Interaction of CO₂ concentrations and water stress in semi-arid plants causes diverging response in instantaneous water use efficiency and carbon isotope composition

4 Na Zhao^{1, 3}, Ping Meng², Yabing He¹, Xinxiao Yu^{1, 3}*

¹ College of soil and water conservation, Beijing Forestry University, Beijing 100083, P.R. China

² Research Institute of Forestry, Chinese Academy of Forestry 100091, Beijing, P.R. China

³ Beijing collaborative innovation center for eco-environmental improvement with forestry and
 fruit trees

9 Abstract. In the context of global warming attributable to the increasing levels of CO_2 , severe drought 10 may be more frequent in areas with chronic water shortages (semi-arid areas). This necessitates 11 research on the interactions between increased levels of CO_2 and drought on plant photosynthesis. It is 12 commonly reported that ¹³C fractionation occurred as CO₂-gas diffuses from the atmosphere to the sub-stomatal cavity. Few researchers have investigated ¹³C fractionation at the site of carboxylation to 13 14 cytoplasm before sugars are exported outward from the leaf. This process typically progresses in 15 response to variations in environmental conditions (i.e., CO₂ concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis 16 17 and Quercus variabilis) from semi-arid areas of Northern China were selected and cultivated in growth 18 chambers with orthogonal treatments (four CO_2 concentrations ([CO_2]) × five soil volumetric water 19 contents (SWC)). The δ^{13} C of water-soluble compounds extracted from leaves of saplings was 20 determined for instantaneous water use efficiency (WUE_{cp}) after cultivation. Instantaneous water use efficiency derived from gas exchange (WUE_{ge}) was integrated to estimate differences in δ^{13} C signal 21 variation before leaf-exported translocation of primary assimilates. The WUEge of *Platycladus* 22 23 orientalis and Quercus variabilis both decreased with increased soil moisture at 35%-80% of field 24 capacity (FC), and increased with elevated [CO₂] by increasing photosynthetic capacity and reducing 25 transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes, differed between the two species. The WUEge in P. orientalis was significantly greater than that in Q. variabilis, 26 while an opposite trend was observed when comparing WUE_{cp} between the two species. Total ¹³C 27 fractionation at the site of carboxylation to cytoplasm before sugar export (total ¹³C fractionation) was 28 29 species-specific, as demonstrated in the interaction of [CO₂] and SWC. Rising [CO₂] coupled with 30 moistened soil generated increasing disparities in $\delta^{13}C$ between water-soluble compounds ($\delta^{13}C_{WSC}$) and estimates based on gas-exchange observations ($\delta^{13}C_{obs}$) in P. orientalis, ranging between 31 0.0328‰–0.0472‰. Differences between $\delta^{13}C_{WSC}$ and $\delta^{13}C_{obs}$ in Q. variabilis increased as [CO₂] and 32 SWC increased (0.0384‰–0.0466‰). The ¹³C fractionations from mesophyll conductance (g_m) and 33 post-carboxylation both contributed to the total ¹³C fractionation that was determined by $\delta^{13}C$ of 34 water-soluble compounds and gas-exchange measurement. Total ¹³C fractionation was linearly 35 36 dependent on stomatal conductance, indicating post-carboxylation fractionation could be attributed to 37 environmental variation. The magnitude and environmental dependence of apparent post-carboxylation 38 fractionation is worth our attention when addressing photosynthetic fractionation.

Key words: Post-carboxylation fractionation; Carbon isotope fractionation; Elevated CO₂
 concentration; Soil volumetric water content; Instantaneous water use efficiency

41 1 Introduction

42 Since the industrial revolution, atmospheric CO₂ concentration has increased at an annual rate of 43 0.4%, and is expected to increase to 700 µmol mol⁻¹, culminating in more frequent periods of dryness 44 (IPCC, 2014). Increasing atmospheric CO_2 concentrations that exacerbate the greenhouse effect will increase fluctuations in global precipitation patterns, but will probably amplify drought frequency in 45 46 arid regions, and lead to more frequent extreme events in humid regions (Lobell et al., 2014). Accompanying the increasing concentration of CO₂, mean δ^{13} C of atmospheric CO₂ is currently being 47 48 depleted by 0.02‰–0.03‰ year-1 (CU-INSTAAR/NOAACMDL network for atmospheric CO₂; 49 http://www.esrl.noaa.gov/gmd/).

50 The current carbon isotopic composition may respond to environmental change and their influence 51 on diffusion via plant physiological and metabolic processes (Gessler et al., 2014; Streit et al., 2013). 52 While depletion of $\delta^{13}C_{CO_2}$ is occurring in the atmosphere, variations in CO₂ concentration ([CO₂]) 53 may affect $\delta^{13}C$ of plant organs that, in turn, are responding physiologically to changes in climate 54 (Gessler et al., 2014). The carbon discrimination $(^{13}\Delta)$ of leaves could also provide timely feedback 55 about the availability of soil moisture and the atmospheric vapor pressure deficit (Cernusak et al., 56 2012). Discrimination of 13 C in leaves relies mainly on environmental factors that affect the ratio of 57 intercellular to ambient $[CO_2]$ (C_i/C_a). Rubisco activities and the mesophyll conductance derived from 58 the difference of $[CO_2]$ s between intercellular sites and chloroplasts are also involved (Farquhar et al., 59 1982; Cano et al., 2014). Changes in environmental conditions affect photosynthetic discrimination and 60 they will be recorded differentially in the $\delta^{13}C$ of water-soluble compounds ($\delta^{13}C_{WSC}$) in different plant 61 organs. Several processes during photosynthesis alter the δ^{13} C of carbon transported within plants. 62 Carbon-fractionation during photosynthetic CO₂ fixation has been reviewed elsewhere (Farquhar et al., 63 1982; Farquhar and Sharkey, 1982).

64 Post-photosynthetic fractionation is derived from equilibrium and kinetic isotopic effects that 65 determine isotopic differences between metabolites and intramolecular reaction positions. These are 66 defined as "post-photosynthetic" or "post-carboxylation" fractionation (J äggi et al., 2002; Badeck et al., 67 2005; Gessler et al., 2008). Post-carboxylation fractionation in plants includes the carbon 68 discrimination that follows carboxylation of ribulose-1, 5-bisphosphate, and internal diffusion (RuBP, 69 27‰), as well as related transitory starch metabolism (Gessler et al., 2008; Gessler et al., 2014), 70 fractionation in leaves, fractionation-associated phloem transport, remobilization or storage of soluble 71 carbohydrates, and starch metabolism fractionation in sink tissue (tree rings). In the synthesis of 72 soluble sugars, ¹³C-depletions of triose phosphates occur during exportation from the cytoplasm, and 73 during production of fructose-1, as does 6-bisphosphate by aldolase in transitory starch synthesis 74 (Rossmann et al., 1991; Gleixner and Schmidt, 1997). Synthesis of sugars before transportation to the 75 twig is associated with the post-carboxylation fractionation generated in leaves. Although these are 76 likely to play a role, another consideration is $[CO_2]$ in the chloroplast (C_c), not in the intercellular space, 77 as used in the simplified equation of the Farquhar's model (Evans et al., 1986; Farquhar et al., 1989) is actually defined as carbon isotope discrimination (δ^{13} C). Differences between gas-exchange derived 78 79 values and online measurements of δ^{13} C have often been used to estimate C_i - C_c and mesophyll 80 conductance for CO₂ (Le Roux et al., 2001; Warren and Adams, 2006; Flexas et al., 2006; Evans et al., 81 2009; Flexas et al., 2012; Evans and von Caemmerer 2013). In this regard, changes in mesophyll

82 conductance could be partly responsible for the differences in two measurements, as it generally 83 increases in the short term in response to elevated CO₂ (Flexas et al., 2014), but it tends to decrease 84 under drought (Hommel et al., 2014; Th éroux-Rancourt et al., 2014). Therefore, it is necessary to avoid 85 confusion between carbon isotope discrimination derived from synthesis of soluble sugars and/or 86 mesophyll conductance. The degree to magnitude of carbon fractionations is related to environmental 87 variation that has yet to be fully investigated.

88 The simultaneous isotopic analysis of leaves allows determination of temporal variation in isotopic 89 fractionation (Rinne et al., 2016). This will aid the accurate recording of environmental conditions. 90 Newly assimilated carbohydrates can be extracted, and these are termed the water-soluble compounds 91 (WSCs) in leaves (Brandes et al., 2006; Gessler et al., 2009). WSCs can also be associated with an 92 assimilation-weighted mean of C_i/C_a (and C_c/C_a) photosynthesized over periods ranging from a few 93 hours to 1-2 d (Pons et al., 2009). However, there is disagreement whether fractionation caused by 94 post-carboxylation and/or mesophyll resistance can alter the stable signatures of leaf carbon and thence 95 influence instantaneous water use efficiency (iWUE). In addition, the manner in which iWUE derived 96 from these isotopic fractionations responds to environmental factors, such as elevated [CO2] and/or soil 97 water gradients, is unknown.

98 Consequently, we investigated the $\delta^{13}C$ of fast-turnover carbohydrate pool in sapling leaves of two 99 tree species, Platycladus orientalis (L.) Franco and Quercus variabilis Bl., native to semi-arid areas of 100 China. We conducted gas-exchange measurements in controlled environment growth chambers 101 (FH-230, Taiwan Hipoint Corporation, Kaohsiung City, Taiwan). One goal is to differentiate the ¹³C 102 fractionation from the site of carboxylation to cytoplasm prior to sugars transportation in *P. orientalis* 103 and Q. variabilis, that is the total ¹³C fractionation, determined from the δ^{13} C of WSCs and 104 gas-exchange measurements. The other one is to discuss the potential causes for the observed 105 divergence, estimate contributions of post-photosynthesis and mesophyll conductance on these 106 differences, and describe how carbon isotopic fractionations respond to the interactive effects of 107 elevated [CO₂] and water stress.

108 2 Material and Methods

109 2.1 Study site and design

110 P. orientalis and Q. variabilis saplings, selected as experimental material, were obtained from the Capital Circle forest ecosystem station, a part of Chinese Forest Ecosystem Research Network 111 112 (CFERN), 40 °03'45"N, 116 5'45"E in Beijing, China. This region is forested by *P. orientalis* and *Q.* 113 variabilis. We chose saplings with similar basal diameters, heights, and growth classes. Each sapling 114 was placed into an individual pot (22 cm diam. × 22 cm high). Undisturbed soil samples were collected 115 from the field, sieved (with particles >10 mm removed), and placed into the pots. The soil bulk density in the pots was maintained at 1.337–1.447 g cm⁻³. After a 30 d transplant recovery period, the saplings 116 117 were placed into growth chambers for orthogonal cultivation.

118 The controlled experiment studies were conducted in growth chambers (FH-230, Taiwan Hipoint 119 Corporation, Kaohsiung City, Taiwan). To reproduce the meteorological factors of different growth 120 seasons in the research region, daytime and nighttime temperatures in the chambers were set to $25 \pm$ 121 0.5°C from 07:00 to 17:00 and 18 ± 0.5°C from 17:00 to 07:00. Relative humidity was maintained at 122 60% and 80% during the daytime and nighttime, respectively. The mean daytime light intensity was 123 200–240 µmol m⁻² s⁻¹. The chamber control system can control and monitor [CO₂]. Two growth 124 chambers (A and B) were used in this study. Chamber A maintained $[CO_2]s$ at 400 ppm (C_{400}) and 500 125 ppm (C_{500}) . Chamber B maintained $[CO_2]s$ at 600 ppm (C_{600}) and 800 ppm (C_{600}) . The target $[CO_2]$ in

126 the chambers had a standard deviation of ± 50 ppm during plant cultivation and testing.

127 An automatic watering device was used to irrigate the potted saplings and it can avoid heterogeneity 128 when scheduled watering was not made (Fig. 1). The watering device consisted of a water storage tank, 129 holder, controller, soil moisture sensors, and drip irrigation components. Prior to use, the tank was 130 filled with water, and the soil moisture sensor was inserted to a uniform depth in the soil. After connecting the controller to an AC power supply, target soil volumetric water content (SWC) could be 131 132 set and monitored by soil moisture sensors. Since timely SWC could be sensed by the sensors, this 133 automatic watering device can be regulated to begin watering or stop watering the plants. One 134 irrigation device was installed per chamber. Based on mean field capacity (FC) of potted soil (30.70%) 135 combining $[CO_2]$ gradient, we established the orthogonal treatments for four $[CO_2]s \times \text{five SWCs}$ (Tab. 136 1). In Table 1, A₁-A₄ denotes [CO₂] of 400 ppm (C₄₀₀), 500 ppm (C₅₀₀), 600 ppm (C₆₀₀) and 800 ppm 137 (C₈₀₀) in the chambers. B₁-B₅ denotes 35%-45% of FC (10.74%-13.81%), 50%-60% of FC (15.35%-138 18.42%), 60%-70% of FC (18.42%-21.49%), and 70%-80% of FC (21.49%-24.56%) and 100% of 139 FC (CK, 27.63%–30.70%). Each orthogonal treatment of $[CO_2] \times SWC$ for two saplings per species 140 repeated twice. Each treatment lasted 7 d. One pot was exposed in one [CO₂] ×SWC treatment. Pots in 141 chambers were rearranged to promote uniform illumination every two days.

142 2.2 Foliar gas exchange measurement

143 Fully expanded primary annual leaves of the saplings were measured with a portable infrared gas 144 photosynthesis system (LI-6400, Li-Cor, Lincoln, US) before and after the 7-day cultivation. Two 145 saplings per specie were replicated per treatment (SWC \times [CO₂]). For each sapling, four leaves were 146 sampled and four measurements were conducted on each leaf. Main photosynthetic parameters, such as 147 net photosynthetic rate (P_n) and transpiration rate (T_r) , were measured. Based on the theories proposed 148 by Von Caemmerer and Farquhar (1981), stomatal conductance (g_s) and intercellular [CO₂] (C_i) were calculated by the Li-Cor software. Instantaneous water use efficiency via gas exchange (WUEge) was 149 150 calculated as the ratio P_n / T_r .

151 2.3 Plant material collection and leaf water-soluble compounds extraction

152 Eight recently-expanded sun leaves were selected per sapling and homogenized in liquid nitrogen 153 after gas-exchange measurements were finished. For extraction of WSCs from the leaves (Gessler et 154 al., 2004), 50 mg of ground leaves and 100 mg of PVPP (polyvinylpolypyrrolidone) were mixed and 155 incubated in 1 mL distilled water for 60 min at 5°C in a centrifuge tube. Each leaf was replicated 156 twice. Two saplings per specie were chosen for each orthogonal treatment. The tubes containing the above mixture were heated in 100°C water for 3 min. After cooling to room temperature, the 157 158 supernatant of the mixture was centrifuged (12000 \times g for 5 min) and 10 μ L of supernatant was transferred into a tin capsule and dried at 70 °C. Folded capsules were used for δ^{13} C analysis of WSCs. 159 The samples of WSCs from leaves were combusted in an elemental analyzer (EuroEA, HEKAtech 160 GmbH, Wegberg, Germany) and analyzed with a mass spectrometer (DELTA^{plus}XP, ThernoFinnigan). 161

162 Carbon isotope signatures are expressed in δ-notation (parts per thousand), relative to the
 163 international Pee Dee Belemnite (PDB):

164
$$\delta^{13}C = \left(\frac{R_{sample}}{R_{standard}} - 1\right) \times 1000$$
(1)

165 where δ^{13} C is the heavy isotope and R_{sample} and $R_{standard}$ refer to the isotope ratio between the particular

substance and the corresponding standard, respectively. The precision of repeated measurements was0.1 ‰.

168 2.4 Isotopic calculation

- 169 2.4.1 ¹³C fractionation from the site of carboxylation to cytoplasm prior to sugars transportation
- Based on the linear model developed by Farquhar and Sharkey (1982), the isotope discrimination, *∆*,
 is calculated as

172
$$\Delta = \left(\delta^{13} C_a - \delta^{13} C_{WSC} \right) / \left(1 + \delta^{13} C_{WSC} \right),$$
(2)

where $\delta^{13}C_a$ and $\delta^{13}C_{WSC}$ are the isotope signatures of ambient [CO₂] in chambers and WSCs extracted from leaves, respectively. The $C_i:C_a$ is determined by

175
$$C_i: C_a = (\Delta - a)/(b - a),$$
 (3)

where C_i and C_a are the [CO₂]s within substomatal cavities and in the growth chambers, respectively; *a* is the fractionation occurring CO₂ diffusion in still air (4‰) and *b* refers to the discrimination during CO₂ fixation by ribulose 1,5- bisphosphate carboxylase/oxygenase (Rubisco) and internal diffusion

179 (30%). Instantaneous water use efficiency by gas-exchange measurements (WUE_{ge}) is calculated as

180
$$WUE_{ge} = P_n: T_r = (C_a - C_i)/1.6\Delta e_i$$
 (4)

181 where 1.6 is the diffusion ratio of stomatal conductance for water vapor to CO_2 in chambers and Δe is 182 the difference between e_{lf} and e_{atm} that represent the extra- and intra-cellular water vapor pressure, 183 respectively:

184
$$\Delta e = e_{lf} - e_{atm} = 0.611 \times e^{17.502 \text{T}/(240.97 + \text{T})} \times (1 - \text{RH}),$$
 (5)

where *T* and RH are the temperature and relative humidity on leaf surface, respectively. Combining Eqns. (2, 3 and 4), the instantaneous water use efficiency could be determined by the $\delta^{13}C_{WSC}$ of leaves, defined as WUE_{cp}:

188
$$WUE_{cp} = \frac{P_n}{T_r} = (1 - \varphi) \left(C_a - C_i \right) / 1.6\Delta e = C_a (1 - \varphi) \left[\frac{b - \delta^{13} C_a + (b+1) \delta^{13} C_{WSC}}{(b-a)(1 + \delta^{13} C_{WSC})} \right] / 1.6\Delta e, \tag{6}$$

189 where φ is the respiratory ratio of leaf carbohydrates to other organs at night (0.3).

190 Then the ¹³C fractionation from the site of carboxylation to cytoplasm prior to sugars transportation 191 (defined as the total ¹³C fractionation) can be estimated by the observed δ^{13} C of WSCs from leaves 192 ($\delta^{13}C_{WSC}$) and the modeled δ^{13} C calculated from gas-exchange measurements ($\delta^{13}C_{model}$). The $\delta^{13}C_{model}$ 193 is calculated from Δ_{model} from Eqn. (2). The Δ_{model} can be determined by Eqns. (3 and 4) as

194
$$\Delta_{model} = (b-a) \left(1 - \frac{1.6\Delta e^{WUE_{ge}}}{c_a} \right) + a, \tag{7}$$

195
$$\delta^{13} C_{\text{model}} = \frac{C_a - \Delta_{model}}{1 + \Delta_{model}},\tag{8}$$

196 Total ¹³C fractionation =
$$\delta^{13}C_{WSC} - \delta^{13}C_{model}$$
. (9)

197 2.4.2 Method of estimations for mesophyll conductance and the contribution of post-carboxylation198 fractionation

199 The carbon isotope discrimination is generated from the relative contribution of diffusion and 200 carboxylation, reflected by the ratio of $[CO_2]$ at the site of carboxylation (C_c) to that in the ambient environment surrounding plants (C_a). The carbon isotopic discrimination (Δ) can be presented as (Farquhar et al. 1982):

203
$$\Delta = a_b \frac{c_a - c_s}{c_a} + a \frac{c_s - c_i}{c_a} + (e_s + a_l) \frac{c_i - c_c}{c_a} + b \frac{c_c}{c_a} - \frac{\frac{eR_D}{k} + f\Gamma_*}{c_a},$$
(10)

where C_a , C_s , C_i , and C_c are the [CO₂]s in the ambient environment, at the boundary layer of the leaf, in the substomatal cavities, and at the sites of carboxylation, respectively; a_b is the CO₂ diffusional fractionation at the boundary layer (2.9‰); e_s is the discrimination for CO₂ diffusion when CO₂ enters in solution (1.1‰, at 25°C); a_l is the CO₂ diffusional fractionation in the liquid phase (0.7‰); e and fare carbon discriminations derived in dark respiration (R_D) and photorespiration, respectively; k is the carboxylation efficiency, and Γ^* is the CO₂ compensation point in the absence of dark respiration (Brooks and Farquhar,1985).

When gas in the cuvette is well stirred during gas-exchange measurements, diffusion occurring
 boundary layer could be neglected and Equation 10 can be shown as

213
$$\Delta = a \frac{c_a - c_i}{c_a} + (e_s + a_l) \frac{c_i - c_c}{c_a} + b \frac{c_c}{c_a} - \frac{\frac{eR_D}{k} + f\Gamma_*}{c_a}.$$
 (11)

There is no consensus about the value of e, although recent measurements estimate it as ranging from 0-4‰. The value of f has been estimated to range from 8-12‰ (Gillon and Griffiths, 1997; Igamberdiev et al., 2004; Lanigan et al., 2008). As the most direct factor, the value of b would influence the calculation of g_m , which is thought to be approximately 30‰ in higher plants (Guy et al., 1993).

The difference of [CO₂] between substomatal cavities and chloroplasts is omitted while diffusions
 related to dark-respiration and photorespiration are negligible and Equation 11 could be simplified as

221
$$\Delta_i = a + (b - a) \frac{c_i}{c_a}$$
 (12)

Equation 12 denotes the linear relationship between carbon discrimination and C_i/C_a . That underlines subsequent comparison between expected Δ (originating from gas-exchange, Δ_i , and actually measured Δ_{obs}), could evaluate the differences of [CO₂] between intercellular air and sites of carboxylation that are the ¹³C fractionation from mesophyll conductance. Consequently, g_m is calculated by subtracting the Δ_{obs} of Equation 11 from Δ_i (Equation 12):

227
$$\Delta_i - \Delta_{obs} = (b - e_s - a_l) \frac{c_i - c_c}{c_a} + \frac{\frac{eR_D}{k} + f\Gamma^*}{c_a}$$
(13)

228 and the P_n from Fick's first law is presented by

229
$$P_n = g_m (C_i - C_c).$$
 (14)

230 Substituting Equation 14 into Equation 13 we obtain

231
$$\Delta_i - \Delta_{obs} = (b - e_s - a_l) \frac{P_n}{g_m c_a} + \frac{\frac{e_{R_D}}{k} + f\Gamma^*}{c_a},$$
(15)

232
$$g_m = \frac{(b - e_s - a_l)\frac{P_n}{C_a}}{(\Delta_l - \Delta_{obs}) - \frac{eR_D/k + f\Gamma^*}{C_a}}.$$
 (16)

233 In calculation of g_m , terms of respiratory and photorespiratory could be ignored and e and f are

assumed to be zero or to be cancelled out in the calculation of g_m .

Then Equation 16 can be transformed into

236
$$g_m = \frac{(b-e_s-a_l)\frac{P_n}{C_a}}{\Delta_l - \Delta_{obs}}.$$
 (17)

237 Therefore, the contribution of post- carboxylation fractionation can be estimated by

238 *Contribution of post* – carboxylation *fractionation* =

239
$$\frac{(\text{Total}^{13}\text{C fractionation-fractionation from mesophll conductance})}{\text{Total}^{13}\text{C fractionation}} \times 100\%.$$
 (18)

240 3 Results

241 **3.1 Foliar gas exchange measurements**

242 When SWC increased between the treatments, P_n , g_s and T_r in P. orientalis and Q. variabilis peaked at 70%-80% of FC and/or 100% of FC (Fig. 2). The C_i in P. orientalis rose as SWC increased. It 243 244 peaked at 60%-70% of FC and declined thereafter with increased SWC in Q. variabilis. The carbon 245 uptake and C_i were significantly improved by elevated [CO₂] at all SWCs for the two species (p < 0.5). Greater increases of P_n in P. orientalis were found at 50%–70% of FC from C₄₀₀ to C₈₀₀, which was at 246 247 35%-45% of FC in Q. variabilis. As water stress was reduced (at 70%-80% of FC and 100% of FC), 248 reduction of g_s in *P. orientalis* was more pronounced with elevated [CO₂] at a given SWC (p < 0.01). 249 Nevertheless, g_s of Q. variabilis in C₄₀₀, C₅₀₀, and C₆₀₀ was significantly higher than in C₈₀₀ at 50%–80% 250 of FC (p < 0.01). Coordinated with g_s , T_r of the two species in C₄₀₀ and C₅₀₀ was significantly higher than in C₆₀₀ and C₈₀₀ except at 35%–60% of FC (p < 0.01, Figs. 2g and 2h). P_n , g_s , C_i and T_r of Q. 251

variabilis was significantly greater than the corresponding values of *P. orientalis* (p < 0.01, Fig. 2).

253 **3.2** δ^{13} C of water-soluble compounds in leaves

254 After observations of photosynthetic traits in leaves of the two species, the same leaves were 255 immediately frozen and WSCs were extracted for all orthogonal treatments. The carbon isotope composition of WSCs ($\delta^{13}C_{WSC}$) of both species increased as SWC increased (Figs. 3a and 3b, p < 0.01). 256 The mean $\delta^{13}C_{WSC}$ of *P. orientalis* and *Q. variabilis* ranged from -27.44 $\pm 0.155\%$ to -26.71 $\pm 0.133\%$, 257 258 and from -27.96 $\pm 0.129\%$ to -26.49 $\pm 0.236\%$, respectively. The photosynthetic capacity varied with 259 increased SWC and the mean $\delta^{13}C_{WSC}$ of the two species reached maxima at 70%–80% of FC. With 260 gradual enrichment of [CO₂], mean $\delta^{13}C_{WSC}$ in both species declined when [CO₂] exceeded 600 ppm 261 (p < 0.01). Except for C₄₀₀ at 50%–100% of FC, the $\delta^{13}C_{WSC}$ of P. orientalis was significantly larger than that of Q. variabilis at any $[CO_2] \times SWC$ treatment (p < 0.01, Fig. 3). 262

263 3.3 Estimations of WUE_{ge} and WUE_{cp}

264 Figure 4a shows that increments of WUEge in P. orientalis under severe drought (i.e., 35%-45% of FC) were highest at any [CO₂], ranging from 90.70% to 564.65%. The WUE_{ge} in *P. orientalis* 265 266 decreased as SWC increased, while values increased as [CO₂] increased. Differing from variation in 267 WUE_{ge} of *P. orientalis* with moistened soil, WUE_{ge} in *Q. variabilis* increased slightly at 100% of FC in C_{600} or C_{800} (Fig. 4b). The maximum WUE_{ge} occurred at 35%-45% of FC in C_{800} among all orthogonal 268 269 treatments for P. orientalis and this was also observed in Q. variabilis. Elevated [CO2] enhanced the WUEge of Q. variabilis at any SWC except at 60%-80% of FC. Thirty-two saplings of P. orientalis had 270 271 greater WUE_{ge} than did Q. variabilis in the same [CO₂] × SWC treatments (p < 0.5).

As illustrated in Fig. 5a, WUE_{cp} of *P. orientalis* in C_{600} or C_{800} increased as water stress was alleviated beyond 50%–60% of FC, as well as that in C_{400} or C_{500} while SWC exceeded 60%–70% of FC. *Q. variabilis* showed variable WUE_{cp} with SWC increased (Fig. 5b). Except for C_{400} , WUE_{cp} of *Q. variabilis* decreased abruptly at 50%–60% of FC, and then increased as SWC increased in C_{500} , C_{600} , and C_{800} . In contrast to the results of WUE_{ge} , WUE_{cp} of *Q. variabilis* was more pronounced than *P.*

277 *orientalis* among all orthogonal treatments.

278 3.4¹³C fractionation from the site of carboxylation to cytoplasm before sugars transportation

279 We evaluated the total ¹³C fractionation from the site of carboxylation to the cytoplasm by 280 gas-exchange measurements and WSCs in leaves (Table 2), which can track the path of ¹³C fractionation in leaves. Comparing $\delta^{13}C_{WSC}$ with $\delta^{13}C_{model}$ from Eqns. (4, 7–9), the total ^{13}C 281 fractionation of P. orientalis ranged from 0.0328‰ to 0.0472‰, which was less than that of Q. 282 283 variabilis (0.0384‰ to 0.0466‰). The total fractionations of *P. orientalis* were magnified with SWC 284 increased especially values that reached 35%-80% of FC from C₄₀₀ to C₈₀₀ (increased by 21.30%-285 42.04%). The total fractionations under C_{400} and C_{500} were amplified as SWC increased until 50%–60% of FC in Q. variabilis, whereas they were increased at 50%-80% of FC and decreased at 100% of FC 286 287 under C₆₀₀ and C₈₀₀. Elevated [CO₂] enhanced the mean total fractionation of *P. orientalis*, while 288 fractionation of Q. variabilis declined sharply from C_{600} to C_{800} . Total ¹³C fractionation, with increased 289 SWC, in *P. orientalis* increased more rapidly than did *Q. variabilis*.

290 $3.5 g_m$ imposed on the interaction of CO₂ concentration and water stress

A comparison between online leaf $\delta^{13}C_{WSC}$ and the values of gas-exchange measurements is given to 291 estimate the g_m over all treatments in Fig. 6 (Eqns. 10–17). A significant increasing trend of g_m 292 293 occurred with reduced water stress in P. orientalis, ranging from 0.0091–0.0690 mol CO₂ m⁻² s⁻¹ (p< 294 0.5), which reached a maximum at 100% of FC under a given $[CO_2]$. Increases in g_m of Q. variabilis 295 with increasing SWC were not significant except those under C_{400} . With increasing [CO₂], g_m of the two species increased at different rates. With P. orientalis under C400, gm increased gradually and 296 297 reached a maximum under C₈₀₀ at 35%–60% of FC and 100% of FC (p < 0.5). However, that was 298 maximized under C_{600} (p< 0.5) and reduced under C_{800} at 60%–80% of FC. The maximum increments 299 of g_m (8.2%–58.4%) occurred at C₈₀₀ at all SWCs in Q. variabilis. The g_m of Q. variabilis was clearly 300 greater than that of *P. orientalis* under the same treatments.

301 **3.6 Contribution** of post-carboxylation fractionation

We evaluated the difference between Δ_i and Δ_{obs} in ¹³C fractionation derived from mesophyll 302 conductance. The post-photosynthetic fractionation after carboxylation can be calculated by subtracting 303 304 g_m -sourced fractionation from the total ¹³C fractionation (Table 2). The g_m -sourced fractionation 305 provided less contribution to the total ¹³C fractionation than that from post-carboxylation fractionation 306 within any treatment (Table 2). The g_m -sourced fractionation in the two species illustrated different 307 variations with SWC increased, which declined at 50%-80% of FC and increased at 100% of FC in P. 308 orientalis, yet, in Q. variabilis, it increased with water stress alleviation at 50%-80% of FC and then 309 decreased at 100% of FC. Nevertheless, in the two species, post-carboxylation fractionations in leaves 310 and these contributions all increased as soil moisture increased. The g_m -sourced fractionation in P. 311 orientalis and Q. variabilis reached their peaks under C₆₀₀ and C₈₀₀, respectively. Post-carboxylation 312 fractionations was magnified with [CO₂] increase in P. orientalis, and reached maxima under C₆₀₀ and 313 then were reduced under C_{800} .

314 **3.7 Relationship between** g_s , g_m and total ¹³C fractionation

Total ¹³C fractionation may be correlated with resistances from stomata and mesophyll cells. We performed linear regressions between g_s/g_m and total ¹³C fractionation values for *P. orientalis* and *Q. variabilis*, respectively (Fig. 7 and 8). The total ¹³C fractionation was correlated to the g_s (p < 0.01). The positive linear relationships between g_m and total ¹³C fractionation (p < 0.01) indicated that the variation of [CO₂] through the chloroplast was correlated with carbon discrimination occurring after leaf photosynthesis.

321 4 Discussion

322 4.1 Photosynthetic traits

323 The exchange of CO_2 and water vapor via stomata can be modulated by the soil/leaf water potential (Robredo et al., 2010). Saplings of *P. orientalis* reached maximum P_n and g_s at 70%–80% of FC 324 325 irrespective of [CO₂] treatments. As SWC exceeded this water threshold, elevated CO₂ caused a greater 326 g_s reduction as was similarly reported for barley and wheat (Wall et al., 2011). The decrease of g_s 327 responding to elevated [CO₂], could be mitigated by increased SWC. The C_i of Q. variabilis peaked at 328 60%-70% of FC and then declined as soil moisture increased (Wall et al., 2006; Wall et al., 2011). 329 This may be because stomata tend to maintain a constant C_i or C_i/C_a when ambient [CO₂] is increased, 330 which would determine the amount of CO₂ used directly in the chloroplast (Yu et al., 2010). This result 331 could be explained as stomatal limitation (Farquhar and Sharkey, 1982; Xu, 1997). However, C_i of P. 332 orientalis was increased considerably while SWC exceeded 70%-80% of FC, as found by Mielke et al. 333 (2000). One possible contributing factor is plants close their stomata to reduce water loss during 334 organic matter synthesis simultaneously decreasing the availability of CO₂ and generating respiration 335 of organic matter (Robredo et al., 2007). Another possible explanation is that the limited root volume in 336 potted plant experiments may be unable to absorb sufficient water to support full growth of shoots (Leakey et al., 2009; Wall et al., 2011). In the present study, increasing [CO₂] may cause nonstomatal 337 338 limitation when SWC exceeds a soil moisture threshold (70%-80% of FC). The accumulation of 339 nonstructural carbohydrates in leaf tissue may induce mesophyll-based and/or biochemical-based 340 transient inhibition of photosynthetic capacity (Farquhar and Sharkey, 1982). Xu and Zhou (2011) developed a five-level SWC gradient to examine the effect of water on the physiology of perennial 341 342 Leymus chinensis and demonstrated that there was a clear maximum of SWC below which the plant 343 could adjust to changing environmental conditions. Miranda Apodaca et al. (2015) also concluded that, 344 in suitable water conditions, elevated CO_2 levels augmented CO_2 assimilation in herbaceous plants.

The P_n of the two woody plant species increased with elevated [CO₂] similar to results from other C₃ woody plants (Kgope et al., 2010). Increasing [CO₂] alleviated severe drought and heavy irrigation, suggesting that photosynthetic inhibition produced by a lack, or excess, of water may be mediated by increased [CO₂] (Robredo et al., 2007; Robredo et al., 2010) and ameliorate the effects of drought stress by reducing plant transpiration (Kirkham, 2016; Kadam et al., 2014; Miranda Apodaca et al., 2015; Tausz Posch et al., 2013).

351 4.2 Differences between WUE_{ge} and WUE_{cp}

The increases of WUE_{ge} in *P. orientalis* and *Q. variabilis* that resulted from the combination of P_n increase and g_s decrease were followed by a reduction in T_r (Figs. 2a, 2g, 2b and 2h). This result was also demonstrated by Ainsworth and McGrath (2010). Comparing the P_n and T_r values of the two species, a lower WUE_{ge} in *Q. variabilis* was obtained due to its physiological and morphological traits, such as larger leaf area, rapid growth, and higher stomatal conductance than that of *P. orientalis*

- (Adiredjo et al., 2014). Medlyn et al. (2001) reported that stomatal conductance of broadleaved species
 is more sensitive to elevated [CO₂] than conifer species. There is no agreement on the patterns of
- iWUE, at the leaf level, related to SWC (Yang et al., 2010). The WUE_{ge} of *P. orientalis* and *Q*.
- 360 *variabilis* were enhanced with soil drying, as presented by Parker and Pallardy (1991), DeLucia and
- 361 Heckathorn (1989), Reich et al. (1989), and Leakey (2009).
- 362 Bögelein et al. (2012) confirmed that WUE_{cp} was more consistent with daily mean WUE_{ge} than 363 WUE_{phloem} (calculated by the $\delta^{13}C$ of phloem). The WUE_{cp} of the two species demonstrated similar
- variation to those $\delta^{13}C_{WSC}$, which differed from that of WUE_{ge}. Pons et al. (2009) noted that Δ of leaf
- soluble sugar is coupled with environmental dynamics over a period ranging from a few hours to 1–2 d. The WUE_{cp} of our materials could respond to $[CO_2] \times SWC$ treatments over a number of cultivated days, whereas WUE_{ge} is characterized as the instantaneous physiology change of plants to new conditions. In addition, species-specific $\delta^{13}C_{WSC}$ were observed in the same environmental treatment. Consequently, WUE_{cp} and WUE_{ge} have different degrees of variations in response to different treatments.

371 **4.3 Influence** of mesophyll conductance on the fractionation after carboxylation

- 372 CO₂ diffusion into photosynthetic sites includes two main processes. CO₂ first moves from ambient 373 air surrounding the leaf (C_a) through stomata to the sub-stomatic cavities (C_i) . From sub-stomatic 374 cavities CO_2 then moves to the sites of carboxylation within the chloroplast stroma (C_c) of the leaf 375 mesophyll. The latter procedure of diffusion is termed mesophyll conductance (g_m) (Flexas et al., 2008). 376 Moreover, g_m has been identified to coordinate with environmental factors more rapidly than stomatal 377 conductance (Galm és et al., 2007; Tazoe et al., 2011; Flexas et al., 2007). During our 7 d cultivations 378 of SWC \times [CO₂], g_m increased and WUE_{ge} decreased with increasing SWC. It has been documented 379 that g_m can improve WUE under drought pretreatment (Han et al., 2016). However, the mechanism on 380 which g_m responds to the fluctuation of [CO₂] is unclear. Terashima *et al.* (2006) demonstrated that 381 CO₂ permeable aquaporin, located in the plasma membrane and inner envelope of chloroplasts, could 382 regulate the change of g_m . In our study, g_m is species-specific to the [CO₂] gradient. The g_m of P. orientalis was significantly decreased by 9.08%-44.42% from C_{600} to C_{800} at 60%-80% of FC and these 383 384 are similar to the results of Flexas et al. (2007). A larger g_m of Q. variabilis under C_{800} was observed 385 comparing with P. orientalis.
- 386 Furthermore, g_m contributed to the total ¹³C fractionation that followed carboxylation while 387 photosynthate had not been transported to the sapling twigs. The ${}^{13}C$ fractionation of CO₂ from the air surrounding the leaf to sub-stomatal cavities may be simply considered, whereas the fractionation 388 389 induced by mesophyll conductance from sub-stomatic cavities to the site of carboxylation in the 390 chloroplast cannot be neglected (Pons et al., 2009; Cano et al., 2014). In estimating the 391 post-carboxylation fractionation, g_m -sourced fractionation must be subtracted from the total ¹³C fractionation (the difference between $\delta^{13}C_{WSC}$ and $\delta^{13}C_{model}$), which is closely associated with g_m (Fig. 8, 392 393 p=0.01 or p<0.01). Variations in g_m -sourced fractionation are coordinated with that of g_m with 394 changing environmental conditions on Table 2.

395 4.4 Post-carboxylation fractionation generated before photosynthate moves out of leaves

Photosynthesis, a biochemical and physiological process (Badeck et al., 2005), is characterized by
 discrimination in ¹³C, which leaves an isotopic signature in the photosynthetic apparatus. Farquhar *et al.* (1989) reviewed the carbon-fractionation in leaves and covered the significant aspects of
 photosynthetic carbon isotope discrimination. The post-carboxylation/photosynthetic fractionation

400 associated with the metabolic pathways of non-structural carbohydrates (NSC; defined here as soluble 401 sugars + starch) within leaves, and fractionation during translocation, storage, and remobilization prior 402 to tree ring formation is unclear (Epron et al., 2012; Gessler et al., 2014; Rinne et al., 2016). The 403 synthesis processes of sucrose and starch before transportation to twig fall within the domain of 404 post-carboxylation fractionation generated in leaves. Hence, we hypothesized that ¹³C fractionation 405 might exist. When we completed the leaf gas-exchange measurements, leaf samples were collected immediately to determine the $\delta^{13}C_{WSC}$. Presumably, ¹³C fractionation generated in the synthetic 406 407 processes of sucrose and starch was contained within the ¹³C fractionation from the site of carboxylation to cytoplasm before sugars transportation. Comparing $\delta^{13}C_{WSC}$ with $\delta^{13}C_{obs}$, the total ¹³C 408 409 fractionation of P. orientalis ranged from 0.0328‰ to 0.0472‰, which was somewhat less than that of 410 Q. variabilis (from 0.0384‰ to 0.0466‰). Post-carboxylation fractionation contributed 75.30%-98.9% to total ¹³C fractionation, determined by subtracting the fractionation of g_m from total ¹³C fractionation. 411 412 Gessler et al. (2004) reviewed the environmental components of variation in photosynthetic carbon isotope discrimination in terrestrial plants. Total ¹³C fractionation of *P. orientalis* was enhanced by the 413 414 increase of SWC, consistent with that of Q. variabilis, except at 100% of FC. The ¹³C isotope signature of P. orientalis was depleted with elevated $[CO_2]$. Yet, ¹³C-depletion was weakened in Q. variabilis at 415 416 C_{600} and C_{800} . Linear regressions between g_s and total ¹³C fractionation indicated that the 417 post-carboxylation fractionation in leaves depends on the variation of g_s and that the stomata aperture 418 was correlated with environmental change.

419 5 Conclusions

420 Through orthogonal treatments of four [CO₂]s × five SWCs, WUE_{cp} calculated by $\delta^{13}C_{WSC}$ and 421 WUE_{ge} derived from simultaneous leaf gas-exchange, were estimated to differentiate the δ^{13} C signal 422 variation before leaf-exported translocation of primary assimilates. The influence of g_m on ${}^{13}C$ 423 fractionation between the sites of carboxylation and ambient environment is important. It requires 424 consideration when testing the hypothesis that the post-carboxylation contributes to the ¹³C 425 fractionation from the site of carboxylation to cytoplasm before sugars transport. In response to the 426 interactive effects of [CO₂] and SWC, WUE_{ge} of two tree species both decreased with increasing SWC, 427 and increased with elevated [CO₂] at 35%–80% of FC. We concluded that relative soil drying, coupled 428 with elevated [CO2], can improve WUEge by strengthening photosynthetic capacity and reducing 429 transpiration. WUE_{ge} of *P. orientalis* was significantly greater than that of *Q. variabilis*, while the 430 opposite was the case for WUE_{cp}. The g_m and post-carboxylation both contributed to the total ¹³C 431 fractionation. This was determined by gas-exchange and carbon isotopic measurements. Rising [CO₂] 432 and/or moistening soil generated increasing disparities between $\delta^{13}C_{WSC}$ and $\delta^{13}C_{model}$ in *P. orientalis*; nevertheless, the differences between $\delta^{13}C_{WSC}$ and $\delta^{13}C_{model}$ in Q. variabilis increased when [CO₂] was 433 less than 600 ppm and/or water stress was alleviated. Total ¹³C fractionation in leaf was linearly 434 435 dependent on g_s . With respect to carbon isotope fractionation in post-carboxylation and transportation 436 processes, we note that the ¹³C fractionation derived from the synthesis of sucrose and starch is likely 437 influenced by environmental changes. A clear description of the magnitude and environmental 438 dependence of post-carboxylation fractionation is worth evaluation.

439 References

440 Adiredjo, A. L., Navaud, O., Lamaze, T., and Grieu, P.: Leaf carbon isotope discrimination as an

- 441 accurate indicator of water use efficiency in sunflower genotypes subjected to five stable soil
 442 water contents, J Agron. Crop Sci., 200, 416–424, 2014.
- Ainsworth, E. A. and McGrath, J. M.: Direct effects of rising atmospheric carbon dioxide and ozone on
 crop yields, Climate Change and Food Security, Springer, 109–130, 2010.
- Badeck, F. W., Tcherkez, G., Eacute, N. S. S., Piel, C. E. M., and Ghashghaie, J.: Post-photosynthetic
 fractionation of stable carbon isotopes between plant organ a widespread phenomenon, Rapid
 Commun. Mass S., 19, 1381–1391, 2005.
- Bögelein, R., Hassdenteufel, M., Thomas, F. M., and Werner, W.: Comparison of leaf gas exchange
 and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring
 Douglas-fir and European beech, Plant Cell Environ., 35, 1245–1257, 2012.
- Brandes, E., Kodama, N., Whittaker, K., Weston, C., Rennenberg, H., Keitel, C., Adams, M. A., and
 Gessler, A.: Short-term variation in the isotopic composition of organic matter allocated from the
 leaves to the stem of *Pinus sylvestris*: effects of photosynthetic and postphotosynthetic carbon
 isotope fractionation, Global Change Biol., 12, 1922–1939, 2006.
- Brooks, A. and Farquhar, G. D.: Effect of temperature on the CO₂/O₂ specificity of
 ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light, Planta,
 165, 397–406, 1985.
- Brugnoli E, Farquhar GD. 2000. Photosynthetic fractionation of carbon isotopes. In: Leegood RC,
 Sharkey TD, von Caemmerer S. eds. Photosynthesis: physiology and metabolism. Advances in
 photosynthesis. Dordrecht, The Netherlands: Kluwer Academic Publishers, 399–434.
- 461 Cano, F. J., López, R., and Warren, C. R.: Implications of the mesophyll conductance to CO₂ for
 462 photosynthesis and water-use efficiency during long-term water stress and recovery in two
 463 contrasting Eucalyptus species, Plant Cell Environ., 37, 2470–2490, 2014.
- 464 Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., and Farquhar, G. D.:
 465 Environmental and physiological determinants of carbon isotope discrimination in terrestrial
 466 plants, New Phytologist, 200, 950–965, 2013.
- 467 DeLucia, E. H. and Heckathorn, S. A.: The effect of soil drought on water-use efficiency in a
 468 contrasting Great Basin desert and Sierran montane species, Plant Cell Environ., 12, 935–940,
 469 1989.
- 470 Epron, D., Nouvellon, Y., and Ryan, M. G.: Introduction to the invited issue on carbon allocation of
 471 trees and forests, Tree physiol., 32, 639–643, 2012.
- 472 Evans, J. R., Kaldenhoff, R., Genty, B., and Terashima, I.: Resistances along the CO₂ diffusion
 473 pathway inside leaves, J. Exp. Bot., 60, 2235–2248, 2009.
- 474 Evans, J. R., Sharkey, T. D., Berry, J. A., and Farquhar, G. D.: Carbon isotope discrimination measured
 475 concurrently with gas-exchange to investigate CO₂ diffusion in leaves of higher-plants, Funct.
 476 Plant Biol., 13, 281–292, 1986.
- 477 Evans, J. R. and von Caemmerer, S.: Temperature response of carbon isotope discrimination and
 478 mesophyll conductance in tobacco, Plant Cell Environ., 36, 745–756, 2013.
- 479 Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope discrimination and
 480 photosynthesis, Ann. Rev. Plant Physiol., 40, 503–537, 1989.
- Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the relationship between carbon isotope
 discrimination and the intercellular carbon dioxide concentration in leaves, Funct. Plant Biol., 9,
 121–137, 1982.
- 484 Farquhar, G. D. and Sharkey, T. D.: Stomatal conductance and photosynthesis, Ann. Rev. Plant

- 485 Physiol., 33, 317–345, 1982.
- Flexas, J., Barbour, M. M., Brendel, O., Cabrera, H. M., Carriqu í M., D áz-Espejo, A., Douthe, C.,
 Dreyer, E., Ferrio, J. P., Gago, J., Gall é A., Galm és, J., Kodama, N., Medrano, H., Niinemets, Ü.,
 Peguero-Pina, J. J., Pou, A., Ribas-Carb ó, M., Tom és, M., Tosens, T., and Warren, C. R.:
 Mesophyll diffusion conductance to CO₂: An unappreciated central player in photosynthesis, Plant
 Science, 193–194, 70–84, 2012.
- Flexas, J., Carriqu í M., Coopman, R. E., Gago, J., Galm és, J., Martorell, S., Morales, F., and
 Diaz-Espejo, A.: Stomatal and mesophyll conductances to CO₂ in different plant groups:
 Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science,
 226, 41–48, 2014.
- Flexas, J., Diaz-Espejo, A., Galmés, J., Kaldenhoff, R., Medano, H., and Ribas-Carbo, M.: Rapid
 variations of mesophyll conductance in response to changes in CO₂ concentration around leaves,
 Plant Cell Environ., 30, 1284–1298, 2007.
- Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., and Medrano, H.: Mesophyll conductance to
 CO₂: current knowledge and future prospects, Plant Cell Environ., 31, 602–621, 2008.
- Flexas, J., Ribas-Carb ó, M., Hanson, D.T., Bota, J., Otto, B., Cifre, J., McDowell, N., Medrano, H., and
 Kaldenhoff, R.: Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO₂ *in vivo*,
 Plant J., 48, 427–439, 2006.
- Galmés, J., Medrano, H., and Flexas, J.: Photosynthetic limitations in response to water stress and
 recovery in Mediterranean plants with different growth forms, New Phytol., 175, 81–93. 2007.
- Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H., and Barnard, R. L.: Tracing carbon
 and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive,
 Plant Cell Environ., 32, 780–795, 2009.
- Gessler, A., Ferrio, J. P., Hommel, R., Treydte, K., Werner, R. A., and Monson, R. K.: Stable isotopes
 in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes
 from the leaves to the wood, Tree Physiol., 34, 796–818, 2014.
- 511 Gessler, A., Rennenberg, H., and Keitel, C.: Stable isotope composition of organic compounds
 512 transported in the phloem of European beech-evaluation of different methods of phloem sap
 513 collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport,
 514 Plant Biology, 6, 721–729, 2004.
- Gessler, A., Tcherkez, G., Peuke, A. D., Ghashghaie, J., and Farquhar, G. D.: Experimental evidence
 for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter
 in *Ricinus communis*, Plant Cell Environ., 31, 941–953, 2008.
- Gillon, J. S., Griffiths, H.: The influence of (photo)respiration on carbon isotope discrimination in
 plants. Plant Cell Environ., 20, 1217–1230, 1997.
- 520 Gleixner, G. and Schmidt, H.: Carbon isotope effects on the fructose-1, 6-bisphosphate aldolase
 521 reaction, origin for non-statistical ¹³C distributions in carbohydrates, J. Biol. Chem., 272, 5382–
 522 5387, 1997.
- 523 Guy, R. D., Fogel, M. L., and Berry, J. A.: Photosynthetic fractionation of the stable isotopes of oxygen
 524 and carbon, Plant Physiol., 101, 37–47, 1993.
- Han, J. M., Meng, H. F., Wang, S. Y., Jiang, C. D., Liu, F., Zhang, W. F., and Zhang, Y. L.: Variability
 of mesophyll conductance and its relationship with water use efficiency in cotton leaves under
 drought pretreatment, J. Plant Physiol., 194, 61–71, 2016.
- 528 Hommel, R., Siegwolf, R., Saurer, M., Farquhar, G. D., Kayler, Z., Ferrio, J. P., and Gessler, A.:

- 529 Drought response of mesophyll conductance in forest understory species-impacts on water-use 530 efficiency and interactions with leaf water movement, Physiol. Plantarum, 152, 98–114, 2014.
- Igamberdiev, A. U., Mikkelsen, T. N., Ambus, P., Bauwe, H., and Lea, P. J.: Photorespiration
 contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and
 Arabidopsis plants deficient in glycine decarboxylase, Photosynth. Res., 81, 139–152, 2004.
- IPCC: Summary for policymakers, in: Climate Change 2014, Mitigation of Climate Change,
 contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel
 on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E.,
 Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B.,
 Savolainen, J., Schlomer, S., von Stechow, C., Zwickel, T., and Minx, J. C., Cambridge
 University Press, Cambridge, UK and New York, NY, USA, 1–30, 2014.
- Jäggi, M., Saurer, M., Fuhrer, J., and Siegwolf, R.: The relationship between the stable carbon isotope
 composition of needle bulk material, starch, and tree rings in *Picea abies*, Oecologia, 131, 325–
 332, 2002.
- Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., Prasad, P. V.
 V., and Jagadish, K. S. V.: Chapter three-agronomic and physiological responses to high temperature, drought, and elevated CO₂ interactions in cereals, Adv. Agron., 127, 111–156, 2014.
- 546 Kgope, B. S., Bond, W. J., and Midgley, G. F.: Growth responses of African savanna trees implicate
 547 atmospheric [CO₂] as a driver of past and current changes in savanna tree cover, Austral Ecol., 35,
 548 451–463, 2010.
- 549 Kirkham, M. B.: Elevated carbon dioxide: impacts on soil and plant water relations, CRC Press,
 550 London, New York, 2016.
- Kodama, N., Barnard, R. L., Salmon, Y., Weston, C., Ferrio, J. P., Holst, J., Werner, R. A., Saurer, M.,
 Rennenberg, H., and Buchmann, N.: Temporal dynamics of the carbon isotope composition in a *Pinus sylvestris* stand: from newly assimilated organic carbon to respired carbon dioxide,
 Oecologia, 156, 737–750, 2008.
- Lanigan, G. J., Betson, N., Griffiths, H., and Seibt, U.: Carbon isotope fractionation during
 photorespiration and carboxylation in Senecio, Plant Physiol., 148, 2013–2020, 2008.
- Le Roux, X., Bariac, T., Sinoquet H., Genty, B., Piel, C., Mariotti, A., Girardin, C., and Richard, P.:
 Spatial distribution of leaf water-use efficiency and carbon isotope discrimination within an
 isolated tree crown, Plant Cell Environ., 24, 1021–1032, 2001.
- Leakey, A. D.: Rising atmospheric carbon dioxide concentration and the future of C4 crops for food
 and fuel, Proceedings of the Royal Society of London B: Biological Sciences, 276, 1517–2008,
 2009.
- Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., and Ort, D. R.: Elevated
 CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE, J.
 Exp. Bot., 60, 2859–2876, 2009.
- Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., and Hammer, G.
 L.: Greater sensitivity to drought accompanies maize yield increase in the US Midwest, Science, 344, 516–519, 2014.
- Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., Angelis, P. D., Forstreuter,
 M., Freeman, M., Jackson, S. B., Kellomäki, S., and Laitat, E.: Stomatal conductance of forest
 species after long-term exposure to elevated CO₂ concentration: a synthesis, New Phytol., 149,
 247–264, 2001.

- 573 Mielke, M. S., Oliva, M. A., de Barros, N. F., Penchel, R. M., Martinez, C. A., Da Fonseca, S., and de
 574 Almeida, A. C.: Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture, leaf
 575 water potential and microclimate variables, Trees, 14, 263–270, 2000.
- 576 Miranda Apodaca, J., P érez L ópez, U., Lacuesta, M., Mena Petite, A., and Mu ñoz Rueda, A.: The type
 577 of competition modulates the ecophysiological response of grassland species to elevated CO₂ and
 578 drought, Plant Biolog, 17, 298–310, 2015.
- 579 Parker, W. C. and Pallardy, S. G.: Gas exchange during a soil drying cycle in seedlings of four black
 580 walnut (*Juglans nigra* 1.) Families, Tree physiol., 9, 339–348, 1991.
- Pons, T. L., Flexas, J., von Caemmerer, S., Evans, J. R., Genty, B., Ribas-Carbo, M., and Brugnoli, E.:
 Estimating mesophyll conductance to CO₂: methodology, potential errors, and recommendations,
 J. Exp. Bot., 8, 1–18, 2009.
- Reich, P. B., Walters, M. B., and Tabone, T. J.: Response of *Ulmus americana* seedlings to varying
 nitrogen and water status. 2 Water and nitrogen use efficiency in photosynthesis, Tree Physiol., 5,
 173–184, 1989.
- 587 Rinne, K. T., Saurer, M., Kirdyanov, A. V., Bryukhanova, M. V., Prokushkin, A. S., Churakova
 588 Sidorova, O. V., and Siegwolf, R. T.: Examining the response of larch needle carbohydrates to
 589 climate using compound-specific δ¹³C and concentration analyses, EGU General Assembly
 590 Conference, 1814949R, 2016.
- Robredo, A., P érez-L ópez, U., de la Maza, H. S., Gonz ález-Moro, B., Lacuesta, M., Mena-Petit, A.,
 and Mu ñoz-Rueda, A.: Elevated CO₂ alleviates the impact of drought on barley improving water
 status by lowering stomatal conductance and delaying its effects on photosynthesis, Environ. Exp.
 Bot., 59, 252–263, 2007.
- Robredo, A., Pérez-López, U., Lacuesta, M., Mena-Petite, A., and Muñoz-Rueda, A.: Influence of
 water stress on photosynthetic characteristics in barley plants under ambient and elevated CO₂
 concentrations, Biologia. Plantarum, 54, 285–292, 2010.
- Rossmann, A., Butzenlechner, M., and Schmidt, H.: Evidence for a nonstatistical carbon isotope
 distribution in natural glucose, Plant Physiol., 96, 609–614, 1991.
- Streit, K., Rinne, K. T., Hagedorn, F., Dawes, M. A., Saurer, M., Hoch, G., Werner, R. A., Buchmann,
 N., and Siegwolf, R. T. W.: Tracing fresh assimilates through *Larix decidua* exposed to elevated
 CO₂ and soil warming at the alpine treeline using compound-specific stable isotope analysis, New
 Phytol., 197, 838–849, 2013.
- Tausz Posch, S., Norton, R. M., Seneweera, S., Fitzgerald, G. J., and Tausz, M.: Will intra-specific
 differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study,
 Physiol. Plantarum, 148, 232–245, 2013.
- Tazoe, Y., von Caemmerer, S., Estavillo, G. M., and Evans, J. R.: Using tunable diode laser
 spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO₂
 diffusion dynamically at different CO₂ concentrations, Plant Cell Environ., 34, 580–591, 2011.
- 610 Terashima, I., Hanba, Y.T., Tazoe, Y., Vyas, P., and Yano, S.: Irradiance and phenotype: comparative
 611 eco-development of sun and shade leaves in relation to photosynthetic CO₂ diffusion, J. Exp. Bot.,
 612 57, 343–354, 2006.
- 613 Th éroux-Rancourt, G., Éthier, G., and Pepin, S.: Threshold response of mesophyll CO₂ conductance to
 614 leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying, J. Exp. Bot., 65,
 615 741-753, 2014.
- 616 Von Caemmerer, S. V. and Farquhar, G. D.: Some relationships between the biochemistry of

- 617 photosynthesis and the gas exchange of leaves, Planta, 153, 376–387, 1981.
- 618 Wall, G. W., Garcia, R. L., Kimball, B. A., Hunsaker, D. J., Pinter, P. J., Long, S. P., Osborne, C. P.,
- Hendrix, D. L., Wechsung, F., and Wechsung, G.: Interactive effects of elevated carbon dioxideand drought on wheat, Agron. J., 98, 354–381, 2006.
- Wall, G. W., Garcia, R. L., Wechsung, F., and Kimball, B. A.: Elevated atmospheric CO₂ and drought
 effects on leaf gas exchange properties of barley, Agr. Ecosyst. Environ., 144, 390–404, 2011.
- Warren, C. R. and Adams, M. A.: Internal conductance does not scale with photosynthetic capacity:
 implications for carbon isotope discrimination and the economics of water and nitrogen use in
 photosynthesis, Plant Cell Environ., 29, 192–201, 2006.
- Ku, D. Q.: Some problems in stomatal limitation analysis of photosynthesis, Plant Physiol. J., 33, 241–
 244, 1997.
- Ku, Z. and Zhou, G.: Responses of photosynthetic capacity to soil moisture gradient in perennial
 rhizome grass and perennial bunchgrass, BMC Plant Boil., 11, 21, 2011.
- Yang, B., Pallardy, S. G., Meyers, T. P., GU, L. H., Hanson, P. J., Wullschleger, S. D., Heuer, M.,
 Hosman, K. P., Riggs, J. S., and Sluss D. W.: Environmental controls on water use efficiency
 during severe drought in an Ozark Forest in Missouri, USA, Global Change Biol., 16, 2252–2271,
 2010.
- Yu, G., Wang, Q., and Mi, N.: Ecophysiology of plant photosynthesis, transpiration, and water use,
 Science Press, Beijing, China, 2010.
- 636

637 Author contributions

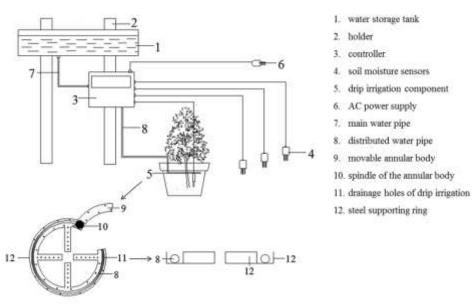
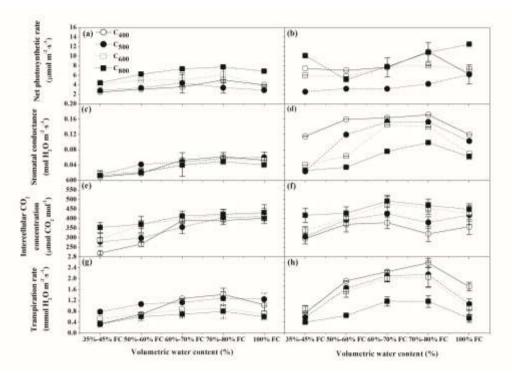
N. Zhao and Y. He collected field samples, and performed experiments. N. Zhao performed data
analysis and wrote the paper. P. Meng commented on the theory and study design. X. Yu revised and
edited the manuscript.

641

642 Acknowledgements. Financial support for this project was provided by the National Natural Science 643 Foundation of China (grant No. 41430747) and the Beijing Municipal Education Commission 644 (CEFF-PXM2017_014207_000043). We thank Beibei Zhou and Yuanhai Lou for collection of 645 materials and management of saplings. We are grateful to anonymous reviewers for constructive 646 suggestions regarding this manuscript. Due to space limitations we cited selected references involving 647 this study topic and apologize for authors whose work was not cited.

- 648
- 649
- 650
- 651
- 652 653
- 654
- 655
- 656
- 657
- 658
- 659

Figure

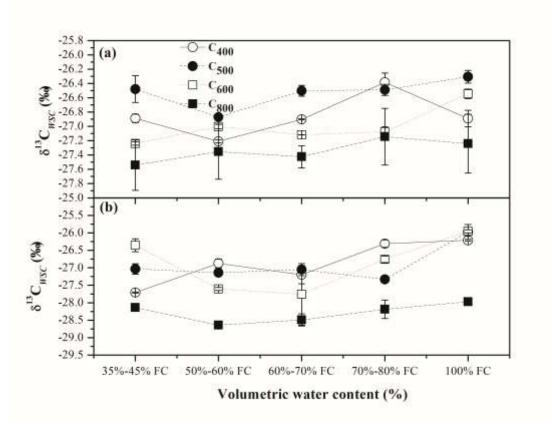


Figure 1. Diagram of the automatic drip irrigation device
Numbers indicate the individual parts of the automatic drip irrigation device (No. 1–12). The lower-left
corner of this figure presents the detailed schematic for the drip irrigation components (No. 8–12).
667
668
669
670
671
672
673

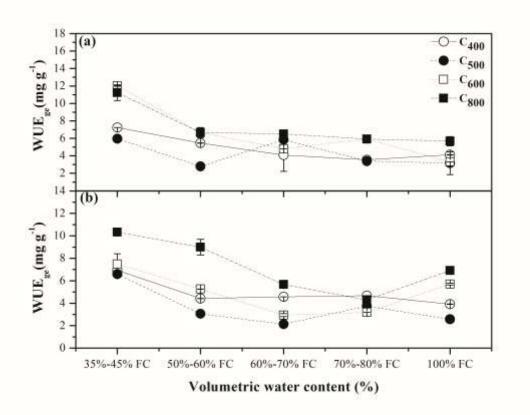
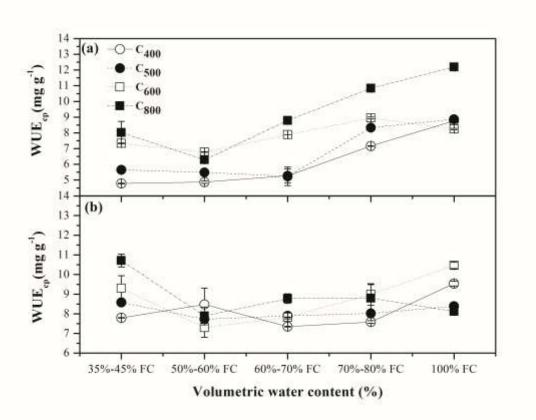


Figure 2. Net photosynthetic rates (P_n , µmol m⁻² s⁻¹, a and b), stomatal conductance (g_s , mol H₂O m⁻² s⁻¹, c and d), intercellular CO₂ concentration (C_i , µmol CO₂ mol⁻¹, e and f), and transpiration rates (T_r , mmol H₂O m⁻² s⁻¹, g and h) of *P. orientalis* and *Q. variabilis* for four CO₂ concentrations × five soil volumetric water contents. Means ± SDs, n= 32.


- 678
- 679

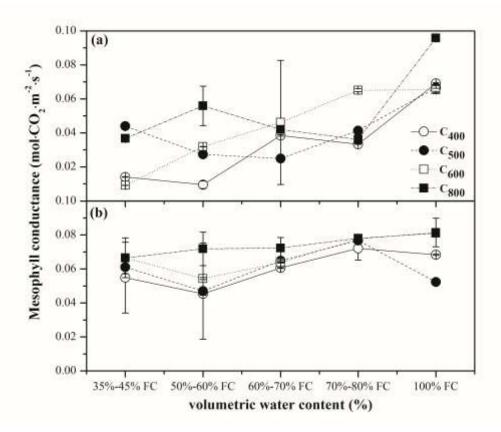

Figure 3. Carbon isotope composition of water-soluble compounds ($\delta^{13}C_{WSC}$) extracted from leaves of *P. orientalis* (a) and *Q. variabilis* (b) for four CO₂ concentrations × five soil volumetric water contents. Means ±SDs, n= 32.

Figure 4. Instantaneous water use efficiency through gas exchange measurements (WUE_{ge}) for leaves of *P. orientalis* (a) and *Q. variabilis* (b) for four CO₂ concentrations × five soil volumetric water contents. Means \pm SDs, n= 32.

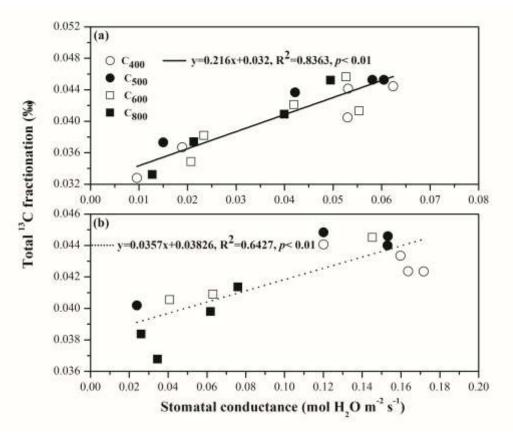
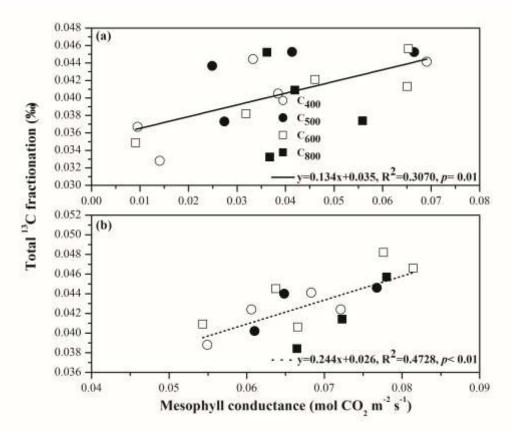


Figure 5. Instantaneous water use efficiency estimated by δ^{13} C of water-soluble compounds (WUE_{cp}) from leaves of *P. orientalis* (a) and *Q. variabilis* (b) for four CO₂ concentrations × five soil volumetric water contents. Means ± SDs, n= 32.



692 Figure 6. Mesophyll conductance of *P. orientalis* (a) and *Q. variabilis* (b) for four CO_2 concentrations

693 × five soil volumetric water contents. Means \pm SDs, n= 32.

Figure 7. Regression between stomatal conductance and total ¹³C fractionation of *P. orientalis* (a) and *Q. variabilis* (b) for four CO₂ concentrations × five soil volumetric water contents (p= 0.01, n= 32). 698

Figure 8. Regression between mesophyll conductance and total ¹³C fractionation of *P. orientalis* (a) and *Q. variabilis* (b) for four CO₂ concentrations × five soil volumetric water contents (p=0.01, n= 32).

Table

702

Table 1. Orthogonal treatments of *P. orientalis* and *Q. variabilis* for four CO_2 concentrations × five soil volumetric water contents.

P. orientalis	Repeats (cultivated period)	\mathbf{B}_1	B ₂	B ₃	B_4	B ₅	
A_1	R ₁ :June 2–9	$A_1B_1R_1$	$A_1B_2R_1$	$A_1B_3R_1$	$A_1B_4R_1$	$A_1B_5R_1$	
	R ₂ :June 12–19	$A_1B_1R_2$	$A_1B_2R_2$	$A_1B_3R_2$	$A_1B_4R_2$	$A_1B_5R_2$	
A_2	R ₁ :July 11–18	$A_2B_1R_1$	$A_2B_2R_1$	$A_2B_3R_1$	$A_2B_4R_1$	$A_2B_5R_1$	
	R ₂ :July 22–29	$A_2B_1R_2$	$A_2B_2R_2$	$A_2B_3R_2$	$A_2B_4R_2$	$A_2B_5R_2$	
A ₃	R ₁ :June 2–9	$A_3B_1R_1$	$A_3B_2R_1$	$A_3B_3R_1$	$A_3B_4R_1$	$A_3B_5R_1$	
	R ₂ :June 12–19	A_3B_1R	$A_3B_2R_2$	$A_3B_3R_2$	$A_3B_4R_2$	$A_3B_5R_2$	
A_4	R ₁ :July 11–18	$A_4B_1R_1$	$A_4B_2R_1$	$A_4B_3R_1$	$A_4B_4R_1$	$A_4B_5R_1$	
	R ₂ :July 22–29	$A_4B_1R_2$	$A_4B_2R_2$	$A_4B_3R_2$	$A_4B_4R_2$	$A_4B_5R_2$	
Q. variabilis	Repeats (cultivated period)	\mathbf{B}_1	\mathbf{B}_2	B ₃	\mathbf{B}_4	B ₅	
•	P ₁ :June 21–28	$A_1B_1P_1$	$A_1B_2P_1$	$A_1B_3P_1$	$A_1B_4P_1$	$A_1B_5R_1$	
A_1	P ₂ :July 2–9	$A_1B_1P_2$	$A_1B_2P_2$	$A_1B_3P_2$	$A_1B_4P_2$	$A_1B_5R_2$	
A_2	P ₁ :August 4–11	$A_2B_1P_1$	$A_2B_2P_1$	$A_2B_3P_1$	$A_2B_4P_1$	$A_2B_5R_1$	
	P ₂ :August 15–22	$A_2B_1P_2$	$A_2B_2P_2$	$A_2B_3P_2$	$A_2B_4P_2$	$A_2B_5R_2$	
٨	P ₁ :June 21–28	$A_3B_1P_1$	$A_3B_2P_1$	$A_3B_3P_1$	$A_3B_4P_1$	$A_3B_5R_1$	
A_3	P ₂ :July 2–9	$A_3B_1P_2$	$A_3B_2P_2$	$A_3B_3P_2$	$A_3B_4P_2$	$A_3B_5R_2$	
	P ₁ :August 4–11	$A_4B_1P_1$	$A_4B_2P_1$	$A_4B_3P_1$	$A_4B_4P_1$	$A_4B_5R_1$	
A_4	1 J.August 4–11	1 4 2 11 1	1 1420 21 1				

			CO ₂ concentration (ppm)													
SWC							¹³ C	¹³ C			¹³ C					
	(of FC)		400	500	600	800	fractionation	400	500	600	800	fractionation	400	500	600	800
							(‰)					(‰)				
P. 6 orientalis 7 3 Q. 6 variabilis	35%-45%		0.0328	0.0373	0.0349	0.0332		0.0081	0.0030	0.0034	0.0072		0.0247	0.0343	0.0315	0.0260
	50%-60%		0.0367	0.0437	0.0382	0.0374		0.0018	0.0058	0.0094	0.0004		0.0349	0.0379	0.0288	0.0370
	60%–70%		0.0405	0.0366	0.0421	0.0409		0.0018	0.0050	0.0026	0.0007		0.0387	0.0316	0.0395	0.0402
	70%-80%		0.0444	0.0453	0.0413	0.0452		0.0044	0.0052	0.0103	0.0013		0.0400	0.0401	0.0310	0.0439
	100%	Total ¹³ C	0.0441	0.0453	0.0456	0.0472	Mesophyll	0.0057	0.0040	0.0025	0.0039	Post-	0.0384	0.0413	0.0431	0.0433
	35%-45%	 fractionation (‰) 	0.0388	0.0402	0.0406	0.0384	conductance	0.0007	0.0025	0.0006	0.0091	photosynthesis	0.0381	0.0377	0.0400	0.0293
	50%-60%		0.0433	0.0448	0.0409	0.0368		0.0061	0.0084	0.0023	0.0018		0.0372	0.0364	0.0386	0.0350
	60%–70%		0.0424	0.0440	0.0445	0.0414		0.0066	0.0086	0.0078	0.0041		0.0358	0.0354	0.0367	0.0373
	70%-80%		0.0424	0.0446	0.0482	0.0457		0.0034	0.0016	0.0074	0.0028		0.0390	0.0430	0.0408	0.0429
	100%		0.0441	0.0466	0.0466	0.0398		0.0027	0.0076	0.0022	0.0125		0.0414	0.0390	0.0444	0.0273

706 Table 2. Carbon-13 isotope fractionation of <i>P. orientalis</i> and <i>Q. variabilis</i> for fou	Ir CO_2 concentrations × five soil volumetric water contents.
--	---