Supplement figure captions

- **Fig. S1** Correlation of total DNA content to organic carbon (a), total N (b) and labile carbon (c) of the size fractions of soil aggregates.
- Fig. S2 Correlation between SOC and fungal gene abundance of soil aggregates in different size fractions.
- **Fig. S3** Correlation of normalized enzyme activity with organic carbon content in size fractions of soil aggregates of the studied chronosequence.
- Fig. S4 Correlation of soil respiration quotient with total DNA (a) and labile carbon content of size fractions of soil aggregates over the chronosequence. (▲: the samples from tidal marsh soil. ●: the samples from rice soils)

Supplementary Material: Supplement Figures

Supplement Tables

Table S1. Shannon diversity index of bacterial (BD), fungal (FD) and archaeal (ArD)
of soil size fraction of the studied chronosequence. Different capital and low case
letters in a single column indicate a significant (p<0.05) difference respectively
between fractions of a single soil, and between soils for a single fraction.

Size fraction	Soil	BD	FD	ArD
	P0	2.06±0.36 Abb	1.90±0.12 Ad	1.24±0.07Ab
Coarse sand	P50	2.12±0.19 ABb	2.84±0.29 Aa	1.47±0.04Aa
	P100	2.76±0.02 Aa	2.58±0.04 Aab	1.52±0.12Aa
	P300	2.55±0.28 Aab	2.57±0.14 Aab	1.48±0.06Aa
	P700	2.35±0.23 Ab	2.33±0.08 Abc	1.48±0.07Aa
	P0	1.09±0.42 Cd	1.97±0.21 Aa	1.29±0.02Ac
	P50	2.27±0.60 ABabc	1.93±0.20 Ba	1.23±0.02Bc
Fine sand	P100	2.74±0.23 Aa	1.99±0.14 Ba	1.62±0.04Aa
	P300	2.10±0.09 Bb	1.72±0.21Bac	1.41±0.03Ab
	P700	1.75±0.12 Bc	1.80±0.06 Ba	1.43±0.02Ab
	P0	1.76±0.07 Bd	1.02±0.16 Bcd	1.21±0.03Ab
	P50	1.94±0.18 Bcd	2.05±0.20 Ba	1.40±0.03Aa
Silt	P100	2.54±0.14 Aa	1.12±0.24 Ccd	1.50±0.05Aa
	P300	1.98±0.11 Bc	1.60±0.17 Bb	1.42±0.03Aa
	P700	2.25±0.12 Ab	1.29±0.29 Cabc	1.47±0.02Aa
	P0	1.93±0.06 Ac	0.64±0.01 Cb	1.39±0.12Aa
	P50	2.44±0.10 Aab	1.31±0.48 Ca	1.44±0.06Aa
Clay	P100	2.65±0.15 Aa	1.34±0.63 BCa	1.53±0.11Aa
	P300	2.33±0.11 Ab	1.54±0.25 Ba	1.58±0.12Aa
	P700	2.57±0.22 Aab	1.13±0.15 Cab	1.48±0.06Aa

A N
Ň
Ó
\mathbf{Is}
. <u>ö</u>
Ę
0
ns
<u>.</u>
t
ra
Ê.
ĨZ
.S
le
.ic
ar
ğ
in
e
as
id
X
ŭ
pe
q
u
a)
JS (
qĩ
.Si
.9
q
Ĭ.
S
Ť
5
Se
da
·S
0
C J
Inc
gluc
β-gluc
e, β-gluc
ase, β-gluc
atase, β-gluc
whatase, β -gluc
sphatase, β-gluc
hosphatase, β-gluc
phosphatase, β -gluc
id phosphatase, β-gluc
icid phosphatase, β -gluc
, acid phosphatase, β-gluc
se, acid phosphatase, β -gluc
ease, acid phosphatase, β-gluc
rrease, acid phosphatase, β-gluc
, urease, acid phosphatase, β-gluc
se, urease, acid phosphatase, β-gluc
tase, urease, acid phosphatase, β-gluc
ertase, urease, acid phosphatase, β-gluc
nvertase, urease, acid phosphatase, β-gluc
^c invertase, urease, acid phosphatase, β-gluc
of invertase, urease, acid phosphatase, β-gluc
y of invertase, urease, acid phosphatase, β-gluc
vity of invertase, urease, acid phosphatase, β-gluc
tivity of invertase, urease, acid phosphatase, β-gluc
Activity of invertase, urease, acid phosphatase, β-gluc
Activity of invertase, urease, acid phosphatase, β-gluc
S2 Activity of invertase, urease, acid phosphatase, β-gluc
e S2 Activity of invertase, urease, acid phosphatase, β -gluc
ble S2 Activity of invertase, urease, acid phosphatase, β -gluc
Table S2 Activity of invertase, urease, acid phosphatase, β-gluc
Table S2 Activity of invertase, urease, acid phosphatase, β-gluc

8 the chronosequence

Size fraction	Soil	Invertase	Urease	Acid phosphatase	β-glucosidase	β-cellobiosidase	Peroxidase
	P0	66.01 ± 1.97	0.34 ± 0.19	$0.0546\pm\!\!0.0020$	12.16 ± 2.70	2.28 ± 1.46	1.22 ± 0.43
ζ	P50	141.47 ± 1.48	0.90 ± 0.18	0.1689 ± 0.0030	262.12 ± 12.90	48.78 ± 5.45	1.47 ± 0.28
Coarse	P100	97.83 ±1.68	0.68 ± 0.20	0.0873 ± 0.0014	151.19 ± 18.81	41.88 ± 5.36	2.90 ± 0.52
24110	P300	113.29 ± 2.57	0.58 ± 0.01	0.0735 ± 0.0007	170.24 ± 25.41	30.49 ± 5.87	3.81 ± 0.74
	P700	127.55 ± 2.96	1.06 ± 0.05	0.1414 ± 0.0130	370.78 ± 28.84	113.52 ± 9.93	5.12 ± 0.98
	P0	4.87 ± 0.20	0.55 ± 0.01	0.0238 ± 0.0012	26.13 ± 3.40	2.29 ± 0.59	1.15 ± 0.34
	P50	7.47 ± 1.42	0.67 ± 0.02	0.0268 ± 0.0009	29.32 ± 4.49	2.12 ± 0.70	1.92 ± 0.32
Fine sand	P100	7.44 ± 2.25	0.71 ± 0.11	0.0492 ± 0.0045	68.57 ± 11.04	10.65 ± 0.86	2.68 ± 0.44
	P300	15.61 ± 2.37	1.11 ± 0.05	0.0522 ± 0.0087	80.07 ± 10.16	12.84 ± 1.12	2.79 ± 0.51
	P700	18.78 ± 0.96	1.73 ± 0.02	0.0355 ± 0.0001	103.15 ± 7.49	10.47 ± 0.56	2.77 ± 0.40
	$\mathbf{P0}$	3.48 ± 0.02	0.44 ± 0.01	0.0140 ± 0.0003	2.05 ± 0.35	1.75 ± 0.45	0.99 ± 0.28
	P50	7.31 ± 0.19	0.51 ± 0.20	0.0300 ± 0.0007	59.15 ± 3.96	4.97 ± 0.99	2.07 ± 0.3
Silt	P100	7.31 ± 0.02	0.75 ± 0.01	0.0300 ± 0.0013	20.66 ± 3.20	0.49 ± 0.41	1.49 ± 0.14
	P300	6.14 ± 0.02	0.92 ± 0.05	0.0522 ± 0.0139	56.28 ± 5.23	4.69 ± 0.58	3.38 ± 0.42
	P700	8.66 ± 0.97	1.38 ± 0.05	0.0326 ± 0.0009	61.476 ± 2.84	4.90 ± 1.05	4.94 ± 0.25
	$\mathbf{P0}$	23.46 ± 0.64	0.98 ± 0.06	0.0362 ± 0.0040	6.06 ± 0.49	0.19 ± 0.06	1.46 ± 0.34
	P50	14.13 ± 2.67	1.31 ± 0.04	0.0582 ± 0.0004	31.14 ± 3.29	1.84 ± 0.37	2.50 ± 0.30
Clay	P100	13.01 ± 0.99	0.61 ± 0.14	0.0730 ± 0.0032	30.29 ± 2.98	1.46 ± 0.55	2.22 ± 0.37
	P300	13.88 ± 0.35	1.12 ± 0.07	0.1023 ± 0.0058	37.63 ± 4.37	4.48 ± 0.72	2.89 ± 0.59
	P700	12.94 ± 3.36	$1.88\pm\!0.18$	0.0653 ± 0.0018	32.64 ± 2.71	2.58 ± 0.36	3.82 ± 0.65

 \sim

Soil	Coarse sand	Fine sand	Silt	Clay	
	CP/SOC (mgCO ₂ -C g ⁻¹ SOC)				
P0	0.16±0.02Aa	0.16±0.04Abc	0.16±0.02Ac	0.15±0.01Aa	
P50	0.12±0.04Ba	0.35±0.04Aa	0.19±0.06Bc	0.20±0.06Ba	
P100	0.15±0.03Ca	0.21±0.01Bb	0.34±0.01Aa	0.17±0.03BCa	
P300	0.15±0.03Ca	0.23±0.01Bb	0.31±0.01Ab	0.12±0.02Ca	
P700	0.13±0.01Ca	0.17±0.02Bc	0.35±0.02Aa	0.16±0.02BCa	
		CP/DNA (mg0	$CO_2 \mu g^{-1}DNA$)		
P0	2.00±0.21Aa	1.56±0.45Ab	1.92±0.43Aa	1.36±0.57Aa	
P50	0.66±0.23Bb	2.48±0.33Aa	0.76±0.28Bb	0.81±0.25Bab	
P100	0.93±0.25Bb	0.94±0.18Bbc	1.51±0.08Aa	0.86±0.17Bab	
P300	0.98±0.19Bb	1.26±0.09Bb	1.61±0.12Aa	0.92±0.20Ba	
P700	0.91±0.05Bb	0.96±0.11Bc	1.46±0.06Aa	0.56±0.07Bb	

 Table S3 SOC and total DNA content scaled CO2 production in particle size fractions

 of the chronosequence rice soils

Table S4 Concentration of C4 (g kg⁻¹) in particles and proportion of C4 in particle size fractions to total C4 (%) of the chronosequence paddy soils after incubation with maize carbon amendment

Soil	Coarse sand	Fine sand	Silt	Clay		
	Concentration of C4					
PO	7.37±0.45a	1.27±0.11b	1.00±0.06b	3.98±0.54ab		
P50	3.49±0.34b	1.11±0.39b	1.26±0.15b	2.56±0.24c		
P100	2.96±0.22c	1.55±0.20b	2.11±0.28a	3.07±0.22c		
P300	2.53±0.41c	2.89±0.19a	2.05±0.13a	3.64±0.17b		
P700	2.41±0.18c	2.56±0.29a	1.79±0.27a	4.69±0.38a		
		Proportio	on of C4			
P0	10.59	48.85	16.42	24.13		
P50	27.55	32.93	23.35	16.18		
P100	21.85	34.80	30.08	13.28		
P300	20.81	48.73	19.95	10.52		
P700	23.56	44.55	18.98	12.91		