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Abstract. In the context of global warming attributable to the increasing levels of CO., severe drought
may be more frequent in areas with chronic water shortages (semi-arid areas). This necessitates
research on the interactions between increased levels of CO; and drought on plant photosynthesis. It is
commonly reported that °C fractionation Gccurﬁé as CO,-gas diffuses from the atmosphere to the
sub-stomatal cavity. Few researchers have investigated '*C fractionation at the site of carboxylation to
cytoplasm before sugars are exported outward from the leaf. This process typically progresses in
response to variations in environmental conditions (i.c.. CO: concentrations and water stress).
including in their interaction. Therefore, saplings of two typical plant species (Platyeladus orientalis
and“Quercus variabilis) from semi-arid areas of Northern China were selected and cultivated in growth
chambers with orthogonal treatments (four CO- concentrations ([CO:]) x five soil volumetric water
contents (SWC)). The 8C of water-soluble compounds extracted from leaves of saplings was
determined for instantaneous water use efficiency (WUE.,) after cultivation. Instantaneous water use
efficiency derived from gas ei(change: (WUE,) was integrated to estimate differences in 8'3C signal
variation before leafj%o&eé translocation of primary assimilates. The WUEy of Plaivcladus
orientalis and Quercus variabilis both decreased with increased soil moisture at 35%—80% of field
capacity (FC), and increased with elevated [COa] by increasing photosynthetic capacity and reducing
transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes. differed
between the two species. The WUE,. in P. orientalis was significantly greater than that in Q. variabilis,
while an opposite trend was observed when comparing WUE, between the two species. Total '*C
fractionation at the site of carboxylation to cytoplasm before sugar export (total *C fractionation) was
species-specific, as demonstrated in the interaction of [CO;] and SWC. Rising [CO2] coupled with
moistened soil generated increasing disparities in 8'*C between water-soluble compounds (8" Cwsc)
and estimates based on gas-exchange observations (8"Cess) in P. orientalis, ranging between
0.0328%0-0.0472%s. Differences between 8Cuse and 83 Coss in Q. variabilis increased as [CO:| and
SWC increased (0.0384%0—0.0466%0). The 3C fractionationf from mesophyll conductance (g) and

post-carboxylation both contributed to the total 3C fractionation that was determined by &"C of

water-soluble compounds and gas-exchange measurcmcnk. Total *C fractionation was linearly
dependent on stomatal conductance, indicating post-carboxylation fractionation could be attributed to
environmental variation. The magnitude and environmental dependence of apparent post-carboxylation

fractionation is worth our attention when addressing photosynthetic fractionation.
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1 Introduction

Since the industrial revolution, atmospheric CO. concentration has increased at an annual rate of
0.4%, and is expected to increase to 700 pmol-mol™, culminating in more frequent periods of dryness
(IPCC, 2014). Increasing atmospheric COz concentrations that exacerbate the greenhouse effect will
increase fluctuations in global precipitation patterns, but will probably amplify drought frequency in
arid regions, and lead to more frequent extreme events in humid regions (Lobell et al., 2014).
Accompanying the increasing concentration of CO», mean 8"*C of atmospheric CO; is currently being
depleted by 0.02%0-0.03%0 year' (CU-INSTAAR/NOAACMDL network for atmospheric CO;;

http://www.esrl.noaa.gov/gmd/).

The current carbon isotopic composition may respond to environmental change and their influence
on diffusion via plant physiological and metabolic processes (Gessler et al., 2014; Streit et al., 2013).
While depletion of 8‘3CCO2 is occurring in the atmosphere, variations in CO» concentration ([CO-])
may affect 3"°C of plant organs that, in turn, are responding physiologically to changes in climate
(Gessler et al., 2014). The carbon discrimination ('*4) of leaves could also provide timely feedback
about the availability of soil moisture and the atfnospheric vapor pressure deficit (Cernusak et al.,
2012). Discrimination of *C in leaves relies mainly on environmental factors that affect the ratio of
intercellular to ambient [CO-| (C'/C,). Rubisco activities and the mesophyll conductance derived from
the difference of [CO.|s between intercellular sites and chloroplasts are also involved (Farquhar et al.,
1982; Cano et al., 2{3\14). Changes in environmental conditions affect photosynthetic discriminati
theyewrisbe recorded differentially in the 3"°C of water-soluble compounds (8"*Cyse) in different plant
organs. Several processes during photosynthesis alter the 3'*C of carbon transported within plants.
Carbon-fractionation during photosynthetic CO; fixation has been reviewed elsewhere (Farquhar et al.,
1982; Farquhar and Sharkey, 1982).

Post-photosynthetic fractionation is derived from equilibrium and. kinetic isotopic effects that
determine isotopic differences between metabolites and intramolecular reaction positions. These are
defined as “post-photosynthetic™ or “post-carboxylation™ fractionation (Jiggi et al., 2002; Badeck et al.,
2005; Gessler et al., 2008). Post-carboxylation fractionation in plants includes the carbon
discrimination that follows carboxylation of ribulose-1, 5-bisphosphate, and internal diffusion (RuBP,
27%o). as well as related transitory starch metabolism (Gessler et al.. 2008: Gessler et al., 2014)
fractionation in leaves, fractionation-associated phloem transport, remobilization or storage of soluble

carbohydrates. and starch metabolism fractionation in sink tissue (tree rings). In the synthesis of

5

soluble sugars, C-depletions of triose phosphates occur during exporté@¥sa from the cytoplasm, and )(

during production of fructose-1, as does 6-bisphosphate by aldolase in transitory starch synthesis
(Rossmann et al., 1991: Gleixner and Schmidt, 1997). Synthesis of sugars before transportation to the
twig is associated with the post-carboxylation fractionation generated in leaves. Although these are

likely to play a role, another consideration is [CO,] in the chloroplast (C.). not in the intercellular space,

as used in the simplified equation ofm Farquhar’s model (Evans et al., 1986; Farquhar et al., 1989)is __“K

actually defined as carbon isotope discrimination (8'°C). Differences between gas-exchange derived
values and online measurements of 8'°C have often been used to estimate Ci-C. and mesophyll
conductance for CO; (Le Roux et al.. 2001: Warren and Adams, 2006; Flexas et al., 2006; Evans et al.,
2009; Flexas et al., 2012: Evans and von Caemmerer 2013). In this regard, changes in mesophyll

2
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conductance could be partly responsible for the differences in two measurements, as it generally
increases in the short term in response to elevated CO, (Flexas et al., 2014), but it tends to decrease
under drought (Hommel et al., 2014; Théroux-Rancourt et al., 2014). Therefore, it is neceésary to avoid
confusion between carbon isotope dlscnmmahon derived from synthesis of soluble sugars and/or
mesophyll conductance. The degree to nwﬂ.ga-i-mée-e-l-mrbon fractlonanon, is related to environmental
variation il has yet to be fully mvcstigated.

The simultaneous isotopic analysis of leaves allows determination of temporal variation in isotopic
fractionation (Rinne et al., 2016). This will aidﬂ?hc accurate recording of environmental conditions.
Newly assimilated carbohydrates can be extracted, and these are termed the water-soluble compounds
(WSCs) in leaves (Brandes et al., 2006; Gessler et al., 2009). WSCs can also be associated with an
assimilation-weighted mean of C/C, (and C./C,) photosynthesized over periods ranging from a few
hours to 1-2 d (Pons et al., 2009). However, there is disagreement whether fractionation caused by
post-carboxylation and/or mesophyll resistance can alter the stable signatures of leaf carbon and thence
influence instantaneous water use efficiency (iWUE). In addition, the manner i which iWUE derived
from esa isotopic ﬂ“actionationf responds to environmental factors, such as elevated [CO-] and/or soil
water gradients, is unknown. s

Cori,s&:quent[y, we investigated:the 8°C of fast-turnover carbohydrate pool in sapling leaves of two

tree species, Platycladus orientalis (L.) Franco and Quercus variabilis Bl., native to semi-arid areas of

China. We conducted gas-exchange measurements in controlled environment growth chambers
(FH-230, Taiwan Hipoint Corporation, Kaohsiung City, Taiwan). One goal is to differentiate the '*C
fractionation from the site of carboxylation to cytoplasm prior to sugari transportation in P. orientalis
and (. variabilis, that is the, total C fractionation, determined from the &°C of WSCs and
gas-exchange measurements. . “A is to discuss the potential causes for the observed
divergence, estimate contributions of post-photosynthesis and mesophyll conductance on these
differences, and describe how carbon isotopic fructi(malinn[ respond to the interactive effects of

elevated [CO»] and water stress.

2 Material and Methods

2.1 Study site and design

P. orientalis and Q. variabilis saplings, selected as experimental material, were obtained from the
Capitaly Circle forest ecosystem station, a part of Chinese Forest Ecosystem Research Network
(CFERN), 40°03°45"N, 116°5'45"E in Beijing, China. This region is forested by P. orientalis and Q.
variabilis. We chose saplings \aggsimilar basal diameters, heights, and growth classf® Each sapling
was placed into an individual pot (22 em diam. = 22 cm high). Undisturbed soil samples were collected

from the field, sieved (with particles >10 mm removed), and ptaced into the pots. The soil bulk density

in the pots was maintained at 1.337-1.447 g-cm™. After a 3( splant recovery period, the saplings
were placed into growth chambers for ortho onal cultivation.

The controlled experiment seics we conducted in growth chambers (FH 730nTalwan Hipoint,
Corporation, Kaohsiung City, Taiwan). To rc.pmdm.e the meteor()logwdl -bo&efs Of ifferent grow&
seasons in the research region, davtime and nwhmmc temperatures in the r.hdmhcn were set to 235 i
0.5°C from 07:00 to 17:00 and 18 £ 0.5°C from 17:00 to 07:00. Relative humidity was maintained at
60% and 80% durmg the daytime and nighttime, respect velﬁ The mean daytime light intensity was

200-240 pmol-m=2-g’'. The chamber eewtset system can control and monitor [COz]. Two growth
M
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124 chambers (A and B) were used in this study. Chamber A maintained [COsJs at 400 ppm (Caoo) and 500

125  ppm (Csoo). Chamber B maintained [CO:]s at 600 ppm (Ceoo) and 800 ppm (Cooo). The target [CO] in 2och  — X
126 s chamberf had a standard deviation of + 50 ppm during plant cultivation and olcsting. —X
127 An automatic watering device was used to irrigate thc_: potted saplings and—i-&’:ean avoid heterogeneity — — X
128 when scheduled watering was not made (Fig. 1). The watefing device consisted of a water storage tank,
129 holder, controller, soil moisture sensors, and drip irrigation compunenlf. Prior to use, the tank was —X
130  filled with water, and the soil moisture sensor was inserted to a uniform depth in the soil. After
131  connecting the controller to an AC power supply, tgigqe; sg;l yolumetric water content (SWC) could be
132  set and monitored by soil moisture sensors. Since e SWC could be sensed by the sensors, this
133 automatic watering device can be regulated to begin watering or stop watering the plants. One
134 irrigation device was installed per chamber. Based on mean field capacity (FC) of potted soil (30.70%)
m cemhiniasEO-Feradient, we established de orthogonal trcalmcmsﬁfhur [COz]s = five SWCs (Tab., — X
(‘_‘&é&u\fl A(&Lw‘t 136 1). In Table 1, A;-Ag denotes [CO:] of 400 ppm (Cago). 300 ppm (Csoo), 600 ppm (Ceoo) and 800 ppm
-\ a"' 137 (Czoo) in the chamb rs 1-Bs denotes 35%—45% of FC (10.74%—13.81%), 50%—60% of FC (15.35%—
VLQ,C&‘?-A 138 18.42%)., 60%—70%0f FC (18.42%-21.49%), and 70%—80% of FC (21.49%-24.56%) and 100% of
_ 139 FC (CK, 27.63%—30.70%). Each ortl al treatment of [CO;] x SWC for two saplings per species WA §
140  repeated twice. Each treatment laste 1e pot was exposed 1%:&‘[*&'& SWC lrcmmcn’g. ots in +he.
141  chambers were rczu‘rangc. ¥ X t
Rl i

142 2.2 Foliar gas exchange measurement

143 Fully expanded primary annual leaves of the saplings were measured with a portable infrared gas
144  photosynthesis system (LI-6400, Li-Cor, Lincoln, US) before and after the 7-day cultivation. Two
145 saplings per speci{ were replicated per treatment (SWCx [CO;]). For each sapling, four leaves were X

146 sampled and four measurements were conducted on each leaf. Main photosynthetic parameters, sugh as, : ;

147 ngt photosynthetic rate (#,) and transpiration rate (7}), were measured. Based on m‘%‘i&f}ws\éfa'\'nﬂ .
148 . Von Caemmerer and Farquhar (1981), stomatal conductance (g,) and intercellular [CO-| (Ci) were

149  calculated by the Li-Cor software. Instantaneous water use efficiency via gas exchange (WUE,.) was

150 calculated as the ratio P,/ 7.

151 2.3 Plant material collection and leaf water-soluble compounds extraction

152 Fight recently-expanded sun leaves were selected per sapling and homogenized in liquid nitrogen
153 after gas-exchange measurements were finished. For extraction of WSCs from the leaves (Gessler et
154 al., 2004), 50 mg of ground leaves and 100 mg of PVPP (polyvinylpolypyrrolidone) \gfﬁ Te?&ed and
155 incubated in 1 mL distilled water for 60 min at 5°C in a centrifuge tube. Each leal"Awasr replicated
156 twice. Two saplings per speci L ere chosen for each orthogonal tredtment. The tubes containing the
157 algee mixture were heated in 100°C water for 3 min. After cooling to room temperature, the
158 supernatant of the mixture was centrifuged (12000 > g for 5 min) and 10 pL of supernatant was
159 transferred into a tin capsule and dried at 70°C. Folded capsules were uscd for 8"°C analysis of WSCs.
160 The samples of WSCs from leaves were combusted in an elemental analyzer (EuroEA, HEKAtech

161 GmbH, Wegberg, Germany) and analyzed with a masagspectrdmetcr_(DELTAW“SXP, ThernoFinnigan).
s arid & w . : .

162 Carbon isotope -signatures af\e expressed in &-notation (parts per thousand), relative to the

163 international Pee Dee Belemnite (PDB)S 4o dord. :

164 §3C= (22 — 1) x 1000 (1

Rstandard

165 where 8'C is the heavy isotope and Rumpre-and Rynians refer to the isotope ratio between the particular
4



166
167

168

169
170
174

172

173
174

175

176
177
178
179

180

181
182
183

184

185
186
187

188

189
190
191
192
193

194

195

196

197
198
199
200

substance and the corresponding standard. respectively. The precision of repeated measurements was
0.1 %o.

2.4 Isotopic calculation
2.4.1 BC fractionation from the site 3§ carboxylation to cytoplasm prior to sugarg transportation

Based on the linear model deseleped-bs Farquhar and Sharkey (1982). the isotope discrimination, 4,
J& calculated as
A= (8"~ 6  Cpen ) /TL + 8 Casc); )
where 8"°C, and 8'3Cysc are the iso%p&;ignaturcs of ambient [CO:] in chambers and WSCs extracted
from leaves. respectively. The Ci:C, jg determined by
C:Cp=(A—a)/(b—a). (3)

where C; and C, are the [COx]s within substomatal cavities and in #fd-growth chambers, respectively;
a is the fractionation occurring CO, diffusion in still air (4%o) and b refers to the discrimination during
CO; fixation by ribulose 1,5- bisphosphate carboxylase/oxygenase (Rubisco) and internal diffusion

(30%o). Instantaneous water use efficiency by gas-exchange mcasuremcnq! (WUEL),j# calculated as
WUE,, = P,: T, = (C, — €;)/1.6e. (4)
where 1.6 is the diffusion ratio of stomatal conductance for water vapor to CO; in chambers and Ae is

) ' [ :
the difference between ey and emm)-that represen}\ the extra- and intra-cellular water vapor’ pressure,

respectively:

Ae = eyp — €qrm = 0.611 x ¢17-502T/(240.974T) ¢ (1 — RH), (5)

where 7 and RH are the temperature and relative humidity on leaf surface, respectively. Combining

Egns. (2, 3 and 4), the instantaneous water use efficiency could be determined by the 8'*Cysc of leaves,

defined as-W1A4

WUE =22 = (1 - ¢) (Ca = €/ 168 = C(1 = ¢) [*’*f;ifl‘;(*fj’;fg::c‘;’“] /1.6Ae. 6)
where ¢ is the respiratory ratio of leaf carbohydrates to other organs at night (0.3).

Then the '*C fractionation from the si't‘e: of carboxylation to cytoplasm prior to sugars transportation
(defined as the total '*C fractionation) estimated by the observed 8'*C of WSCs from leaves
3"3Cwse) and the modeled 3'*C calculated from gas-exchange measurements (8'*Cmoder). The 3 Cpioser
j? calculated from 4,040 from Eqn. (Z)SWA,MW gntga determined by Eclr_g. (3 and 4) as

1.6AeWUEge y

Ca—Amodel
813 Cmodel TRl (8)
Total 13C fractionation = §3Cygc — 8'3C,0001- 9

2.4.2 Method of estimations for mesophyll conductance and the contribution of post-carboxylation

fractionation
wes

I'he carbon isotope discrimination A generated from the relative conmbutlon of diff mi_lon and
' 4]
carboxylation, reflected by the ratio of [CO.]| at the site of carboxylation (C.) to that in the bRt S
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e oulzide aic(C,)-
201 t 5 1 == The carbon isotopic discrimination (4) can be presented as

202 (Farquhar et al. 1982):

€Rp

— HfT
203 A=q,EE4a=ly (es +a) b (10)

cﬂ 1 Cﬂ
dir ) ) ~ ~ .

204 where Ca, Cs, Ci, and C are the [COz]s in the ambient erwirermyent, at the boundary layer of the leaf, in
205 the substomatal cavitics, and at the sites of carboxylation, respectively; as is the CO, diffusional
206 fractionation at the boundary layer (2.9%o); e, is the discrimination for CO; diffusion when CO; enters
207  in solution (1.1%e, at 25°C); a; is the CO; diffusional fractionation in the liquid phase (0.7%o); e and f
208 are carbon discriminations derived in dark respiration (Rp) and photorespiration, respectively: £ is the

209 carboxylation efficiency, and I is the CO: compensation point in the absence of dark respiration

210 Brooks and Farquhar,1985).

( 4 ) acveoss e
211 When gas in the cuvette is well stirred during gas- L\Léwpﬁu measurements, diffusion eessssag
212 boundary layer could be neglected and Equation 10 can be as

— & i -~ See Nﬂ

L
213 A=a®y (e, o) b p o (1) nete Re
Ca Ca WL fr
E@n . ¢
214 There is no consensus about the value of e, although recent measurements estimate it as ranging
215 from 0-4%e.. The value of fhas been estimated to range from 8-12%o (Gillon and Griffiths. 1997; \t nalidn
216 Igamberdjev et al., 2004; Lanigan et al., 2008). As the most direct factor, Waa b wiramk
217 influence the calculation of g,, which is thought to be upproxhﬁalcl} 30%o in higher plants (Guy et al., ? 2,
218 1993) A

219 The difference of [CO:] between substomatal cavities and chloroplasts is omhile di l]'usion! —

220 related to dark-respiration and photorespiration are negligible and Equation 11 eewié be simplified 26 4o — %
A

sy

221 A-=a+(b—a}ﬂ (12)

;Ak 0(& M’\\ﬂ\

222 ation 12 tnotes the linear relationship between carbon discrimination and C,/C,. That underlines
223 huhx\,quun comparison between expected 4 (originating from gas-exchange, 4;, and actually measured
224 Au). could evaluate the differences of [CO;] between intercellular air and sites of carboxylation that
225 are the *C fractionation from mesophyll conductance. Consequently, g, is calculated by subtracting the

226 1.5 of Equation 11 from 4; (Equation 12):

¢Rp
Cl Coi o g T

227 Ai ADbS = (b =gz — G.!) S P (13)
a
228 and (b P, from Fick’s first law is presented by
229 By = gn(Ci — Co). . (14)
230 Substituting Equation 14 into Equation 13 we obtain
gLq 9
Ep e

- &

231 A=Ay = (b — e e (15)
(b—f-’s‘al)"r:'il‘

232 g, = e R/ (16)
233 In calculation .of gm, terms of respiratory and photorespiratory could be ignored and e and f are

6
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assumed to be zero or to be cancelled gut in the calculation of gu.
. E;e, - W(lgﬁm ) ’
Then Equation 16 can be O OS5

————

' P
! (b_es_a!)c_:

Im = i dabs (am
Therefore, the contribution of post- carboxylation fractionation can be estimated by

Contribution of post — carboxylation fractionation =

(Total 3¢ fractionation—fractionation from mesophll conductance) % 100%. a18)

Total 13C fractionation
3 Results

3.1 Foliar gas exchange measurements

When SWC increased between the treatments, P, gs and T, in P. orientalis and Q. variabilis peaked
at 70%—80% of FC and/or 100% of FC (Fig. 2). The Ci in P ort’erl:taiis rose as SWC increased. It O 05 ?
peaked at 60%—70% of FC and declined thereafter with increased SWC in Q. variabilis. The carbor/ Hnd
uptake and C; were significantly improved by elevated [CO:z] at all SWCs for the two species (p.
Greater increases of Py in P. orientalis were found at 50%—70% of FC from Caoo to Csoo, Which was at
35%-45% of FC in Q. variabilis. As water stress w as reduced (at 70%—80% of FC and 100% of FC),
reduction of g, in P. orientalis was more pronounced with clevated [CO2] at a givep SWC (p= 0.01).
Nevertheless, g, 'gf Q. variabilis ngm, Csoo, and Ceoo was s—igniﬁcantly higher than 1 Csoo at 50%—-80%
of FC (p= 0.01). Coordinated with gi, T; of the two species s;rCm and Csqo was significantly higher
1han-e3'|(C6m and Cgcept at 35%—60% of FC (p< 0.01, Figs. 2g and 2h). Pp, g, C; and T; ,(% o.

variabilis was-significantly greater than the corresponding values of P orientalis (p=< 0.01, Fig. 2). —_
x i
3.2 5"3C of water-soluble compounds in leaves W

After observations of photosynthetic traits in leaves of the two species, the same leaves were
immediately frozen and WSCs were extracted for all orthogonal treatments. The carbon isotope
composition of WSCs (8"*Cwsc) of both species increased as SWC increased (Figs. 3a and 3b, p= 0.01).
The mean 83 Cwsc of 2 arientalis and Q. variabilis ranged from -27.44 = 0.155%o to -26.71 = 0.133%a,
and from -27.96 = 0.129%e to -26.49 = 0.236%., respectixgly. The photosynthetic qg‘gﬂcity varied with
increased SWC and the mean 33Cwsc of the two spec achg‘a m&*:’&gﬁ‘%/g—sor% of FC. With
gradual enrichment of [CO-], mean 8" Cyye in both species declined when [CO:] exceeded 600 ppm
(»< 0.01). Except for Csoo at 50%-100% of FC, the 6”Cw.n;c“3-’§ P orientalis was significantly larger
than that %Q. variabilis at any [COz] * SWC treatment (p< (J.()‘T, Fig. 3).

3.3 Estimations of WUEg and WUE, -

Figure 4a shows that increments of WUELe in P. orientalis under seyere drought (i.e., 35%—45% of
FC) were highest at any [CO:], ranging from 90.70% to 564.65%. The WUEg in P r\_ort'entaz'is
decreased as SWC increased, while valucsvincreased as [CO;] increased. Differing from variation in

‘h - o e
WUE,.of P. orientalis with moistened soil, WUEqe in Q. variabilis increased slightly at 100% of FC .tn-gor — %
A

Ceoo or Csoo (FiE. 4b). _Thetrzaxin_] m \-\-"l_jan,gc occurred at 35%—45% of FC ﬁrcm among all orthogonal
treatments .”h’c‘q F " 5 i 22 PE iabibis. Ilevated [CO2| enhanced the

A >

WUE, %Q. variabilis at any SWC}c cept at 60%—80% of FC. Thirty-two saplings of . orientalis had
r

greater WUE,, than did Q. variabilis &qthe same [COz] x SWC treatmentf UJ@.

»4
“ 0.052 7

s occo® YRamA ilmes
£ ftmiv;u;’c bhe fapec
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272 As illustrated in Fig. 5a, WUE,, ;} P orientalis s: Cooo or Cgoo increased as water stress was
273 alleviated beyond 50%—60% of FC, asch][ as ‘Pg‘“‘*’rc“(’ or Cs@ile SWC exceeded 60%—70% of —_—X
274 FC. Q. variabilis showed variable WUE,, w1th SWC ‘eseaseal (Fig. 5b). Except for Caoo. WUE,, Ol 0.
275 variabilis decreased abruptly at 50%—60% of FL and then increased as SWC increased Csoo,%mo,

W

276 and Csoo. In contrast to the results yf\k UE.e, WUEg, of Q. variabilis was more pronounced than £ ___ >L
A

277 orientalis among all orthogonal tre.atments .J:

278 3.4 C fractionation from the site of carboxylation to cytoplasm before sugal’transportation — X

279 We evaluated the total “C fractionation from the site of carboxylation to the cytoplasm by

280  gas-exchange measurements and WSCs in leaves (Table 2), which canrl‘rgck the path of "C

281  fractionation m leaves. Comparing 8"“Cpsc with 8"Cioses from Eqns. (4, 7-9). the total 3¢

282 fractionation Q? P. orientalis ranged from 0.0328%0 to 0.0472%., which was less than that pf Q.

283 variabilis (0.0384%e. to 0.0466%,). The total fractmnattonfe?[’ orientalis u!-lin:‘:-fmagmf'ed wit SV\( 3

284 ein et ewema]lyﬂeu—tgautorcached 35%—-80% of FC from Cago to Csoo (increased by 2
285 42.04%). The total I‘raclio:;tion[ under Cyoo and Csgo were amplified as SWC increased until 50%—60%

286  of FCin Q. variabilis, whereas they were increased at 50%—80% of FC and decreaz,ed at 100% of FC

287 under Csoo and Cson. Elevated [CO:] enhanced the mean total fractionation yf’ P. orientalis, while

288 fractionation QYQ variabilis declined sharply troga Ceoo to Csoo. Total "*C fractionation, with increased

289 SWC. in P. orientalis increased more rapidly thanﬁdrd () variabilis. —
~
290 3.5 gm imposed on the interaction of CO: concentration and water stress

291 A comparison between online leaf 8*Cuse and the values of gas-exchange measurements is Uivg‘n"lo (TCA
292 estimate the g, over all treatments in Fig. 6 (Eqns. 10-17). A significant increasing trend ofgm

293 omsEREy with | Lﬁm?w 19e_r stress in P. orientalis, ranging from 0.0091-0.0690 mol- COg m?s! (p<

294 . which rgdched a maximum at 100% of FC under a given [CO;]. Increases in gn 9¥Q variabilis

295 with increasing SWC were not .\tgmm’(ccpt those under Capo. With increasing ]( 0z2), gm Q?IhL

296 two species increased at different rates. With P orientalis under Cao, g» increased gmdual]_\_ and
297 reached a maximum under Csoo at 35%—60% of FC and 100% of FC (p< (. —0.3). However, that was
298 maximized under Ceoo (< @ and reduced under Cyoo at 60%—80% of FC, The maximum incremenif i
299 ff g (8.2%-58.4%) occurred at Cyoo at all SWCs in Q. variabilis. The Zm &’ Q. variabilis was clearly

300  greater than that of P. orientalis under the same treatments.
A

301 3.6 Contribution of post-carboxylation fractionation

302 We evaluated the difference between A; and dups in C fractionation derived from mesophyll
303 conductance. The post-photosynthetic fractionation after carboxylation can be calculated by subtracting
304 gm-sourced (mutllonallon from the ;otal C fractionation (T gble 2). The gu-sourced fractionation

I & . .
305 provided G]L tota ”C fractionation than post-carboxylation fractionation
i = N - .
306 treat nt (Iahiu 2). The gu-sourced fractionation in the two species illustrated different

3
307 variations w1thASnﬁ (&mmud’whlch declined at 50%—-80% of FC and increased at 100% of FC in P.

308 orienz’a.'ct. in Q. variabilis, it increased with water stress alleviation at 50%—80% of FC and then
309 decreased at 100% of FC. Nevertheless, in the two spccie.ﬁ post-carboxylation fractionationf in leaves _—94
310  _apd-~these-contributtens all increased as increased. The gu-sourced fractionation in P.
311 orientalis and Q. variabilis reached their peaks under Ceoo and Csoo, respectively. Post- -carboxylation
312 fractionationg was magnified with [COz] |nLrLasc$m P. orientalis, and rn,ddmdal":'mun#mmer Ceoo and

¥ A
313 then xa 2 under Cspo.

1
314 3.7 Relationship between g;, g and total *C fractionation



assocased vk
315 Total *C fractionation may be correlated with resistances &ewn stomata and mesophyll cells. We — ¥
316  performed linear regressions between g/g, and total *C fraction;ion vakiestor P orientalis and 0 —+
317 variabilis.sespestwely (Fig. 7 and 8). The total *C fractionation was correlated to W@ g, (p< 0.01). The
318 positive linear relationships between g, and total '*C fractionation (p< 0.01) indicated hat the variation
319 of [COz] through the chloroplast was correlated with carbon discrimination L}Mr leaf

320 photosynthesis,

321 4 Discussion

322 4.1 Photosynthetic traits

323 The exchange of CO; and water vapor via stomata can be modulated by the soil/leaf water potential
324 (Robredo et al., 2010). Saplings of P orientalis reached maximum P, and g, at 70%—80% of FC
325 irrespective of [COZ] treatme As SWC exceeded this water threshold, elevated CO; caused a greater e A“—"—F\" Ba A
326 2 Skl aS m ;

327 respondmg to elevated [COg]. could be mitigated by increased SWC. The C, Q. variabilis peaked at

328 60%-70% of FC and then declined as soil moisture increased (Wall et al., 2006; Wall et al., 2011).

329 This may be because stomata tend to maintain a constant C; or C;/C, when ambient [CO-] is increased,

eported for barley and wheat (Wall et al., 201 1). The decrease pfg,

330 which would determine the amount of COs used directly in the chloroplast (Yu et al., 2010). This Rc;uil

331 could be explained.‘as stomatal limitation (Farquhar and Sharkey. 1982; Xu, 1997). However, C; & P — K
332 orientalis s increased considerab@hile SWC exceeded 70%—80% of FC, as found by Mielke et al.

333 {(2000). One possible contributing factor is plants close their stomata to reduce water loss during

334 organic matter synthesis simultaneously decreasing the availability of CO- and generating respiration

335 of organic matter (Robredo et al., 2007). Another possible explanation is that the limited root vo]umcb’& —x
336 potted plan;' expersments may be unable to absorb sufficient water to support full growth of shoots

337 (Leakey et al., 2009; Wall et al., 2011). In the present study, increasing [CO:| may cause nonstomatal

338 limitation when SWC exceeds a soil moisture thresholdg 0%—80% of FCf The accumulation of — %
339 nonstructural carbohydrates in leaf tissue may induce mesophyll-based and/or biochegmical-based

340 transient inhibition of photosynthetic capacity (Farquhar and Sharkey, 1982). Xu and Zhou (2011)

341 developed a five-level SWC gradient to examine the effect of water on the physiology of perennial

342 Leymus chinensis and demonstrated that there was a clear maximum l,g-(' SWC, b¢low which the plant

343 could adjust to changing environmental conditions. Miranda Apodaca tl:; al. (2015) also concluded that,

344 in suitable water Conditiorfs; elevated CO; levels augmented CO; assimilation in herbaceous plants.

345 The P, of the two \mndyAplam species increased with elevated [CO,] similar to results from other C;

346 woody plants (Kgope et al., 2010). Increasing [CO2] alleviated severe drought an‘éj}%a% mi%&ﬁn, =
347 suggesting that photosynthetic inhibition produced by a lackgor exces#ol' water may be mediated by _~ ¥
348 increased [CO:] (Robredo et al., 2007; Robredo et al., 2010) and ameliorate the effects of drought

349 stress by reducing plant transpiration (Kirkham, 2016; Kadam et al., 2014; Miranda Apodaca et al.,

350 2015; Tausz Posch et al., 2013).
351 4.2 Differences between WUEg and WUE,,

352 The increases ai WUE,e in P orientalis and Q. variabilis that resulted from the combination of 7,
353 increase and g; d;‘(‘:reasc were followed by a reduction in 7, (Figs. 2a, 2g, 2b and 2h). This result was
354 also demonstrated by Ainsworth and McGrath (2010). Comparing Py P» and T, gy '&‘: the two N
355 species. a lower WUE,. in Q. variabilis was obtained due to its physiological and morpholog]ca] traits,

356 such as larger leaf area, rapid growth, and higher stomatal conductance than that 9? P orientalis

A 9



357 (Adiredjo et al., 2014). Medlyn et al. (2001) reported that stomatal conductance of broadleaved species
358 is more sensitive to elevated [CO,| than conifer species. There is no agreement on the patterns of
359 iWUE, at the leaf level, related to SWC (Yang et al,, 2010). The WUE, 21' P orientalis and Q.
360  variabilis were enhanced with soil drying, as presented by Parker and Pallardy (1991), DeLucia
361 Heckathorn (1989). Reich et al. (1989), and Leakey (2009).
362 Bogelein et al. (2012) confirmed that WUE,, was more consistent with daily mean AWUEg. than U‘-’EHq
363 WUE phioem (Ld]gl]ldlud by the 8"*C of phloem). The WUE,, of the two species de
364 VdfldthlﬁtO those b”CW which differed lmm% of WUE,. Pons et al. (2009 noted that A4 of leaf

365 soluble sugar is coupled with environmental dynanqlbs over a period ranging #om a few hours to 1-2 dsz.
366 The WUE,, of our materials could respond to [COz] x SWC treatmentg over a number of cultivated

in
chang, lants to new
= pf P a N o‘J(Sufe
368  conditions. In addition, species-specific 8" *Cwsc were observed in the same cnwmnmcﬂtal treatment. @ g 5
e h

nstrated similar

367 days, whereas WUE,. is characterized as the instantaneous

369 Consequently, WUE;, and WUEg have different degrees of variations in response to different \
370  treatments. i (e Q,Udv“-c.b
371 4.3 Influence of mesophyll conductance on the fractionation after carboxylation Q 3

372 CO- diffusion into photosynthetic sites includes two main processes. CO; first moves from ambient
373 air surrounding the leaf (C,) through stomata to the sub-stomatic cavities (C:). From sub-stomatic
374  cavities CO; then moves to the sites of carboxylation within the chloroplast stgoma (C.) of the leaf
xas et al., 2008). e ——— >C

375 mesophyll. The latter procedure of diffusion is termed mesophyll conductance (g
376 Moreover, g. has been identified to coordinate with environmental factors mor
377 conductance (Galmés et al., 2007: Tazoe et al., 2011: Flexas ¢t al.. 2007). During ou
378  of SWC x [CO:], gw increased and WUEg. decreased with increasing SWC. It has bee
379 that gm can improve WUE under drought pretreatment (Han et al., 20]6)7 However, the mechanism eg n —
380 which gn responds to the fluctuation of [CO,] is unclear. Terashima et al. (2006) demonstrated that

documented

381  CO: permeable aquaporm located in the plasma membrane and inner envelope of chloroplasts, could

382 regulate the change o?g,,, In our study, gm is species-specific to the [CO:] gradient. Thg gm '9'% P

383 orientalis wes ngmfcamly decreased by 9.08%-44.42% from Ceoo to Csoo at 60%-80% of these .__-—)(

384 are similar to the results of Flexas et al. (2007). A larger g M Q. variabilis under Csoo observed

385 compa£ with P. orientalis. A

386 Furthgrmore. gm contributed to the total "C fractionation that followed carboxylati@\ile

387 photosynthate had not been transported to the sapling twigs. The *C fractionation of CO; fronT the /{7? L%

388 surrounding the leaf to sub-stomatal cavitics may be simply considered, whereas the fractionation <\_IM“-
389 induced by mesophyll conductance from “sub-stomatic cavities to the site of carboxylation in the ‘\a/
390 chloroplast canpot be neglected (Pons et al., 2009; Cano et al., 2014). In estimating the M\6 5\

391 post-carboxylation fractionation, g,-sourced fractionation must be subtracted from the total "*C —

fractionation (the difference between 8'*Cic and 8" Craer), Which is closely associated with gy (Fig. 8,

393 p= (),0]). Variations i;z,—sourccd fractionation are coordinated with m'& gn with

!-‘5-+l~:"§ 394  changing environmental conditions ¢§f Table 2)0 N A — A
h(ZAQ&? 395 4.4 Post-carboxylation fractionation generated before photosynthate moves out of leaves

396 Photosynthesis, a biochemical and physiological process (Badeck et al., 2005), is characterized by
397 discrimination in *C, which leaves an isotopic signature in the photosynthetic apparatus. Farquhar et o/
398  (1989) reviewed the carbon-fractionation in leaves and covered the significant aspects of

399 photosynthetic carbon isotope discrimination. The post-carboxylation/photosynthetic fractionation
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associated with the metabolic pathways of non-structural carbohydrates (NSC; defined here as soluble
sugars + starch) within leaves, and fractionation during translocation, storage, and remobilization prior

to tree ring formation is unclear (Epron et al., 2012; Gessler et al.. 2014; Rinne et al., 2016). The

synthesis peoswsses of sucrose and starch before transportation to l\\‘zg)tfal;\wlihm the domain of

post-carboxylation fractionation generated in leaves. Hence, we hypothesized that *C fractionation
might exist. When we completed the leaf gas-exchange measurements, leaf samples were collected

immediately to determine the 8"°Cpy. Presumably, “C fractionation generated in the synthetic

processes of sucrose and starch was contained within the '*C fractionation from the site of

carboxy]atlon to cytoplasm before sugarf transportation. Comparing 3B Cwse with 8'3Cops, the total *C

fractionation d P. orientalis ranged from 0.0328%o to 0.0472%,, which was somewhat less than that ﬁm

Q. variabilis (from 0.0384%o0 to 0.0466%.). Post-carboxylation fractionation contributed 75.30%-98.9%
to total '*C fractionation, determined by subtracting the fractionation of g, from total '*C fractionation.
Gessler et al. (2004) reviewed the environmental components of variation in photosynthetic carbon
isotope dlscrlmmanon in terrestrial plants Total "*C fractionation &P orientalis was enhanced by the
JI'I(.I’&.,dS(. oﬁ'%\’» C, consistent with that of Q. variabilis, except at 100% of FC. The '*C isotope signature

=

e K

ﬂFP ortemal.!s was depleted with clcvated [CO.). Yet. *C-depletion was weakened in Q. variabilis ﬁ'%f aat o

Csoo and Cseo. Linear regressions between go and total C fractionation indicated that the

post-carboxylation fractionation in leaves depends on the variation of g, and that ﬁrtlstomata aperture -— X

was correlated with environmental change.
5 Conclusions

Through orthogonal treatments of four [COs]s x five SWCs, WUE., calculated by 6"*Cuse and

WUE,. derived from simyltaneous leaf gas-exchange. were estimated to differentiate the 8°C signal
variation before lcaf—&ﬁd

fractionation between the sites of carboxylation and ambient wﬂt is important. It requires
consideration when testing the hypothesis that the post-carboxylation contributes to the "“C
fractionation from the site of carboxylation t;oﬂcytoplasm before sugar/ transport. In response to the
interactive effects of [CO-] and SWC, WUESe;ftwo tree species both decreased with increasing SWC,
and increased with elevated [CO.] at 35%—80% of FC. We concluded that relative soil drying, coupled
with elevated [CO:]. L.dn improve WUE,. by strengthening photosynthenc capacity and reducing
transpiration. WUE. * P. orientalis was significantly greater than that ef Q. variabilis, while the
opposite was the case for V\[qu, The g» and post-carboxylation both contributed to the total "*C
: i t . Rising [CO;]
and/or moistening soil generated increasing disparities between 8" Cyc and 8 Cypouer in P. orientalis;
nevertheless, the differences between 8 *Cyusc and 8"*Cpoger in Q. variabilis increas%hcn [CO-] was

less than 600 ppm and/or water stress was alleviated. Total *C fractionation in I\leaf was linearly

fractionation.

dependent on g,. With respect to carbon isotope fractionation in post-carboxylation and transportation
processes, we note that it *C fractionation derived from the synthesis of sucrose and starch is likely

influenced by environmental changes. A clear description of the magnitude and environmental

translocation of primary assimilates, IIhe influence of g, on “C — >

Ao necﬁe}.
Loe q\@é:

[Crow
ALy

——

dependence of post-carboxylation fractionation is worth m%
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702 afp’éal‘h? Table

703 Table 1. Orthogonal treatmentswf P. orientalis and Q. variabilis, esteurdOs concentrabensTHT — X
704 s0ilyo teuatarcontents
P. orientalis Repc‘als A B, B2 Bs Ba Bs
(cultivated period)
3 Ri:June 2-9 AiBIR, AiBaR, A B3R, A1B4R; AiBsR,
Rz:June 12-19 AiBIR; AiB:R; A1BiR A1B4R: A1BsR;
i, Ri:July 11-18 A:BIR, AzB:R, AsBsR AsB4R, Az:BsR,
} Ro:July 22-29 A:BiR: AsBaR, AzBsR; AsBsRs A:BsR,
£ Ri:June 2-9 AsBiR, AsB2R; A;3BsR, A3BaR, AsBsR;
Ra:June 12-19 AsBiR AsBsR, AsBsR; AsBsR: AsBsR
A RiJuly 11-18 AsBIR, AsB:R; A4BsR, AsB4R, AsBsR,
Rz:July 22-29 AsBIR; AsB2R: A4B3R; AsB4R:2 A4BsR;
Repeats
Q. variabilis o . B, B2 B; By Bs
(cultivated period)
Pi:June 21-28 ABP, A,B:P, ABsPy AB4P, A1BsR,
% Pa:July 2-9 ABP.  AB:P,  ABP»  AB#P:  ABsR:
Pi:August 4-11 A:zB 1P AzBoPy AoB;3P, A2B4P, AzBsR,
e P2:August 15-22 AsBP; A:B2P; AzB3Ps AzB4P: A2BsR>
& Pi:June 21-28 AzB Py AsB2Py A3BsPy AsB4P, AsBsR,
Py:July 2-9 AzB\P: A3B,P> A;BsP A3B4P> A;BsR:
Pi:August 4-11 AsBP A4B,P, A4B;3P, AsB4P, AsBsR,
a P2:August 15-22 ABP:  ABP: ABP:  ABP:  ABsR
705
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