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Abstract:  22 

While soil organic carbon (OC) accumulation and stabilization had been increasingly 23 

concerned as ecosystem properties, how this could be linked to soil biological activity 24 

enhancement had been poorly assessed. In this study, topsoil samples were collected 25 

from a series of rice soils shifted from salt marsh respectively for 0, 50, 100, 300 and 26 

700 years from a coastal area of eastern China. Particle size fractions of soil aggregates 27 

were separated using a low energy dispersion protocol. These fractions were analyzed 28 

for OC recalcitrance with FTIR spectroscopy and for OC lability with chemical 29 

procedures. Soil microbial community of bacterial, fungal and archaeal were portrayed 30 

with molecular fingerprinting using specific gene primers. Soil respiration and enzyme 31 

activities were measured with lab incubation protocols. While the aggregate size 32 

fractions were dominated by fine sand (200-20µm) and silt (20-2µm) fractions, the 33 

mass proportion both of sand (2000-200µm) and clay (<2µm) fraction increased with 34 

prolonged rice cultivation. Total OC was enriched highly in coarse sand fraction (40-35 

60 g kg-1), moderately in clay fraction (20-25 g kg-1), but depleted in silt fraction (~10 36 

g kg-1). Recalcitrant OC pool was higher (33-40% of total OC) in both coarse sand and 37 

clay fractions than in fine sand and silt fractions (20-29% of total OC). However, the 38 

ratio of labile OC to total OC showed a weakly decreasing trend with decreasing size 39 

of aggregate fractions. Total soil DNA content in the size fractions followed a similar 40 

trend to that of OC. Gene abundance of bacteria and of archaeal were concentrated in 41 

both sand and clay fractions, but their diversity generally similar between the fractions. 42 

Being highest generally in coarse sand fraction, gene abundance of fungi decreased 43 
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sharply but the diversity gently, with decreasing size of the aggregate fractions. Soil 44 

respiration quotient (ratio of respired CO2-C to total OC) was highest in silt fraction, 45 

followed by the fine sand fraction but lowest in coarse sand and clay fractions in the 46 

rice soils cultivated over 100 years. Whereas, microbial metabolic quotient was lower 47 

in sand sized fraction than in other fractions. Scaled by total DNA concentration, soil 48 

respiration was higher in silt fraction than in other fractions for the rice soils. For the 49 

size fractions other than clay fraction, OC scaled DNA concentration and archaeal gene 50 

abundance, and normalized enzyme activity were seen increased but OC and DNA 51 

scaled soil respiration decreased, more or less with prolonged rice cultivation. 52 

Moreover, both microbial gene abundance and normalized enzyme activity were well 53 

correlated to total OC and labile OC content only in the coarse sand fractions though 54 

chemical stability and respiratory of OC were similar between coarse sand and clay 55 

fractions. Thus, biological activity was generally promoted with labile organic carbon 56 

accumulation in the coarse sand sized macro-aggregates of the rice soils, positively 57 

responding to prolonged rice cultivation management. Yet, the mechanism underspin 58 

this trend and the effects on soil functions deserve further studies under field conditions.  59 

Key words: rice soil, carbon stabilization, soil bioactivity, soil aggregates, size 60 

fractions, rice cultivation, microbial community, chronosequence 61 
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1 Introduction 63 

Soil organic matter (SOM), as a continuum of organic substances with different degrees 64 

of decomposition (Lehmann and Kleber, 2015), provided a key driver for soil 65 

aggregation and thus soil ecosystem functions and services (Banwart et al., 2014).  66 

Soil aggregates had been considered as fundamental soil particle units where organic 67 

matter, minerals and microbes interacted to store C and nutrient as well as moisture 68 

(Tisdall and Oades, 1982; Lützow et al., 2006; Marschner et al., 2008; Schmidt et al., 69 

2011), and mediated their cycling in soil-plant systems (Six et al., 2004). It had been 70 

increasingly considered as a primary mechiansm for soil carbon sequestration that OC 71 

tended physically protected against microbial access and decomposition (Blanco-72 

Canqui and Lal, 2004; Six et al., 2004; Kong et al., 2005; Six and Paustian, 2014). This 73 

could be concerned with separate allocation of mineral associated OM fractions 74 

(Lehmann et al., 2008; Dungait et al., 2012; Vogel et al., 2014) between micro-75 

aggregates within macro-aggregates. Soil aggregation shaped the micro-habitats for soil 76 

microbial communities (Six et al., 2000; Ettema and Wardle, 2002; Balser et al., 2006; 77 

Kögel-Knabner et al., 2008), with changes in OC substrate availability, chemical 78 

recalcitrance and redox potential with or within aggregates (Rillig et al., 2001; Six et 79 

al., 2006; Strickland and Rousk, 2010). Consequently, changes in composition of soil 80 

aggregate fractions could lead to changes in bio-activity as a whole, determined by size, 81 

diversity and biochemical activity of soil microbes (Six et al., 2006; Lagomarsino et al., 82 

2012; Bardgett and van der Putten, 2014). Particularly, particulate OC (POC) had been 83 

increasingly considered as an indicator of soil quality and health under different stresses 84 
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or human disturbance (Cambardella and Elliot 1992; Marriott and Wander, 2006). As a 85 

labile OC pool, POC had been suggested as a measurement of OC accumulation and 86 

stabilization with co-existing microbial activity of soils in different ecosystems (Gajda 87 

2010; Six and Paustian 2014). Soil aggregation, affected by land use and management 88 

practices, could result in changes in allocation of POC inter- and/or intra- 89 

microaggregates in size fractions of soil (Yang et al., 2009; Lagomarsino et al., 2012; 90 

Six and Paustian 2014; Smith et al., 2014). Unfortunately, the link between changes in 91 

carbon pools and those in microbial biological activity with OC stabilization in soil 92 

aggregates had not yet been well understood and quantitatively assessed (Six and 93 

Paustian 2014; Smith et al., 2014).  94 

Soil aggregation could be characterized by distributions of particle size fractions, which 95 

could differ in soil microbial biomass and the activity among them, in response to OC 96 

accumulation and stabilization of soil in agro-ecosystems (Salinas-Garcia et al., 1997; 97 

Kandeler et al., 1999; Smith et al. 2014). Such difference could mimic the micro-scale 98 

interactions driving OC stabilization and nutrient cycling in soils (Kandeler et al., 2006; 99 

Lagomarsino et al., 2012; Six and Paustian, 2014). For this, separation should be 100 

required with least low energy dispersion of bulk soil into particle size fractions of 101 

aggregates (Kandeler et al., 2000), but without any chemical dispersion (Smith et al. 102 

2014). Stemmer et al. (1998) developed such a low energy ultrasonic dispersion 103 

protocol, which could allow the least disturbed size fraction separation for analyzing 104 

microbial community and enzyme activity in soil aggregates (Kandeler et al., 2000). 105 

This approach was followed in later studies (Sessitsch et al., 2001; Poll et al., 2003; 106 
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Matocha et al., 2004; Marx et al., 2005; Zhang et al., 2013), addressing the impacts of 107 

different management practices or environmental disturbances on OC persistence, 108 

microbial communities and enzyme activity in aggregates agricultural soils. However, 109 

the interactions between these attributes in aggregate size fractions with carbon 110 

stabilization and their trend with continuing management in long term cultivated soils 111 

had been not yet well characterized. 112 

Soil matrix or microsite properties played an important role in the spatial allocation of 113 

organic matter and microbial community and thus the link between OC pools and 114 

microbial bio-activity among different fractions of soil aggregates (Smith et al. 2014). 115 

Rice paddy soils were developed with dynamic redox regime and neo-formation of 116 

iron/manganese oxyhydrates due to hydromorphic pedogenesis under long term 117 

hydroagric paddy management (Li 1992). These soils were thus classified as a 118 

particular soil group of hydroagric Anthrosols in the new Chinese Soil Taxonomy 119 

(Gong et al., 1999). Recently, these soils had been known of high SOC storage and 120 

sequestration potential, compared to dry-land croplands (Pan et al., 2004; Pan et al., 121 

2010; Wissing et al., 2013). This had been often attributed to enhanced aggregation and 122 

thus the aggregate stability (Lu et al., 1998; Yang et al., 2005) as well as to increased 123 

humification of OC (Olk et al., 2000). OC accumulation and stabilization in paddy soils 124 

with management practices could be attributed to a number of processes. These were 125 

shown with either increased binding to free oxyhydrates (Zhou et al., 2009; Cui et al., 126 

2014) and enhanced chemical recalcitrance (Zhou et al., 2009a, 2011; Song et al., 2012), 127 
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or enhanced physical protection with increased aggregate stability (Li et al., 2007; Zhou 128 

et al. 2008) or their interactions (Song et al., 2012; Song et al., 2013).  129 

Moreover, OC could be continuously accumulated in rice soils with prolonged rice 130 

cultivation in the long run. In a rice soil chronosequence, OC accumulation was 131 

promoted following the desalinization and decalcifiation in the initial stage after the 132 

salt marsh shifted to rice paddy (Kalbitz et al., 2013). Wherein, the accumulated OC 133 

was increasingly stabilized with neoformed iron-oxyhydrates (Cheng et al., 2009; 134 

Wissing et al., 2011), as rice cultivation prolonged. Whereas, in a rice paddy with well 135 

managed fertilization from Southeastern China, total OC accumualtion was well 136 

represented by an increase in proportion of water-stable macro-aggregates (>250µm) 137 

and the associated POC pool (Zhou et al., 2007). In rice paddies under long term 138 

fertilization trials from South China, physically protected OC in the coarse sand size 139 

fraction of soil aggregates contributed to bulk soil OC accumualtion and stabilziationin 140 

(Zhou et al., 2008).  141 

Importantly, co-evolution of soil microbial community and diversity was observed with 142 

OC accumulation and stabilization in rice paddies (Zhang et al., 2007; Zheng et al., 143 

2007; Liu et al., 2011). In line with the trend of OC accumulation in paddy soils, 144 

microbial biomass and community diversity was enhanced across a chornosequence 145 

under prolonged rice cultivation (Bannert et al., 2011; Jiang et al., 2013). Using a 146 

similar chronosequence, the enhanced biological activity could be well portraied with 147 

an increase in mean weight diameter of soi aggregates and in POC pool across the soils 148 

with prolonged rice cultiavtion (Wang et al., 2015). This indicated a potential role of 149 
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physically protected labile OC pool in enhancing biological activity with bulk OC 150 

accumualtion in rice soils (Zou et al., 2015). Rcently, changes in mcirobial gene 151 

abundance and community compsoition had been reported for the bulk soils (Liu et al., 152 

2016a) and for aggregate size fractions of soils (Liu et al., 2016b), from such a rice soil 153 

chronosequence. Thus, physical protection could involve a change in the spatial 154 

distribution of OC pools rather than in the chemical recalcitrance, among aggregate size 155 

fractions. Accordingly, changed allocation of both OC pools and microbial community 156 

could contribute to OC stabilization with increased microbial abundance and microbial 157 

carbon use efficiency, qCO2 (Schlesinger & Andrews, 2000), as a result of enhanced 158 

aggregation (Lehmann 2011). However, the link of microbial activity to OC 159 

accumualtion and stabilization among different aggregate fractions and the evolution 160 

with increasing length of rice cultivation had been unknwon. Such information would 161 

be of key importance for understanding carbon stabilization in relation to sustainable 162 

management of rice paddy soils as carbon biogeochemical cycling had driven 163 

ecosystem functions and services provided by soils (Smith et al., 2015). 164 

In this study, two hypotheses are tested. First, microbial bioactivity and carbon stability 165 

in soil aggregates could differ among their size fractions, leading to changes in spatial 166 

allocation of OC pools among aggregate size fractions in rice paddies. Physical 167 

protection of OC could improve microbial microhabitat conditions and thus microbial 168 

carbon use efficiency through enhanced aggregation. And it could enable an existence 169 

of labile OC pool within micro-aggregates in macro-aggregates or between micro-170 

aggregates (Six and Paustian 2014; Smith et al., 2014). Thus biological activity could 171 
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be enhanced with physically protected carbon in macro-aggregates, rather than in micro 172 

(clay sized) aggregates with chemically stabilized organic carbon; Second, a strong link 173 

of microbial activity to labile OC pool would be promoted with enhancement of 174 

physically stabilized OC in macro-aggregates, resulting from continuing hydroagric 175 

paddy management under long term rice cultivation. In a series of soils formed on 176 

similar paleo-deposits rich in silt, continuous rice cultivation could result in a 177 

directional change in soil aggregation, and thus in microhabitat conditions as well as 178 

nutrients. This directional pedogenetic development would in turn affect a more or less 179 

directional change in OC stabilization (with increasing mineral bound OC, 180 

accumulation of recalcitrance OC pool as well as POC pool). This study aimed to help 181 

understand that carbon stabilization would not confront but improve biological activity 182 

in soils under rice cultivation over centuries. 183 

  184 
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2 Materials and methods 185 

2.1 Methodology rational 186 

Using a recommended sonification separation procedure, we looked into the changes 187 

in aggregate size fraction composition for aggregate stability, in OC functional group 188 

composition for chemical recalcitrance, and in soil respiration for microbial energy use, 189 

in order to characterize OC accumulation and stabilization in rice soils. Meanwhile, 190 

changes with OC accumulation/stabilization were explored in microbial activity for soil 191 

functioning. For this, we analyzed total microbial gene abundance and estimated overall 192 

enzyme activity in aggregate size fractions. Furthermore, the potential link between OC 193 

stabilization and bioactivity among the aggregate fractions were quantitatively assessed 194 

using the parameters of carbon- or gene abundance- scaled respiration and enzyme 195 

activity. Finally, the evolution of such interlink was traced by comparing the soils of 196 

sequential lengths of rice cultivation up to 700 years in a soil chronosequence. 197 

2.2 Site and soils  198 

In this study were investigated a series of soils of a paddy chronosequence, shifted from 199 

tidal marsh to rice cultivation for different lengths in a coast land located in Cixi 200 

Municipality, Zhejiang Province, China (Fig.1). Lying in the south bank of Hangzhou 201 

Bay, the area was within the typical northern subtropical monsoon climate for Eastern 202 

China, with a mean annual temperature of 17.7 °C and precipitation of 1,367 mm during 203 

2004-2014 (http://cdc.nmic.cn/home.do). In the area, coastal tidal marsh had been 204 

increasingly reclaimed for rice production, with dyke establishments at different 205 

historical stages for the last 2000 years. These soils allowed a chronosequence study 206 
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for rice soil development, such as a pedological characterization by Cheng et al. (2009) 207 

and a morphological, mineralogical and microbiological investigation by Kölbl et al. 208 

(2014).  209 

 210 

In this study, individual soils of the chronosequence were identified based on dyke 211 

establishment history recorded in Cixi County Annals (with brief information in 212 

Chinese available at www.cixi.gov.cn), including an initial tidal marsh soil before rice 213 

cultivation (P0), and rice soils of P50, P100, P300 and P700 shifted for rice cultivation 214 

respectively 50, 100, 300 and 700 years before present (Fig.1). These soils were apart 215 

from each other in a distance no more than 40-km in nearly the same topography. All 216 

the soils developed on comparable parent materials of paleo-deposit from Yangtze 217 

River, with a particle composition of silt (75%-84%), followed by clay but low in sand 218 

content (Chen and Zhang, 2009). Soil texture ranged from silty loam to silty clay-loam. 219 

The clay mineral assemblage consisted of illite (40-50%), chlorite (20-30%) and 220 

kaolinite (10-20%) with a minor amount of smectite and quartz (Zhang et al., 2010b).  221 

As situated in a relatively small area with a traditional summer rice-winter rape rotation, 222 

rice production management of the chronosequence could be considered relatively 223 

consistent across sites, with similar cultivars and management practices including crop 224 

protection, irrigation and fertilization (Cheng et al., 2009). Of course, influence of salt 225 

on rice production could occur in the early stage of rice cultivation on the tidal marsh 226 

derived soils while the ground water table had been enough low without restricting rice 227 

growth (Kölbl et al., 2014). The directional evolution of soil properties (Cheng et al., 228 

Fig. 1  
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2009; Chen et al., 2011), neo-formation of clay minerals particularly of iron/manganese 229 

oxyhydrates (Wissing et al., 2013; Wissing et al., 2011; Kölbl et al., 2014), interaction 230 

of organic matter with minerals (Wissing et al., 2011; 2014) as well as organic carbon 231 

pools (Wissing et al., 2011; Wang et al., 2015) had been already characterized.  232 

2.3 Soil sampling 233 

Topsoil (0-15 cm in depth) samples of the five individual soils of the chronosequence 234 

were used in the study. To avoid influence of fresh straw material on soil aggregates 235 

and OC substrates in soil samples, the sampling was done in early November 2011, 236 

when the soil was moist following rice harvest. While sampling in field, an undisturbed 237 

soil core was collected using an Eijkelkamp soil core sampler (Agrisearch Equipment, 238 

Giesbeek, The Netherlands) while a bulk soil sample using a stainless steel shovel. A 239 

topsoil was collected in triplicates respectively from three adjacent individual fields. 240 

Finally, all soil samples were shipped to lab within two days after sampling, and stored 241 

at 4 °C before soil analysis in the following 2 weeks. The basic properties of the studied 242 

soils are listed in Table 1. Changes of OC stability and microbial activity of bulk soil 243 

along the chronosequence had been assessed in our previous study by Wang et al. (2015) 244 

and Liu et al. (2016a and 2016b). 245 

 246 

2.4 Particle size fractionation of soil aggregates  247 

In this study, the undisturbed soil cores were used for dispersion in water with low 248 

energy sonication, without chemical dispersing agents. Particle size fractions of water 249 

stable aggregates were separated with a modified procedure described by Stemmer et 250 

Table 1  
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al. (1998) and later on followed by Stemmer et al (1999), Sessitsch et al., (2001), 251 

Kandeler, et al (1999, 2000 and 2006). A portion of field moist soil core (50 g equivalent 252 

d.w.), removed of discernible straw material if any, was placed into a glass beaker in 253 

100 ml of distilled water. The soil mass was dispersed using a low-energy ultrasonic 254 

disaggregator (Zhixin, JVD-650, Shanghai, China) with an output energy of 170 J g-1 255 

for 5 min. Aggregates in diameter of 2000-200 μm and of 200-20 μm, were respectively 256 

separated by wet sieving and by subsequent sedimentation after siphonage, and 257 

assigned to coarse and fine sand sized fraction. The remainder was centrifuged to firstly 258 

collect the aggregates in diameter of 20-2 μm (assigned to silt sized fraction) and further 259 

centrifuged to collect those in diameter of ≤ 2 μm (assigned to clay sized fraction). The 260 

samples of the obtained size fractions were freeze-dried with a frozen dryer (Thermo, 261 

Modulyo D-230, NY, US) and then stored at -70 oC. Here, water stable macro-262 

aggregates larger than 2000µm were not taken into consideration as they were 263 

insignificant in rice soils under prevailing water submergence and pudding activities 264 

under long term hydroagric management (Deng and Xu, 1965). The classes of the size 265 

fractions were kept basically consistent with our previous studies (Li et al., 2007a, b; 266 

Zheng et al., 2007; Pan et al., 2008 and Chen et al., 2014).  267 

2.5 Organic carbon pool and FTIR spectroscopy analysis  268 

Total soil organic carbon (SOC) and total nitrogen (TN) of the separated fractions were 269 

determined with a CNS elemental analyzer (Elementar Vario-max CNS Analyser, 270 

Germany Elementar Company). Labile organic carbon (LOC) content was measured by 271 

0.33 M potassium permanganate oxidation (KMnO4), following a procedure described 272 
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by Blair et al. (1995). Microbial biomass carbon (MBC) was measured using the 273 

chloroform fumigation-extraction method. The MBC content was estimated as the 274 

difference of OC between the unfumigated and fumigated samples using the conversion 275 

factor of 0.45, following Joergensen (1996). Herein, MBC of coarse sand fraction of P0 276 

soil was not provided due to the very small sample obtained via the sonification and 277 

separation procedure. 278 

Chemical composition of organic carbon in the particle size fractions were 279 

characterized with FTIR spectroscopy using a Bruker FTIR spectrophotometer (Bruker 280 

TENSOR 27 Spectrometer, Ettlingen, Germany). Briefly, a portion of frozen-dried 281 

aggregate sample was powdered in an agate mill, and 1 mg of the homogenized sample 282 

powder was mixed thoroughly with 100 mg KBr. The pellet prepared with a pressure 283 

was placed in a sample holder and FTIR spectra were recorded. FTIR scanning was 284 

conducted in ambient conditions at 22±1°C. The resolution was set to 4 cm-1 and the 285 

operating range was 400 to 4000 cm-1. In all cases, 20 scans per sample were recorded, 286 

averaged for each spectrum and corrected against the spectrum with ambient air as 287 

background. Following Ellerbrock et al. (1999) and Cocozza et al. (2003), the 288 

characteristic vibration peak at 1050 cm-1 was assigned to polysccharides, those at 1630 289 

cm-1 to aromatic compounds and those at 2927 cm-1 to aliphatic compounds as well as 290 

those at 3405 cm-1 to phenols. Subsequently, a general semi-quantification of three 291 

major functional OC groups of polysaccharides, aliphatic and aromatic compounds was 292 

done following Tivet et al. (2013). Nevertheless, it was not able to quantify potential 293 

contributions from organic Si or P compounds to the intensity of the band assigned to 294 



15 
 

polysaccharides (Mao et al., 2008;Tivet et al., 2013). All the obtained FTIR spectra are 295 

given in Supplement Fig. 1. 296 

2.6 SEM observation of soil aggregates  297 

The aggregate assembly of a portion of an undisturbed soil core was examined under a 298 

scanning electron microscope (Model Hitachi S-3000N) at an electron acceleration 299 

voltage of 20 kV. Prior to scanning, a sample was mounted on a stub using double sticky 300 

stickers and coated with gold using Hummer sputter coating equipment (Anatech Ltd., 301 

Union City, CA). Images were captured by automatic image capturing software (Hitachi 302 

Science Systems LTD., Schaumburg, IL). Magnifications and linear scale are indicated 303 

in the micrographs. 304 

2.7 DNA extraction, microbial gene abundance and diversity analysis 305 

A portion (0.45 g) of a PSF sample stored at -70 oC was used for DNA extraction with 306 

PowerSoil™ DNA Isolation Kit (MoBio, USA), following the manufacturer guide. The 307 

concentration of the DNA extracts was checked with a spectrophotometer (Eppendorf, 308 

Germany), and its integrity and size were checked by using 1.0% agarose gel 309 

electrophoresis. Extracted DNA was stored at -70 oC prior to molecular bioassay.  310 

Quantitative real-time PCR assay was performed on a 7500 real-time PCR system 311 

(Applied Biosystems, USA) using SYBR green as a fluorescent dye. Primer 312 

combinations of 338F/518R (Øvreås and Torsvik, 1998), ITS1F/ITS4 (Gardes and 313 

Bruns, 1993) and Ar109F/Ar915R (Lueders and Friedrich, 2000) were used for 314 

bacterial 16S rRNA, fungal Internal Transcribed Spacer (ITS) region and archaeal 16S 315 

rRNA genes respectively in the Real-time PCR assay.  316 
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PCRs were carried out on all PSF’s DNA samples with specific primers to amplify the 317 

16S rRNA genes from bacteria (27F and 1492R) and archaea (Ar109F and Ar915R) 318 

and the ITS regions from fungi (ITS1F and ITS4). The forward primer from each pair 319 

had a fluorescent label (6-FAM) attached to the 5' end. Amplification of the 16S rRNA 320 

gene and ITS regions, purification, digestion and amplicon separation for T-RFLP 321 

analysis are described in the supplementary materials and methods.  322 

From the T-RFLP profiles, the Shannon diversity index (H’) of the individual T-RFs 323 

was calculated following Blackwood et al. (2007), using an equation: 324 

H’= ΣPi (ln Pi)                         (1) 325 

where, Pi is the proportion of each T-RF in a single sample.  326 

2.8 Soil enzyme activity 327 

In this study were analyzed soil enzyme activities involved mainly in cycling of C, N 328 

and P in soils. In detail, activities of invertase, urease and acid phosphatase were 329 

determined using the methods described by Guan et al., (1986) while β-glucosidase, β-330 

cellobiosidase and peroxidase were measured using 96 micro-plates colorimetric 331 

methods described by Saiya-Cork et al. (2002). For an integrated assessment of 332 

microbial biochemical activity, the six different enzyme activities analyzed were 333 

normalized to give a single value as normalized enzyme activity (NEA) of an individual 334 

fraction, which was estimated with the following equation:  335 

௜ݔ 
ᇱ ൌ ௫೔

∑ ௫೔
೙
೔సభ

	(i=1,2,…,5),                     (2) 336 

where, i was the number of each soil sample (P0, P50, P100, P300, P700), x was the 337 

enzyme activity and x′ was the normalized enzyme activity of each soil sample. 338 
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Subsequently, an arithmetic mean of enzyme activity of each sample was obtained for 339 

the NEA.  340 

2.9 Soil respiration  341 

For assessing microbial use of carbon in aggregates of different size fractions, soil 342 

respiration was determined by measuring CO2 production using an anaerobic laboratory 343 

incubation protocol, following Zheng et al. (2007). A size fraction sample (20g d.w. 344 

equivalent) was placed into a 125ml glass jar and submerged with 40ml distilled water 345 

before being gently mixed. The jar was then sealed with a butyl rubber stopper and two 346 

Teflon tubes for gas sampling and N2 circulation were inserted into the stopper. The 347 

headspace was repeatedly evacuated and flushed with N2 gas into the jar at a rate of 348 

300ml min-1 for 30min, creating an anaerobic condition. The jars with soil slurry were 349 

incubated in an incubator, as described in Section 2.8, at 25 ± 1 oC for 37 days. During 350 

incubation, a 0.25 ml sample of the headspace gas was collected by a pressure syringe 351 

every 5 days since the third day after incubation was initiated. After each gas sampling, 352 

N2 gas was again flushed into the jar at a rate of 300ml min-1 for 30 min to remove all 353 

the emitted gas in the jar. CO2 concentration in a gas sample was determined with a gas 354 

chromatograph (Agilent 4890D) equipped with a stainless steel column (Porapak Q) 355 

(80/100 mesh) and flame-ionization detector (FID). Following the procedures described 356 

by Zhang et al. (2010a), the determination was done with an oven temperature of 80oC 357 

and a FID temperature of 200oC, with N2 as the carrier gas at a flow rate of 40ml min-1 358 

and a make-up gas mixture of H2 and air at a flow rate of 35 ml min-1. A blank of 40 ml 359 

distilled water was used as the control for the gas concentration in the bottle. The total 360 
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CO2 evolved was estimated from the cumulative sum of the gas evolved in all 361 

monitoring intervals and was used to calculate the anaerobic soil respiration expressed 362 

in terms of soil mass. 363 

2.10 Data treatment and statistical analysis 364 

All data was treated with EXCEL 2013 and expressed as mean plus/minus standard 365 

deviation of triplicate samples. The significant differences between particle size 366 

fractions in a single soil and between soils of a single particle size fraction were 367 

respectively statistically analyzed by one-way ANOVA with Tukey’s test, using a SPSS 368 

software package 20.0. A statistical significance was defined at 95% confidence level.  369 
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3 Results 370 

3.1 Organic carbon characterization in aggregate size fractions 371 

As shown in Table 2, the fine sand (200-20µm) and silt (20-2µm) sized fractions 372 

together accounted for up to 80% of a bulk soil across soils. However, the proportion 373 

of coarse sand sized (2000-200µm) macro-aggregates and clay sized (< 2µm) fine 374 

aggregates increased with prolonged rice cultivation over the chronosequence. As 375 

indicated in Fig. 2, soil aggregates from the initial marsh soil (P0), were sharply edged 376 

single individual minerals, and mostly uncovered with clear surfaces; However, in the 377 

rice soils with increasing rice cultivation lengths, soil aggregates became increasingly 378 

round, loosely assembled of fine minerals but covered with more or less amorphous 379 

materials. Particularly in P700, soil aggregates were seen in large size, very loosely 380 

assembled of unclearly shaped mineral particles with amorphous materials, of which 381 

some particulate organic matter including some fungal hyphae on the aggregate surface 382 

(magnified P700 image in Fig. 2).  383 

 384 

Soil properties of total OC, total N and LOC were extensively different among the size 385 

fractions and between uncultivated and rice soils (Table 3). Total OC, LOC and total N 386 

pools were generally in an order of sand size fraction > clay sized fraction> fine sand 387 

fraction >silt sized fraction in a single soil. And these pools of all the particle size 388 

fractions except fine sand fraction, were greater in rice soils than in the uncultivated 389 

marsh soil. Particularly, OC of rice soils was enriched mostly in coarse sand sized 390 

macro- aggregates, moderately in clay sized fraction, fairly in fine sand sized fraction 391 

Table 2  
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but depleted in silt sized fraction, respectively in a range of 41-61 g kg-1, of 20-24 g kg-392 

1, of 8.5-20 g kg-1and of 10-11 g kg-1. However, C/N ratio was in a significantly 393 

decreasing trend with the decreasing size of the aggregate fractions across the 394 

chronosequence. The ratio of LOC to total OC, an indicator of C lability in soils, was 395 

in a significantly decreasing order of coarse sand fraction>fine sand fraction>silt and 396 

clay sized fractions.   397 

The FTIR spectra showed sharp peaks generally at vibration of 1050cm-1 (assigned to 398 

polysaccharides) but broad shoulders at vibration of 3405cm-1 assigned to aromatic 399 

carbon across the aggregates fractions (Supplement Fig.1). There was a clear trend of 400 

decreasing intensity the polysaccharide peaks but increasing shoulder intensity of 401 

aromatic carbon in a single fraction, with increasing rice cultivation. The semi-402 

quantitative data of carbon chemical groups obtained with FTIR analysis is presented 403 

in Table 4. Herein, carbon groups in aggregates were dominated by polysaccharides 404 

(60-70%), followed by aromatic carbon (20-39%) with small contribution (0.6-3.7%) 405 

of aliphatic carbon in a single fraction. Relative proportion of aromatic carbon was 406 

lower but of polysaccharide carbon higher in silt fraction than in other fractions, without 407 

a significant difference in-between the latter. Consequently, the estimated OC chemical 408 

recalcitrance (ratio of aromatic to polysaccharide C) was lowest in silt fraction, 409 

followed by fine sand fraction but highest in coarse sand and clay fractions.      410 

Recalcitrance of OC of in a single fraction was generally lower in uncultivated marsh 411 

soil than in the shifted rice soils, but tended to increase with increasing length of rice 412 

cultivation. The fine sand fraction, bearing the majority of total OC for the soil (Table 413 
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2 and Table 3), had a moderate OC recalcitrance but the coarse sand fraction had similar 414 

OC recalcitrance but higher carbon lability and higher C/N ratio. This indicated a 415 

greater existence of potentially available carbon pool (POC, for example) in the coarse 416 

sand fraction, compared to other fractions. 417 

 418 

 419 

 420 

3.2 Microbial biomass carbon, microbial gene abundance and diversity 421 

The measured microbial biomass carbon (MBC) was highest in the coarse sand fraction 422 

of macro-aggregates while lowest in the clay sized fraction of fine micro-aggregates 423 

over the sequence (Table 3). Generally, MQ, the microbial quotient, was not 424 

significantly different between the coarse sand-, fine sand- and silt- sized fractions but 425 

significantly higher than the clay sized fractions.  426 

The microbial DNA content (equivalent to biomass) and gene abundance of microbial 427 

communities in the fractions over the chronosequence are shown in Table 5. Total DNA 428 

ranged from 1.57 μg g-1 in silt fraction to 4.00 μg g-1 in clay fraction of the tidal marsh 429 

and from 4.35 μg g-1 in fine sand fraction to 35.33 μg g-1 in coarse sand size in the rice 430 

soils. Fungal ITS gene copies were generally higher in coarse sand fractions, decreasing 431 

with the size of aggregate fractions. Whereas, generally in a bimodal pattern among the 432 

particle size fractions, total DNA, bacterial and archaeal 16S rRNA gene copy numbers 433 

were higher in both coarse sand and clay fractions, compared to other fractions across 434 

the chronosequence. Clearly, microbial gene abundance was dominated by bacterial, 435 

Table 3  

Table 4  

Fig. 2 
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with archaeal and fungal gene abundance respectively one and two order lower than 436 

bacterial across the fractions. Whereas, the ratio of fungal to bacterial gen abundance 437 

generally decreased but that of archaeal to bacterial increased with decreasing size of 438 

the aggregate fractions. 439 

Over the studied chronosequence, DNA contents of a fraction were several folds higher 440 

in the rice soils over the initial tidal marsh. Accordingly, gene copy numbers of 441 

microbial communities from a fraction were greatly higher in rice soils than in the initial 442 

tidal marsh. Bacterial and fungal abundance in coarse sand, fine sand, silt and clay 443 

fraction in P50 was increased by 688%, 72%, 498% and 622 %, and 74%, 149%, 7% 444 

and 152 %, respectively over P0. A mean increase in the rice soils cultivated for over 445 

100 years over P0 in bacterial gene copy numbers was seen significant, by 73% to 446 

437 %, 0.4% to 67 %, 225% to 246 % and 147% to 201 %, respectively in coarse sand, 447 

fine sand, silt and clay fraction. Comparatively, the change across the soils in fungal 448 

gene abundance of aggregates was much smaller, particularly in silt and clay sized 449 

fractions. In contrast, archaeal abundance in a single fraction across the soils was found 450 

increased over P0 consistently with the prolonged rice cultivation, though smaller in 451 

fine sand and silt sized fractions. For the coarse sand fraction only, both of fungal to 452 

bacterial ratio and of archaeal to bacterial ratio tended to increase with increasing rice 453 

cultivation lengths.  454 

Data of microbial Shannon diversity index of the four size fractions of the 455 

chronosequence soils are presented in Table S1. In detail, Shannon index of bacterial 456 

community was much higher in coarse sand fraction and, to a lesser extent, in clay size 457 

fraction than in fine sand and silt fractions across the chronosequence. Fungal 458 
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community Shannon index was shown highest in coarse sand fraction among the 459 

fractions, decreasing generally with the size of aggregate fractions. However, there 460 

were no significant changes in archaeal Shannon index among the size fractions across 461 

the sequence. Generally, Shannon diversity index of the microbial communities in a 462 

single fraction was greatly higher in the rice soils than in the uncultivated tidal marsh.  463 

3.3 Enzyme activity and basal respiration   464 

All analyzed enzyme activities (Table S2) were seen increased in the rice soils over the 465 

initial tidal marsh. Furthermore, NEA was 0.07 in the coarse sand and 0.10 in the fine 466 

sand fraction, and 0.07 and 0.14 in the silt and clay fractions in P0. In contrast, NEA 467 

was 0.18-0.30 in coarse sand and 0.12-0.30 in fine sand fraction, but 0.17-0.30 in silt 468 

and 0.19-0.24 in clay fraction of the rice soils. Moreover, NEA in a single size fraction 469 

showed a significantly increasing trend with prolonged rice cultivation (Table 6).    470 

Soil respiration of a single fraction was much higher for the rice soils than for the marsh 471 

soil, and in sand sized macro-aggregate fraction than in silt and fine sand fraction over 472 

the soils (Table 6). In detail, soil respiration was 662 mgCO2 kg-1 and 565 mgCO2 kg-1 473 

in coarse and fine sand fraction, and 298 mgCO2 kg-1 and 496 mgCO2 kg-1 in silt and 474 

clay fraction, respectively in P0. While in rice soils, soil respiration was in a range of 475 

1588-2914 mg CO2 kg-1 in coarse sand, and of 1076-1256 mgCO2 kg-1 in fine sand 476 

fraction, and of 740-1354 mgCO2 kg-1 in silt and of 1028-1434 mgCO2 kg-1 in clay 477 

fraction, of the rice soils. Basal respiration in a single size fraction generally increased 478 

with rice cultivation length (Table 6). 479 

Using the data in Table 3, the estimated RQ (the ratio of respired C to total OC) and 480 

qCO2 (the ratio of respired OC to MBC) were seen variable across the size fractions 481 



24 
 

and among the soils (Supplement Table 1). Generally, RQ was lower both in sand- and 482 

clay- sized fractions than in fine sand- and silt- sized fractions. Value of qCO2 was 483 

lowest in the coarse sand sized fraction but highest in the clay sized fraction. While 484 

there was no overall trend of RQ and qCO2 in a single fraction between the marsh soil 485 

and rice soils, both RQ and qCO2 in a single fraction followed more or less a decreasing 486 

trend with increasing length of rice paddy management.  487 

  488 
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4 Discussions  489 

4.1 Carbon accumulation versus stabilization in soil aggregates 490 

In this study, level of OC, soil respiration and microbial gene abundance/diversity 491 

differed significantly among different size fractions of water stable aggregates from the 492 

chronosequence. Similar to the findings by Li et al. (2007b) and Zheng et al. (2007), 493 

OC was seen accumulated highly in sand sized and moderately in clay sized fractions 494 

but depleted in silt sized aggregate fractions (Table 3). As shown in Fig. 3, soil organic 495 

carbon content (level of OC accumulation) in a fraction was found very significantly 496 

positively linearly correlated to OC recalcitrance from the FTIR analysis (Table 4). 497 

Whereas, respiration quotient as a rate indicator of carbon turnover for microbial energy 498 

use (Kennedy and Papendick, 1995), was in a very significantly negative logarithm 499 

function of OC level (Fig. 3b). The divergence of the uncultivated marsh soil to the rice 500 

soils could be attributed to the land use impact as a determinant factor for OC turnover 501 

(Qian et al., 2013). The correlations hereby could suggest the accumulation of OC in 502 

soil aggregates related to chemical stabilization against biological use for their energy 503 

supply, which had been traditionally considered as an inherent carbon sequestration 504 

with selective persistence of non-degradable or residue OC in soils (Lützow et al., 2006; 505 

Mikutta et al., 2006).  506 

 507 

However, calculated using the OC contents (Table 3) and the fraction mass percentage 508 

(Table 2) of a single fraction, only the amount of OC allocated in sand and clay sized 509 

fractions were closely correlated to the bulk OC contents (Table 1) of the soils (Fig. S1). 510 

Fig. 3  
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This was in general agreement with the finding for similar rice paddy soils from an 511 

adjacent area (Pan et al., 2008). The increased allocation of OC to clay sized fraction 512 

could be attributed to the accelerated formation of clay and hydroxyl Fe/Mn minerals 513 

(Wissing et al., 2013) due to long term paddy management (Kölbl et al., 2014).  514 

Furthermore, the enrichment index (EI) of OC, calculated with OC content in a fraction 515 

divided by that in the bulk soil, was higher than 1 in both sand and clay sized fraction 516 

but much lower than 1 in silt fractions. When plotting the EI values against LOC content 517 

(Table 3) for all the fractions (Fig. 4), enrichment of OC was seen relevant to labile OC 518 

pool in the fractions. Moreover, the EI values were seen significantly but weakly 519 

positively correlated both to F/B ratio of gene abundance (Table 5) and to OC 520 

recalcitrance (Table 4). These evidenced that accumulation of labile OC, mostly POC, 521 

contributed significantly to OC pool in sand sized macro-aggregates (Zhou et al., 2008) 522 

though hereby the apparent recalcitrance was in a similar range to that in clay fractions 523 

(Table 4). It had been well understood that light fraction or macro-aggregates in soil 524 

were rich in new or relatively labile carbon substrates, more or less related to root fungal 525 

activities, which were largely physically protected in micro-aggregates within macro-526 

aggregates (Elliott et al., 1986; Jastrow et al., 1998; Six et al., 2000). As shown by Wang 527 

et al. (2015), OC accumulation in bulk soil could be well accounted for by the changes 528 

in POC of the studied chronosequence.  529 

 530 

Synthesizing data from Tables 2 and 3, OC protected in the sand and fine sand fractions 531 

constituted 51%-62% while chemically protected or mineral bound OC in the clay sized 532 

Fig. 4  
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fractions 11%-19%, to the total OC pool of soils over the studied sequence. In a study 533 

of a river bed sediments from a Californian river basin (Wakeham and Canuel, 2016), 534 

light fractions contributed largely to the total OC pool but the heavy (clay) fraction 535 

contained smaller amount but old OC. Six et al. (2002a) addressed that organic matter 536 

accumulated mainly as unprotected particulate pool in micro-aggregates in size lager 537 

than 53µm though intimately associated with silt and clay with high chemical 538 

recalcitrance. The higher enrichment of OC related to LOC in macro-aggregates of sand 539 

size fraction and smaller enrichment in clay sized fraction in this study supported the 540 

general understanding of relatively unprotected labile carbon in macro-aggregates but 541 

relatively recalcitrant carbon in micro-aggregates as clay complexes (Six et al., 2002a). 542 

Micro-aggregates and other primary particles could be bound into macro-aggregates 543 

with close association of fungal hyphae and organic matter/materials (Oades, 1984; 544 

Tisdall, 1994; Miller and Jastrow, 2000). 545 

Physical protection of labile carbon in macro-aggregates rather than inherent chemical 546 

stability of OC (a minor mass fraction of the clay sized micro-aggregates, Table 2) had 547 

been increasingly concerned for soil carbon sequestration (Six et al., 2004; Kong et al., 548 

2005; Six and Paustian, 2014). For the rice soils under long term rice cultivation here, 549 

OC accumulated and stabilized mainly through physical protection of new or relatively 550 

labile carbon in macro-aggregated though old or mineral bound OC preserved in fine 551 

aggregates of clay size (Marschner et al., 2008). This study also confirmed our previous 552 

understanding that sand-sized fraction of aggregates could play a prevalent role in soil 553 

carbon sequestration (Zhou et al 2008). 554 
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4.2 Bio-activities versus OC stabilization between sand and clay sized fractions  555 

Biological activity of soil microbes including soil respiration and soil enzyme activity 556 

had been well known varying across size fractions of soil aggregates (Kandeler et al., 557 

1999; Sessitsch et al., 2001; Poll et al., 2003; Allison and Jastrow, 2006). In this study, 558 

total DNA content was found significantly positively but linearly correlated with 559 

content either of organic carbon and nitrogen, or of labile organic carbon, across the 560 

size fractions of the studied sequence (Fig. S2). However, gene abundance of bacterial, 561 

fungal and archaeal communities could be correlated neither to total pool of organic 562 

carbon and labile organic carbon nor to carbon recalcitrance and lability (LOC/total 563 

OC), across the sequence. Likewise, OC level did not necessarily affect microbial 564 

populations along soil reclamation gradients with exotic carbon amendments (Yin et al., 565 

2000; Torsvik and Øvreås, 2002). Indeed, different carbon lability and accessibility 566 

could shape microbial communities within and between size fractions of aggregates 567 

(Six et al., 2000; Ettema and Wardle, 2002; Balser et al., 2006; Kögel-Knabner et al., 568 

2008). 569 

Soil matrix and micro-habitat conditions (aggregation and associated nutrients and C 570 

substrate as well as redox potential) played a critical role in changes in soil microbial 571 

abundance and structure (Lehmann et al, 2011; Smith et al., 2014). Here, a clearly 572 

marked difference in microbial abundance and community could be found between the 573 

rice soils and the initial marsh soil before shift to rice cultivation, either for bulk soils 574 

(Wang et al., 2015) or for aggregates fractions (Liu et al., 2016b). This could be 575 

coincident with the shift in soil physical and chemical conditions between the rice soils 576 
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and the initial marsh soil, with the latter was alkaline in reaction, poor aggregation due 577 

to depleted OC and high salinity (Data in Table 1).  578 

Among the soils studied, both the coarse sand and clay sized fractions showed higher 579 

enrichment of OC, which was relevant to different association of carbon pools and 580 

interaction to minerals. There was a difference in the ratio of LOC to total OC, as a 581 

negative indicator of chemical stability, and in OC recalcitrance measured with FTIR, 582 

between the coarse sand and clay sized fractions. The trends of carbon stability with 583 

microbial respiratory (RQ) were similar between the sand and clay sized fractions (Fig. 584 

5). Clearly, this similarity could not be explained by the difference in the trend of LOC 585 

to total OC ratio, and of carbon recalcitrance (Table 3).  586 

 587 

We further compare the bio-activity versus OC accumulation between sand and clay 588 

sized fractions of aggregates. Here, a correlation of DNA content (relevant to microbial 589 

biomass size) to OC content was very significant for coarse sand fraction but not valid 590 

for clay fraction (Fig. 6a). Meanwhile, normalized enzyme activity was in a positively 591 

linear function with total OC accumulation for coarse sand fraction but failed again for 592 

clay fractions (Fig. 6b). In contrast, DNA content scaled soil basal respiration was in a 593 

negatively power function with total DNA content, being higher for the coarse sand 594 

than for the clay sized fractions (Fig. 6c), showing a higher increase in carbon use 595 

efficiency with the SOM accumulation in sand sized fractions than in clay sized 596 

fractions. Moreover, a positively linear correlation of DNA content to the content of 597 

LOC (Fig. 6d) was found only for sand sized aggregate fractions but for clay sized 598 

Fig. 5  
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fractions.    599 

 600 

The failure of bio-activity improvement with OC accumulation in clay sized fractions 601 

indicated an insignificant potential to support biological activities in fine aggregates 602 

rich in stabilized OC with high recalcitrance. In clay sized fractions of aggregates, DNA 603 

content was independent of OC, which could be either inaccessible to microbes or non-604 

degradable due to binding to minerals or as inert OC (Lützow et al., 2006; Kögel-605 

Knabner et al., 2008). On contrary, the DNA of microbes, mainly as bacterial or 606 

archaeal in the soils here, could be mostly adsorbed on clay minerals or hidden in 607 

minute pores within the fine aggregates (Poll et al., 2003; Chiu et al., 2006). Soil 608 

enzyme activities could represent an overall microbial activity for soil functioning 609 

(Allison et al., 2010), which was no response to accumulation of OC in the clay 610 

fractions though extracellular enzymes could be also adsorbed on to clay particles 611 

(Allison and Jastrow, 2006).  612 

In contrast, high microbial biomass and enzyme activities were in line with carbon 613 

accumulation and stabilization in coarse sand sized macro-aggregates. The high 614 

response of total microbial DNA and carbon use efficiency to OC accumualtion in the 615 

coarse sand size fraction could suggest an improvement of either carbon substrate 616 

supply or of habitat environemnt through increases in mass proportion of macro 617 

aggregates with enhanced aggregation in soils (Lehmann et al., 2011). While containing 618 

a recalcitrant OC pool similar to clay sized fractions, the macro-aggregates in coarse 619 

sand sized fraction preserved also a significant amount of labile carbon (Table 3), which 620 

Fig. 6 
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could become easily decomposable and potentially used by microbes (Cleveland et al., 621 

2007). For the bulk soil of this chronosequence, improved microbial activity was found 622 

linked to the increase in particulate OC content, which was enhanced via physical 623 

protection with increasing aggregate stability (Wang et al., 2015). Although habitats 624 

within macro-aggregates offered protection of the young and labile carbon against 625 

microbial decomposition (Gupta and Germida, 2015), enhanced aggregation could lead 626 

to increased population and activities of specific microbial groups in between micro-627 

aggregates within macro-aggregates (Six et al., 2002b).  628 

The metabolic quotient qCO2 was proposed as an indicator of energy use by live soil 629 

microbial organisms (Schlesinger & Andrews, 2000). The data in Table 3 and 630 

Supplement Table 1 clearly demonstrated the lowest qCO2 in the coarse sand sized 631 

fraction but the highest qCO2 in the clay sized fraction, among the size fractions of 632 

aggregates. Again, qCO2 of the coarse sand sized fraction was in a generally decreasing 633 

trend with OC accumulation under prolonged rice paddy management. With soil 634 

aggregation improved, macro-aggregates could provide increasingly diverse soil 635 

microhabitats with varying types of OC substrates accessible to microbes under 636 

sustainable agricultural management (Six and Paustian, 2014). Improvement of spatial 637 

allocation within and between micro-aggregates of carbon resource, microbial 638 

communities and extracellular enzymes could favor growth of microbiota and their 639 

functional performance in well aggregated soils (Caldwell, 2005; Burns et al., 2013).  640 

Many studies on bulk soils showed correlation of enzyme activity with microbial 641 

biomass in agricultural soils including rice paddies under proper management practices 642 
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(Marx et al., 2005; Allison and Jastrow, 2006; Shi et al., 2006; Yu et al., 2012). Thus, 643 

carbon stabilization (indicated of carbon recalcitrance or respiration quotient) was not 644 

confronting microbial activity (Janzen, 2006) in macro-aggregates, where highly 645 

enriched OC (particularly of labile OC pool) was physically protected, in rice soils 646 

under long term paddy management. This could explain a potential co-evolution of 647 

improved bio-activity with enhanced carbon sequestration in agricultural soils (Rabbi 648 

et al., 2010). Of course, the relation between carbon pools and specific microbial 649 

communities and biogeochemical activities seemed still unclear (Smith et al., 2014).  650 

4.3 Trend of bioactivity against OC stabilization with prolonged rice cultivation 651 

Being developed on a similar matrix of paleo deposits rich in silt, the rice soils had been 652 

subject to a directional development with long term paddy management (Cheng et al., 653 

2009; Wissing et al., 2013). Desalinization initiated when shortly shifted to rice paddy 654 

and decalcification proceeded as paddy rice cultivation prolonged. Finally, there was a 655 

long existing semi-hydromorphic pedogenesis over several centuries, characterized by 656 

mobilization of iron and manganese to form minerals of metal oxyhydrates (Wissing et 657 

al., 2013). The resultant directional changes of clay minerals, particularly those of 658 

oxyhydrates, of OC pool and the association of both as well as of archaeal and 659 

methanogenic archaeal community abundance had been well characterized in the works 660 

by Cheng et al.(2009), Chen et al. (2011), Wissing et al. (2011, 2014 and 2014) and 661 

Kölbl et al. (2014) as well as by Wang et al. (2015).  662 

Coincidently, directional changes were seen also in soil aggregation, and thus in 663 

microhabitat conditions as well as in nutrients (Table 1). SEM observation (Fig. 2) 664 
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evidenced a clear change in size of the randomly sampled aggregates of the soils studied. 665 

This was in an agreement with the change in mean weight diameter (MWD), an 666 

indicator of soil aggregate stability, with increasing rice cultivation length over the 667 

chronosequence (Wang et al. 2015). There were dispersed distinct, sharply-edged but 668 

less organic matter-covered mineral particles in the uncultivated tidal marsh (P0). 669 

However, aggregates became larger in size and softer, and more porous with minute 670 

mineral particles bound together by organic matter in rice soils cultivated over 100 671 

years. This is particular the case for P700, where the sand sized macro-aggregates were 672 

highly porous and soft, containing smaller sized micro-aggregates and with some 673 

string-like particulate organic matter on the surface. The increased aggregate size and 674 

thus the mean weight diameter (MWD) could suggest increasing organic matter in-675 

between micro-aggregates in macro-aggregates in rice soils cultivated over centuries. 676 

This change, through the improvement of micro-habitat conditions and nutrient storage, 677 

could lead to some directional change in the association of microbial community 678 

abundance/activity over the long run of rice paddy management. The higher MBC and 679 

lower RQ and qCO2 in coarse sand sized macro-aggregates and the decreasing trend of 680 

RQ and qCO2 with increasing length of rice paddy management (Supplement Table 1) 681 

could suggest some adaptive change in microbial community and improvement of their 682 

carbon use efficiency (Chen et al., 2016). Particularly, methanogenic community as 683 

particular microbial community of rice soils (Conrad, 2009), had been shown in a 684 

directional changes towards prolonged rice paddy management (Liu et al., 2016b).  685 

In a previous study, Wang et al. (2015) found bulk soil OC accumulation and promotion 686 
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of biological activity concurrent with carbon stabilization through POC accumulation, 687 

in line with aggregate stability with long-term rice cultivation. Here we synthesize all 688 

the analysis data in terms of aggregate size fraction partitioning over the sequence, 689 

presented in Fig. 7. After salt marsh soil (P0) shifted to rice cultivation (P50), total OC, 690 

enzyme activity and soil respiration showed a more or less consistent increase in both 691 

sand and clay sized fractions. The changes in relative portion by sand sized (coarse and 692 

fine sand fractions together) aggregates against silt and clay sized ones exerted different 693 

patterns between of carbon pools and of microbial activities, across the soils of the 694 

chronosequence.  695 

Over the sequence, the prevalence of physically protected portion in sand fractions over 696 

unprotected portion in silt and clay fractions (Six et al., 2002a) was in a range of 1.5-697 

3.2 and of 1.1-2.6 for total OC and total N, of 0.9-2.2 for total DNA, of 1.2-3.3 for 698 

fungal gene copy numbers and of 0.8-1.5 for NEA, respectively. In contrast, the 699 

prevalence of archaeal copy numbers and soil respiration was in a range of 2.6-1.0 and 700 

2.0-1.3, decreasing with rice cultivation lengths. Therefore, most of analyzed carbon 701 

pools and bioactivities were dominated by the macro- and large micro-aggregates in 702 

sand sized fractions, which was in general consistent directional change with prolonged 703 

paddy management under long term rice cultivation though clay particles were 704 

consistently increased (Kölbl et al., 2014). 705 

  706 

Long term OC sequestration in agricultural soils had been questioned (Powlson et al., 707 

2011) and OC enriched in coarse sand fractions of aggregates could indeed be subject 708 

Fig. 7  
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to fast decomposition in dry condition, for example, after shifting to maize land (Li et 709 

al., 2007a). In this study, however, hydroagric paddy management was kept continuing 710 

with ever prolonged rice cultivation, which could have driven the ever increasing trend 711 

of OC accumulation up to millennium (Wissing et al., 2011; 2013). Consequently, OC 712 

accumulation and stabilization could ever take place in sand sized aggregates with 713 

physical protection of labile OC pool intra micro-aggregates, with prolonged rice 714 

cultivation (Wang et al., 2015). POC, as a pool of relatively fast turnover (Cambardella 715 

and Elliott, 1992), had been also kept increasing in paddies cultivated for centuries 716 

(Wang et al., 2015). Allison and Jastrow (2006) suggested that microbial biochemical 717 

activity and carbon turnover was stronger in POC-enriched size fractions, but weaker 718 

in mineral-dominated fractions where enzymes and their carbon substrates were 719 

immobilized on mineral surfaces. Long term hydroagric paddy management (Zhang 720 

and Gong, 2003) reduced decomposition of root-, crop- or microbial- residue input 721 

under reduced conditions (Roth et al., 2011). Moreover, the changes in relative 722 

proportion of carbon pools and microbial activities (NEA and soil respiration) by sand 723 

sized aggregates further demonstrated that physically protected and stabilized carbon 724 

supported high soil bioactivities in macro-aggregates, which had been increasingly 725 

prevailed over the smaller sized fractions of soil aggregates.     726 

The changes in OC pools and the accessibility to microbes could lead to changes in the 727 

relative abundance and activity of microbes, potentially affecting C cycling and storage, 728 

in different size aggregates (Six et al., 2006). Unlike the finding by Allison and Jastrow 729 

(2006), this study proposed enhanced microbial activity but improved carbon use 730 
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efficiency with reduced respiration quotient for microbial energy in coarse sand sized 731 

macro-aggregates, compared to clay fraction over centuries of rice cultivation. This 732 

could be supported by the recent finding that qCO2 was seen reduced but microbial 733 

biomass carbon increased in biochar amended agricultural soils, in a case study by 734 

Zheng et al., (2016) and in a meta-analysis by Zhou et al (2016). This study indicated a 735 

strong inter-link between microbiological activity and labile OC in large sized 736 

aggregates of paddy soils, though the later had been generally considered as physically 737 

protected OC. As strengthened with prolonged rice paddy management, such a link 738 

could help enhance ecosystem functioning and services provided by rice soils (Six and 739 

Paustian 2014; Smith et al., 2015).  740 

Of course, the methodology used here could not allow to characterize the spatial 741 

allocation of carbon substrate, specific microbial communities and extracellular 742 

enzyme activities among the aggregate fractions. Specially, labile OC pools, 743 

particularly those intra- aggregates or inter micro-aggregates within macro-aggregates, 744 

could not be further explored. Such data had been considered critical to unravel the 745 

micro-scale process mediating bio-activities at aggregate level (Six and Paustian 2014). 746 

Therefore, the effects on soil functions deserve further studies under field conditions.  747 

5 Conclusions 748 

This study, using a rice soil chronosequence derived from salt marsh, revealed that soil 749 

organic carbon could be accumulated and stabilized both in coarse sand- and clay- sized 750 

fractions of soil aggregates. However, microbial abundance and enzyme activity were 751 

high but metabolic quotient low in sand sized fractions rather than in silt and clay sized 752 
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fractions of soil aggregates, possibly through the enhanced spatial allocation of labile 753 

OC pool for improved microhabitat condition in larger sized aggregates. Thus, carbon 754 

stabilization with reduced turnover was not confronting soil bioactivities in a way that 755 

carbon and microbial communities biophysically co-evolved in macro-aggregates other 756 

than in silt and clay sized micro-aggregates. This study further supported our previous 757 

finding for bulk soils that long term rice cultivation led to accumulation and 758 

stabilization of SOC and promoted soil biological activities through physical protection 759 

of labile carbon in line with enhanced soil aggregation. Thus, labile organic carbons 760 

accumulated in macro-aggregates could help enhancing microbial C use efficiency and 761 

improving their biogeochemical activity related to ecosystem functioning. More studies 762 

are deserved on interaction of soil organic matter, minerals and soil microbial 763 

communities to unravel the micro-scale process mediating bio-activities at aggregate 764 

level. 765 
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Figure captions  1152 

Fig. 1 Sampling sites for the individual soils constituting the rice soil chronosequence 1153 

from Cixi County, Zhejiang province, China. The suffix number following P 1154 

(paddy soil) designates the years under rice cultivation after shifting from salt 1155 

marsh since dyke establishment. 1156 

Fig. 2 Scanning electron microscopy images of aggregates separated with sonification 1157 

dispersion in water from topsoil sample of the studied chronosequence. P0, P50, 1158 

P100, P300 and P700 represents respectively the uncultivated mash soil and the 1159 

shifted rice soils cultivated for 50, 100, 300 and 700 years. 1160 

Fig. 3 Correlation of carbon recalcitrance (the ratio of aromatic to polysaccharide and 1161 

aliphatic carbon) (a) and respiration quotient (b) to organic carbon level with of 1162 

the particle size fractions of topsoil of the chronosequence soils. 1163 

Fig. 4 Correlation of organic carbon enrichment index (SOC content in a fraction 1164 

divided by SOC content of the bulk soil) to content of labile carbon of size 1165 

fractions of soil aggregates of the chronosequence soils. The open circle are those 1166 

fractions from the uncultivated marsh soil (P0). Above or below the black long 1167 

dashed line representing OC enrichment or depletion in a fraction. 1168 

Fig. 5 Inter-correlation between carbon pools and microbial biomass to address the 1169 

differences of soil carbon stability and microbial functioning between coarse sand 1170 

(left) and clay (right) sized aggregates fractions (Soil organic carbon accumulation 1171 

as a function of relative recalcitrant C (aromatic and phenol) (a) and negatively of 1172 

relative labile C (aliphatic and polysaccharide) (b); CO2 production as a plateau 1173 
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function of soil microbial biomass (c) and bacterial abundance (d)). Data was the 1174 

mean value of triplicates. 1175 

Fig. 6 Inter-correlation between particulate organic carbon and soil microbial activity 1176 

to compare the biological activity versus carbon between coarse sand (left) and 1177 

clay (right) sized aggregate fractions (Soil microbial biomass was as an 1178 

exponential function of total soil organic carbon (a) and a linear function of labile 1179 

organic carbon (d). Normalized enzyme activity (b) and DNA content scaled CO2 1180 

production (c) as a linear and negative power function of soil microbial biomass. 1181 

Soil microbial biomass was as a linear function of relative recalcitrant C (aromatic 1182 

and phenol) (e)). Data was the mean value of triplicates. 1183 

Fig. 7 Change in partitioning of soil organic carbon (a, g/kg), total DNA (b, µg/g) , 1184 

normalized enzyme activity (c, relative enzyme activity index) and soil respiration 1185 

(d, mgCO2/g) among coarse and fine sand fraction (blue base), silt fraction (brown 1186 

base) and clay fraction (gray base) of soil aggregates, over the chronosequence of 1187 

rice soils (P50-P700) shifted from a salt marsh (P0) under long term rice 1188 

cultivation. The size of a circle in a row is relevant to that of an analyzed parameter 1189 

among the soils. 1190 

  1191 
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Supplement material 1192 

Supplement Figure 1. FTIR spectrum of aggregate size fractions of the paddy soil 1193 

chronosequence (a: 2000-200μm; b: 200-20μm; c: 20-2μm; d: <2μm). The code 1194 

of P0 and P50-P700 denotes respectively the uncultivated marsh soil, and soils 1195 

shifted under rice cultivation for 50-700 years. 1196 

Supplement Table 1. Mean soil respiration quotient (portion of respired CO2-C to SOC) 1197 

and soil metabolic quotient (ratio of respired CO2-C to MBC) of the soil aggregate 1198 

size fractions estimated using the data in Table 3 in the text. N.d., not determined 1199 

due to the very small amount of the fraction 1200 
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Table 1 Basic properties of the studied soils of the chronosequence (Mean ± SD, 1223 

n = 3)  1224 

Soil pH (H2O) 
Total OC 

(g kg-1) 

Total N 

(g kg-1) 

BD 

(g cm-3) 

CEC 

(cmol kg-1) 

Fed 

(g kg-1) 

P0 8.62±0.07 6.32±0.58 0.79±0.02 1.31±0.05 6.32±0.34 1.76±0.02

P50 7.84±0.04 15.96±0.66 1.81±0.06 1.13±0.03 12.82±0.06 1.96±0.01

P10 6.39±0.05 17.07±0.49 2.06±0.09 1.06±0.04 12.54±0.12 2.04±0.04

P30 6.40±0.03 17.97±0.81 2.09±0.08 1.07±0.07 13.78±0.26 2.08±0.05

P70 6.65±0.08 21.07±1.21 2.14±0.06 1.06±0.05 12.97±0.27 1.71±0.02

Note: BD, bulk density; CEC, cation exchange capacity; Fed: dithionate extractable 1225 

iron oxyhydrates.  1226 

  1227 



65 
 

Table 2 Particle-size distribution (%) of aggregates of the studied soils of the 1228 

chronosequence. Low case letters indicate a significant (p<0.05) difference between 1229 

soils for a single fraction, in a column. 1230 

 1231 

  1232 

Soil 2000-200μm 200-20μm 20-2μm <2μm MWD(μm) 

P0 2.78±0.59c 46.53±1.30a 41.00±2.46a 9.69±0.57d 86.5± 6.2c 

P50 5.10±0.25b 44.31±0.02b 40.79±0.41a 9.8±0.14d 109.5±2.1b 

P100 5.34±0.10b 43.17±0.53c 39.72±0.72a 11.78±0.09c 110.8±1.3b 

P300 6.87±1.04a 41.53±1.64d 38.67±0.33a 12.92±0.27b 125.8±7.8a 

P700 7.63±1.40a 39.91±5.16d 36.97±3.59a 15.49±0.16a 132.2±8.5a 



66 
 

Table 3 Total OC, total N and LOC in g kg-1 and SMBC in mg kg-1 of the size 1233 

fractions of the size fractions (PSFs) of the chronosequence soils. Different capital 1234 

and low case letters indicate a significant (p<0.05) difference respectively between 1235 

fractions of a single soil, and between soils for a single fraction, in a single column. 1236 

PSF Soil Total OC Total N LOC SMBC 

Coarse 

 sand 

P0 11.07±1.20Ad 1.04±0.11Ad 6.22±0.18Ac not determined 

P50 53.44±1.09Ab 4.15±0.49Aa 27.85±1.61Aa 794.7±47.0Ac 

P100 41.74±1.31Ac 3.37±0.38Ab 19.69±1.16Ab 1051.8±73.7Ab 

P300 40.64±1.57Ac 2.72±0.12Ac 18.80±1.45Ab 1385.5±88.1Aa 

P700 60.79±1.88Aa 4.43±0.22Aa 28.64±1.90Aa 1479.9±166.2Aa 

Fine 

 sand 

P0 9.90±0.43Ac 1.01±0.14Ac 4.34±0.14Bb 188.0±8.0Ac 

P50 8.45±0.27Cc 0.73±0.11Dd 3.66±0.57Cb 309.2±16.5Bb 

P100 16.48±0.41Cb 1.57±0.14Cb 7.36±0.32Ca 441.1±13.4Ba 

P300 15.16±1.45Cb 1.51±0.13Bb 7.03±0.30Ca 445.9±28.2Ba 

P700 19.86±1.11Ca 1.81±0.12Ca 7.99±0.65Ba 449.9±25.9Ba 

Silt 

P0 5.13±0.19Bb 0.52±0.14Bd 1.53±0.13Db 166.7±4.5Ad 

P50 10.73±0.55Ba 1.20±0.11Cb 4.50±0.13Ca 296.2±15.0Bc 

P100 10.13±0.44Da 1.15±0.09Cc 4.10±0.26Da 287.0±2.7Cc 

P300 11.37±0.58Da 1.33±0.11Ba 4.39±0.29Da 392.1±15.0Ba 

P700 10.57±0.43Da 1.11±0.08Dc 3.95±0.69Ca 348.3±10.5Cb 

Clay 

P0 9.29±0.29Ac 1.17±0.15Ad 2.96±0.27Cc 155.6±18.1Ac 

P50 19.80±1.47Bb 2.27±0.14Bc 7.99±0.28Bb 284.9±19.7Bb 

P100 22.94±1.43Ba 2.70±0.12Bb 9.19±0.35Ba 279.4±5.0Cb 

P300 23.45±1.46Ba 2.92±0.12Aa 9.36±0.40Ba 324.8±13.1Ca 

P700 24.36±1.65Ba 2.73±0.16Bb 9.05±0.47Ba 325.7±8.1Ca 
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Table 4 Relative proportion (%) of carbon chemical groups and carbon recalcitrance 1237 

(ratio of aromatic to polysaccharide carbon) in size fractions by FTIR analysis. 1238 

Different capital and low case letters indicate a significant (p <0.05) difference 1239 

respectively between fractions of a single soil, and between soils for a single fraction. 1240 

Size  
fraction 

Soil Total aromatic Aliphatic Polysaccharide 

Coarse 
 sand 

P0 28.58±1.41Bc 0.03±0.00Ac 71.41±5.76ABa 

P50 38.55±5.73Aab 0.50±0.09Aa 60.94±2.54Cb 

P100 34.43±3.78ABab 0.27±0.03Ab 65.31±4.72Bab 

P300 32.67±0.78ABb 0.28±0.04Ab 67.04±4.66BCab 

P700 38.47±1.59Aa 0.37±0.03Ab 61.17±4.30Cb 

Fine  
sand 

P0 26.30±1.57Ba 0.05±0.01Ab 73.64±4.83ABa 

P50 26.98±1.15Ba 0.04±0.00Bb 72.98±4.43ABa 

P100 29.62±1.07Ba 0.13±0.03Ba 70.24±3.47ABa 

P300 29.60±1.42Ba 0.07±0.02Bb 70.32±4.60ABa 

P700 29.33±1.28Ba 0.17±0.02Ba 70.51±4.09Ba 

Silt 

P0 23.22±1.27Ca 0.01±0.00Ba 76.76±3.81Aa 

P50 23.98±1.50Ca 0.01±0.00Ca 76.02±4.29Aa 

P100 22.61±1.32Ca 0.00±0.00Db 77.37±4.73Aa 

P300 23.61±1.14Ca 0.00±0.00Db 76.39±4.21Aa 

P700 19.87±0.83Cb 0.00±0.00Db 80.14±3.87Aa 

Clay 

P0 33.78±1.69Aa 0.00±0.00Bb 66.20±3.2B2a 

P50 35.46±1.36Aa 0.03±0.00Ba 64.52±4.23Ba 

P100 36.10±1.74Aa 0.04±0.01Ca 63.85±4.57Ba 

P300 36.02±1.72Aa 0.03±0.01Ca 63.96±4.65Ca 

P700 36.86±1.88Aa 0.05±0.01Ca 63.08±3.73Ca 

1241 
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Table 5 DNA content (μg g-1), copy numbers of bacterial (BA, copies×109g-1), fungi 1242 

(FA, copies×107g-1) and archaeal (ArA, copies×108g-1) of the size fractions. Different 1243 

capital and low case letters in a single column indicate a significant (p<0.05) difference 1244 

respectively between fractions of a single soil, and between soils for a single fraction. 1245 

Fraction Soil DNA  BA FA ArA 

Coarse 

sand 

P0 3.32±0.07Ae 5.86±0.75Ad 8.92±1.50Ab 0.81±0.03Ce 

P50 35.33±0.42Aa 46.18±9.21Aa 15.50±2.60Aa 6.37±0.81Bd 

P100 24.72±2.14Ac 31.45±5.79Ab 10.49±0.87Ab 13.54±0.73Bc 

P300 16.20±0.05Ad 10.12±2.39Ac 8.12±0.32Ab 16.01±1.06Ab 

P700 31.95±0.64Ab 14.25±1.03Ac 9.40±0.71Ab 21.17±0.48Ba 

Fine 

sand 

P0 3.63±0.28Ab 4.90±0.45Ab 3.23±0.27Bc 2.83±0.18Ac 

P50 4.35±0.40Db 8.42±1.75Ba 8.04±0.25Ba 5.27±1.12Bd 

P100 13.63±3.30Ba 7.75±1.18Ca 8.37±0.67Aa 8.16±2.27Cab 

P300 9.97±0.33Ba 4.92±1.10Bb 6.23±0.23Bb 3.57±0.24Cb 

P700 12.83±0.33Ca 8.16±1.64Ba 2.43±0.19Cd 7.68±0.66Ca 

Silt 

P0 1.57±0.28Bc 1.78±0.15Bc 3.98±0.57Ba 0.29±0.02Dd 

P50 10.02±1.58Ca 10.64±2.95Ba 4.25±0.30Ca 2.48±0.44Cc 

P100 8.25±0.12Cab 5.78±0.36Cb 2.17±0.20Bb 8.65±0.09Ca 

P300 7.78±0.31Cb 5.91±0.81Bb 2.47±0.45Bb 6.60±0.27Bb 

P700 9.25±0.64Da 6.16±0.29Bb 3.68±0.19Ba 9.44±1.41Ca 

Clay 

P0 4.00±1.89Ad 5.27±0.61Ac 0.52±0.03Cd 1.83±0.10Bc 

P50 17.62±0.26Bb 38.05±4.92Aa 1.31±0.07Dc 14.08±2.13Ab 

P100 16.20±0.38Bb 15.86±3.31Bb 1.94±0.30Bb 44.66±13.68Aa

P300 11.17±0.90Bc 13.03±2.58Ab 1.39±0.40Cb 22.16±6.17Aa 

P700 25.67±0.57Ba 15.63±2.24Ab 2.48±0.31Ca 36.00±3.82Aa 
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Table 6 Normalized enzyme activity (NEA) and soil respiration (mg CO2 kg-1) of the 1246 

chronosequence soils. Different capital and low case letters in a single column indicate 1247 

a significant (p <0.05) difference respectively between fractions of a single soil, and 1248 

between soils for a single fraction. 1249 

Size fraction Soil NEA Basal respiration 

Coarse sand 

P0 0.07±0.01Bc 662±66Ac 

P50 0.28±0.03Aa 2345±805Aab 

P100 0.18±0.01Ab 2283±506Aab 

P300 0.18±0.01Bb 1588±309Ab 

P700 0.30±0.05Aa 2914±190Aa 

Fine sand 

P0 0.10±0.01Bc 565±153ABb 

P50 0.12±0.03Cc 1076±139Ba 

P100 0.21±0.03Ab 1252±103Ba 

P300 0.27±0.03Aa 1256±096Aa 

P700 0.30±0.02Aa 1234±143Ba 

Silt 

P0 0.07±0.01Bd 298±053Cc 

P50 0.21±0.02Bb 740±258Bb 

P100 0.17±0.01Ac 1246±063Ba 

P300 0.25±0.02Ab 1256±071Aa 

P700 0.30±0.02Aa 1354±095Ba 

Clay 

P0 0.14±0.01Ac 496±053Bb 

P50 0.19±0.02Bb 1425±430Aa 

P100 0.20±0.02Aab 1401±289Aa 

P300 0.24±0.02Aa 1028±226Aa 

P700 0.23±0.01Ba 1434±196Ba 


