250	

For the hotspot cores IID-13 IIID-13 and VD-13, the δD values are 251	
characteristic of acetate fermentation, but the δ13C signatures are about 30‰ 252	
too depleted in 13C in comparison to what has been measured previously from 253	
this pathway (e.g. Whiticar, 1999, Walter et al., 2008). This depletion in 13C 254	
must originate from 1) the addition of carbonate reduced CH4 to an 255	
acetoclastic pool or/and 2) the recycling of CH4 after AOM-mediated carbon 256	
isotope equilibrium under sulfate limitation conditions (Yoshinaga et al., 2014, 257	
Geprägs et al., 2016).  For the latter, the 13C depletion must be accompanied 258	
by a decrease in CH4 concentration, but this was not observed: the CH4 259	
concentrations in our cores were relatively constant and not correlated with 260	
the δ13C values (Fig.4). For these cores and because of the harsh conditions 261	
on the field, no reliable sulfate and salinity profiles could be retrieved, so 262	
unfortunately no sulfate data are available to support the interpretation. 263	

The 14C content of CH4 from the hotspot cores covers a range from 264	
0.79 to 3.4pmC corresponding to a radiocarbon age of 26 to 39kyBP (Fig.2). 265	
This indicates a carbon substrate of Pleistocene age. For the ID-11 non-266	
ebullition core, 14C values are unexpectedly high and vary from 87pmC 267	
(radiocarbon age=1kyBP) to 2367pmC (Fig.2), which represents a substantial 268	
enrichment above the natural background. The same applies to water 269	
samples from the SE. Note that levels close to 100pmC indicate modern 270	
values. Even samples that had been affected by the nuclear bomb testing in 271	
the 1950s and 1960s would show levels below 200pmC thus 14C values 272	
>200pmC cannot be caused by known natural processes. As discussed in the 273	
SI section 2, local anthropogenic nuclear contribution, e.g. from nuclear waste 274	
buried in the coastal permafrost, is the most likely explanation for these 275	
elevated radiocarbon levels. The drilling location is shallow (12.5 m) and very 276	
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difficult to reach hence waste burial is very unlikely to have occurred directly 277	
in this area. Moreover the highest contamination is observed at 30 m depth in 278	
the sediment showing that it is not originating from the surface. Our first 279	
assumption is that this anthropogenic contamination has been laterally 280	
transported in the pore-water of the thawing subsea permafrost in the form of 281	
CH4 or of one of its precursors (e.g. dissolved inorganic carbon) from the 282	
coastal terrestrial permafrost to our drilling site (see SI section 2 for more 283	
detailed). More data, e.g. of other radionuclides would be essential to confirm 284	
this assumption. 285	

 The shallow sediment samples from hotspot sites have 14CH4 values 286	
from 3 to 88pmC (radiocarbon age = 1-26kyBP) showing the presence of old 287	
CH4 in surface sediment of relatively modern age and thus confirming the 288	
migration of old gas from deeper layers towards the surface. Note that the 289	
overall low content of organic carbon (<2.3%) with a high fraction of lignin 290	
(Bröder et al., 2016; Vonk et al., 2014) in the surface sediment (Fig.5) and the 291	
likely presence of sulfate, would severely inhibit CH4 formation in the marine 292	
layer hence in situ methanogenesis there is highly unlikely.  293	

We conclude that the CH4 present in the surface thawed subsea-294	
permafrost is formed mainly microbially. For the non-ebullition core, our 295	
observations imply that CH4 is at least for a part not formed in situ in thawed 296	
subsea permafrost but that it migrates vertically or laterally to the surface of 297	
the partially thawed ESAS subsea permafrost. For the hotspot cores, which 298	
are closer to the shore and more recently inundated (Table S.1), most of the 299	
methane present is of acetoclastic origin and formed with Pleistocene carbon 300	
remobilized in the thawing subsea permafrost.  301	

 302	
 303	

3.2. CH4 removal pathways in the sediment 304	
 305	

The ID-11 non-ebullition site was the only coring location where no 306	
active bubbling was observed from the surface sediment. Here, the top 5.8m 307	
consist of a thick silty-clay layer (Fig.S1) of marine origin as indicated by the 308	
higher salinity and silica concentrations (Fig.5), typical of a marine 309	
environment enriched in diatoms. The increase in sulfate concentration 310	
together with the strong CH4 concentration decrease and the isotopic 311	
enrichment in both 13C and D towards the sediment surface indicate that most 312	
of the CH4 diffusing through this thick Holocene marine layer is removed by 313	
anaerobic oxidation with sulfate in the surface sediment before reaching the 314	
water column.  315	

This marine layer may also act as a physical barrier preventing gas to 316	
migrate towards the surface directly. The increase in CH4 concentration from 317	
9 to 5.8m depth without strong isotopic shifts (Fig. 5) and the acoustic data 318	
(Fig. 6) show that gas accumulates under this less permeable layer. Part of 319	
this gas might migrate laterally and be released to the water at locations 320	
where the marine clay layer is thinner or absent. The isotopic signatures of 321	
the CH4 in the pore water of the hotspot cores do not show isotopic 322	
fractionation toward the surface (Fig.2). At these sites, ebullition processes 323	
may disturb the sulfate-reducing layer and advection may occur. This would 324	
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reduce the amount of CH4 subject to anaerobic oxidation (only dissolved CH4 325	
is accessible for methanotrophic organisms) and allow direct gas release to 326	
the water column.  327	

Overduin et al., 2015 have reported CH4 concentration and δ13C values 328	
measured on one sediment core drilled in the Buor-Khaya Bay. The carbon 329	
isotopic signature of that core was typical of acetate fermentation in the 330	
frozen part of the core, but they observed a strong enrichment in 13C 331	
associated with a decrease in CH4 concentration directly above the ice-332	
bonded permafrost. They concluded that CH4 was strongly oxidized in the 333	
thawed subsea permafrost before reaching the water column. Our dataset 334	
does not support this interpretation, because no enrichment in either D or 13C 335	
associated with a decrease in CH4 concentration has been observed at the 336	
ice-bonded permafrost table for the partly frozen cores IID-13 and VD-13 (Fig. 337	
2 and Fig. S.2 and S.4).  338	

 339	
3.3. CH4 in the water 340	

 341	
Compared to the sediment samples, CH4 in the water samples is more 342	

enriched in heavy isotopes. The highest CH4 concentrations in the water 343	
column are observed close to the seabed and at the surface in the presence 344	
of sea ice (Fig.2a blue triangles). The 14C values of water samples are 345	
between 83 and 9560pmC (radiocarbon age= 2kyBP to strongly enriched 346	
above natural present day values) (Fig.2d) (SI section 2). For the water 347	
samples we only encountered the highly enriched 14CH4 values at the shelf 348	
edge. As demonstrated by the 14CH4 data in the non-ebullition core ID-11, this 349	
anomaly likely originates from anthropogenic contamination in the sediment. 350	
Hence, we suggest that this signature may be diluted over the shelf but 351	
become indiscernible at locations where strong release of old CH4 from the 352	
sediment occurs. This could explain the broad range of pmC values observed 353	
in the water column.  354	

Several scenarios may explain the difference in stable isotope 355	
signatures between the water- and sediment samples. The first assumes a 356	
mixture of microbial CH4 with a source that is more enriched in heavy 357	
isotopes. This source could be either a water source or thermal degradation 358	
of organic matter in the deep Earth’s crust. In the marine environment, CH4 359	
could in principle be produced at the pycnocline, where natural differences of 360	
water density create a “fluid bottom”, on which organic particles and pellets 361	
could accumulate as substrate for in situ methanogenesis (Damm et al., 2008, 362	
Karl et al., 2008, Sasakawa et al., 2008). In the ESAS, the pycnocline is very 363	
shallow and at the location of sampling, low primary production is expected 364	
because of darkness and ice cover in the winter and because of the little 365	
available sunlight in the summer due to the high solar zenith angles and the 366	
very turbid waters (Semiletov et al., 2016). Bussmann et al. (2013) have 367	
investigated the distribution of CH4 in the estuary of the Lena, one of the 368	
largest Russian rivers draining into the ESAS. They reported high CH4 369	
concentrations (up to 1500 nM) in the river and in the creeks draining from 370	
permafrost soil and a strong decrease in the Buor-Khaya Bay (down to 26-371	
33nM). They concluded that the CH4 contained in the rich waters of the river 372	
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was, for most of it, not reaching the marine waters, but that it was released by 373	
diffusion into the atmosphere before reaching the bay. A large water source is 374	
therefore unlikely to explain the CH4 saturation we observe in the ESAS 375	
coastal waters. 376	

 Thermogenic emissions from the sediment are possible, especially 377	
from the fault zone near the shelf edge where we find strong heavy isotope 378	
enrichment in the water. While we have not measured any CH4 with a 379	
thermogenic stable isotopic signature in our deep sediment cores from the 380	
continental shelf, it could be present in the sediments of the shelf edge (which 381	
we were unable to sample due to rough field conditions). Moreover, no 382	
measurements could be performed directly on gas bubbles (because of the 383	
low probability to trap bubbles in the Niskin bottles during sampling), which at 384	
the shelf edge might partly originate from thermal degradation of organic 385	
matter. 386	

The difference between the water and sediment samples may also 387	
result from substantial oxidation of the CH4 emitted from the deep sediment. 388	
Such a process should involve enrichments in D and 13C associated with a 389	
decrease in CH4 concentration. This pattern is only observed for the winter 390	
water samples of the Lena Delta (Fig.4, blue open triangles) where CH4 391	
trapped under the sea ice could be removed by aerobic oxidation. All other 392	
water data were collected in the summer and do not show any clear isotopic 393	
enrichment correlated with concentration decrease. This could be explained 394	
by the continuous addition of CH4 from the sediment and its direct diffusion 395	
from the water into the atmosphere in the summer, especially during storms 396	
(Shakhova et al., 2013). These processes as well as water column mixing 397	
could mask any oxidative isotope signature. 398	

 In the winter, CH4 likely accumulates under the sea ice where the 399	
bubble and dissolved phases could equilibrate and aerobic oxidation could 400	
occur, while in the summer the gas bubbles will directly reach the atmosphere. 401	
In the sediment, gas bubbles have time to equilibrate with pore water, 402	
especially when the gas is trapped under relatively impermeable sediment, 403	
e.g. the Holocene marine silty-clay layer. Therefore, we assume that in the 404	
sediment, the pore water can be in equilibrium with the gas bubbles, while we 405	
suggest that in the summer the seawater bubbles may travel too rapidly to 406	
reach an isotopic equilibrium with the dissolved gas and to be oxidized. This 407	
means that the CH4 isotopic signature of the gas bubbles may not strongly 408	
affect the CH4 dissolved in seawater, which could also explain the difference 409	
observed between the water and sediment stable isotopes values.  410	

 411	
4. Conclusion 412	
 413	
Our triple isotope dataset of CH4 from the sediment and water of the shallow 414	
ESAS reveals the presence of CH4 of microbial origin formed on old carbon 415	
with unexpectedly low stable carbon (δ13C as low as -108‰) and hydrogen 416	
(δD as low as -350‰) isotope signatures down to about 50m under the 417	
seabed in the thawed permafrost. These data demonstrate that at location 418	
where a thick marine clay layer is present, this CH4 is partially oxidized before 419	
reaching the seawater. However at locations where ebullition was observed 420	
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from the seabed, no oxidation was identified in the stable isotope surface 421	
sediment profile. In that case and considering the very shallow water column 422	
(<10m) in this area, this microbial gas will likely reach the atmosphere when 423	
sea ice is absent. Our results show that thawing subsea permafrost of the 424	
ESAS emits CH4 with an isotopic signature that cannot be easily 425	
distinguished from Arctic wetland emissions when looking only at stable 426	
isotope data. This similarity might complicate recent efforts to quantify Arctic 427	
CH4 source strengths on the basis of isotopic- and back-trajectory analysis of 428	
atmospheric CH4. Further in situ work is necessary – specifically on the 429	
isotopic composition of CH4 in gas bubbles that reach the atmosphere – to 430	
better quantify the contribution of the ESAS to the global methane budget. 431	
 432	

 433	
 434	
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Figures	752	
	753	
	754	
	755	

756	
		757	
Figure	 1:	 Sampling	 location.	 Water	 sampling	 (triangles),	 sediment	 drilling	 (diamonds).	 Summer	758	
sampling	 (close	 symbols)	 and	 winter	 sampling	 (open	 symbols).	 The	 color	 legends	 of	 the	 deep	759	
sediment	cores	are	shown	on	the	top	right.		760	

40 km	
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	761	

	762	
Figure	 2:	 CH4	 data	 from	 sediment	 and	 overlying	water	 sampled	 on	 the	 East	 Siberian	Arctic	 Shelf.	763	
Water	 sampling	 (triangles),	 sediment	 cores	 (diamonds).	 Summer	 sampling	 (close	 symbols)	 and	764	
winter	 sampling	 (open	 symbols).	 Buor-Khaya	 Bay	 (purple,	 ID-11:	 non-ebullition	 site	 and	 IID-13,	765	
IIID-13	and	VD13	hotspot	sites),	Dmitry	Laptev	Strait	(red	and	orange),	Lena	Delta	(light	blue)	and	766	
Shelf	Edge	(yellow)	(see	Fig.1	for	detailed	location).	(a)	CH4	concentrations,	(b)	δD	(‰	vs	VSMOW),	767	
(c)	 δ13C	 (‰	 vs	 VPDB),	 (d)	 14C	 (pmC).	 The	 red	 dotted	 line	 corresponds	 to	 modern	 values	 (i.e.,	768	
100pmC)	 and	 the	 black	 dashed	 line	 corresponds	 to	 the	 onset	 of	 the	Holocene	 (11,000	 years	BP).	769	
Note	that	y-axis	for	the	water	samples	is	divided	in	two	sections.	The	upper	part	corresponds	to	the	770	
depth	from	the	sea	surface	and	the	lower	part	corresponds	to	the	depth	from	the	seabed.	See	Fig.	S1-771	
S4	for	the	ice-bonded	permafrost	table	depths	and	Table	S1	for	bathymetric	information.	772	
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	773	
Figure	3:	Dual-isotope	CH4	plot.	Legend	is	similar	to	Fig.2.	Areas	delimited	by	black	lines	correspond	774	
to	the	three	main	CH4	formation	processes	and	their	isotopic	signatures	(Whiticar,	1999).		775	
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	796	
Figure	4:	CH4	concentration	versus	stable	isotope	plots.	Water	sampling	(triangles),	sediment	cores	797	
(diamonds).	 Summer	 sampling	 (close	 symbols)	 and	winter	 sampling	 (open	 symbols).	 Buor-Khaya	798	
Bay	(purple,	 ID-11:	non-ebullition	site	and	IID-13,	 IIID-13	and	VD13	hotspot	sites),	Dmitry	Laptev	799	
Strait	 (red	 and	 orange),	 Lena	 Delta	 (light	 blue)	 and	 Shelf	 Edge	 (yellow)	 (see	 Fig.1	 for	 detailed	800	
locations	and	Table	S1	for	bathymetric	information).		801	
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	802	
Figure	 5:	 Close-up	 of	 the	 CH4	 concentration,	 stable	 isotope	 and	 other	 biogeochemical	 data	 of	 the	803	
surface	 of	 the	 non-ebullition	 sediment	 core	 ID-11,	 from	 the	 Buor-Khaya	 Bay.	 Red	 shaded	 area	804	
corresponds	 to	 the	 marine	 sediment	 deposited	 during	 the	 Holocene	 transgression	 and	 the	 grey	805	
shaded	area	corresponds	to	the	thawed	permafrost	layer.	The	black	dotted	line	corresponds	to	the	806	
depth	where	CH4	oxidation	starts	to	occur.	807	
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	809	
Figure	6:	Acoustic	profile	of	the	borehole	of	the	ID-11	drilling	site.	Darker	areas	represent	changes	810	
in	density	between	the	different	horizontal	layers	(Sergienko	et	al.,	2012).	We	assume	that	these	811	
changes	in	density	indicate	gas	accumulation,	because	the	sediment	at	this	location	is	totally	812	
thawed,	so	it	is	very	unlikely	to	be	ice.	813	
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