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Abstract Terrestrial ecosystems absorb roughly 30% of anthropogenic CO2 emissions since 36	

preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. 37	

Despite extensive modeling, experimental, and observational studies, what fundamentally 38	

determines transient dynamics of terrestrial C storage under climate change is still not very clear. 39	

Here we develop a new framework for understanding transient dynamics of terrestrial C storage 40	

through mathematical analysis and numerical experiments. Our analysis indicates that the 41	

ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly 42	

determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since 43	

both C input and residence time vary with time, the C storage capacity is time-dependent and 44	

acts as a moving attractor that actual C storage chases. The rate of change in C storage is 45	

proportional to the C storage potential, the difference between the current storage and the storage 46	

capacity. The C storage capacity represents instantaneous responses of the land C cycle to 47	

external forcing, whereas the C storage potential represents the internal capability of the land C 48	

cycle to influence the C change trajectory in the next time step. The influence happens through 49	

redistribution of net C pool changes in a network of pools with different residence times.  50	

Moreover, this and our other studies have demonstrated that one matrix equation can 51	

exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, 52	

simulation outputs of those models can be placed into a three-dimensional (3D) parameter space 53	

to measure their differences. The latter can be decomposed into traceable components to track 54	

the origins of model uncertainty. Moreover, the emulators make data assimilation 55	

computationally feasible so that both C flux- and pool-related datasets can be used to better 56	

constrain model predictions of land C sequestration. We also propose that the C storage potential 57	

be the targeted variable for research, market trading, and government negotiation for C credits.  58	
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1 Introduction 59	

Terrestrial ecosystems have been estimated to sequester approximately 30% of anthropogenic 60	

carbon (C) emission in the past three decades (Canadell et al., 2007). Cumulatively, land 61	

ecosystems have sequestered more than 160 Gt C from 1750 to 2015 (Le Quéré et al., 2015). 62	

Without land C sequestration, the atmospheric CO2 concentration would have increased by 63	

additional 95 parts per million and result in more climate warming (Le Quéré et al., 2015).  64	

During one decade from 2005 to 2014, terrestrial ecosystems sequestrated 3±0.8 Gt C per year 65	

(Le Quéré et al., 2015), which would cost billion dollars if the equivalent amount of C was 66	

sequestrated using C capture and storage techniques (Smith et al., 2016). Thus, terrestrial 67	

ecosystems effectively mitigate climate change through natural processes with minimal cost. 68	

Whether this terrestrial C sequestration would endure into the future, however, is not clear, 69	

making the mitigation of climate change greatly uncertain. To predict future trajectories of C 70	

sequestration in the terrestrial ecosystems, it is essential to understand fundamental mechanisms 71	

that drive terrestrial C storage dynamics. 72	

To predict future land C sequestration, the modeling community has developed many C 73	

cycle models. According to a review by Manzoni and Porporato (2009), approximately 250 74	

biogeochemical models have been published over a time span of 80 years to describe carbon and 75	

nitrogen mineralization. The majority of those 250 models follow some mathematical 76	

formulations of ordinary differential equations. Moreover, many of those biogeochemical models 77	

incorporate more and more processes in an attempt to simulate C cycle processes as realistically 78	

as possible (Oleson et al., 2013). As a consequence, terrestrial C cycle models have become 79	

increasingly complicated and less tractable. Almost all model intercomparison projects (MIPs), 80	

including those involved in the last three IPCC assessments, indicate that C cycle models have 81	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 5	

consistently projected widely spread trajectories of land C sinks and also found to fit 82	

observations poorly (Todd-Brown et al., 2013; Luo et al., 2015). The lack of progress in 83	

uncertainty analysis urges us to understand mathematical foundation of those terrestrial C models 84	

so as to diagnose causes of model spreads and improve model predictive skills.  85	

 Meanwhile, many countries have made great investments on various observational and 86	

experimental networks (or platforms) in hope to quantify terrestrial C sequestration. For 87	

example, FLUXNET has been established about 20 years ago to quantify net ecosystem 88	

exchange (NEE) between the atmosphere and biosphere (Baldocchi et al., 2001). Orbiting 89	

Carbon Observatory 2 (OCO-2) satellite was launched in 2014 to quantify carbon dioxide 90	

concentrations and distributions in the atmosphere at high spatiotemporal resolution to constrain 91	

land surface C sequestration (Hammerling et al., 2012). Networks of global change experiments 92	

have been designed to uncover processes that regulate ecosystem C sequestration (Rustad et al., 93	

2001; Luo et al., 2011; Fraser et al., 2013; Borer et al., 2014). Massive data has been generated 94	

from those observational systems and experimental networks. They offer an unprecedented 95	

opportunity for advancing our understanding of ecosystem processes and constraining model 96	

prediction of ecosystem C sequestration. Indeed, many of those networks were initiated with one 97	

goal to improve our predictive capability. Yet the massive data have been rarely integrated into 98	

earth system models to constrain their predictions. It is a grand challenge in our era to develop 99	

innovative approaches to integration of big data into complex models so as to improve prediction 100	

of future ecosystem C sequestration.  101	

From a system perspective, ecosystem C sequestration occurs only when the terrestrial C 102	

cycle is in a transient state, under which C influx into one ecosystem is larger than C efflux from 103	

the ecosystem. Olson (1963) is probably among the first to examine organic matter storage at 104	
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forest floors from the system perspective. His analysis approximated steady-state storage of 105	

organic matter as a balance of litter producers and decomposers for different forest types. 106	

However, climate change differentially influences different C cycle processes in ecosystems and 107	

results in transient dynamics of terrestrial C storage (Luo and Weng, 2011). For example, rising 108	

atmospheric CO2 concentration primarily stimulates photosynthetic C uptake while climate 109	

warming likely enhances decomposition. When ecosystem C uptake increases in a unidirectional 110	

trend under elevated [CO2], terrestrial C cycle is at disequilibrium, leading to net C storage. The 111	

net gained C is first distributed to different pools, each of which has a different turnover rate (or 112	

residence time) before C is eventually released back to the atmosphere via respiration. 113	

Distribution of net C exchange to multiple pools with different residence times is an intrinsic 114	

property of an ecosystem to gradually equalize C efflux with influx (i.e. internal recovery force 115	

toward an attractor). In contrast, climate change that causes changes in C input and 116	

decomposition is considered external forces that create disequilibrium through altering internal C 117	

processes and pool sizes. The transient dynamics of terrestrial C cycle at disequilibrium is 118	

maintained by interactions of internal processes and external forces (Luo and Weng, 2011). 119	

Although the transient dynamics of terrestrial C storage have been conceptually discussed, we 120	

still lack a quantitative formulation to estimate transient C storage dynamics in the terrestrial 121	

ecosystems.  122	

	 This paper was designed to address a question: what determines transient dynamics of C 123	

storage in terrestrial ecosystems from a system perspective? We first reviewed the major 124	

processes that most models have incorporated to simulate terrestrial C sequestration. The review 125	

helps establish that terrestrial C cycle can be mathematically represented by a matrix equation. 126	

We also described the Terrestrial ECOsystem (TECO) model with its numerical experiments in 127	
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support of the mathematical analysis. We then presented results of mathematical analysis on 128	

determinants of the terrestrial C storage, direction and magnitude of C storage at a given time 129	

point, numerical experiments to illustrate climate impacts on terrestrial C storage. We carefully 130	

discussed assumptions of those terrestrial C cycle models as represented by the matrix equation, 131	

the validity of this analysis, and two new concepts introduced in this study, which are the C 132	

storage capacity and C storage potential. We also discussed the potential applications of this 133	

analysis to model uncertainty analysis and data-model integration. Moreover, we proposed that 134	

the C storage potential be a targeted variable for research, trading, and government negotiation 135	

for C credit.  136	

 137	

2 Methods 138	

2.1 Mathematical representation of terrestrial C cycle 139	

 This study was conducted mainly with mathematical analysis. We first established the 140	

basis of this analysis, which is that the majority of terrestrial C cycle models can be represented 141	

by a matrix equation. 142	

Hundreds of models have been developed to simulate terrestrial C cycle (Manzoni and 143	

Porporato, 2009).  All the models have to simulate processes of photosynthetic C input, C 144	

allocation and transformation, and respiratory C loss. It is well understood that photosynthesis is 145	

a primary pathway of C flow into land ecosystems. Photosynthetic C input is usually simulated 146	

according to carboxylation and electron transport rates (Farquhar et al., 1980). Ecosystem C 147	

influx varies with time and space mainly due to variations in leaf photosynthetic capacity, leaf 148	

area index of canopy, and a suite of environmental factors such as temperature, radiation, and 149	

relative humidity (or other water-related variables) (Potter et al., 1993; Sellers et al., 1996; 150	
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Keenan et al., 2012; Walker et al., 2014).  151	

 Photosynthetically assimilated C is partly used for plant biomass growth and partly 152	

released back into the atmosphere through plant respiration. Plant biomass in leaves and fine 153	

roots usually lives for several months up to a few years before death, while woody tissues may 154	

persist for hundreds of years in forests. Dead plant materials are transferred to litter pools and 155	

decomposed by microorganisms to be partially released through heterotrophic respiration and 156	

partially stabilized to form soil organic matter (SOM).  SOM can store C in the soil for hundreds 157	

or thousands of years before it is broken down to CO2 through microbial respiration (Luo and 158	

Zhou, 2006). This series of C cycle processes has been represented in most ecosystem models 159	

with multiple pools linked by C transfers among them (Jenkinson et al., 1987; Parton et al., 1987; 160	

1988; 1993), including those embedded in earth system models (Ciais et al., 2013).  161	

 The majority of the published 250 terrestrial C cycle models use ordinary differential 162	

equations to describe C transformation processes among multiple plant, litter, and soil pools 163	

(Manzoni and Porporato, 2009). Those ordinary differential equations can be summarized into a 164	

matrix formula (Luo et al., 2003; Luo and Weng, 2011; Luo et al., 2015; 2016; Sierra and Müller 165	

2015) as: 166	

𝑋′(𝑡) = 𝐵𝑢 𝑡 − 𝐴𝜉 𝑡 𝐾𝑋(𝑡)                                             (1) 167	

where X’(t) is a vector of net C pool changes at time t, X(t) is a vector of pool sizes, B is a vector 168	

of partitioning coefficients from C input to each of the pools, u(t) is C input rate, A is a matrix of 169	

transfer coefficients (or microbial C use efficiency) to quantify C movement along the pathways, 170	

K is a diagonal matrix of exit rates (mortality for plant pools and decomposition coefficients of 171	

litter and soil pools) from donor pools and 𝜉 𝑡  is a diagonal matrix of environmental scalars to 172	

represent responses of C cycle to changes in temperature, moisture, nutrients, litter quality, and 173	
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soil texture. In eq. 1, all the off-diagonal 𝑎!" values are negative. The equation describes net C 174	

pool change, 𝑋′(𝑡), as a result of C input, 𝑢 𝑡 , distributed to different plant pools via 175	

partitioning coefficients, 𝐵, minus C loss through C transformation matrix, 𝐴𝜉 𝑡 𝐾, among 176	

individual pools, 𝑋(𝑡).  Elements in vector B, matrices A and K could vary with many factors, 177	

such as vegetation types, soil textual, microbial attributes, and litter chemistry.  For example, 178	

vegetation succession may influence elements in vector B, matrices A and K in addition to C 179	

input, 𝑢 𝑡 , and forcing that affects C dynamics through environmental scalars, 𝜉 𝑡 . 180	

After synthesis of all the possible soil C cycle models based on six principles (mass 181	

balance, substrate dependence of decomposition, heterogeneity of decay rates, internal 182	

transformations of organic matter, environmental variability effects, and substrate interactions), 183	

Sierra and Müller (2015) concluded that this form of matrix equation such as eq. 1 represents the 184	

majority of terrestrial C cycle models. Similarly, Manzoni and Porporato (2009) concluded their 185	

review of 250 models that the majority of them use ordinary differential equations, which can be 186	

summarized by eq. 1, to describe land C cycle. Our mathematical analysis in this study used 187	

matrix operations of eq. 1 to reveal determinants of transient dynamics of terrestrial C cycle, 188	

including direction and rate of C storage changes, in response to climate change. We examined 189	

assumptions underlying this equation and the validity of our analysis in the Discussion section. 190	

 191	

2.2 Model and its numerical experiments 192	

We conducted numerical experiments to support the mathematical analysis and thus help 193	

understand the characteristics of terrestrial C storage dynamics using the Terrestrial ECOsystem 194	

(TECO) model. TECO has five major components: canopy photosynthesis, soil water dynamics, 195	

plant growth, litter and soil carbon decomposition and transformation, and nitrogen dynamics as 196	
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described in detail by Weng and Luo (2008) and Shi et al. (2016). Canopy photosynthesis is 197	

referred from a two-leaf (sunlit and shaded) model developed by Wang and Leuning (1998). This 198	

submodel simulates canopy conductance, photosynthesis, and partitioning of available energy. 199	

The model combines the leaf photosynthesis model developed by Farquhar et al. (1980) and a 200	

stomatal conductance model (Harley et al., 1992). In the soil water dynamic submodel, soil is 201	

divided into 10 layers. The surface layer is 10 cm deep and the other 9 layers are 20 cm deep. 202	

Soil water content (SWC) in each layer results from the mass balance between water influx and 203	

efflux. The plant growth submodel simulates C allocation and phenology. Allocation of C among 204	

three plant pools, which are leaf, fine root, and wood, depends on their growth rates (Fig. 1a). 205	

Phenology dynamics is related to leaf onset, which is triggered by growing degree days, and leaf 206	

senescence, which is determined by temperature and soil moisture. The C transformation 207	

submodel estimates carbon transfer from plants to two litter pools and three soil pools (Fig. 1a). 208	

The nitrogen (N) submodel is fully coupled with C processes with one additional mineral N pool. 209	

Nitrogen is absorbed by plants from mineral soil and then partitioned among leaf, woody tissues 210	

and fine roots. Nitrogen in plant detritus is transferred among different ecosystem pools (i.e. 211	

litter, coarse wood debris, fast, slow and passive SOM) (Shi et al., 2016). The model is driven by 212	

climate data, which included air and soil temperature, vapor-pressure deficit, relative humidity, 213	

incident photosynthetically active radiation, and precipitation at hourly steps. 214	

We first calibrated TECO with eddy flux data collected at Harvard Forest from 2006-215	

2009. The calibrated model was spun up to the equilibrium state in pre-industrial environmental 216	

conditions by recycling a 10-year climate forcing (1850-1859). Then the model was used to 217	

simulate C dynamics from year 1850 to 2100 with the historical forcing scenario for 1850-2005 218	

and RCP8.5 scenario for 2006-2100 as in the Community Land Model 4.5 (Oleson et al., 2013) 219	
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in the grid cell where Harvard Forest is located.  220	

To support the mathematical analysis using eq. 1, we first verified that eq. 1 can exactly 221	

represent TECO model simulations. We first identified those variables in each of the C balance 222	

equations in the TECO model that are corresponding to elements in matrices A, 𝜉 𝑡 , and K, and 223	

vectors 𝑋 𝑡 , and B together with variable 𝑢 𝑡  in eq. 1. Then we ran the TECO model to 224	

generate outputs of all those variables at each time step, which were consequently organized into 225	

matrices A, 𝜉 𝑡 , and K, and vectors 𝑋 𝑡  and B, and variable 𝑢 𝑡 . Those matrices, vectors, and 226	

variable were entered to matrix calculation to compute 𝑋′ 𝑡  using eq. 1. The sum of elements in 227	

calculated 𝑋′ 𝑡  is a 100% match with simulated net ecosystem production (NEP) with the 228	

TECO model (Fig. 1b).  229	

Once eq. 1 was verified to exactly replicate TECO simulations, we use TECO to generate 230	

numerical experiments to support the mathematical analysis on the transient dynamics of 231	

terrestrial C storage. To analyze the seasonal patterns of C storage dynamics, we averaged 10 232	

series of three-year seasonal dynamics from 1851-1880. Then we used a 7-day moving window 233	

to further smooth the data.  234	

 235	

3. Results 236	

 237	

3.1 Determinants of C storage dynamics  238	

The transient dynamics of terrestrial carbon storage are determined by two components: the C 239	

storage capacity and the C storage potential. The two components of C storage dynamics can be 240	

mathematically derived from multiplying both sides of eq. 1 by (𝐴𝜉 𝑡 𝐾)!! as:    241	

𝑋 𝑡 = (𝐴𝜉 𝑡 𝐾)!!𝐵𝑢 𝑡 − 𝐴𝜉 𝑡 𝐾 !!𝑋′(𝑡)   (2) 242	
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The first term on the left side of eq. 2 is the C storage capacity and the second term is the C 243	

storage potential. Fig. 2a shows time courses of C storage and its capacity over one year for the 244	

leaf pool of Harvard Forest. 245	

In eq. 2, we name the term (𝐴𝜉 𝑡 𝐾)!! the chasing time, 𝜏!! 𝑡 , as: 246	

𝜏!! 𝑡 = (𝐴𝜉 𝑡 𝐾)!!		 	 	 	 	 	 (3) 247	

𝜏!! 𝑡  is a matrix of C residence times through the network of individual pools each with 248	

different capacities as measured by their residence times and fractions of received C connected 249	

by pathways of C transfer. Analogous to the fundamental matrix measuring life expectancies in 250	

demographic models (Caswell, 2000), the matrix, 𝜏!! 𝑡 , here measures expected residence time 251	

of a C atom in pool i when it has entered from pool j. We call this matrix the fundamental matrix 252	

of chasing times to represent the time scale at which the net C pool change, 𝑋′ 𝑡 , is 253	

redistributed in the network. Meanwhile, the residence time of individual pools in network can 254	

be estimated by multiplying the fundamental matrix of chasing times, (𝐴𝜉 𝑡 𝐾)!!, by a vector 255	

of partitioning coefficients, B as: 256	

𝜏! 𝑡 = (𝐴𝜉 𝑡 𝐾)!!𝐵      (4) 257	

Ecosystem residence time is the sum of the residence time of all individual pools in network,  258	

Thus, the C storage capacity can be defined by: 259	

 𝑋!(𝑡) = (𝐴𝜉 𝑡 𝐾)!!𝐵𝑢 𝑡        (5a)  260	

Or it can be estimated from input C, 𝑢 𝑡 , and residence time, 𝜏! 𝑡 , as: 261	

𝑋! 𝑡 = 𝜏! 𝑡 𝑢 𝑡         (5b) 262	

As C input (e.g., Gross or Net Primary Productions, GPP or NPP) and residence times vary with 263	

time, the C storage capacity varies with time. It represents instantaneous responses of the 264	

terrestrial C cycle to the external forcing. The modeled C storage capacity in the leaf pool (Fig. 265	
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2a), for example, increases in spring, reaches the peak at summer, declines in autumn, and 266	

becomes minimal in winter largely due to strong seasonal changes in C input (Fig. 2b). Note that 267	

either GPP or NPP can be used as C input for analysis of transient C dynamics. Estimated 268	

residence times, however, are smaller with GPP as C input than those with NPP as input. In this 269	

paper, we mostly used NPP as C input as that fraction of C is distributed among pools. 270	

The C storage potential at time t, 𝑋!(𝑡), can be mathematically described as: 271	

𝑋!(𝑡) = 𝐴𝜉 𝑡 𝐾 !!𝑋′(𝑡)      (6a) 272	

Or it can be estimated from net C pool change, 𝑋′ 𝑡 , and chasing time, 𝜏!! 𝑡  as: 273	

𝑋! 𝑡 = 𝜏!!(𝑡)𝑋! 𝑡        (6b) 274	

Eqs. 6a and 6b suggest that the C storage potential represents re-distribution of net C pool 275	

change, 𝑋′ 𝑡 , of individual pools through a network of pools with different residence times as 276	

connected by C transfers from one pool to the others through all the pathways. As time evolves, 277	

the net C pool change, 𝑋′ 𝑡 , is redistributed again and again through the network of pools. The 278	

network of redistribution of next C pool change, thus, represents the potential of an ecosystem to 279	

store additional C when it is positive and lose C when it is negative. The C storage potential can 280	

also be estimated from the difference between the C storage capacity and the C storage itself at 281	

time t as: 282	

𝑋! 𝑡 = 𝑋! 𝑡 − 𝑋 𝑡        (6c) 283	

The C storage potential in the leaf pool, for example, is about zero in winter and early spring 284	

when the C storage capacity is very close to the storage itself (Fig. 2a). The C storage potential is 285	

positive when the capacity is larger than the storage itself from late spring to summer and early 286	

fall. As the storage capacity decreases to the point when the storage equals the capacity on the 287	

265th day of year (DOY), the C storage potential is zero. After that day, the C storage potential 288	
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becomes negative.  289	

Dynamics of ecosystem C storage, 𝑋 𝑡 , can be characterized by three parameters: C 290	

influx, 𝑢 𝑡 , residence times, 𝜏! 𝑡 , and the C storage potential 𝑋! 𝑡  as: 291	

𝑋 𝑡 = 𝜏! 𝑡 𝑢 𝑡 − 𝑋!(𝑡)      (7) 292	

Eq. 7 represents a three-dimensional (3D) parameter space within which model simulation 293	

outputs can be placed to measure how and how much they diverge.   294	

 Note that sums of elements in vectors 𝑋 𝑡 , 𝑋! 𝑡 , 𝑋! 𝑡 , 𝑋! 𝑡 , and 𝜏! 𝑡  are 295	

corresponding, respectively, to the whole ecosystem C stock, ecosystem C storage capacity, 296	

ecosystem C storage potential, net ecosystem production (NEP), and ecosystem residence time. 297	

In this paper, we do not use a separate set of symbols to represent those sums rather than express 298	

them wherever necessary. 299	

 300	

3.2 Direction and rate of C storage change at a given time  301	

Like studying any moving object, quantifying dynamics of land C storage needs to determine 302	

both the direction and the rate of its change at a given time. To determine the direction and rate 303	

of C storage change, we re-arranged eq. 2 to be: 304	

𝜏!!𝑋! 𝑡 =  𝑋! 𝑡 − 𝑋 𝑡 = 𝑋! 𝑡       (8a) 305	

or re-arranging eq. 6a leads to: 306	

𝑋! 𝑡 =  𝐴𝜉 𝑡 𝐾𝑋! 𝑡          (8b) 307	

As all the elements in 𝜏!! are positive, the sign of 𝑋! 𝑡  is the same as for 𝑋! 𝑡 . That means 308	

𝑋′ 𝑡  increases when 𝑋! 𝑡 > 𝑋 𝑡 , does not change when 𝑋! 𝑡 = 𝑋 𝑡 , and decreases when 309	

𝑋! 𝑡 < 𝑋 𝑡  at the ecosystem scale. Thus, the C storage capacity, 𝑋! 𝑡 , is an attractor and 310	
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hence determines the direction toward which the C storage, 𝑋 𝑡 , chases at any given time point. 311	

The rate of C storage change, 𝑋! 𝑡 , is proportional to 𝑋! 𝑡  and also regulated by 𝜏!!.  312	

 When we study C cycle dynamics, we are not only interested in understanding dynamics 313	

of a whole ecosystem but also individual pools.  Eq. 8a can be used to derive equations to 314	

describe C storage change for an ith pool as: 315	

𝑓!"!
!!! 𝜏!  𝑥!! 𝑡 = 𝑓!"!

!!! 𝜏!𝑏!𝑢 𝑡 − 𝑥! 𝑡 = 𝑥!,! 𝑡   (9a) 316	

where n is the number of pools in a C cycle model, 𝑓!" is a fraction of C transferred from pool j 317	

to i through all the pathways, 𝜏! measure residence times of individual pools in isolation, 𝑥!! is 318	

the net C change in the jth pool, 𝑏! is a partitioning coefficient of C input to the jth pool, 𝑥! 𝑡  is 319	

the C storage in the ith pool, and 𝑥!,! 𝑡  is the C storage potential in the ith pool. Eq. 9a means 320	

that the C storage potential of each pool at time t, 𝑥!,! 𝑡 , is the sum of all the individual net C 321	

pool change, 𝑥!!, multiplied by corresponding residence time spent in pool i coming from pool j. 322	

Through re-arrangement, eq. 9a can be solved for each individual pool net C change as a 323	

function of C storage potential of all the pools as: 324	

 𝑥!! 𝑡 = !!,!,! ! !!!,!,! ! !!! !
!!!!!

      (9b) 325	

where 𝑥!,!,! 𝑡 = 𝑓!"!
!!! 𝜏!𝑏!𝑢 𝑡  for the maximal amount of C that can transfer from C input 326	

to the ith pool. 𝑥!,!,! 𝑡 = 𝑓!"!
!!!,!!! 𝜏!𝑥′! 𝑡  for the maximal amount of C that can transfer from 327	

all the other pools to the ith pool. 𝑓!! = 1 for all the pools if there is no feedback of C among soil 328	

pools. 𝑓!! < 1 when there are feedbacks of C among soil pools. 329	

As plant pools get C only from photosynthetic C input, 𝑢 𝑡 , but not from other pools, 330	

the direction and rate of C storage change in the ith plant pool is determined by: 331	
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𝑥!! 𝑡 =  !!,!(!)!!! !
!!

= !!,! !
!!

𝑥!,! 𝑡 = 𝑏!𝑢 𝑡 𝜏!                    
           for i = 1, 2, 3     (10) 332	

The C storage capacity of plant pools equals the product of plant C input, 𝑢 𝑡  (i.e., net primary 333	

production, NPP), partitioning coefficient, 𝑏!, and residence time, 𝜏!, of its own pool (Fig. 2b-d). 334	

Thus, the C storage capacities of the leaf, root, and wood pools are high in summer and low in 335	

winter. Plant C storage, 𝑥! 𝑡 , still chases the storage capacity, 𝑥!,! 𝑡 , of its own pool at a rate 336	

that is proportional to 𝑋!,! 𝑡 . For the leaf pool, the C storage, 𝑥! 𝑡 , increases when 𝑥!,! 𝑡 >337	

𝑥! 𝑡  (or 𝑥!,! 𝑡 >0) from late spring until early fall on the 265th day of year (DOY) and then 338	

decreases when 𝑥!,! 𝑡 < 𝑥! 𝑡  (or 𝑥!,! 𝑡 <0) from DOY of 265 until 326 during fall (Fig. 2a).  339	

However, the direction of C storage change in litter and soil pools are no longer solely 340	

determined by the storage capacity, 𝑥!,! 𝑡 , of their own pools or at a rate that is proportional to 341	

𝑋!,! 𝑡 . The C storage capacity of one litter or soil pool has two components. One component, 342	

𝑥!,!,! 𝑡  is set by the amount of plant C input, 𝑢 𝑡 , going through all the possible pathways, 343	

𝑓!"𝑏!, multiplied by residence time, 𝜏!, of its own pool.  The second component measures the C 344	

exchange of one litter or soil pool with other pools according to net C pool change, 𝑥!! 𝑡 , 345	

through pathways, 𝑓!", 𝑗 ≠ 𝑖, weighed by residence time, 𝜏!, of its own pool. For example, C 346	

input to the litter pool is a combination of C transfer from C input through the leaf, root, and 347	

wood pools (Fig. 3c, 3d, and 3e) and C transfer due to the net C pool changes in the leaf, root, 348	

and wood pools (Fig. 3f, 3g, and 3h). Thus the first capacity component of the litter pool to store 349	

C is the sum of three products of NPP, C partitioning coefficient, and network residence time, 350	

respectively, through the leaf, root, and wood pools (Fig. 3c, 3d, and 3e). The second capacity 351	

component is the sum of other three products of C transfer coefficient along all the possible 352	

pathways, network residence time, and net C pool changes, respectively, in the leaf, root, and 353	
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wood pools (Fig. 3f, 3g, and 3h). Thus, C storage in the ith pool, 𝑥! 𝑡 , chases an attractor, 354	

( f!"!
!!! b!u t − f!"!

!!!,!!! τ!x!! t )τ!, for litter and soil pools (Fig. 4). 355	

In summary, due to the network of C transfer, C storage in litter and soil pools does not 356	

chase the C storage capacities of their own pools in a multiple C pool model (Fig. 4). The 357	

capacities for individual litter and soil pools measure the amounts of C that is transferred from 358	

photosynthetic C input through plant pools to be stored in those pools. However, those litter and 359	

soil pools also exchange C with other pools according to transfer coefficients along pathways of 360	

C movement multiplying net C pool change in those pools. Integration of the C input and C 361	

exchanges together still set as a moving attractor toward which individual pool C storage 362	

approaches (Fig. 4).   363	

 364	

3.3 C storage dynamics under climate change 365	

In response to a climate change scenario that combines historical change and simulated RCP8.5 366	

in the TECO experiment, the modeled ecosystem C storage capacity (the sum of all elements in 367	

vector 𝑋! 𝑡 ) at Harvard Forest increases from 27 kg C m-2 in 1850 to approximately 38 kg C m-368	

2 in 2100 with strong interannual variability (Fig. 5a). The increasing capacity results from a 369	

combination of a nearly 44% increase in NPP with a ~2% decrease in ecosystem residence times 370	

(the sum of all elements in vector 𝜏! 𝑡 ) during that period (Fig. 5b). The strong interannual 371	

variability in the modeled capacity is attributable to the variability in NPP and residence times, 372	

both of which directly respond to instantaneous variations in environmental factors. In 373	

comparison, the ecosystem C storage (the sum of all elements in vector 𝑋 𝑡 ) itself gradually 374	

increases, lagging behind the capacity, with much dampened interannual variability (Fig. 5a). 375	

The dampened interannual variability is due to smoothing effects of pools with various residence 376	
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times. In response to climate change scenario RCP8.5, the ecosystem C storage potential (the 377	

sum of all elements in vector 𝑋! 𝑡 ) in the Harvard Forest ecosystem increases from zero at 378	

1980 to 3.5 kg C m-2 in 2100 with strong fluctuation over years (Fig. 5a).  Over seasons, the 379	

potential is high during the summer and low in winter, similarly with the seasonal cycle of the C 380	

storage capacity. 381	

Since chasing time, 𝜏!!, is a matrix and net C pool change, 𝑋! 𝑡 , is a vector, eq. 6a or 6b 382	

(i.e., the C storage potential) can not be analytically separated into the chasing time and net C 383	

pool change as can the capacity into C input and residence time in eq. 5a or 5b for traceability 384	

analysis. The relationships among the three quantities can be explored by regression analysis. 385	

The ecosystem C storage potential fluctuates in a similar phase with NEP from 1850 to 2100 386	

(Fig. 5c). Consequently, the C storage potential is well correlated with NEP at the whole 387	

ecosystem scale (Fig. 5d).  The slope of the regression line is a statistical representation of 388	

ecosystem chasing time. In this study, we find that r2 of the relationship between the storage 389	

potential and NEP is 0.79. The regression slope is 28.1 years in comparison with the ecosystem 390	

residence time of approximately 22 years (Fig. 5b).  391	

The capacity and storage itself of individual pools display similar long-term trends and 392	

interannual variability to those for the total ecosystem C storage dynamics (Fig. 6). Noticeably, 393	

the deviation of the C storage from the capacity, which is the C storage potential, is much larger 394	

for pools with long residence times than those with short residence times. For individual pools, 395	

the potential is nearly zero for those fast turnover pools and becomes very large for those pools 396	

with long residence time (Fig. 6). 397	

For individual plant pools, eq. 10 describes the dependence of the C storage potential, 398	

𝑥!,! 𝑡 , on the pool-specific residence time, 𝜏! , 𝑖 = 1, 2, and 3, and net C pool change of their 399	
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own pools, 𝑥!! 𝑡 , 𝑖 = 1, 2, and 3. Thus, one value of 𝑥!,! 𝑡  is exactly corresponding to one 400	

value of 𝑥!! 𝑡  at slope of 𝜏!, leading to the correlation coefficient in Fig. 7 being 1.00 for leaf, 401	

root, and wood pools. For a litter or soil pool, however, the C storage potential is not solely 402	

dependent on the residence time and net C pool change of its own pool but influenced by several 403	

other pools. Thus, the potential of one litter or soil pool is correlated with net C pool changes of 404	

several pools with different regression slopes (Fig. 7).  405	

 406	

4 Discussion 407	

4.1 Assumptions of the C cycle models and validity of this analysis   408	

This analysis is built upon eq. 1, which represents the majority of terrestrial C cycle 409	

models developed in the past decades (Manzoni and Porporato, 2009; Sierra and Müller, 2015).  410	

Those models have several assumptions, which may influence the validity of this analysis. First, 411	

those models assume that donor pools control C transfers among pools and decomposition 412	

follows 1st-order decay functions (Assumption 1). This assumption is built upon observations 413	

from litter and SOC decomposition. Analysis of data from nearly 300 studies of litter 414	

decomposition (Zhang et al., 2008), about 500 studies of soil incubation (Xu et al., 2016), more 415	

than 100 studies of forest succession (Yang et al., 2011), and restoration (Matamala et al., 2008) 416	

almost all suggest that the 1st-order decay function captures macroscopic patterns of land C 417	

dynamics. Even so, its biological, chemical and physical underpinnings need more study (Luo et 418	

al., 2016). This assumption has recently been challenged by a notion that microbes are actively 419	

involved in decomposition processes. To describe the active roles of microbes in organic C 420	

decomposition, a suite of nonlinear microbial models has been proposed using Michaelis-Menten 421	

or reverse Michaelis-Menten equations (Allison et al., 2010; Wieder et al., 2013). Those 422	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 20	

nonlinear models exhibit unique behaviors of modeled systems, such as damped oscillatory 423	

responses of soil C dynamics to small perturbations and insensitivity of the equilibrium pool 424	

sizes of litter or soil carbon to inputs (Li et al., 2014; Wang et al., 2014; 2016). Oscillations have 425	

been documented for single enzymes at timescales between 10-4 to 10 seconds (English et al., 426	

2006; Goldbeter, 2013; Xie, 2013). Over longer timescales with mixtures of large diversity of 427	

enzyme-substrate complexes in soil, oscillations may be likely averaged out so that the 1st order 428	

decay functions may well approximate these average dynamics of organic matter decomposition 429	

(Sierra and Müller, 2015).  430	

Second, those models all assume that multiple pools can adequately approximate 431	

transformation, decomposition, and stabilization of SOC in the real world (Assumption 2). The 432	

classic SOC model, CENTURY, uses three conceptual pools, active, slow, and passive SOC, to 433	

represent SOC dynamics (Parton et al., 1987). Several models define pools that are 434	

corresponding to measurable SOC fractions to match experimental observation with modeling 435	

analysis (Smith et al., 2002; Stewart et al., 2008). Carbon transformation in soil over time has 436	

also been described by a partial differential function of SOM quality (Bosatta and Ågren, 1991; 437	

Ågren and Bosatta, 1996). The latter quality model describes the external inputs of C with 438	

certain quality, C loss due to decomposition, and the internal transformations of the quality of 439	

soil organic matter. It has been shown that multi-pool models can approximate the partial 440	

differential function or continuous quality model as the number of pools increases (Bolker et al., 441	

1998; Sierra and Müller, 2015). 442	

Assumption 3 is on partitioning coefficients of C input (i.e., elements in vector B) and C 443	

transformation among plant, litter, and soil pools (i.e., elements in the matrix, 𝐴𝜉 𝑡 𝐾). Some of 444	

the terrestrial C cycle models assume that elements in vector B, and matrices A and K are 445	
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constants. All the factors or processes that vary with time are represented in the diagonal matrix 446	

𝜉 𝑡 . In the real world, C transformation are influenced by environmental variables (e.g., 447	

temperature, moisture, oxygen, N, phosphorus, and acidity varying with soil profile, space, and 448	

time), litter quality (e.g., lignin, cellulose, N, or their relative content), organomineral properties 449	

of SOC (e.g., complex chemical compounds, aggregation, physiochemical binding and 450	

protection, reactions with inorganic, reactive surfaces, and sorption), and microbial attributes 451	

(e.g., community structure, functionality, priming, acclimation, and other physiological 452	

adjustments) (Luo et al., 2016). It is not practical to incorporate all of those factors and processes 453	

into one model. Only a subset of them is explicitly expressed while the majority is implicitly 454	

embedded in the C cycle models.  Empirical studies have suggested that temperature, moisture, 455	

litter quality, and soil texture are primary factors that control C transformation processes of 456	

decomposition and stabilization (Burke et al., 1989; Adair et al., 2008; Zhang et al., 2008; Xu et 457	

al., 2012; Wang et al., 2013). Nitrogen influences C cycle processes mainly through changes in 458	

photosynthetic C input, C partitioning, and decomposition. It is yet to identify how other major 459	

factors and processes, such as microbial activities and organomineral protection, regulate C 460	

transformation.  461	

Assumption 4 is that terrestrial C cycle models use different response functions (i.e., 462	

different 𝜉 𝑡  in eq. 1) to represent C cycle responses to external variables. As temperature 463	

modifies almost all processes in the C cycle, different formulations, including exponential, 464	

Arrhenius, and optimal response functions, have been used to describe C cycle responses to 465	

temperature changes in different models (Lloyd and Taylor, 1994; Jones et al., 2005; Sierra and 466	

Müller, 2015). Different response functions are used to connect C cycle processes with moisture, 467	

nutrient availability, soil clay content, litter quality, and other factors. Different formulations of 468	
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response functions may result in substantially different model projections (Exbrayat et al., 2013) 469	

but unlikely change basic dynamics of the model behaviors. 470	

Assumption 5 is that disturbance events are represented in models in different ways 471	

(Grosse et al., 2011; West et al., 2011; Goetz et al., 2012; Hicke et al., 2012). Fire, extreme 472	

drought, insect outbreaks, land management, and land cover and land use change influence 473	

terrestrial C dynamics via 1) altering rate processes, for example, gross primary productivity 474	

(GPP), growth, tree mortality, or heterotrophic respiration; 2) modifying microclimatic 475	

environments; 3) transferring C from one pool to another (e.g., from live to dead pools during 476	

storms or release to the atmosphere with fire) (Kloster et al., 2010; Thonicke et al., 2010; Luo 477	

and Weng, 2011; Prentice et al., 2011; Weng et al., 2012). Many disturbance events are 478	

incorporated into terrestrial C cycle models without changing the basic formulation (i.e., eq. 1) 479	

(Weng et al., 2012).   480	

The sixth assumption that those models make is that the lateral C fluxes through erosion 481	

or local C drainage is negligible so that eq (1) can approximate terrestrial C cycle over space. If 482	

soil erosion is substantial enough to be modeled with horizontal movement of C, a third 483	

dimension should be added in addition to two-dimensional transfers in classic models. 484	

Our analysis on transient dynamics of terrestrial C cycle is valid unless some of the 485	

assumptions are violated. Assumption 1 on the 1st-order decay function of decomposition 486	

appears to be supported by thousands of datasets. It is a burden on microbiologists to identify 487	

empirical evidence to support the nonlinear microbial models. Assumption 2 may not affect the 488	

validity of our analysis no matter how C pools are divided in the ecosystems. Our analysis in this 489	

study is applicable no matter whether elements are time-varying or constant in vector B and 490	

matrices A and K as in assumption 3. Neither assumption 4 nor 5 would affect the analysis in this 491	
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study. The environmental scalar, 𝜉 𝑡 , as related to assumption 4 can be any forms in the derived 492	

equations (e.g., eq. 2). Disturbances of fire, land use, and extreme drought change rate processes 493	

but do not alter the basic formulation of eq. 1. If soil erosion and lateral transportation of C 494	

become a major research objective, Eq. (1) can no longer be analyzed to understand the 495	

mathematical foundation underlying transient dynamics of terrestrial C cycle.   496	

 497	

4.2 Carbon storage capacity 498	

 One of the two components this analysis introduces to understand transient dynamics of 499	

terrestrial C storage is the C storage capacity (Eq. 2). Olson (1963) is probably among the first 500	

who systematically analyzed C storage dynamics at forest floor as functions of litter production 501	

and decomposition. He collected data of annual litter production and approximately steady-state 502	

organic C storage at forest floor, from which decomposition rates were estimated for a variety of 503	

ecosystems from Ghana in the tropics to alpine forests in California. Using the relationships 504	

among litter production, decomposition, and C storage, Olson (1963) explored several issues, 505	

such as decay without input, accumulation with continuous or discrete annual litter fall, and 506	

adjustments in production and decay parameters during forest succession. His analysis 507	

approximated the steady-state C storage as the C input times the inverse of decomposition (i.e., 508	

residence time). The steady-state C storage is also considered the maximal amount of C that a 509	

forest can store.  510	

This study is not only built upon Olson’s analysis but also expands it at least in two 511	

aspects. First, we similarly define the C storage capacity (i.e., eqs. 5a and 5b). Those equations 512	

can be applied to a whole ecosystem with multiple C pools while Olson’s analysis is for one C 513	

pool. Second, Olson (1963) treated the C input and decomposition rate as yearly constants at a 514	
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given location even though they varied with locations. This study considers both C input and rate 515	

of decomposition being time dependent. A dynamical system with its input and parameters being 516	

time dependent mathematically becomes a nonautonomous system (Kloeden and Rasmussen, 517	

2011). As terrestrial C cycle under climate change is transient, we need to treat it a 518	

nonautonomous system to better understand the properties of transient dynamics. Olson (1963) 519	

approximated the non-autonomous system at the yearly time scale without climate change so as 520	

to effectively understand properties of the steady-state C storage at the forest floor. In 521	

comparison, eqs. 5a and b are not only more general but also essential for understanding 522	

transient dynamics of the terrestrial C cycle in response to climate change.  523	

Under the transient dynamics, the C storage capacity as defined by eqs 5a and b still sets 524	

the maximal amount of C that one ecosystem can store at time t. This capacity represents 525	

instantaneous responses of ecosystem C cycle to external forcing via changes in both C input and 526	

residence time, and thus varies within one day, over seasons of a year, and interannually over 527	

longer time scales as forcings vary. The variation of the C storage capacity can result from cyclic 528	

environmental changes (e.g., dial and seasonal changes), directional climate change (e.g., rising 529	

atmospheric CO2, nitrogen deposition, altered precipitation, and warming), disturbance events, 530	

disturbance regime shifts, and changing vegetation dynamics (Luo and Weng, 2011). As the 531	

capacity sets the maximal amount of C storage (Fig. 2a), it is a moving attractor toward which 532	

the current C storage chases.  When the capacity is larger than the C storage itself, C storage 533	

increases. Otherwise, the C storage decreases. 534	

 535	

4.3 Carbon storage potential  536	

 The C storage potential represents the internal capability to equilibrate the current C 537	
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storage with the capacity. Bogeochemically, the C storage potential represents re-distribution of 538	

net C pool change, 𝑋′ 𝑡 , of individual pools through a network of pools with different residence 539	

times as connected by C transfers from one pool to the others through all the pathways. The 540	

potential is conceptually equivalent to the magnitude of disequilibrium as discussed by Luo and 541	

Weng (2011).   542	

 The C storage potential measures the amount of additional C that one ecosystem can 543	

store. Thus it can be used as a targeted quantity for C cycle research, C trading, and C credit in 544	

government negotiation. In many fields of research, there are clearly targeted quantities on which 545	

research would be focused.  For example, crop science primarily focuses on crop yield although 546	

environmental consequences of increasing crop yield have to be quantified.  Gross domestic 547	

product (GDP) is the targeted indicator that a country manages their economy. Although C cycle 548	

has become a major research topic, has markets for trading, and is managed by governments, no 549	

consensus has been established on the targeted quantity that our study should focus on.  550	

 Extensive studies have been done to quantify terrestrial C sequestration. The most 551	

commonly estimated quantities for C sequestration include net ecosystem exchange (NEE), C 552	

stocks in ecosystems (i.e., plant biomass and SOC) and their changes (Baldocchi et al., 2001; Pan 553	

et al., 2013). This study, for the first time, offers the theoretical basis to estimate the terrestrial C 554	

storage potential in at least two approaches: (1) the product of chasing time and net C pool 555	

change with eqs. 6a and 6b; and (2) the difference between the C storage capacity and the C 556	

storage itself with eqs. 6c. Since the time-varying C storage capacity is fully defined by 557	

residence time and C input at any given time, C storage potential can be estimated from three 558	

quantities: C input, residence time, and C storage.  559	

 To effectively quantify the C storage potential in terrestrial ecosystems, we need various 560	
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data sets from experimental and observatory studies to be first assimilated into models. For 561	

example, data from Harvard Forest were first used to constrain the TECO model. The 562	

constrained model was used to explore changes in ecosystem C storage in response to climate 563	

change scenario, RCP8.5. That scenario primarily stimulated NPP, which increased from 1.06 to 564	

1.8 kg C m-2 yr-1 in the Harvard Forest (Fig. 5b). Although climate warming decreased residence 565	

time in the Harvard Forest, the substantial increases in NPP resulted in increases in the C storage 566	

potential over time. 567	

 568	

4.4 Novel approaches to model evaluation and improvement 569	

Our analysis of transient C cycle dynamics offers new approaches to understand, 570	

evaluate, diagnose, and improve land C cycle models.  We have demonstrated that many global 571	

land C cycle models can be exactly represented by the matrix equation (Eqs. 1 and 2) (i.e., 572	

physical emulators). As a consequence, outputs of all those models can be placed into a three 573	

dimensional (3D) space (Eq. 7) to measure their differences. In addition, components of land C 574	

cycle models are simulated in a mutually independent fashion so that modeled C storage can be 575	

decomposed into traceable components for traceability analysis. Moreover, the physical 576	

emulators computationally enable data assimilation to constrain complex models. 577	

Physical Emulators of land C cycle models We have developed matrix representations 578	

(i.e., physical emulators) of CABLE, LPJ-GUESS, CLM3.5, CLM 4.0, CLM4.5, BEPS, and 579	

TECO (Xia et al., 2013; Hararuk et al., 2014; Ahlström et al., 2015; Chen et al., 2015). The 580	

emulators can exactly replicate simulations of C pools and fluxes with their original models 581	

when driven by a limited set of inputs from the full model (GPP, soil temperature, and soil 582	

moisture) (Fig. 1b and 1c). The emulators make complex models analytically clear and, 583	
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therefore, give us a way to understand the effects of forcing, model structures, and parameters on 584	

modeled ecosystem processes. They greatly simplify the task of understanding the dynamics of 585	

submodels and interactions between them. The emulators allow us analyze model results in the 586	

3D parameter space and the traceability framework. 587	

 Parameter space of C cycle dynamics Eq. 7 indicates that transient dynamics of modeled 588	

C storage are determined by three parameters: C input, residence time, and C storage potential. 589	

The 3D parameter space offers one novel approach to uncertainty analysis of global C cycle 590	

models. As global land models incorporate more and more processes to simulate C cycle 591	

responses to global change, it becomes very difficult to understand or evaluate complex model 592	

behaviors. As such, differences in model projections cannot be easily diagnosed and attributed to 593	

their sources (Chatfield, 1995; Friedlingstein et al., 2006; Luo et al., 2009). Eq. 7 can help 594	

diagnose and evaluate complex models by placing all modeling results within one common 595	

parameter space in spite of the fact that individual global models may have tens or hundreds of 596	

parameters to represent C cycle processes as affected by many abiotic and biotic factors (Luo et 597	

al., 2016). The 3D space can be used to measure how and how much the models diverge. 598	

Traceability analysis The two terms on the right side of eq. 2 can be decomposed into 599	

traceable components (Xia et al., 2013) so as to identify sources of uncertainty in C cycle model 600	

projections. Model intercomparison projects (MIPs) all illustrate great spreads in projected land 601	

C sink dynamics across models (Todd-Brown et al., 2013; Tian et al., 2015).  It has been 602	

extremely challenging to attribute the uncertainty to sources. Placing simulation results of a 603	

variety of C cycle models within one common parameter space can measure how much the 604	

model differences are in a common metrics (Eq. 7). The measured differences can be further 605	

attributed to sources in model structure, parameter, and forcing fields with traceability analysis 606	
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(Xia et al., 2013; Rafique et al., 2014; Ahlström et al., 2015; Chen et al., 2015). The traceability 607	

analysis also can be used to evaluate effectiveness of newly incorporated modules into existing 608	

models, such as adding the N module on simulated C dynamics (Xia et al., 2013) and locate the 609	

origin of model ensemble uncertainties to external forcing vs. model structures and parameters 610	

(Ahlström et al., 2015).  611	

Constrained estimates of terrestrial C sequestration Traditionally, global land C sink is 612	

indirectly estimated from airborne fraction of C emission and ocean uptake. Although many 613	

global land models have been developed to estimate land C sequestration, a variety of MIPs 614	

indicate that model predictions widely vary among them and do not fit observations well 615	

(Schwalm et al., 2010; Luo et al., 2015; Tian et al., 2015). Moreover, the prevailing practices in 616	

the modeling community, unfortunately, may not lead to significant enhancements in our 617	

confidence on model predictions. For example, incorporating an increasing number of processes 618	

that influence the C cycle may represent the real-world phenomena more realistically but makes 619	

the models more complex and less tractable. MIPs have effectively revealed the extent of the 620	

differences between model predictions (Schwalm et al., 2010; Keenan et al., 2012; De Kauwe et 621	

al., 2013) but provide limited insights into sources of model differences (but see Medlyn et al. 622	

(2015). The physical emulators make data assimilation computationally feasible for global C 623	

cycle models Hararuk et al. (2014; 2015) and thus offer the possibility to generate independent 624	

yet constrained estimates of global land C sequestration to be compared with the indirect 625	

estimate. With the emulators, we can assimilate most of the C flux- and pool-related datasets into 626	

those models to better constrain global land C sink dynamics.  627	

 628	

Concluding remarks 629	
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In this study we theoretically explored the transient dynamics of terrestrial C storage. Our 630	

analysis indicates that transient C storage dynamics can be partitioned into two components: the 631	

C storage capacity and the C storage potential. The capacity, which is the product of C input and 632	

residence time, represents their instantaneous responses to a state of external forcing at a given 633	

time. Thus, the C storage capacity quantifies the maximum amount of C that an ecosystem can 634	

store at the given environmental condition at a point of time. Thus it varies diurnally, seasonally, 635	

and interannually as environmental condition changes. 636	

 The C storage potential is the difference between the capacity and the current C storage 637	

and thus measures the magnitude of disequilibrium in the terrestrial C cycle (Luo and Weng, 638	

2011).  The storage potential represents the internal capability (or recovery force) of the 639	

terrestrial C cycle to influence the change in C storage in the next time step through 640	

redistribution of net C pool changes in a network of multiple pools with different residence 641	

times. The redistribution drives the current C storage towards the capacity and thus equilibrates 642	

C efflux with influx. We propose that the storage potential should be the targeted quantity for 643	

research, market trading, and government management for C credits.  644	

 The two components of land C storage dynamics represent interactions of external forces 645	

(via changes in the capacity) and internal capability of the land C cycle (via changes in the C 646	

storage potential) to generate complex phenomena of C cycle dynamics, such as fluctuations, 647	

directional changes, and tipping points, in the terrestrial ecosystems. From a system perspective, 648	

these complex phenomena are mostly caused by multiple environmental forcing variables 649	

interacting with relatively simple internal processes over different temporal and spatial scales. 650	

Note that while those internal processes can be mathematically represented with a relatively 651	

simple formula, their ecological and biological underpinnings can be very complex.  652	
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 The theoretical framework developed in this study has the potential to revolutionize 653	

model evaluation. Our analysis indicates that the matrix equation as in eq. 1 or 2 can adequately 654	

emulate most of the land C cycle models. Indeed, we have developed physical emulators of 655	

several global land C cycle models. In addition, predictions of C dynamics with complex land 656	

models can be placed in a 3D parameter space as a common metric to measure how much model 657	

predictions are different. The latter can be traced to its source components by decomposing 658	

model predictions to a hierarchy of traceable components. Moreover, the physical emulators 659	

make it computationally possible to assimilate multiple sources of data to constrain predictions 660	

of complex models.  661	

 The theoretical framework we developed in this study can well explain dynamics of C 662	

storage in response to cyclic seasonal change in external forcings (e.g., Figs. 2 and 3) and climate 663	

warming and rising atmospheric CO2 (Fig. 5). It also can explain responses of ecosystem C 664	

storage to disturbances and other global change factors, such as nitrogen deposition, land use 665	

changes, and altered precipitation. The theoretical framework is simple and straightforward but 666	

able to characterize the direction and rate of C storage change, which are arguably among the 667	

most critical issues for quantifying terrestrial C sequestration. Future research should explicitly 668	

incorporate stochastic disturbance regime shifts (e.g., Weng et al., 2012) and vegetation 669	

dynamics (Moorcroft et al., 2001; Purves and Pacala, 2008; Fisher et al., 2010; Weng et al., 670	

2015) into this theoretical framework to explore their theoretical issues related to 671	

biogeochemistry.  672	
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 674	

Acknowledgements: This work was partially done through the working group, Nonautonomous 675	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 31	

Systems and Terrestrial Carbon Cycle, at the National Institute for Mathematical and Biological 676	

Synthesis, an institute sponsored by the National Science Foundation, the US Department of 677	

Homeland Security, and the US Department of Agriculture through NSF award no. EF-0832858, 678	

with additional support from the University of Tennessee, Knoxville. Research in Yiqi Luo 679	

EcoLab was financially supported by U.S. Department of Energy grants DE-SC0006982, DE-680	

SC0008270, DE-SC0014062, DE-SC0004601, and DE-SC0010715 and U.S. National Science 681	

Foundation (NSF) grants DBI 0850290, EPS 0919466, DEB 0840964, and EF 1137293.  682	

 683	

References	684	

Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver, W. L., Harmon, M. E., Hall, S. A., Burke, I. 685	
C., and Hart, S. C.: Simple three-pool model accurately describes patterns of long-term litter 686	
decomposition in diverse climates, Global Change Biol, 14, 2636-2660, 2008. 687	

Ågren, G. I. and Bosatta, E.: Quality: A bridge between theory and experiment in soil organic 688	
matter studies, Oikos, 76, 522-528, 1996. 689	

Ahlström, A., Xia, J. Y., Arneth, A., Luo, Y. Q., and smith, B.: Importance of vegetation 690	
dynamics for future terrestrial carbon cycling, Environmental Research Letters, 10, 054019 691	
doi:054010.051088/051748-059326/054010/054015/054019, 2015. 692	

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming 693	
dependent on microbial physiology, Nat Geosci, 3, 336-340, 2010. 694	

Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., 695	
Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., 696	
Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., 697	
Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study 698	
the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy 699	
flux densities, B Am Meteorol Soc, 82, 2415-2434, 2001. 700	

Bolker, B. M., Pacala, S. W., and Parton, W. J.: Linear analysis of soil decomposition: Insights 701	
from the century model, Ecol Appl, 8, 425-439, 1998. 702	

Borer, E. T., Harpole, W. S., Adler, P. B., Lind, E. M., Orrock, J. L., Seabloom, E. W., and 703	
Smith, M. D.: Finding generality in ecology: a model for globally distributed experiments, 704	
Methods in Ecology and Evolution, 5, 65-73, 2014. 705	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 32	

Bosatta, E. and Ågren, G. I.: Dynamics of carbon and nitrogen in the organic matter of the soil: a 706	
generic theory, American Naturalist, 1991. 227-245, 1991. 707	

Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., and Schimel, D. S.: Texture, 708	
Climate, and Cultivation Effects on Soil Organic-Matter Content in Us Grassland Soils, Soil Sci 709	
Soc Am J, 53, 800-805, 1989. 710	

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, 711	
T. J., Gillett, N. P., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric 712	
CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, 713	
Proceedings of the National Academy of Sciences, 104, 18866-18870, 2007. 714	

Caswell, H.: Prospective and retrospective perturbation analyses: their roles in conservation 715	
biology, Ecology, 81, 619-627, 2000. 716	

Chatfield, C.: Model uncertainty, data mining and statistical-inference, Journal of the Royal 717	
Statistical Society Series a-Statistics in Society, 158, 419-466, 1995. 718	

Chen, Y., Xia, J., Sun, Z., Li, J., Luo, Y., Gang, C., and Wang, Z.: The role of residence time in 719	
diagnostic models of global carbon storage capacity: model decomposition based on a traceable 720	
scheme, Scientific reports, 5, 2015. 721	

Ciais, P., Gasser, T., Paris, J. D., Caldeira, K., Raupach, M. R., Canadell, J. G., Patwardhan, A., 722	
Friedlingstein, P., Piao, S. L., and Gitz, V.: Attributing the increase in atmospheric CO2 to 723	
emitters and absorbers, Nat Clim Change, 3, 926-930, 2013. 724	

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., Jain, A. 725	
K., Luo, Y., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., Wang, S., Wang, Y.-P., 726	
Wårlind, D., Weng, E., Crous, K. Y., Ellsworth, D. S., Hanson, P. J., Seok Kim, H., Warren, J. 727	
M., Oren, R., and Norby, R. J.: Forest water use and water use efficiency at elevated CO2: a 728	
model-data intercomparison at two contrasting temperate forest FACE sites, Global Change 729	
Biology, 19, 1759-1779, 2013. 730	

English, B. P., Min, W., Van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B. J., Kou, S., 731	
and Xie, X. S.: Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited, 732	
Nature chemical biology, 2, 87-94, 2006. 733	

Exbrayat, J. F., Pitman, A. J., Zhang, Q., Abramowitz, G., and Wang, Y. P.: Examining soil 734	
carbon uncertainty in a global model: response of microbial decomposition to temperature, 735	
moisture and nutrient limitation, Biogeosciences, 10, 7095-7108, 2013. 736	

Farquhar, G., von Caemmerer, S. v., and Berry, J.: A biochemical model of photosynthetic CO2 737	
assimilation in leaves of C3 species, Planta, 149, 78-90, 1980. 738	

Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P., 739	
and Ian Woodward, F.: Assessing uncertainties in a second‐generation dynamic vegetation 740	
model caused by ecological scale limitations, New Phytol, 187, 666-681, 2010. 741	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 33	

Fraser, L. H., Henry, H. A., Carlyle, C. N., White, S. R., Beierkuhnlein, C., Cahill, J. F., Casper, 742	
B. B., Cleland, E., Collins, S. L., and Dukes, J. S.: Coordinated distributed experiments: an 743	
emerging tool for testing global hypotheses in ecology and environmental science, Frontiers in 744	
Ecology and the Environment, 11, 147-155, 2013. 745	

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, 746	
S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., 747	
Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. 748	
G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon 749	
cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison, J Climate, 19, 750	
3337-3353, 2006. 751	

Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A., 752	
McNulty, S., O'Halloran, T., Harmon, M., Meddens, A. J. H., Pfeifer, E. M., Mildrexler, D., and 753	
Kasischke, E. S.: Observations and assessment of forest carbon dynamics following disturbance 754	
in North America, J Geophys Res-Biogeo, 117, 2012. 755	

Goldbeter, A.: Oscillatory enzyme reactions and Michaelis–Menten kinetics, FEBS letters, 587, 756	
2778-2784, 2013. 757	

Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai, C., Frolking, S., 758	
Schuur, E. A. G., Jorgenson, T., Marchenko, S., Romanovsky, V., Wickland, K. P., French, N., 759	
Waldrop, M., Bourgeau-Chavez, L., and Striegl, R. G.: Vulnerability of high-latitude soil organic 760	
carbon in North America to disturbance, J Geophys Res-Biogeo, 116, 2011. 761	

Hammerling, D. M., Michalak, A. M., and Kawa, S. R.: Mapping of CO2 at high spatiotemporal 762	
resolution using satellite observations: Global distributions from OCO-2, J Geophys Res-Atmos, 763	
117, do6306, 2012. 764	

Hararuk, O., Smith, M. J., and Luo, Y. Q.: Microbial models with data-driven parameters predict 765	
stronger soil carbon responses to climate change, Global Change Biology, 21, 2439-2453, 2015. 766	

Hararuk, O., Xia, J. Y., and Luo, Y. Q.: Evaluation and improvement of a global land model 767	
against soil carbon data using a Bayesian Markov chain Monte Carlo method, J Geophys Res-768	
Biogeo, 119, 403-417, 2014. 769	

Harley, P., Thomas, R., Reynolds, J., and Strain, B.: Modelling photosynthesis of cotton grown 770	
in elevated CO2, Plant, Cell & Environment, 15, 271-282, 1992. 771	

Hicke, J. A., Allen, C. D., Desai, A. R., Dietze, M. C., Hall, R. J., Hogg, E. H., Kashian, D. M., 772	
Moore, D., Raffa, K. F., Sturrock, R. N., and Vogelmann, J.: Effects of biotic disturbances on 773	
forest carbon cycling in the United States and Canada, Global Change Biol, 18, 7-34, 2012. 774	

Jenkinson, D., Hart, P., Rayner, J., and Parry, L.: Modelling the turnover of organic matter in 775	
long-term experiments at Rothamsted, 1987. 1987. 776	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 34	

Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., and Powlson, D.: 777	
Global climate change and soil carbon stocks; predictions from two contrasting models for the 778	
turnover of organic carbon in soil, Global Change Biol, 11, 154-166, 2005. 779	

Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C. M., 780	
Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Raczka, B., Ryu, Y., 781	
Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., and Richardson, A. D.: Terrestrial biosphere 782	
model performance for inter-annual variability of land-atmosphere CO2 exchange, Global 783	
Change Biol, 18, 1971-1987, 2012. 784	

Kloeden, P. E. and Rasmussen, M.: Nonautonomous dynamical systems, American 785	
Mathematical Society, 2011. 786	

Kloster, S., Mahowald, N. M., Randerson, J. T., Thornton, P. E., Hoffman, F. M., Levis, S., 787	
Lawrence, P. J., Feddema, J. J., Oleson, K. W., and Lawrence, D. M.: Fire dynamics during the 788	
20th century simulated by the Community Land Model, Biogeosciences, 7, 2010. 789	

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., 790	
Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., 791	
Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., 792	
Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., 793	
Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., 794	
Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., 795	
Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. 796	
F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., 797	
Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, 798	
B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., 799	
Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 800	
349-396, 2015. 801	

Li, J. W., Luo, Y. Q., Natali, S., Schuur, E. A. G., Xia, J. Y., Kowalczyk, E., and Wang, Y. P.: 802	
Modeling permafrost thaw and ecosystem carbon cycle under annual and seasonal warming at an 803	
Arctic tundra site in Alaska, J Geophys Res-Biogeo, 119, 1129-1146, 2014. 804	

Lloyd, J. and Taylor, J. A.: On the Temperature-Dependence of Soil Respiration, Funct Ecol, 8, 805	
315-323, 1994. 806	

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., 807	
Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, 808	
Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J., 809	
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., 810	
Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wei, 811	
Y., Wieder, W. R., Xia, J., Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of 812	
soil carbon dynamics by Earth system models, Global Biogeochemical Cycles, 30, 40-56, 2016. 813	

Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter identifiability, 814	
constraint, and equifinality in data assimilation with ecosystem models, Ecological Applications, 815	
19, 571-574, 2009. 816	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 35	

Luo, Y. and Zhou, X.: Soil respiration and the environment, Academic Press, Burlington, MA, 817	
USA, 2006. 818	

Luo, Y. Q., Keenan, T. F., and Smith, M.: Predictability of the terrestrial carbon cycle, Global 819	
Change Biol, 21, 1737-1751, 2015. 820	

Luo, Y. Q., Ogle, K., Tucker, C., Fei, S. F., Gao, C., LaDeau, S., Clark, J. S., and Schimel, D. S.: 821	
Ecological forecasting and data assimilation in a data-rich era, Ecol Appl, 21, 1429-1442, 2011. 822	

Luo, Y. Q. and Weng, E. S.: Dynamic disequilibrium of the terrestrial carbon cycle under global 823	
change, Trends Ecol Evol, 26, 96-104, 2011. 824	

Luo, Y. Q., White, L. W., Canadell, J. G., DeLucia, E. H., Ellsworth, D. S., Finzi, A. C., Lichter, 825	
J., and Schlesinger, W. H.: Sustainability of terrestrial carbon sequestration: A case study in 826	
Duke Forest with inversion approach, Global Biogeochem Cy, 17, 2003. 827	

Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization: theory and models 828	
across scales, Soil Biology and Biochemistry, 41, 1355-1379, 2009. 829	

Matamala, R., Jastrow, J. D., Miller, R. M., and Garten, C. T.: Temporal changes in C and N 830	
stocks of restored prairie: Implications for C sequestration strategies, Ecological Applications, 831	
18, 1470-1488, 2008. 832	

Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., 833	
Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, 834	
Y.-P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: 835	
Using ecosystem experiments to improve vegetation models, Nature Climate Change, 5, 528-836	
534, 2015. 837	

Moorcroft, P., Hurtt, G., and Pacala, S. W.: A method for scaling vegetation dynamics: the 838	
ecosystem demography model (ED), Ecol Monogr, 71, 557-586, 2001. 839	

Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., Levis, S., Li, F., 840	
Riley, W., and Subin, Z.: Technical description of version 4.5 of the Community Land Model 841	
(CLM), National Center for Atmospheric Research, Boulder, Colorado, 2013. 842	

Olson, J. S.: Energy storage and the balance of producers and decomposers in ecological 843	
systems, Ecology, 44, 322-331, 1963. 844	

Pan, Y., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The structure, distribution, and 845	
biomass of the world's forests, Annual Review of Ecology, Evolution, and Systematics, 44, 593-846	
622, 2013. 847	

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of Factors Controlling Soil 848	
Organic-Matter Levels in Great-Plains Grasslands, Soil Sci Soc Am J, 51, 1173-1179, 1987. 849	

Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., 850	
Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E. G., Kamnalrut, A., and Kinyamario, J. I.: 851	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 36	

Observations and Modeling of Biomass and Soil Organic-Matter Dynamics for the Grassland 852	
Biome Worldwide, Global Biogeochem Cy, 7, 785-809, 1993. 853	

Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N, P and S in Grassland Soils - 854	
a Model, Biogeochemistry, 5, 109-131, 1988. 855	

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and 856	
Klooster, S. A.: Terrestrial Ecosystem Production: a Process Model-Based on Global Satellite 857	
and Surface Data, Global Biogeochem Cy, 7, 811-841, 1993. 858	

Prentice, I. C., Kelley, D. I., Foster, P. N., Friedlingstein, P., Harrison, S. P., and Bartlein, P. J.: 859	
Modeling fire and the terrestrial carbon balance, Global Biogeochem Cy, 25, 2011. 860	

Purves, D. and Pacala, S.: Predictive models of forest dynamics, Science, 320, 1452-1453, 2008. 861	

Rafique, R., Xia, J., Hararuk, O., and Luo, Y.: Structural analysis of three global land models on 862	
carbon cycle simulations using a traceability framework, Biogeosciences Discussions, 11, 9979-863	
10014, 2014. 864	

Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., Cornelissen, J., and 865	
Gurevitch, J.: A meta-analysis of the response of soil respiration, net nitrogen mineralization, 866	
and aboveground plant growth to experimental ecosystem warming, Oecologia, 126, 543-562, 867	
2001. 868	

Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain, M. A., Baker, I., Barr, A., 869	
Black, T. A., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., 870	
Fischer, M. L., Flanagan, L. B., Grant, R., Gu, L., Hollinger, D., Izaurralde, R. C., Kucharik, C., 871	
Lafleur, P., Law, B. E., Li, L., Li, Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S., Margolis, H., 872	
Matamala, R., McCaughey, H., Monson, R. K., Oechel, W. C., Peng, C., Poulter, B., Price, D. T., 873	
Riciutto, D. M., Riley, W., Sahoo, A. K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck, 874	
H., and Verma, S. B.: A model-data intercomparison of CO2 exchange across North America: 875	
Results from the North American Carbon Program site synthesis, Journal of Geophysical 876	
Research: Biogeosciences, 115, n/a-n/a, 2010. 877	

Sellers, P. J., Bounoua, L., Collatz, G. J., Randall, D. A., Dazlich, D. A., Los, S. O., Berry, J. A., 878	
Fung, I., Tucker, C. J., Field, C. B., and Jensen, T. G.: Comparison of radiative and physiological 879	
effects of doubled atmospheric CO2 on climate, Science, 271, 1402-1406, 1996. 880	

Shi, Z., Yang, Y., Zhou, X., Weng, E., Finzi, A. C., and Luo, Y.: Inverse analysis of coupled 881	
carbon–nitrogen cycles against multiple datasets at ambient and elevated CO2, J Plant Ecol, 9, 882	
285-295, 2016. 883	

Sierra, C. A. and Müller, M.: A general mathematical framework for representing soil organic 884	
matter dynamics, Ecol Monogr, 85, 505-524, 2015. 885	

Smith, J. U., Smith, P., Monaghan, R., and MacDonald, J.: When is a measured soil organic 886	
matter fraction equivalent to a model pool?, Eur J Soil Sci, 53, 405-416, 2002. 887	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 37	

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., 888	
Cowie, A., and Kriegler, E.: Biophysical and economic limits to negative CO2 emissions, Nat 889	
Clim Change, 6, 42-50, 2016. 890	

Stewart, C. E., Plante, A. F., Paustian, K., Conant, R. T., and Six, J.: Soil carbon saturation: 891	
Linking concept and measurable carbon pools, Soil Sci Soc Am J, 72, 379-392, 2008. 892	

Thonicke, K., Spessa, A., Prentice, I., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The 893	
influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas 894	
emissions: results from a process-based model, Biogeosciences, 7, 1991-2011, 2010. 895	

Tian, H. Q., Yang, Q. C., Najjar, R. G., Ren, W., Friedrichs, M. A. M., Hopkinson, C. S., and 896	
Pan, S. F.: Anthropogenic and climatic influences on carbon fluxes from eastern North America 897	
to the Atlantic Ocean: A process-based modeling study, J Geophys Res-Biogeo, 120, 752-772, 898	
2015. 899	

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. 900	
A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth 901	
system models and comparison with observations, Biogeosciences, 10, 1717-1736, 2013. 902	

Walker, A. P., Aranda, I., Beckerman, A. P., Bown, H., Cernusak, L. A., Dang, Q. L., 903	
Domingues, T. F., Gu, L., Guo, S., Han, Q., Kattge, J., Kubiske, M., Manter, D., Merilo, E., 904	
Midgley, G., Porte, A., Scales, J. C., Tissue, D., Turnbull, T., Warren, C., Wohlfahrt, G., 905	
Woodward, F. I., and Wullschleger, S. D.: A Global Data Set of Leaf Photosynthetic Rates, Leaf 906	
N and P, and Specific Leaf Area. Data set. Available on-line [http://daac.ornl.gov] from Oak 907	
Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 908	
http://dx.doi.org/10.3334/ORNLDAAC/1224, 2014. 2014. 909	

Wang, G. B., Zhou, Y., Xu, X., Ruan, H. H., and Wang, J. S.: Temperature Sensitivity of Soil 910	
Organic Carbon Mineralization along an Elevation Gradient in the Wuyi Mountains, China, Plos 911	
One, 8, 2013. 912	

Wang, Y.-P. and Leuning, R.: A two-leaf model for canopy conductance, photosynthesis and 913	
partitioning of available energy I:: Model description and comparison with a multi-layered 914	
model, Agricultural and Forest Meteorology, 91, 89-111, 1998. 915	

Wang, Y., Jiang, J., Chen-Charpentier, B., Agusto, F., Hastings, A., Hoffman, F., Rasmussen, 916	
M., Smith, M., Todd-Brown, K., and Wang, Y.: Responses of two nonlinear microbial models to 917	
warming and increased carbon input, Biogeosciences, 13, 887-902, 2016. 918	

Wang, Y. P., Chen, B. C., Wieder, W. R., Leite, M., Medlyn, B. E., Rasmussen, M., Smith, M. 919	
J., Agusto, F. B., Hoffman, F., and Luo, Y. Q.: Oscillatory behavior of two nonlinear microbial 920	
models of soil carbon decomposition, Biogeosciences, 11, 1817-1831, 2014. 921	

Weng, E. S. and Luo, Y. Q.: Soil hydrological properties regulate grassland ecosystem responses 922	
to multifactor global change: A modeling analysis, J Geophys Res-Biogeo, 113, 2008. 923	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 38	

Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R., Zhang, T., 924	
Shevliakova, E., and Pacala, S. W.: Scaling from individual trees to forests in an Earth system 925	
modeling framework using a mathematically tractable model of height-structured competition, 926	
Biogeosciences, 12, 2655-2694, 2015. 927	

Weng, E. S. S., Luo, Y. Q., Wang, W. L., Wang, H., Hayes, D. J., McGuire, A. D., Hastings, A., 928	
and Schimel, D. S.: Ecosystem carbon storage capacity as affected by disturbance regimes: A 929	
general theoretical model, J Geophys Res-Biogeo, 117, 2012. 930	

West, T. O., Bandaru, V., Brandt, C. C., Schuh, A., and Ogle, S.: Regional uptake and release of 931	
crop carbon in the United States, Biogeosciences, 8, 2037-2046, 2011. 932	

Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon projections are improved by 933	
modelling microbial processes, Nat Clim Change, 3, 909-912, 2013. 934	

Xia, J. Y., Luo, Y. Q., Wang, Y. P., and Hararuk, O.: Traceable components of terrestrial carbon 935	
storage capacity in biogeochemical models, Global Change Biol, 19, 2104-2116, 2013. 936	

Xie, X. S.: Enzyme kinetics, past and present, Science, 342, 1457-1459, 2013. 937	

Xu, X., Luo, Y. Q., and Zhou, J. Z.: Carbon quality and the temperature sensitivity of soil 938	
organic carbon decomposition in a tallgrass prairie, Soil Biol Biochem, 50, 142-148, 2012. 939	

Xu, X., Shi, Z., Li, D., Rey, A., Ruan, H. H., Craine, J. M., Liang, J., Zhou, J., and Luo, Y.: Soil 940	
properties control decomposition of soil organic carbon: Results from data-assimilation analysis, 941	
Geoderma, 262, 235-242, 2016. 942	

Yang, Y. H., Luo, Y. Q., and Finzi, A. C.: Carbon and nitrogen dynamics during forest stand 943	
development: a global synthesis, New Phytol, 190, 977-989, 2011. 944	

Zhang, D. Q., Hui, D. F., Luo, Y. Q., and Zhou, G. Y.: Rates of litter decomposition in terrestrial 945	
ecosystems: global patterns and controlling factors, J Plant Ecol, 1, 85-93, 2008. 946	
	947	

 948	

  949	

Biogeosciences Discuss., doi:10.5194/bg-2016-377, 2016
Manuscript under review for journal Biogeosciences
Published: 16 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 39	

Fig. 1 The Terrestrial ECOsystem (TECO) model and its outputs. Panels a is a schematic 950	

representation of C transfers among multiple pools in plant, litter and soil in the TECO model. 951	

TECO has feedback loops of C among soil pools. CWD = coarse wood debris, SOM = Soil 952	

Organic Matter. Panel b compares the original TECO model outputs with those from matrix 953	

equations for net ecosystem production (NEP = the sum of elements in 𝑋′(𝑡) from eq. 1).  Panel 954	

c compares the original TECO model outputs with those from matrix equations for ecosystem C 955	

storage (= the sum of elements in 𝑋(𝑡) from eq. 2). The C storage values calculated with eq. 2 956	

are close to 1:1 line with r2 =0.998 with the modeled values (panel c). The minor mismatch in 957	

estimated C storage between the matrix equation calculation and TECO outputs is due to 958	

numerical errors via inverse matrix operation with some small numbers.  959	

 960	

Fig. 2 Seasonal cycles of the C storage capacity and C storage dynamics for the leaf pool (i.e., 961	

pool 1 as shown in Fig. 1). All the components are showed in panels b-d to calculate 𝑥!,! 𝑡 =962	

𝑏!𝑢 𝑡 𝜏! through multiplication, where 𝑢 𝑡 = 𝑁𝑃𝑃 and 𝜏! = 1/𝑘!for leaf.  963	

 964	

Fig. 3 Seasonal cycles of the C storage capacity and C storage dynamics for the litter pool (i.e., 965	

pool 4 as shown in Fig. 1). All the components are showed to calculate 966	

𝑥!,!,! 𝑡 = 𝑓!!!
!!! 𝜏!𝑏!𝑢 𝑡  in panels b-e and 𝑥!,!,! 𝑡 = 𝑓!!!

!!!,!!! 𝜏!𝑥′! 𝑡  in panels f-i for 967	

litter. 𝑥!,!,! 𝑡  is the maximal amount of C that can transfer from C input to the litter pool. 968	

𝑥!,!,! 𝑡  is the maximal amount of C that can transfer from all the other pools to the litter pool. 969	

This figure is to illustrate the network of pools through which C is distributed. 970	

 971	
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Fig. 4 Components of the C storage capacity for litter pool (i.e., pool 4 as shown in Fig. 1). 972	

Component, 𝑥!,!,! 𝑡 , is the C from C input and component, 𝑥!,!,! 𝑡 , is the C from all the other 973	

pools to the litter pool. The sum of them is the attractor that determines the direction of C storage 974	

change in pool 4. 975	

 976	

Fig. 5 Transient dynamics of ecosystem C storage in response to climate change in Harvard 977	

Forest. Panel a shows the time courses of the ecosystem C storage capacity, the ecosystem C 978	

storage potential, and ecosystem C storage (i.e., C stock) from 1850 to 2100. Panel b shows time 979	

courses of NPP(t) as C input and ecosystem residence times. Panel c shows correlated changes in 980	

ecosystem C storage potential and net ecosystem production (NEP). Panel d illustrates the 981	

regression between the C storage potential and NEP. 982	

 983	

Fig. 6 The C storage capacity (𝑥!,! 𝑡 ), the C storage potential (𝑥!,! 𝑡 ), and C storage (𝑥! 𝑡 ) of 984	

individual pools. The potential is nearly zero for those fast turnover pools with short residence 985	

times but very large for those pools with long residence times. 986	

	987	

Fig. 7 The C storage potential of individual pools (𝑥!,!) as influenced by net C pool change of 988	

different pools (𝑥′!) in their corresponding rows. The correlation coefficients show the degree of 989	

influences of net C pool change in one pool on the C storage potential of the corresponding pool 990	

through the network of C transfer. Those empty cells indicate no pathways of C transfer between 991	

those pools as indicated in Fig. 1. 992	

	 	993	
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