
Dear Dr. Alexey V. Eliseev: 
 
We greatly appreciate your granting us the opportunity to revise our manuscript. We have 
carefully studied the comments from two referees and M. Freilich. We have revised the 
manuscript accordingly.  
 
In addition to addressing those comments, we also have made the following changes. 
 

1. We have slightly modified the title to be “Transient Dynamics of Terrestrial Carbon 
Storage: Mathematical foundation and its applications”. The original term “numeric 
examples” we think carries less meaning for readers than the term “its applications.” 

2. We have deleted the paragraph and relevant sentences about the carbon storage potential 
to be used as the target quantity of research, trading, and government negotiation. We 
plan to explain this point in another application paper instead of in this paper. 

3. We have also carefully read the manuscript and made many minor changes in the whole 
manuscript to improving its readability and accuracy of expression.   

 
Hope you will find our revision and responses satisfactory. 
 
Yiqi Luo 
On behalf of all the authors  



Dear Referee 1: 
 
We greatly appreciate your comments on our manuscript. We have carefully studied your 
comments and revised the manuscript accordingly.  
 
Hope you will find our revision and responses satisfactory. 
 
Yiqi Luo 
On behalf of all the authors 
 
Below we list our point-to-point responses to your comments: 
  
[Comment] General remarks: 
The authors present a paper showing that a matrix equation can replicate the output of a 
comprehensive carbon cycle model. In particular they find that the force driving the ecosystem C 
storage is the C storage capacity. In general the article is well written and organized and fits into 
the scope of the journal. Using such a simple matrix equation as a physical emulator of 
comprehensive models has the potential to save a lot of computing time and gains a deeper 
understanding of the underlying mechanisms. The authors state in their summary that this would 
revolutionize model evaluations.  
 
[Response] Thanks for the positive comment. 
 
[Comment] I have some concern about this: The matrix equation has to be fitted to a simulation 
of the complex model with a specified fixed climate scenario. It would be interesting to know 
whether this parameter set can be used for a different climate scenario. In particular some 
parameters in the matrix equation are time-dependent and this time-dependence might change for 
different climate scenarios. Then the complex model can really be replaced by the matrix 
equation. Otherwise the matrix equation allows only a more convenient analysis of the model 
output. Non-linearities in the complex model might lead to a deviation from the linearized matrix 
representation. It would be nice if the authors could comment on that. 
 
[Response] The physical emulator does not result from fitting the model to simulation of the 
complex model. It generates by organizing the carbon balance equations in the original model 
into a matrix form. So the physical emulator is not climate scenario-specific.  Once developed, it 
is applicable to all climate scenarios. 
 
We have revised the manuscript to clarify this point. For example, we revised the title of section 
2.2 to be “TECO Model, its physical emulator, and numerical experiments”. We completely 
rewrote the third paragraph in that section to describe how we have developed the physical 
emulator of TECO in detail as: 
 
“To support the mathematical analysis using eq. 1, we first developed a physical emulator (i.e., 
the matrix representation of eq. 1) of the TECO model and then verified that the physical 
emulator can exactly represent simulations of the original TECO model. We first identified those 
parameter values in each of the C balance equations in the TECO model that are corresponding 



to elements in matrices A and K in eq. 1. The time-dependent variables for u(t), elements in 
vector B, and elements in matrix 𝜉 𝑡  in the physical emulator were directly from outputs of the 
original TECO model. Then those parameter values and time-dependent variables were 
organized into matrices A, 𝜉 𝑡 , and K; vectors 𝑋 𝑡 , 𝑋!, and B; and variable 𝑢 𝑡 . Note that 
values of 𝑢 𝑡 , B, and 𝜉 𝑡  could be different among different climate scenarios. Those matrices, 
vectors, and variable were entered to matrix calculation to compute 𝑋′ 𝑡  using eq. 1. The sum 
of elements in calculated 𝑋′ 𝑡  is a 100% match with simulated net ecosystem production (NEP) 
with the TECO model (Fig. 1b).” 
 
Hope this paragraph explains the physical emulator clearly. In addition, we added section 6 Code 
availability on page 31 and provided a webpage link to both the TECO model and its physical 
emulator for verification and uses. 
 
[Comment] More specific remarks: 
Abstract: The authors are talking about a 3-D parameter space. These 3 parameters, however, are 
not simple scalars, but are itself vectors (e.g., residence time and storage potential). 
 
[Response] we add elements of the vectors together to get the scalars before we plotted the 3D 
parameter space.  We clarified this point in several places in the manuscript. For example,  
 
One paragraph on page 14 (lines 303-306) on this point is:  
 
“Note that sums of elements in vectors 𝑋 𝑡 , 𝑋! 𝑡 , 𝑋! 𝑡 , and 𝑋! 𝑡  are corresponding, 
respectively, to the whole ecosystem C stock, ecosystem C storage capacity, ecosystem C storage 
potential, and net ecosystem production (NEP). In this paper, we do not use a separate set of 
symbols to represent those sums rather than express them wherever necessary. ” 
 
Also, the legend of Figure 1 explains this point: 
 
“Panel b compares the original TECO model outputs with those from matrix equations for net 
ecosystem production (NEP = the sum of elements in 𝑋′(𝑡) from eq. 1).”  “Panel c compares the 
original TECO model outputs with those from matrix equations for ecosystem C storage (= the 
sum of elements in 𝑋(𝑡) from eq. 2).” 
 
 [Comment] Page 4: The authors state that most carbon cycle models follow a mathematical 
formulation of ordinary differential equations. Many of the dynamic global vegetation models 
(DGVM) are ab initio formulated as a time discrete model calculating, e.g., NPP on a daily level 
and carbon allocation to different vegetation pools on annually using some (non-linear) 
allocation rules. Moreover, the authors should mention these DGVMs. 
 
[Response] Thanks for the comments.  It is not very clear with “are ab initio formulated.” That 
leaves some uncertainty about our understanding of this comment. Nevertheless, the time steps 
of NPP calculation and allocation do not affect Eq. 1. Indeed, eq. 1 is mainly about C 
transformation within land ecosystems before the carbon is respired. NPP is input of eq. 1.  
 
We have successfully applied Eqs. 1 and 2 to LPJ-GUESS, a DGVM, as described in line 581.  



 
[Comment] Page 9: The authors should describe which algorithms are necessary in order to 
develop the matrix equation from the output of the TECO model. In particular how they 
determined matrix A and K.  
 
[Response] We wrote the physical emulator of the TECO model in matlab. But it can be 
developed in any other computer language. Basically, we have to understand the original model 
and identify those carbon balance equations. Then we organize those coefficients and parameters 
in matrix forms to develop the physical emulator. See our responses to your comment on 
emulator above. We have completely revised the paragraph in Section 2.2 to describe how we 
developed the physical emulator of the TECO model. 
 
We also described the physical emulator in paragraph on pages 26-27. Specifically, lines 585-
588 state “the physical emulators differ for different models as the elements of each matrix could 
be differently parameterized or formulized in different models. Also, different models usually 
have different pool-flux structures, leading to different non-zero elements in the A matrix.” 
 
[Comment] Technical comment: 
Page 29, line 586: A “to” is missing: The emulators allow us TO analyze: : : 
 
[Response] Corrected as suggested. 
 
[Comment] In summary the article is suitable for publication if the above-mentioned comments 
are incorporated. 
 
[Response] Thank the referee for the support. 
 
  



Dear Referee 2: 
 
We greatly appreciate your time and effort to read, understand, and make comments on our 
manuscript. We have carefully studied your comments and revised the manuscript accordingly. 
Hope our responses have adequately addressed your concerns so that we can develop mutual 
understanding about your concerns and about what we present in the paper.  
 
Please note the line numbers and pages numbers in this letter are all refereed in the revised, 
marked-up manuscript. 
 
Yiqi Luo 
On behalf of all the authors 
 
 
Below we list our point-to-point responses to your (i.e., referee 2 in this case) comments: 
  
[Comment] In spite of words “mathematical foundation” in the title, the first mistake is 
contained directly in the first formula (1). Let’s rewrite it in the component form:  
 

    (1) 
 
and see that in this notation all off-diagonal elements of matrix A are useless, and the system (1) 
is simply a set of trivial linear equations for disconnected variables. Do the authors know that 
matrix multiplication is non-commutative? My hypothesis is that the matrix A should be stated 
after other multipliers in the second member of the sum: 
 
  

 
Such a formula is at least mathematically correct and allows the following component view:   
 

   (1-a) 
 
Consequently all next formulas should be corrected according to the new form of (1). It’s 
completely unclear why “all off-diagonal values a

ji
 are negative” (page 8).  

 
[Response] We are grateful to you for your time and effort to examine mathematical formulas. 
We agree with you that it is critical to make sure the mathematical expression of biological 
processes should be correct before we do any analysis. 
 



Your comment prompted us to carefully re-examine the equation.  After the multiplication of 𝜉, 
𝐾 and 𝐴, Equation 1 becomes: 
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Then the carbon dynamics in pool 1 will be described by: 
 
𝑋!! = 𝐵!𝑢 𝑡 − (𝐴!!𝜉!𝐾!𝑋! + 𝐴!"𝜉!𝐾!𝑋! +∙∙∙+𝐴!!𝜉!𝐾!𝑋!) 
 
The above equation states that change in carbon content in pool 1 equals carbon influx from a 
fraction of NPP (i.e., 𝑢 𝑡  times partitioning coefficient 𝐵!) minus decomposition expressed by 
(𝐴!!𝜉!𝐾!𝑋! + 𝐴!"𝜉!𝐾!𝑋! +∙∙∙+𝐴!!𝜉!𝐾!𝑋!). Since K is decomposition coefficient, the term 
𝐾!𝑋! describes that decomposition of carbon in pool 1 equals 𝐾! times 𝑋!, so on for 𝐾!𝑋!, and 
𝐾!𝑋!. Environmental scalar 𝜉! modifies its corresponding 𝐾!. Transfer coefficient 𝐴!! in the 
above equation describes carbon transfer from pool j to pool 1. In the real world, no carbon is 
transferred from other plant, litter, and soil pools to leaf pool. Thus  𝐴!! = 0, 𝑗 ≠ 1.  
 
However, not all 𝐴!" = 0, 𝑗 ≠ 𝑖. In TECO model with carbon transfer pathways as depicted in 
Figure 1a, there are many zero but several non-zero elements in matrix 𝐴 to represent carbon 
transfers among pools as: 
 

𝐴 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

−𝑎!" −𝑎!" −𝑎!" 1 0 0 0 0
0 0 −𝑎!" 0 1 0 0 0
0 0 0 −𝑎!" −𝑎!" 1 −𝑎!" −𝑎!"
0 0 0 0 −𝑎!" −𝑎!" 1 0
0 0 0 0 0 −𝑎!" −𝑎!" 1

 

 
For example, 𝐴!" ≠ 0 as it represents litterfall from leaf pool to litter pool. Some of those none-
zero transfer coefficients as represented by 𝐴!" are related to microbial carbon use efficiency. 
 
Let us look at the equation you suggested (i.e., Equation 1-a).  After the multiplication of 𝜉, 𝐾 
and 𝐴, Equation 1-a will become: 
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and the carbon dynamics in pool 1 will be described by: 
 



𝑋!! = 𝐵!𝑢 𝑡 − (𝐴!!𝜉!𝐾!𝑋! + 𝐴!"𝜉!𝐾!𝑋! +∙∙∙+𝐴!!𝜉!𝐾!𝑋!) 
 
In the above equation, the term 𝐾!𝑋! or 𝐾!𝑋! biologically does not make sense as it describes 
the decomposition of carbon in pool 2 by coefficient 𝐾!. The latter describes the relative rate of 
decomposition of pool 1. Nor does 𝐾!𝑋! biologically make sense.  
 
Thus, we hope that you can see that our original equation still works.   
 
The statement “all off-diagonal values a

ji
 are negative” (page 9) because carbon transfer from 

pool i to pool j to be positive by having negative coefficient multiplied with negative sign for this 
term. We have clarified this point by revising the sentences on line 175-176 as: 
 
“In eq. 1, all the off-diagonal 𝑎!" values are negative to reverse the minus sign and indicate 
positive C influx to the receiving pools” 
 
[Comment] But the more essential question is concerned to it’s biological correctness and sense. 
According to (1, 1-a) matrix A consists of transfer coefficients and does not depend on system 
variables X making all the system non-autonomous and linear. There is no biological foundation 
for such strong universality of the form (1, 1-a) for all temporal and spatial scales and no 
mathematical proof in the paper. In particular, it’s not clear how mass-balance relations are 
connected with that form.  
 
[Response] Thanks for your question about the biological basis of the mathematical equation. 
The two paragraphs from line 143 to 161 describe the biological basis as below: 
 
“Hundreds of models have been developed to simulate terrestrial C cycle (Manzoni and 
Porporato, 2009).  All the models have to simulate processes of photosynthetic C input, C 
allocation and transformation, and respiratory C loss. It is well understood that photosynthesis is 
a primary pathway of C flow into land ecosystems. Photosynthetic C input is usually simulated 
according to carboxylation and electron transport rates (Farquhar et al., 1980). Ecosystem C 
influx varies with time and space mainly due to variations in leaf photosynthetic capacity, leaf 
area index of canopy, and a suite of environmental factors such as temperature, radiation, and 
relative humidity (or other water-related variables) (Potter et al., 1993; Sellers et al., 1996; 
Keenan et al., 2012; Walker et al., 2014, Parolari and Porporato 2016).  
 Photosynthetically assimilated C is partly used for plant biomass growth and partly 
released back into the atmosphere through plant respiration. Plant biomass in leaves and fine 
roots usually lives for several months up to a few years before death, while woody tissues may 
persist for hundreds of years in forests. Dead plant materials are transferred to litter pools and 
decomposed by microorganisms to be partially released through heterotrophic respiration and 
partially stabilized to form soil organic matter (SOM).  SOM can store C in the soil for hundreds 
or thousands of years before it is broken down to CO2 through microbial respiration (Luo and 
Zhou, 2006). This series of C cycle processes has been represented in most ecosystem models 
with multiple pools linked by C transfers among them (Jenkinson et al., 1987; Parton et al., 1987; 
1988; 1993), including those embedded in Earth system models (Ciais et al., 2013). “ 
 
 Moreover, we have conducted many synthesis studies to examine different aspects of the 



biological basis. The carbon input via canopy photosynthesis as described by 

𝐵!
𝐵!
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𝑢 𝑡  has been 

well accepted. Scientists in the community have questioned carbon transformation through 
𝐴𝜉𝐾𝑋 in equation 1. We examine six assumptions of those carbon cycle models and the validity 
of our analysis in section 4.1 on pages 19-23. We would be happy to answer any specific 
questions you would have regarding those assumptions.  
 
[Comment] Page 9 gives us an example of a risky statements made in the paper. Authors say that 
almost all world models of carbon cycle in terrestrial ecosystems have the form (1). They refer to 
the work (Manzoni, Porporato, 2009) and state that there is a review of 250 models of carbon 
cycling in it ! First, Table A2 in this work has 200 references to papers describing different 
versions of a smaller number of models. Second, I have a very strong doubt that all of them can 
be presented in the form (1) because they were made for various time scales, different set of 
compartments and different details of biogeochemical processes accounted for. Interesting is the 
fact that the model of Manzoni and Porporato (2009) themselves is nonlinear and does not look 
like the system (1) ! As well as another model of soil organic carbon and microbial dynamics 
made by Hararuk et al. (2015) also referred to by the authors !  
 
[Response] Thanks for your comment.  We agree with you that the nonlinear microbial models 
by Manzoni and  Porporato (2009) or Hararuk et al. (2015) could not be represented by equation 
1. This issue is pointed out in section 4.1 regarding those microbial models (i.e., assumption 1).  
We also pointed out that thousands of datasets we have reviewed do not seem to support those 
nonlinear microbial models as described on pages 19-20. Paper by Sierra and Müller (2015) also 
stated that most of the land carbon cycle models can be represented by equation 1. 
 
Indeed, we have worked with many modeling groups and organized those carbon balance 
equations in their models into the matrix equations. It has been demonstraed that the matrix 
equation can represent those original models well as described in paragraph from lines 580-592. 
Please see another publication by Ahlström et al. (2015) with LPJ-GUESS for the application of 
eq. 1.   
 
[Comment]  In part 2.2 (pages 9-11) authors carry out comparison of the TECO terrestrial 
ecosystem model results and the system (1) calculations. Their statement on a 100% match of 
NEE calculations for TECO and (1) seem strange. If TECO is independent of the system (1) this 
is unbelievable result, in the opposite case the comparison has no sense.  
 
[Response] This is the case. We organized those carbon balance equations of TECO into the 
matrix equation, eq. 1. Dynamics of eq. 1 should be mathematically equivalent to TECO outputs. 
However, they might be mismatch due to the errors from numerical simulations. Therefore, we 
run the matrix equation to verify that the physical emulator can exactly represent simulation 
outputs from the original TECO model. We have done that with CABLE (Xia et al. 2012, 2013). 
CLM3.5 (Rafiquee et al. 2016), CLM4.5 (Shi et al. in prep.), BEPS (Chen et al. 2016), and LPJ-
GUESS (Ahlström et al. 2015). In all the cases, the matrix equation can reproduce simulations of 
those original models. In this paper, the matrix equation can 100% match NEP simulation, but 
minor mismatch in estimated C storage. 



 
[Comment] Introducing two new definitions – the C storage capacity and C storage potential – 
could be a good idea of this paper if authors would explain their biological interpretation and 
mathematical correctness. First, we should make correspondence to (1-a) and note that 

instead of (3). Second, study of existence for this inverse matrix is needed to state 
mathematical correctness of these definitions because inverse matrix serves as a foundation for 
all math terms in the following text. There is no such study in the paper. Another question arises 

about chasing time τ
ch

: why it’s formula should have physical dimension of time ? 
There are no explanations in the text.   
 
[Response] The biological interpretation of C storage capacity is given in Abstract (Lines 42-50), 
Results (lines 271-278), Discussion section 4.2, and Conclusions. For example, sentences on 
lines 638-641 in the Conclusion section state: 
 
“The capacity, which is the product of C input and residence time, represents their instantaneous 
responses to a state of external forcing at a given time. Thus, the C storage capacity quantifies 
the maximum amount of C that an ecosystem can store at the given environmental condition at a 
point of time.”   
 
Similarly, C storage potential is also biologically explained in Abstract, Results, Discussion, and 
Conclusions sections. For example, the first paragraph in section 4.3 is: 
 
“The C storage potential represents the internal capability to equilibrate the current C storage 
with the capacity. Bogeochemically, the C storage potential represents re-distribution of net C 
pool change, 𝑋′ 𝑡 , of individual pools through a network of pools with different residence times 
as connected by C transfers from one pool to the others through all the pathways. The potential is 
conceptually equivalent to the magnitude of disequilibrium as discussed by Luo and Weng 
(2011).” 
 
Thanks for your comment. We have added the time dimension for chasing time on lines 251-252 
as: 
 
“In eq. 2, we name the term (𝐴𝜉 𝑡 𝐾)!! the chasing time, 𝜏!! 𝑡 , with a time unit used in exit 
rate 𝐾.”  
 
[Comment] All inputs in the model (1) are supposed constant or time-dependent. In particular on 
page 15 plant photosynthesis is declared only time-dependent. But for some temporal scales (a 
year, for example) it can essentially dependent on the plant carbon content and in that case the 
model (1) should have another form (Parolari, Porporato, 2016).  
 
Reference  
Parolari A., Porporato A., Forest soil carbon and nitrogen cycles under biomass harvest: stability, 
transient response, and feedback. // Ecological Modelling, v. 329, 2016, pp. 64-76. 
 
[Response] We have carefully studied the paper by Parolari and Porporato (2016), particularly 



that paragraph on NPP on page 66. That study differentiated the productivity regime into C-
limited and N-limited. The C-limit regime accounts for limitation of light, temperature and 
moisture whereas the N-limited regime accounts for nitrogen limitation. Both of the regimes 
have been discussed in relation with eq. 1.  Please see sentences on lines 147-151 and lines 474-
475 for more explanation. In the revised manuscript, we cited the paper and explained those 
environmental factors as represented by scalars on line 151.   
 
[Comment] Therefore, since all other formulas and descriptions are based on the terms 
introduced above with mistakes as well as statements made without sufficient biological basis, 
the conclusion at page 25 (part 4.4, first sentence) about novel approach suggested by the authors 
to understand, evaluate, diagnose and improve carbon cycle models is represented as inadequate 
and seems early and premature.  
  
[Response] We hope our responses to your comments above can help us communicate well with 
you and then gain mutual understanding on what we presented in this paper and what you were 
concerned.  
 
We thank you for the valuable comments, some of which led us to improve the text and better 
communicate our points to the reader. We hope our responses above also demonstrate that our 
formulation did not include mistakes and that the terms we introduced were founded on sound 
biological principles. Thus, we stand by our conclusion that the presented approach enables one 
to understand, evaluate, diagnose and improve carbon cycles models. 
 
 
  



Dear M. Freilich, maraf@mit.edu: 
 
We greatly appreciate your comments on our manuscript. We have carefully studied your 
comments and revised the manuscript accordingly. Please note the line numbers and pages 
numbers in this letter are all refereed in the revised, marked-up manuscript. 
 
Hope you will find our revision and responses satisfactory. 
 
Yiqi Luo 
On behalf of all the authors 
 
Below we list our point-to-point responses to your comments: 
  
[Comment] Luo et al provide an excellent mathematical framework for studying the dynamics of 
the carbon cycle in terrestrial ecosystems. The focus on transient dynamics makes clear which 
aspects of carbon storage and sequestration are most important to consider in order to understand 
the functioning of forests are carbon reservoirs. The reduction of the models to a 3D parameter 
space is seemingly very useful for a mechanistic understanding of the effects of global change on 
terrestrial carbon storage. 
 
[Response] We greatly appreciate your positive comments. 
 
[Comment] The modeling assumptions could use further clarification. In particular, the 
assumption that short-term disturbances can be well represented by the matrix equation 
(assumption 5) and the assertion that this assumption is unlikely to affect the results need further 
support. Disturbances may be very important for the carbon cycling of terrestrial systems and 
can affect ecosystem dynamics and carbon cycling for decades, in addition to causing C fluxes 
that greatly exceed those from annual cycles.  
 
[Response] We agree. Disturbances can substantially affect ecosystem carbon cycling 
 
[Comment] Presumably, disturbance events could be incorporated in the time varying factors u(t) 
and _(t). However, there are a number of well-developed non-linear models for pest outbreaks 
that might violate the assumption that transfer between pools can be represented by a linear 
model (assumption 1) if outbreaks were to be incorporated into these factors.  
 
[Response] We appreciate for your point that there are many non-linear models for pest 
outbreaks. Pest outbreaks affect tree mortality, which usually is in proportion to the severity of 
pest outbreaks.  Tree mortality can be non-linearly responding to pest outbreaks as 
decomposition of soil organic carbon to temperature. Such non-linear responses still do not affect 
fundamental properties of the carbon cycle as discussed in Assumption 4 on response functions. 
 
[Comment] While one aspect of pest outbreaks is a reduction in GPP or NPP, which may be 
sufficiently represented by u(t), even a linear approximation of the rapid change in the transfer of 
biomass between classes cannot be represented by this model without making the matrix A of 
transfer coefficients also time-dependent. One way this may be overcome is by setting limits on 



the timescale of applicability of this mathematical framework, so as to assume that transfer 
coefficients are not changing. Further, abiotic disturbances such as fire or disturbances that 
remove carbon from the ecosystem completely such as harvesting would be outside the scope of 
this model.  
 
[Response] Matrix A can be time-dependent. Equation 1 does not explicitly include abiotic 
disturbances in influencing carbon cycle. Weng et al. (2012) developed a disturbance regime 
model that explicitly incorporates disturbances into equation 1 for their influences of terrestrial 
carbon cycle. This paper focuses on understanding of fundamental properties of equation 1.  
 
To clarify this point, we have revised the second half of the paragraph on Assumption 5 (lines 
485-490) as: 
 
“Those disturbance influences can be represented in terrestrial C cycle models through changes 
in parameter values, environmental scalars, and/or discrete C transfers among pools of eq. 1 (Luo 
and Weng 2011). While eq. 1 does not explicitly incorporate disturbances for their influences on 
land C cycle, Weng et al. (2012) developed a disturbance regime model that combines eq. 1 with 
frequency distributions of disturnace severity and intervals to quantify net biome exchanges.”   
 
[Comment] The authors show that X’(t) in this model is the net ecosystem production (NEP), but 
non-biotic transformation from organic and inorganic carbon is not included in NEP, nor is 
transfer between ecosystems. This may just require a clarification of terminology in order to 
include fire, other abiotic oxidation, and harvesting in the _(t) term of the model. 
 
[Response] Yes, you are very sharp to point out the omission of this analysis. We did not 
explicitly include disturbances in the analysis but state that disturbances do not alter fundamental 
properties of the system.  As explained above, Weng et al. (2012) developed a model that 
explicitly combines disturbances with equation 1 to quantify net biome production on lines 488-
490.  
 
[Comment] Finally, it may be useful to clarify on what scale the results apply. Based on the 
assumptions about linear decay smoothing small scale fluctuations and the neglect of lateral C 
fluxes, it seems important to point out that this is model applies only at the ecosystem scale. The 
parameters are calibrated based on one grid cell of the TECO model; would the same procedure 
be expected to scale up to larger spatial scales? 
 
[Response] Thanks for your comment. Equation 1 has been also applied to several global 
models, such as National Center for Atmosphere Research (NCAR) Community Land Model 
(CLM) and LPJ-GUESS.  See a published paper by Ahlström et al. (2015) for the application of 
equation to the global model LPJ-GUESS. Fundamentally equation 1 fully represents carbon 
balance equations in matrix form for almost all the land carbon cycle models. Equation 1 does 
not do any more smoothing of small-scale fluctuations than do the original models. The 
paragraph on pages 26-27 about physical emulators explains it. 
 
Yes, equation 1 does not apply to the models with lateral fluxes. 
 



[Comment] In the conclusion, the authors state that this model is consistent with complex 
dynamics including tipping points, which they say are “caused by multiple environmental 
forcing variables interacting with relatively simple internal processes over different temporal and 
spatial scales.” Tipping point behavior crucially depends on non-linear dynamics and so seems 
inconsistent with this model. However, a clarification that this method can evaluate the transient 
dynamics in a given state but does not reproduce more complex behavior may be more accurate.  
 
[Response] You are right that the eq. 1 does not cause some of the complex dynamics such as 
tipping points. Tipping points occur in carbon cycle mainly due to complex behaviors in external 
forcings. Luo and Weng (2011) and Luo et al. (2015) have explained this phenomenon in detail.  
While this paper could not explain this in detail again, we revised the manuscript by pointing 
readers to those papers for detailed discussion as on pages 29-30: 
 
“The two components of land C storage dynamics represent interactions of external forces (via 
changes in the capacity) and internal capability of the land C cycle (via changes in the C storage 
potential) to generate complex phenomena of C cycle dynamics, such as fluctuations, directional 
changes, and tipping points, in the terrestrial ecosystems. From a system perspective, these 
complex phenomena could not be generated by relatively simple internal processes but are 
mostly caused by multiple environmental forcing variables interacting with internal processes 
over different temporal and spatial scales as explained by Luo and Weng (2011) and Luo et al. 
(2015). Note that while those internal processes can be mathematically represented with a 
relatively simple formula, their ecological and biological underpinnings can be very complex.” 
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Abstract Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO2 emissions 40	

over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. 41	

Despite extensive modeling, experimental, and observational studies, what fundamentally 42	

determines transient dynamics of terrestrial C storage under global change is still not very clear. 43	

Here we develop a new framework for understanding transient dynamics of terrestrial C storage 44	

through mathematical analysis and numerical experiments. Our analysis indicates that the 45	

ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly 46	

determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since 47	

both C input and residence time vary with time, the C storage capacity is time-dependent and 48	

acts as a moving attractor that actual C storage chases. The rate of change in C storage is 49	

proportional to the C storage potential, the difference between the current storage and the storage 50	

capacity. The C storage capacity represents instantaneous responses of the land C cycle to 51	

external forcing, whereas the C storage potential represents the internal capability of the land C 52	

cycle to influence the C change trajectory in the next time step. The influence happens through 53	

redistribution of net C pool changes in a network of pools with different residence times.  54	

Moreover, this and our other studies have demonstrated that one matrix equation can 55	

exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, 56	

simulation outputs of those models can be placed into a three-dimensional (3D) parameter space 57	

to measure their differences. The latter can be decomposed into traceable components to track 58	

the origins of model uncertainty. In addition, the physical emulators make data assimilation 59	

computationally feasible so that both C flux- and pool-related datasets can be used to better 60	

constrain model predictions of land C sequestration. Overall, this new mathematical framework 61	

offers new approaches to understand, evaluate, diagnose, and improve land C cycle models.  62	
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1 Introduction 70	

Terrestrial ecosystems have been estimated to sequester approximately 30% of anthropogenic 71	

carbon (C) emission in the past three decades (Canadell et al., 2007). Cumulatively, land 72	

ecosystems have sequestered more than 160 Gt C from 1750 to 2015 (Le Quéré et al., 2015). 73	

Without land C sequestration, the atmospheric CO2 concentration would have increased by 74	

additional 95 parts per million and result in more climate warming (Le Quéré et al., 2015).  75	

During one decade from 2005 to 2014, terrestrial ecosystems sequestrated 3±0.8 Gt C per year 76	

(Le Quéré et al., 2015), which would cost billion dollars if the equivalent amount of C was 77	

sequestrated using C capture and storage techniques (Smith et al., 2016). Thus, terrestrial 78	

ecosystems effectively mitigate global change through natural processes with minimal cost. 79	

Whether this terrestrial C sequestration would endure into the future, however, is not clear, 80	

making the mitigation of global change greatly uncertain. To predict future trajectories of C 81	

sequestration in the terrestrial ecosystems, it is essential to understand fundamental mechanisms 82	

that drive terrestrial C storage dynamics. 83	

To predict future land C sequestration, the modeling community has developed many C 84	

cycle models. According to a review by Manzoni and Porporato (2009), approximately 250 85	

biogeochemical models have been published over a time span of 80 years to describe carbon and 86	

nitrogen mineralization. The majority of those 250 models follow some mathematical 87	

formulations of ordinary differential equations. Moreover, many of those biogeochemical models 88	

incorporate more and more processes in an attempt to simulate C cycle processes as realistically 89	

as possible (Oleson et al., 2013). As a consequence, terrestrial C cycle models have become 90	

increasingly complicated and less tractable. Almost all model intercomparison projects (MIPs), 91	

including those involved in the last three IPCC assessments, indicate that C cycle models have 92	
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consistently projected widely spread trajectories of land C sinks and were also found to fit 95	

observations poorly (Todd-Brown et al., 2013; Luo et al., 2015). The lack of progress in 96	

uncertainty analysis urges us to understand mathematical foundation of those terrestrial C models 97	

so as to diagnose causes of model spreads and improve model predictive skills.  98	

 Meanwhile, many countries have made great investments on various observational and 99	

experimental networks (or platforms) in hope to quantify terrestrial C sequestration. For 100	

example, FLUXNET has been established about 20 years ago to quantify net ecosystem 101	

exchange (NEE) between the atmosphere and biosphere (Baldocchi et al., 2001). Orbiting 102	

Carbon Observatory 2 (OCO-2) satellite was launched in 2014 to quantify carbon dioxide 103	

concentrations and distributions in the atmosphere at high spatiotemporal resolution to constrain 104	

land surface C sequestration (Hammerling et al., 2012). Networks of global change experiments 105	

have been designed to uncover processes that regulate ecosystem C sequestration (Rustad et al., 106	

2001; Luo et al., 2011; Fraser et al., 2013; Borer et al., 2014). Massive data have been generated 107	

from those observational systems and experimental networks. They offer an unprecedented 108	

opportunity for advancing our understanding of ecosystem processes and constraining model 109	

prediction of ecosystem C sequestration. Indeed, many of those networks were initiated with one 110	

goal to improve our predictive capability. Yet the massive data have been rarely integrated into 111	

earth system models to constrain their predictions. It is a grand challenge in our era to develop 112	

innovative approaches to integration of big data into complex models so as to improve prediction 113	

of future ecosystem C sequestration.  114	

From a system perspective, ecosystem C sequestration occurs only when the terrestrial C 115	

cycle is in a transient state, under which C influx into one ecosystem is larger than C efflux from 116	

the ecosystem. Olson (1963) is probably among the first to examine organic matter storage in 117	
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forest floors from the system perspective. His analysis approximated steady-state storage of 120	

organic matter as a balance of litter producers and decomposers for different forest types. 121	

However, global change differentially influences various C cycle processes in ecosystems and 122	

results in transient dynamics of terrestrial C storage (Luo and Weng, 2011). For example, rising 123	

atmospheric CO2 concentration primarily stimulates photosynthetic C uptake while climate 124	

warming likely enhances decomposition. When ecosystem C uptake increases in a unidirectional 125	

trend under elevated [CO2], terrestrial C cycle is at disequilibrium, leading to net C storage. The 126	

net gained C is first distributed to different pools, each of which has a different turnover rate (or 127	

residence time) before C is eventually released back to the atmosphere via respiration. 128	

Distribution of net C exchange to multiple pools with different residence times is an intrinsic 129	

property of an ecosystem to gradually equalize C efflux with influx (i.e. internal recovery force 130	

toward an attractor). In contrast, global change factors that causes changes in C input and 131	

decomposition is considered external forces that create disequilibrium through altering internal C 132	

processes and pool sizes. The transient dynamics of terrestrial C cycle at disequilibrium is 133	

maintained by interactions of internal processes and external forces (Luo and Weng, 2011). 134	

Although the transient dynamics of terrestrial C storage have been conceptually discussed, we 135	

still lack a quantitative formulation to estimate transient C storage dynamics in the terrestrial 136	

ecosystems.  137	

	 This paper was designed to address a question: what determines transient dynamics of C 138	

storage in terrestrial ecosystems from a system perspective? We first reviewed the major 139	

processes that most models have incorporated to simulate terrestrial C sequestration. The review 140	

helps establish that terrestrial C cycle can be mathematically represented by a matrix equation. 141	

We also described the Terrestrial ECOsystem (TECO) model with its numerical experiments in 142	
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support of the mathematical analysis. We then presented results of mathematical analysis on 146	

determinants of the terrestrial C storage, direction and magnitude of C storage at a given time 147	

point, and numerical experiments to illustrate climate impacts on terrestrial C storage. We 148	

carefully discussed assumptions of those terrestrial C cycle models as represented by the matrix 149	

equation, the validity of this analysis, and two new concepts introduced in this study, which are 150	

the C storage capacity and C storage potential. We also discussed the potential applications of 151	

this analysis to model uncertainty analysis and data-model integration. Moreover, we proposed 152	

that the C storage potential be a targeted variable for research, trading, and government 153	

negotiation for C credit.  154	

 155	

2 Methods 156	

2.1 Mathematical representation of terrestrial C cycle 157	

This study was conducted mainly with mathematical analysis. We first established the basis of 158	

this analysis, which is that the majority of terrestrial C cycle models can be represented by a 159	

matrix equation. 160	

Hundreds of models have been developed to simulate terrestrial C cycle (Manzoni and 161	

Porporato, 2009).  All the models have to simulate processes of photosynthetic C input, C 162	

allocation and transformation, and respiratory C loss. It is well understood that photosynthesis is 163	

a primary pathway of C flow into land ecosystems. Photosynthetic C input is usually simulated 164	

according to carboxylation and electron transport rates (Farquhar et al., 1980). Ecosystem C 165	

influx varies with time and space mainly due to variations in leaf photosynthetic capacity, leaf 166	

area index of canopy, and a suite of environmental factors such as temperature, radiation, and 167	

relative humidity (or other water-related variables) (Potter et al., 1993; Sellers et al., 1996; 168	
Unknown
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Keenan et al., 2012; Walker et al., 2014, Parolari and Porporato 2016).  169	

 Photosynthetically assimilated C is partly used for plant biomass growth and partly 170	

released back into the atmosphere through plant respiration. Plant biomass in leaves and fine 171	

roots usually lives for several months up to a few years before death, while woody tissues may 172	

persist for hundreds of years in forests. Dead plant materials are transferred to litter pools and 173	

decomposed by microorganisms to be partially released through heterotrophic respiration and 174	

partially stabilized to form soil organic matter (SOM).  SOM can store C in the soil for hundreds 175	

or thousands of years before it is broken down to CO2 through microbial respiration (Luo and 176	

Zhou, 2006). This series of C cycle processes has been represented in most ecosystem models 177	

with multiple pools linked by C transfers among them (Jenkinson et al., 1987; Parton et al., 1987; 178	

1988; 1993), including those embedded in Earth system models (Ciais et al., 2013).  179	

 The majority of the published 250 terrestrial C cycle models use ordinary differential 180	

equations to describe C transformation processes among multiple plant, litter, and soil pools 181	

(Manzoni and Porporato, 2009). Those ordinary differential equations can be summarized into a 182	

matrix formula (Luo et al., 2001; 2003; Luo and Weng, 2011; Luo et al., 2015; 2016; Sierra and 183	

Müller 2015) as: 184	

𝑋′(𝑡) = 𝐵𝑢 𝑡 − 𝐴𝜉 𝑡 𝐾𝑋(𝑡)
𝑋 𝑡 = 0 = 𝑋!                                                                         (1) 185	

where 𝑋′(𝑡) is a vector of net C pool changes at time t, X(t) is a vector of pool sizes, B is a 186	

vector of partitioning coefficients from C input to each of the pools, u(t) is C input rate, A is a 187	

matrix of transfer coefficients (or microbial C use efficiency) to quantify C movement along the 188	

pathways, K is a diagonal matrix of exit rates (mortality for plant pools and decomposition 189	

coefficients of litter and soil pools) from donor pools, 𝜉 𝑡  is a diagonal matrix of environmental 190	

scalars to represent responses of C cycle to changes in temperature, moisture, nutrients, litter 191	
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quality, and soil texture, and 𝑋! is a vector of initial values of pool sizes of 𝑋. In eq. 1, all the 196	

off-diagonal elements of matrix A, 𝑎!", are negative to reverse the minus sign and indicate 197	

positive C influx to the receiving pools. The equation describes net C pool change, 𝑋′(𝑡), as a 198	

difference between C input, 𝑢 𝑡 , distributed to different plant pools via partitioning coefficients, 199	

𝐵, and C loss through the C transformation matrix, 𝐴𝜉 𝑡 𝐾, among individual pools, 𝑋(𝑡).  200	

Elements in vector B, matrices A and K could vary with many factors, such as vegetation types, 201	

soil texture, microbial attributes, and litter chemistry.  For example, vegetation succession may 202	

influence elements in vector B, matrices A and K in addition to C input, 𝑢 𝑡 , and forcing that 203	

affects C dynamics through environmental scalars, 𝜉 𝑡 . 204	

After synthesis of all the possible soil C cycle models based on six principles (mass 205	

balance, substrate dependence of decomposition, heterogeneity of decay rates, internal 206	

transformations of organic matter, environmental variability effects, and substrate interactions), 207	

Sierra and Müller (2015) concluded that this form of matrix equation such as eq. 1 represents the 208	

majority of terrestrial C cycle models. Similarly, Manzoni and Porporato (2009) concluded their 209	

review of 250 models that the majority of them use ordinary differential equations, which can be 210	

summarized by eq. 1, to describe land C cycle. Our mathematical analysis in this study used 211	

matrix operations of eq. 1 to reveal determinants of transient dynamics of terrestrial C cycle, 212	

including direction and rate of C storage changes, in response to global change. We examined 213	

assumptions underlying this equation and the validity of our analysis in the Discussion section. 214	

 215	

2.2 TECO Model, its physical emulator, and numerical experiments 216	

We conducted numerical experiments to support the mathematical analysis and thus help 217	

understand the characteristics of terrestrial C storage dynamics using the Terrestrial ECOsystem 218	
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(TECO) model. TECO has five major components: canopy photosynthesis, soil water dynamics, 226	

plant growth, litter and soil carbon decomposition and transformation, and nitrogen dynamics as 227	

described in detail by Weng and Luo (2008) and Shi et al. (2016). Canopy photosynthesis is 228	

referred from a two-leaf (sunlit and shaded) model developed by Wang and Leuning (1998). This 229	

submodel simulates canopy conductance, photosynthesis, and partitioning of available energy. 230	

The model combines the leaf photosynthesis model developed by Farquhar et al. (1980) and a 231	

stomatal conductance model (Harley et al., 1992). In the soil water dynamic submodel, soil is 232	

divided into 10 layers. The surface layer is 10 cm deep and the other 9 layers are 20 cm deep. 233	

Soil water content (SWC) in each layer results from the mass balance between water influx and 234	

efflux. The plant growth submodel simulates C allocation and phenology. Allocation of C among 235	

three plant pools, which are leaf, fine root, and wood, depends on their growth rates (Fig. 1a). 236	

Phenology dynamics are related to leaf onset, which is triggered by growing degree days, and 237	

leaf senescence, which is determined by temperature and soil moisture. The C transformation 238	

submodel estimates carbon transfer from plants to two litter pools and three soil pools (Fig. 1a). 239	

The nitrogen (N) submodel is fully coupled with C processes with one additional mineral N pool. 240	

Nitrogen is absorbed by plants from mineral soil and then partitioned among leaf, woody tissues 241	

and fine roots. Nitrogen in plant detritus is transferred among different ecosystem pools (i.e. 242	

litter, coarse wood debris, fast, slow and passive SOM) (Shi et al., 2016). The model is driven by 243	

climate data, which include air and soil temperature, vapor-pressure deficit, relative humidity, 244	

incident photosynthetically active radiation, and precipitation at hourly steps. 245	

We first calibrated TECO with eddy flux data collected at Harvard Forest from 2006-246	

2009. The calibrated model was spun up to the equilibrium state in pre-industrial environmental 247	

conditions by recycling a 10-year climate forcing (1850-1859). Then the model was used to 248	
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simulate C dynamics from year 1850 to 2100 with the historical forcing scenario for 1850-2005 251	

and RCP8.5 scenario for 2006-2100 as in the Community Land Model 4.5 (Oleson et al., 2013) 252	

in the grid cell where Harvard Forest is located.  253	

To support the mathematical analysis using eq. 1, we first developed a physical emulator 254	

(i.e., the matrix representation of eq. 1) of the TECO model and then verified that the physical 255	

emulator can exactly represent simulations of the original TECO model. We first identified those 256	

parameter values in each of the C balance equations in the TECO model that are corresponding 257	

to elements in matrices A and K in eq. 1. The time-dependent variables for u(t), elements in 258	

vector B, and elements in matrix 𝜉 𝑡  in the physical emulator were directly from outputs of the 259	

original TECO model. Then those parameter values and time-dependent variables were 260	

organized into matrices A, 𝜉 𝑡 , and K; vectors 𝑋 𝑡 , 𝑋!, and B; and variable 𝑢 𝑡 . Note that 261	

values of 𝑢 𝑡 , B, and 𝜉 𝑡  could be different among different climate scenarios. Those matrices, 262	

vectors, and variable were entered to matrix calculation to compute 𝑋′ 𝑡  using eq. 1. The sum 263	

of elements in calculated 𝑋′ 𝑡  is a 100% match with simulated net ecosystem production (NEP) 264	

with the TECO model (Fig. 1b).  265	

Once eq. 1 was verified to exactly replicate TECO simulations, we used TECO to 266	

generate numerical experiments to support the mathematical analysis on the transient dynamics 267	

of terrestrial C storage. To analyze the seasonal patterns of C storage dynamics, we averaged 10 268	

series of three-year seasonal dynamics from 1851-1880. Then we used a 7-day moving window 269	

to further smooth the data.  270	

 271	

3. Results 272	

 273	
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3.1 Determinants of C storage dynamics  288	

The transient dynamics of terrestrial carbon storage are determined by two components: the C 289	

storage capacity and the C storage potential. The two components of C storage dynamics can be 290	

mathematically derived from multiplying both sides of eq. 1 by (𝐴𝜉 𝑡 𝐾)!! as:    291	

𝑋 𝑡 = (𝐴𝜉 𝑡 𝐾)!!𝐵𝑢 𝑡 − 𝐴𝜉 𝑡 𝐾 !!𝑋′(𝑡)   (2) 292	

The first term on the right side of eq. 2 is the C storage capacity and the second term is the C 293	

storage potential. Fig. 2a shows time courses of C storage and its capacity over one year for the 294	

leaf pool of Harvard Forest. 295	

In eq. 2, we name the term (𝐴𝜉 𝑡 𝐾)!! the chasing time, 𝜏!! 𝑡 , with a time unit used in 296	

exit rate 𝐾. The chasing time is defined as: 297	

𝜏!! 𝑡 = (𝐴𝜉 𝑡 𝐾)!!		 	 	 	 	 	 (3) 298	

𝜏!! 𝑡  is a matrix of C residence times through the network of individual pools each with a 299	

different residence time and fractions of received C connected by pathways of C transfer. 300	

Analogous to the fundamental matrix measuring life expectancies in demographic models 301	

(Caswell, 2000), the matrix, 𝜏!! 𝑡 , here measures expected residence time of a C atom in pool i 302	

when it has entered from pool j. We call this matrix the fundamental matrix of chasing times to 303	

represent the time scale at which the net C pool change, 𝑋′ 𝑡 , is redistributed in the network. 304	

Meanwhile, the residence times of individual pools in network, 𝜏! 𝑡 , can be estimated by 305	

multiplying the fundamental matrix of chasing times, (𝐴𝜉 𝑡 𝐾)!!, with a vector of partitioning 306	

coefficients, B as: 307	

𝜏! 𝑡 = (𝐴𝜉 𝑡 𝐾)!!𝐵      (4a) 308	

Ecosystem residence time, 𝜏! 𝑡 , is the sum of the residence time of all individual pools in 309	

network as: 310	
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𝜏! 𝑡 = 1 1 ⋯ 1 𝜏! 𝑡                         (4b) 317	

Thus, the C storage capacity can be defined by: 318	

 𝑋!(𝑡) = (𝐴𝜉 𝑡 𝐾)!!𝐵𝑢 𝑡        (5a)  319	

Or it can be estimated from C input, 𝑢 𝑡 , and residence time, 𝜏! 𝑡 , as: 320	

𝑋! 𝑡 = 𝜏! 𝑡 𝑢 𝑡         (5b) 321	

As C input (e.g., Gross or Net Primary Productions, GPP or NPP) and residence times vary with 322	

time, the C storage capacity varies with time. It represents instantaneous responses of the 323	

terrestrial C cycle to the external forcing. The modeled C storage capacity in the leaf pool (Fig. 324	

2a), for example, increases in spring, reaches the peak at summer, declines in autumn, and 325	

becomes minimal in winter largely due to strong seasonal changes in C input (Fig. 2b). Note that 326	

either GPP or NPP can be used as C input for analysis of transient C dynamics. Estimated 327	

residence times, however, are smaller with GPP as C input than those with NPP as input. In this 328	

paper, we mostly used NPP as C input as that fraction of C is distributed among pools. 329	

The C storage potential at time t, 𝑋!(𝑡), can be mathematically described as: 330	

𝑋!(𝑡) = 𝐴𝜉 𝑡 𝐾 !!𝑋′(𝑡)      (6a) 331	

Or it can be estimated from net C pool change, 𝑋′ 𝑡 , and chasing time, 𝜏!! 𝑡  as: 332	

𝑋! 𝑡 = 𝜏!!(𝑡)𝑋! 𝑡        (6b) 333	

Eqs. 6a and 6b suggest that the C storage potential represents re-distribution of net C pool 334	

change, 𝑋′ 𝑡 , of individual pools through a network of pools with different residence times as 335	

connected by C transfers from one pool to the others through all the pathways. As time evolves, 336	

the net C pool change, 𝑋′ 𝑡 , is redistributed again and again through the network of pools. The 337	

network of redistribution of next C pool change, thus, represents the potential of an ecosystem to 338	

store additional C when it is positive and lose C when it is negative. The C storage potential can 339	
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also be estimated from the difference between the C storage capacity and the C storage itself at 343	

time t as: 344	

𝑋! 𝑡 = 𝑋! 𝑡 − 𝑋 𝑡        (6c) 345	

The C storage potential in the leaf pool, for example, is about zero in winter and early spring 346	

when the C storage capacity is very close to the storage itself (Fig. 2a). The C storage potential is 347	

positive when the capacity is larger than the storage itself from late spring to summer and early 348	

fall. As the storage capacity decreases to the point when the storage equals the capacity on the 349	

265th day of year (DOY), the C storage potential is zero. After that day, the C storage potential 350	

becomes negative.  351	

Dynamics of ecosystem C storage, 𝑋 𝑡 , can be characterized by three parameters: C 352	

influx, 𝑢 𝑡 , residence times, 𝜏! 𝑡 , and the C storage potential 𝑋! 𝑡  as: 353	

𝑋 𝑡 = 𝜏! 𝑡 𝑢 𝑡 − 𝑋!(𝑡)       (7) 354	

Eq. 7 represents a three-dimensional (3D) parameter space within which model simulation 355	

outputs can be placed to measure how and how much they diverge.   356	

 Note that sums of elements in vectors 𝑋 𝑡 , 𝑋! 𝑡 , 𝑋! 𝑡 , and 𝑋! 𝑡  are corresponding, 357	

respectively, to the whole ecosystem C stock, ecosystem C storage capacity, ecosystem C storage 358	

potential, and net ecosystem production (NEP). In this paper, we describe them wherever 359	

necessary rather than use a separate set of symbols to represent those sums. 360	

 361	

3.2 Direction and rate of C storage change at a given time  362	

Like studying any moving object, quantifying dynamics of land C storage needs to determine 363	

both the direction and the rate of its change at a given time. To determine the direction and rate 364	

of C storage change, we re-arranged eq. 2 to be: 365	
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𝜏!!𝑋! 𝑡 =  𝑋! 𝑡 − 𝑋 𝑡 = 𝑋! 𝑡       (8a) 373	

or re-arranging eq. 6a leads to: 374	

𝑋! 𝑡 =  𝐴𝜉 𝑡 𝐾𝑋! 𝑡          (8b) 375	

As all the elements in 𝜏!! are positive, the sign of 𝑋! 𝑡  is the same as for 𝑋! 𝑡 . That means 376	

𝑋′ 𝑡  increases when 𝑋! 𝑡 > 𝑋 𝑡 , does not change when 𝑋! 𝑡 = 𝑋 𝑡 , and decreases when 377	

𝑋! 𝑡 < 𝑋 𝑡  at the ecosystem scale. Thus, the C storage capacity, 𝑋! 𝑡 , is an attractor and 378	

hence determines the direction toward which the C storage, 𝑋 𝑡 , chases at any given time point. 379	

The rate of C storage change, 𝑋! 𝑡 , is proportional to 𝑋! 𝑡  and also regulated by 𝜏!!.  380	

 When we study C cycle dynamics, we are interested in understanding dynamics of not 381	

only a whole ecosystem but also individual pools.  Eq. 8a can be used to derive equations to 382	

describe C storage change for an ith pool as: 383	

𝑓!"!
!!! 𝜏!  𝑥!! 𝑡 = 𝑓!"!

!!! 𝜏!𝑏!𝑢 𝑡 − 𝑥! 𝑡 = 𝑥!,! 𝑡   (9a) 384	

where n is the number of pools in a C cycle model, 𝑓!" is a fraction of C transferred from pool j 385	

to i through all the pathways, 𝜏! measures residence times of individual pools in isolation (in 386	

contrast to 𝜏! in the network), 𝑥!! is the net C change in the jth pool, 𝑏! is a partitioning 387	

coefficient of C input to the jth pool, 𝑥! 𝑡  is the C storage in the ith pool, and 𝑥!,! 𝑡  is the C 388	

storage potential in the ith pool. Eq. 9a means that the C storage potential of each pool at time t, 389	

𝑥!,! 𝑡 , is the sum of all the individual net C pool change, 𝑥!!, multiplied by corresponding 390	

residence time spent in pool i coming from pool j. Through re-arrangement, eq. 9a can be solved 391	

for each individual pool net C change as a function of C storage potential of all the pools as: 392	

 𝑥!! 𝑡 = !!,!,! ! !!!,!,! ! !!! !
!!!!!

      (9b) 393	

Yiqi Luo� 12/6/2016 10:44 AM
Deleted: not only 394	



	 16	

where 𝑥!,!,! 𝑡 = 𝑓!"!
!!! 𝜏!𝑏!𝑢 𝑡  for the maximal amount of C that can transfer from C input 395	

to the ith pool. 𝑥!,!,! 𝑡 = 𝑓!"!
!!!,!!! 𝜏!𝑥′! 𝑡  for the maximal amount of C that can transfer from 396	

all the other pools to the ith pool. 𝑓!! = 1 for all the pools if there is no feedback of C among soil 397	

pools. 𝑓!! < 1 when there are feedbacks of C among soil pools. 398	

As plant pools get C only from photosynthetic C input, 𝑢 𝑡 , but not from other pools, 399	

the direction and rate of C storage change in the ith plant pool is determined by: 400	

𝑥!! 𝑡 =  !!,!(!)!!! !
!!

= !!,! !
!!

𝑥!,! 𝑡 = 𝑏!𝑢 𝑡 𝜏!                    
           for i = 1, 2, 3     (10) 401	

The C storage capacity of plant pools equals the product of plant C input, 𝑢 𝑡  (i.e., net primary 402	

production, NPP), partitioning coefficient, 𝑏!, and residence time, 𝜏!, of its own pool (Fig. 2b-d). 403	

Thus, the C storage capacities of the leaf, root, and wood pools are high in summer and low in 404	

winter. Plant C storage, 𝑥! 𝑡 , still chases the storage capacity, 𝑥!,! 𝑡 , of its own pool at a rate 405	

that is proportional to 𝑋!,! 𝑡 . For the leaf pool, the C storage, 𝑥! 𝑡 , increases when 𝑥!,! 𝑡 >406	

𝑥! 𝑡  (or 𝑥!,! 𝑡 >0) from late spring until early fall on the 265th day of year (DOY) and then 407	

decreases when 𝑥!,! 𝑡 < 𝑥! 𝑡  (or 𝑥!,! 𝑡 <0) from DOY of 265 until 326 during fall (Fig. 2a).  408	

However, the direction of C storage change in litter and soil pools are no longer solely 409	

determined by the storage capacity, 𝑥!,! 𝑡 , of their own pools or at a rate that is proportional to 410	

𝑋!,! 𝑡 . The C storage capacity of one litter or soil pool has two components. One component, 411	

𝑥!,!,! 𝑡  is set by the amount of plant C input, 𝑢 𝑡 , going through all the possible pathways, 412	

𝑓!"𝑏!, multiplied by residence time, 𝜏!, of its own pool.  The second component measures the C 413	

exchange of one litter or soil pool with other pools according to net C pool change, 𝑥!! 𝑡 , 414	

through pathways, 𝑓!" , 𝑗 ≠ 𝑖, weighed by residence time, 𝜏!, of its own pool. For example, C 415	

input to the litter pool is a combination of C transfer from C input through the leaf, root, and 416	
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wood pools (Fig. 3c, 3d, and 3e) and C transfer due to the net C pool changes in the leaf, root, 417	

and wood pools (Fig. 3f, 3g, and 3h). Thus the first capacity component of the litter pool to store 418	

C is the sum of three products of NPP, C partitioning coefficient, and network residence time, 419	

respectively, through the leaf, root, and wood pools (Fig. 3c, 3d, and 3e). The second capacity 420	

component is the sum of other three products of C transfer coefficient along all the possible 421	

pathways, network residence time, and net C pool changes, respectively, in the leaf, root, and 422	

wood pools (Fig. 3f, 3g, and 3h). Thus, C storage in the ith pool, 𝑥! 𝑡 , chases an attractor, 423	

( f!"!
!!! b!u t - f!"!

!!!,!!! τ!x'! t )τ!, for litter and soil pools (Fig. 4). 424	

In summary, due to the network of C transfer, C storage in litter and soil pools does not 425	

chase the C storage capacities of their own pools in a multiple C pool model (Fig. 4). The 426	

capacities for individual litter and soil pools measure the amounts of C that is transferred from 427	

photosynthetic C input through plant pools to be stored in those pools. However, those litter and 428	

soil pools also exchange C with other pools according to transfer coefficients along pathways of 429	

C movement multiplying net C pool change in those pools. Integration of the C input and C 430	

exchanges together still sets as a moving attractor toward which individual pool C storage 431	

approaches (Fig. 4).   432	

 433	

3.3 C storage dynamics under global change 434	

In response to a global change scenario that combines historical change and simulated RCP8.5 in 435	

the TECO experiment, the modeled ecosystem C storage capacity (the sum of all elements in 436	

vector 𝑋! 𝑡 ) at Harvard Forest increases from 27 kg C m-2 in 1850 to approximately 38 kg C m-437	

2 in 2100 with strong interannual variability (Fig. 5a). The increasing capacity results from a 438	

combination of a nearly 44% increase in NPP with a ~2% decrease in ecosystem residence times 439	
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(the sum of all elements in vector 𝜏! 𝑡 ) during that period (Fig. 5b). The strong interannual 442	

variability in the modeled capacity is attributable to the variability in NPP and residence times, 443	

both of which directly respond to instantaneous variations in environmental factors. In 444	

comparison, the ecosystem C storage (the sum of all elements in vector 𝑋 𝑡 ) itself gradually 445	

increases, lagging behind the capacity, with much dampened interannual variability (Fig. 5a). 446	

The dampened interannual variability is due to smoothing effects of pools with various residence 447	

times. In response to global change scenario RCP8.5, the ecosystem C storage potential (the sum 448	

of all elements in vector 𝑋! 𝑡 ) in the Harvard Forest ecosystem increases from zero at 1980 to 449	

3.5 kg C m-2 in 2100 with strong fluctuation over years (Fig. 5a).  Over seasons, the potential is 450	

high during the summer and low in winter, similarly with the seasonal cycle of the C storage 451	

capacity. 452	

Since chasing time, 𝜏!!, is a matrix and net C pool change, 𝑋! 𝑡 , is a vector, eq. 6a or 6b 453	

(i.e., the C storage potential) can not be analytically separated into the chasing time and net C 454	

pool change as can the capacity into C input and residence time in eq. 5a or 5b for traceability 455	

analysis. The relationships among the three quantities can be explored by regression analysis. 456	

The ecosystem C storage potential fluctuates in a similar phase with NEP from 1850 to 2100 457	

(Fig. 5c). Consequently, the C storage potential is well correlated with NEP at the whole 458	

ecosystem scale (Fig. 5d).  The slope of the regression line is a statistical representation of 459	

ecosystem chasing time. In this study, we find that r2 of the relationship between the storage 460	

potential and NEP is 0.79. The regression slope is 28.1 years in comparison with the ecosystem 461	

residence time of approximately 22 years (Fig. 5b).  462	

The capacity and storage itself of individual pools display similar long-term trends and 463	

interannual variability to those for the total ecosystem C storage dynamics (Fig. 6). Noticeably, 464	
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the deviation of the C storage from the capacity, which is the C storage potential, is much larger 466	

for pools with long residence times than those with short residence times. For individual pools, 467	

the potential is nearly zero for those fast turnover pools and becomes very large for those pools 468	

with long residence time (Fig. 6). 469	

For individual plant pools, eq. 10 describes the dependence of the C storage potential, 470	

𝑥!,! 𝑡 , on the pool-specific residence time, 𝜏! , 𝑖 = 1, 2, and 3, and net C pool change of their 471	

own pools, 𝑥!! 𝑡 , 𝑖 = 1, 2, and 3. Thus, one value of 𝑥!,! 𝑡  is exactly corresponding to one 472	

value of 𝑥!! 𝑡  at slope of 𝜏!, leading to the correlation coefficient in Fig. 7 being 1.00 for leaf, 473	

root, and wood pools. For a litter or soil pool, however, the C storage potential is not solely 474	

dependent on the residence time and net C pool change of its own pool but influenced by several 475	

other pools. Thus, the potential of one litter or soil pool is correlated with net C pool changes of 476	

several pools with different regression slopes (Fig. 7).  477	

 478	

4 Discussion 479	

4.1 Assumptions of the C cycle models and validity of this analysis   480	

This analysis is built upon eq. 1, which represents the majority of terrestrial C cycle 481	

models developed in the past decades (Manzoni and Porporato, 2009; Sierra and Müller, 2015).  482	

Those models have several assumptions, which may influence the validity of this analysis. First, 483	

those models assume that donor pools control C transfers among pools and decomposition 484	

follows 1st-order decay functions (Assumption 1). This assumption is built upon observations 485	

from litter and SOC decomposition. Analysis of data from nearly 300 studies of litter 486	

decomposition (Zhang et al., 2008), about 500 studies of soil incubation ( Schädel et al., 2014; 487	

Xu et al., 2016), more than 100 studies of forest succession (Yang et al., 2011), and restoration 488	
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(Matamala et al., 2008) almost all suggests that the 1st-order decay function captures 489	

macroscopic patterns of land C dynamics. Even so, its biological, chemical and physical 490	

underpinnings need more study (Luo et al., 2016). This assumption has recently been challenged 491	

by a notion that microbes are actively involved in decomposition processes. To describe the 492	

active roles of microbes in organic C decomposition, a suite of nonlinear microbial models has 493	

been proposed using Michaelis-Menten or reverse Michaelis-Menten equations (Allison et al., 494	

2010; Wieder et al., 2013). Those nonlinear models exhibit unique behaviors of modeled 495	

systems, such as damped oscillatory responses of soil C dynamics to small perturbations and 496	

insensitivity of the equilibrium pool sizes of litter or soil carbon to inputs (Li et al., 2014; Wang 497	

et al., 2014; 2016). Oscillations have been documented for single enzymes at timescales between 498	

10-4 to 10 seconds (English et al., 2006; Goldbeter, 2013; Xie, 2013). Over longer timescales 499	

with mixtures of large diversity of enzyme-substrate complexes in soil, oscillations may be likely 500	

averaged out so that the 1st order decay functions may well approximate these average dynamics 501	

of organic matter decomposition (Sierra and Müller, 2015).  502	

Second, those models all assume that multiple pools can adequately approximate 503	

transformation, decomposition, and stabilization of SOC in the real world (Assumption 2). The 504	

classic SOC model, CENTURY, uses three conceptual pools, active, slow, and passive SOC, to 505	

represent SOC dynamics (Parton et al., 1987). Several models define pools that are 506	

corresponding to measurable SOC fractions to match experimental observation with modeling 507	

analysis (Smith et al., 2002; Stewart et al., 2008). Carbon transformation in soil over time has 508	

also been described by a partial differential function of SOM quality (Bosatta and Ågren, 1991; 509	

Ågren and Bosatta, 1996). The latter quality model describes the external inputs of C with 510	

certain quality, C loss due to decomposition, and the internal transformations of the quality of 511	
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soil organic matter. It has been shown that multi-pool models can approximate the partial 512	

differential function or continuous quality model as the number of pools increases (Bolker et al., 513	

1998; Sierra and Müller, 2015). 514	

Assumption 3 is on partitioning coefficients of C input (i.e., elements in vector B) and C 515	

transformation among plant, litter, and soil pools (i.e., elements in the matrix, 𝐴𝜉 𝑡 𝐾). Some of 516	

the terrestrial C cycle models assume that elements in vector B, and matrices A and K are 517	

constants. All the factors or processes that vary with time are represented in the diagonal matrix 518	

𝜉 𝑡 . In the real world, C transformation are influenced by environmental variables (e.g., 519	

temperature, moisture, oxygen, N, phosphorus, and acidity varying with soil profile, space, and 520	

time), litter quality (e.g., lignin, cellulose, N, or their relative content), organomineral properties 521	

of SOC (e.g., complex chemical compounds, aggregation, physiochemical binding and 522	

protection, reactions with inorganic, reactive surfaces, and sorption), and microbial attributes 523	

(e.g., community structure, functionality, priming, acclimation, and other physiological 524	

adjustments) (Luo et al., 2016). It is not practical to incorporate all of those factors and processes 525	

into one model. Only a subset of them is explicitly expressed while the majority is implicitly 526	

embedded in the C cycle models.  Empirical studies have suggested that temperature, moisture, 527	

litter quality, and soil texture are primary factors that control C transformation processes of 528	

decomposition and stabilization (Burke et al., 1989; Adair et al., 2008; Zhang et al., 2008; Xu et 529	

al., 2012; Wang et al., 2013). Nitrogen influences C cycle processes mainly through changes in 530	

photosynthetic C input, C partitioning, and decomposition. It is yet to identify how other major 531	

factors and processes, such as microbial activities and organomineral protection, regulate C 532	

transformation.  533	
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Assumption 4 is that terrestrial C cycle models use different response functions (i.e., 534	

different 𝜉 𝑡  in eq. 1) to represent C cycle responses to external variables. As temperature 535	

modifies almost all processes in the C cycle, different formulations, including exponential, 536	

Arrhenius, and optimal response functions, have been used to describe C cycle responses to 537	

temperature changes in different models (Lloyd and Taylor, 1994; Jones et al., 2005; Sierra and 538	

Müller, 2015). Different response functions are used to connect C cycle processes with moisture, 539	

nutrient availability, soil clay content, litter quality, and other factors. Different formulations of 540	

response functions may result in substantially different model projections (Exbrayat et al., 2013) 541	

but unlikely change basic dynamics of the model behaviors. 542	

Assumption 5 is that disturbance events are represented in models in different ways 543	

(Grosse et al., 2011; West et al., 2011; Goetz et al., 2012; Hicke et al., 2012). Fire, extreme 544	

drought, insect outbreaks, land management, and land cover and land use change influence 545	

terrestrial C dynamics via 1) altering rate processes, for example, gross primary productivity 546	

(GPP), growth, tree mortality, or heterotrophic respiration; 2) modifying microclimatic 547	

environments; 3) transferring C from one pool to another (e.g., from live to dead pools during 548	

storms or release to the atmosphere with fire) (Kloster et al., 2010; Thonicke et al., 2010; Luo 549	

and Weng, 2011; Prentice et al., 2011; Weng et al., 2012). Those disturbance influences can be 550	

represented in terrestrial C cycle models through changes in parameter values, environmental 551	

scalars, and/or discrete C transfers among pools of eq. 1 (Luo and Weng 2011). While eq. 1 does 552	

not explicitly incorporate disturbances for their influences on land C cycle, Weng et al. (2012) 553	

developed a disturbance regime model that combines eq. 1 with frequency distributions of 554	

disturbance severity and intervals to quantify net biome exchanges.   555	

The sixth assumption that those models make is that the lateral C fluxes through erosion 556	
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or local C drainage is negligible so that eq (1) can approximate terrestrial C cycle over space. If 565	

soil erosion is substantial enough to be modeled with horizontal movement of C, a third 566	

dimension should be added in addition to two-dimensional transfers in classic models. 567	

Our analysis on transient dynamics of terrestrial C cycle is valid unless some of the 568	

assumptions are violated. Assumption 1 on the 1st-order decay function of decomposition 569	

appears to be supported by thousands of datasets. It is a burden on microbiologists to identify 570	

empirical evidence to support the nonlinear microbial models. Assumption 2 may not affect the 571	

validity of our analysis no matter how C pools are divided in the ecosystems. Our analysis in this 572	

study is applicable no matter whether elements are time-varying or constant in vector B and 573	

matrices A and K as in assumption 3. Neither assumption 4 nor 5 would affect the analysis in this 574	

study. The environmental scalar, 𝜉 𝑡 , as related to assumption 4 can be any forms in the derived 575	

equations (e.g., eq. 2). Disturbances of fire, land use, and extreme drought change rate processes 576	

but do not alter the basic formulation of eq. 1. If soil erosion and lateral transportation of C 577	

become a major research objective, Eq. (1) can no longer be analyzed to understand the 578	

mathematical foundation underlying transient dynamics of terrestrial C cycle.   579	

 580	

4.2 Carbon storage capacity 581	

 One of the two components this analysis introduces to understand transient dynamics of 582	

terrestrial C storage is the C storage capacity (Eq. 2). Olson (1963) is probably among the first 583	

who systematically analyzed C storage dynamics at forest floor as functions of litter production 584	

and decomposition. He collected data of annual litter production and approximately steady-state 585	

organic C storage at forest floor, from which decomposition rates were estimated for a variety of 586	

ecosystems from Ghana in the tropics to alpine forests in California. Using the relationships 587	
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among litter production, decomposition, and C storage, Olson (1963) explored several issues, 588	

such as decay without input, accumulation with continuous or discrete annual litter fall, and 589	

adjustments in production and decay parameters during forest succession. His analysis 590	

approximated the steady-state C storage as the C input times the inverse of decomposition (i.e., 591	

residence time). The steady-state C storage is also considered the maximal amount of C that a 592	

forest can store.  593	

This study is not only built upon Olson’s analysis but also expands it at least in two 594	

aspects. First, we similarly define the C storage capacity (i.e., eqs. 5a and 5b). Those equations 595	

can be applied to a whole ecosystem with multiple C pools while Olson’s analysis is for one C 596	

pool. Second, Olson (1963) treated the C input and decomposition rate as yearly constants at a 597	

given location even though they varied with locations. This study considers both C input and rate 598	

of decomposition being time dependent. A dynamical system with its input and parameters being 599	

time dependent mathematically becomes a nonautonomous system (Kloeden and Rasmussen, 600	

2011). As terrestrial C cycle under global change is transient, we need to treat it a 601	

nonautonomous system to better understand the properties of transient dynamics. Olson (1963) 602	

approximated the non-autonomous system at the yearly time scale without global change so as to 603	

effectively understand properties of the steady-state C storage at the forest floor. In comparison, 604	

eqs. 5a and b are not only more general but also essential for understanding transient dynamics 605	

of the terrestrial C cycle in response to global change.  606	

Under the transient dynamics, the C storage capacity as defined by eqs 5a and b still sets 607	

the maximal amount of C that one ecosystem can store at time t. This capacity represents 608	

instantaneous responses of ecosystem C cycle to external forcing via changes in both C input and 609	

residence time, and thus varies within one day, over seasons of a year, and interannually over 610	
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longer time scales as forcings vary. The variation of the C storage capacity can result from cyclic 614	

environmental changes (e.g., dial and seasonal changes), directional global change (e.g., rising 615	

atmospheric CO2, nitrogen deposition, altered precipitation, and warming), disturbance events, 616	

disturbance regime shifts, and changing vegetation dynamics (Luo and Weng, 2011). As the 617	

capacity sets the maximal amount of C storage (Fig. 2a), it is a moving attractor toward which 618	

the current C storage chases.  When the capacity is larger than the C storage itself, C storage 619	

increases. Otherwise, the C storage decreases. 620	

 621	

4.3 Carbon storage potential  622	

The C storage potential represents the internal capability to equilibrate the current C storage with 623	

the capacity. Bogeochemically, the C storage potential represents re-distribution of net C pool 624	

change, 𝑋′ 𝑡 , of individual pools through a network of pools with different residence times as 625	

connected by C transfers from one pool to the others through all the pathways. The potential is 626	

conceptually equivalent to the magnitude of disequilibrium as discussed by Luo and Weng 627	

(2011).    628	

 Extensive studies have been done to quantify terrestrial C sequestration. The most 629	

commonly estimated quantities for C sequestration include net ecosystem exchange (NEE), C 630	

stocks in ecosystems (i.e., plant biomass and SOC) and their changes (Baldocchi et al., 2001; Pan 631	

et al., 2013). This study, for the first time, offers the theoretical basis to estimate the terrestrial C 632	

storage potential in at least two approaches: (1) the product of chasing time and net C pool 633	

change with eqs. 6a and 6b; and (2) the difference between the C storage capacity and the C 634	

storage itself with eqs. 6c. Since the time-varying C storage capacity is fully defined by 635	

residence time and C input at any given time, C storage potential can be estimated from three 636	
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quantities: C input, residence time, and C storage.  640	

 To effectively quantify the C storage potential in terrestrial ecosystems, we need various 641	

data sets from experimental and observatory studies to be first assimilated into models. For 642	

example, data from Harvard Forest were first used to constrain the TECO model. The 643	

constrained model was used to explore changes in ecosystem C storage in response to global 644	

change scenario, RCP8.5. That scenario primarily stimulated NPP, which increased from 1.06 to 645	

1.8 kg C m-2 yr-1 in the Harvard Forest (Fig. 5b). Although climate warming decreased residence 646	

time in the Harvard Forest, the substantial increases in NPP resulted in increases in the C storage 647	

potential over time. 648	

 649	

4.4 Novel approaches to model evaluation and improvement 650	

Our analysis of transient C cycle dynamics offers new approaches to understand, 651	

evaluate, diagnose, and improve land C cycle models.  We have demonstrated that many global 652	

land C cycle models can be exactly represented by the matrix equation (Eqs. 1 and 2) (i.e., 653	

physical emulators). As a consequence, outputs of all those models can be placed into a three 654	

dimensional (3D) space (Eq. 7) to measure their differences. In addition, components of land C 655	

cycle models are simulated in a mutually independent fashion so that modeled C storage can be 656	

decomposed into traceable components for traceability analysis. Moreover, the physical 657	

emulators computationally enable data assimilation to constrain complex models. 658	

Physical Emulators of land C cycle models We have developed matrix representations 659	

(i.e., physical emulators) of CABLE, LPJ-GUESS, CLM3.5, CLM 4.0, CLM4.5, BEPS, and 660	

TECO (Xia et al., 2013; Hararuk et al., 2014; Ahlström et al., 2015; Chen et al., 2015). The 661	

emulators can exactly replicate simulations of C pools and fluxes with their original models 662	
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when driven by a limited set of inputs from the full model (GPP, soil temperature, and soil 664	

moisture) (Fig. 1b and 1c). However, the physical emulators differ for different models as the 665	

elements of each matrix could be differently parameterized or formulized in different models. 666	

Also, different models usually have different pool-flux structures, leading to different non-zero 667	

elements in the A matrix. Nonetheless, the physical emulators make complex models analytically 668	

clear and, therefore, give us a way to understand the effects of forcing, model structures, and 669	

parameters on modeled ecosystem processes. They greatly simplify the task of understanding the 670	

dynamics of submodels and interactions between them. The emulators allow us to analyze model 671	

results in the 3D parameter space and the traceability framework. 672	

 Parameter space of C cycle dynamics Eq. 7 indicates that transient dynamics of modeled 673	

C storage are determined by three parameters: C input, residence time, and C storage potential. 674	

The 3D parameter space offers one novel approach to uncertainty analysis of global C cycle 675	

models. As global land models incorporate more and more processes to simulate C cycle 676	

responses to global change, it becomes very difficult to understand or evaluate complex model 677	

behaviors. As such, differences in model projections cannot be easily diagnosed and attributed to 678	

their sources (Chatfield, 1995; Friedlingstein et al., 2006; Luo et al., 2009). Eq. 7 can help 679	

diagnose and evaluate complex models by placing all modeling results within one common 680	

parameter space in spite of the fact that individual global models may have tens or hundreds of 681	

parameters to represent C cycle processes as affected by many abiotic and biotic factors (Luo et 682	

al., 2016). The 3D space can be used to measure how and how much the models diverge. 683	

Traceability analysis The two terms on the right side of eq. 2 can be decomposed into 684	

traceable components (Xia et al., 2013) so as to identify sources of uncertainty in C cycle model 685	

projections. Model intercomparison projects (MIPs) all illustrate great spreads in projected land 686	
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C sink dynamics across models (Todd-Brown et al., 2013; Tian et al., 2015).  It has been 688	

extremely challenging to attribute the uncertainty to sources. Placing simulation results of a 689	

variety of C cycle models within one common parameter space can measure how much the 690	

model differences are in a common metrics (Eq. 7). The measured differences can be further 691	

attributed to sources in model structure, parameter, and forcing fields with traceability analysis 692	

(Xia et al., 2013; Rafique et al., 2014; Ahlström et al., 2015; Chen et al., 2015). The traceability 693	

analysis also can be used to evaluate effectiveness of newly incorporated modules into existing 694	

models, such as adding the N module on simulated C dynamics (Xia et al., 2013) and locate the 695	

origin of model ensemble uncertainties to external forcing vs. model structures and parameters 696	

(Ahlström et al., 2015).  697	

Constrained estimates of terrestrial C sequestration Traditionally, global land C sink is 698	

indirectly estimated from airborne fraction of C emission and ocean uptake. Although many 699	

global land models have been developed to estimate land C sequestration, a variety of MIPs 700	

indicate that model predictions widely vary among them and do not fit observations well 701	

(Schwalm et al., 2010; Luo et al., 2015; Tian et al., 2015). Moreover, the prevailing practices in 702	

the modeling community, unfortunately, may not lead to significant enhancements in our 703	

confidence on model predictions. For example, incorporating an increasing number of processes 704	

that influence the C cycle may represent the real-world phenomena more realistically but makes 705	

the models more complex and less tractable. MIPs have effectively revealed the extent of the 706	

differences between model predictions (Schwalm et al., 2010; Keenan et al., 2012; De Kauwe et 707	

al., 2013) but provide limited insights into sources of model differences (but see Medlyn et al. 708	

2015). The physical emulators make data assimilation computationally feasible for global C 709	

cycle models (Hararuk et al. 2014; 2015) and thus offer the possibility to generate independent 710	
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yet constrained estimates of global land C sequestration to be compared with the indirect 713	

estimate from the airborne fraction of C emission and ocean uptake. With the emulators, we can 714	

assimilate most of the C flux- and pool-related datasets into those models to better constrain 715	

global land C sink dynamics.  716	

 717	

5 Concluding remarks 718	

In this study we theoretically explored the transient dynamics of terrestrial C storage. Our 719	

analysis indicates that transient C storage dynamics can be partitioned into two components: the 720	

C storage capacity and the C storage potential. The capacity, which is the product of C input and 721	

residence time, represents their instantaneous responses to a state of external forcing at a given 722	

time. Thus, the C storage capacity quantifies the maximum amount of C that an ecosystem can 723	

store at the given environmental condition at a point of time. Thus it varies diurnally, seasonally, 724	

and interannually as environmental condition changes. 725	

 The C storage potential is the difference between the capacity and the current C storage 726	

and thus measures the magnitude of disequilibrium in the terrestrial C cycle (Luo and Weng, 727	

2011).  The storage potential represents the internal capability (or recovery force) of the 728	

terrestrial C cycle to influence the change in C storage in the next time step through 729	

redistribution of net C pool changes in a network of multiple pools with different residence 730	

times. The redistribution drives the current C storage towards the capacity and thus equilibrates 731	

C efflux with influx.  732	

 The two components of land C storage dynamics represent interactions of external forces 733	

(via changes in the capacity) and internal capability of the land C cycle (via changes in the C 734	

storage potential) to generate complex phenomena of C cycle dynamics, such as fluctuations, 735	
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directional changes, and tipping points, in the terrestrial ecosystems. From a system perspective, 740	

these complex phenomena could not be generated by relatively simple internal processes but are 741	

mostly caused by multiple environmental forcing variables interacting with internal processes 742	

over different temporal and spatial scales as explained by Luo and Weng (2011) and Luo et al. 743	

(2015). Note that while those internal processes can be mathematically represented with a 744	

relatively simple formula, their ecological and biological underpinnings can be very complex.  745	

 The theoretical framework developed in this study has the potential to revolutionize 746	

model evaluation. Our analysis indicates that the matrix equation as in eq. 1 or 2 can adequately 747	

emulate most of the land C cycle models. Indeed, we have developed physical emulators of 748	

several global land C cycle models. In addition, predictions of C dynamics with complex land 749	

models can be placed in a 3D parameter space as a common metric to measure how much model 750	

predictions are different. The latter can be traced to its source components by decomposing 751	

model predictions to a hierarchy of traceable components. Moreover, the physical emulators 752	

make it computationally possible to assimilate multiple sources of data to constrain predictions 753	

of complex models.  754	

 The theoretical framework we developed in this study can well explain dynamics of C 755	

storage in response to cyclic seasonal change in external forcings (e.g., Figs. 2 and 3), climate 756	

change, and rising atmospheric CO2 (Fig. 5). It can also explain responses of ecosystem C 757	

storage to disturbances and other global change factors, such as nitrogen deposition, land use 758	

changes, and altered precipitation. The theoretical framework is simple and straightforward but 759	

able to characterize the direction and rate of C storage change, which are arguably among the 760	

most critical issues for quantifying terrestrial C sequestration. Future research should explicitly 761	

incorporate stochastic disturbance regime shifts (e.g., Weng et al., 2012) and vegetation 762	
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dynamics (Moorcroft et al., 2001; Purves and Pacala, 2008; Fisher et al., 2010; Weng et al., 767	

2015) into this theoretical framework to explore their theoretical issues related to 768	

biogeochemistry.  769	

 770	

6 Code availability 771	

Computer code of the TECO model and its physical emulator are available at 772	

http://ecolab.ou.edu/download/TECO%20Emulator.php 773	
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Fig. 1 The Terrestrial ECOsystem (TECO) model and its outputs. Panel a is a schematic 1059	

representation of C transfers among multiple pools in plant, litter and soil in the TECO model. 1060	

TECO has feedback loops of C among soil pools. CWD = coarse wood debris, SOM = Soil 1061	

Organic Matter. Panel b compares the original TECO model outputs with those from matrix 1062	

equations for net ecosystem production (NEP = the sum of elements in 𝑋′(𝑡) from eq. 1).  The 1063	

perfect match between the TECO outputs and NEP from eq. 1 is due to the fact that they are 1064	

mathematically equivalent. Panel c compares the original TECO model outputs with those from 1065	

matrix equations for ecosystem C storage (= the sum of elements in 𝑋(𝑡) from eq. 2). The C 1066	

storage values calculated with eq. 2 are close to 1:1 line with r2 =0.998 with the modeled values 1067	

(panel c). The minor mismatch in estimated C storage between the matrix equation calculation 1068	

and TECO outputs is due to numerical errors via inverse matrix operation with some small 1069	

numbers.  1070	

 1071	

Fig. 2 Seasonal cycles of the C storage capacity and C storage dynamics for the leaf pool (i.e., 1072	

pool 1 as shown in Fig. 1). All the components are showed in panels b-d to calculate 𝑥!,! 𝑡 =1073	

𝑏!𝑢 𝑡 𝜏! through multiplication, where 𝑢 𝑡 = 𝑁𝑃𝑃 and 𝜏! = 1/𝑘!for leaf.  1074	

 1075	

Fig. 3 Seasonal cycles of the C storage capacity and C storage dynamics for the litter pool (i.e., 1076	

pool 4 as shown in Fig. 1). All the components are showed to calculate 1077	

𝑥!,!,! 𝑡 = 𝑓!!!
!!! 𝜏!𝑏!𝑢 𝑡  in panels b-e and 𝑥!,!,! 𝑡 = 𝑓!!!

!!!,!!! 𝜏!𝑥′! 𝑡  in panels f-i for 1078	

litter. 𝑥!,!,! 𝑡  is the maximal amount of C that can transfer from C input to the litter pool. 1079	

𝑥!,!,! 𝑡  is the maximal amount of C that can transfer from all the other pools to the litter pool. 1080	

This figure is to illustrate the network of pools through which C is distributed. 1081	
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 1083	

Fig. 4 Components of the C storage capacity for litter pool (i.e., pool 4 as shown in Fig. 1). 1084	

Component, 𝑥!,!,! 𝑡 , is the C from C input and component, 𝑥!,!,! 𝑡 , is the C from all the other 1085	

pools to the litter pool. The sum of them is the attractor that determines the direction of C storage 1086	

change in pool 4. 1087	

 1088	

Fig. 5 Transient dynamics of ecosystem C storage in response to global change in Harvard 1089	

Forest. Panel a shows the time courses of the ecosystem C storage capacity, the ecosystem C 1090	

storage potential, and ecosystem C storage (i.e., C stock) from 1850 to 2100. Panel b shows time 1091	

courses of NPP(t) as C input and ecosystem residence times. Panel c shows correlated changes in 1092	

ecosystem C storage potential and net ecosystem production (NEP). Panel d illustrates the 1093	

regression between the C storage potential and NEP. 1094	

 1095	

Fig. 6 The C storage capacity (𝑥!,! 𝑡 ), the C storage potential (𝑥!,! 𝑡 ), and C storage (𝑥! 𝑡 ) of 1096	

individual pools. The potential is nearly zero for those fast turnover pools with short residence 1097	

times but very large for those pools with long residence times. 1098	

	1099	

Fig. 7 The C storage potential of individual pools (𝑥!,!) as influenced by net C pool change of 1100	

different pools (𝑥′!) in their corresponding rows. The correlation coefficients show the degree of 1101	

influences of net C pool change in one pool on the C storage potential of the corresponding pool 1102	

through the network of C transfer. Those empty cells indicate no pathways of C transfer between 1103	

those pools as indicated in Fig. 1. 1104	
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