

1 **Combined effects of elevated $p\text{CO}_2$ and temperature on biomass and carbon
2 fixation of phytoplankton assemblages in the northern South China Sea**

3 Guang Gao^{1,2}, Peng Jin¹, Nana Liu¹, Futian Li¹, Shanying Tong¹, David A. Hutchins³,
4 and Kunshan Gao^{1*}

5

6 ¹ *State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen
7 361005, China*

8 ² *Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology,
9 Lianyungang 222005, China*

10 ³ *Marine Environmental Biology, Department of Biological Sciences, University of
11 Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA*

12

13

14

15

16

17

18

19

20

21

22

23

24

25

* Correspondence: KunshanGao, Fax: 86-592-2187963, e-mail: ksgao@xmu.edu.cn.

26 **Abstract**

27 The individual influences of ocean warming and acidification on marine
28 organisms have been investigated intensively, but studies regarding the combined
29 effects of both global change variables on natural marine phytoplankton assemblages
30 are still scarce. Even fewer studies have addressed possible differences in the
31 responses of phytoplankton communities in pelagic and coastal zones to ocean
32 warming and acidification. We conducted shipboard microcosm experiments at both
33 off-shore (SEATS) and near-shore (D001) stations in the northern South China Sea
34 (NSCS) under three treatments, low temperature (30.5 °C at SEATS and 28.5 °C at
35 D001) and low $p\text{CO}_2$ (390.0 μatm at SEATS and 420.0 μatm at D001) (LTLC), high
36 temperature (33.5 °C at SEATS and 31.5 °C at D001) and low $p\text{CO}_2$ (390 μatm at
37 SEATS and 420 μatm at D001) (HTLC), and high temperature (33.5 °C at SEATS
38 and 31.5 °C at D001) and high $p\text{CO}_2$ (1000 μatm at SEATS and 1030 μatm at D001)
39 (HTHC). Biomass of phytoplankton at both stations were enhanced by HT. HTHC did
40 not affect phytoplankton biomass at station D001 but decreased it at station SEATS.
41 At this offshore station HT alone increased daily primary productivity (DPP, $\mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$) by ~64%, and by ~117% when higher $p\text{CO}_2$ was added. In contrast, HT
42 alone did not affect DPP and HTHC reduced it by ~15% at station D001. HT
43 enhanced the dark respiration rate ($\mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$) by 64% at station SEATS, but
44 had no significant effect at station D001, and did not change the ratio of respiration to
45 photosynthesis at either station. HTHC did not affect dark respiration rate ($\mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$) at either station compared to LTLC. HTHC reduced the respiration to
46 photosynthesis ratio by ~41% at station SEATS but increased it ~42% at station D001.
47 Overall, our findings indicate that responses of coastal and offshore phytoplankton
48 assemblages in NSCS to ocean warming and acidification are contrasting, with the
49 pelagic phytoplankton communities being more sensitive to these two global change
50 factors.

53

54 **Key words:** ocean acidification, ocean warming, photosynthesis, primary productivity,
55 respiration, South China Sea

56

57 **1 Introduction**

58 From 1979 to 2012, the mean global sea surface temperature increased at a
59 rate of ~ 0.12 °C per decade, based on in situ data records (IPCC, 2013). Particularly,
60 the warming rate in the South China Sea (~ 0.26 per decade) from 1982 to 2004 is
61 approximately 2 times faster than the global ocean mean rate (~ 0.14 per decade) from
62 1960 to 1990 (Casey and Cornillon, 2001; Fang et al., 2006). It is extremely likely
63 that more than half of the observed increase in global average surface temperature
64 from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas
65 concentrations and other anthropogenic forcings. Ocean warming is projected to rise
66 approximately by 0.6 °C (RCP 2.6) to 2.0 °C (RCP 8.5), in the upper 100 m by the
67 end of the 21st century (IPCC, 2013).

68 Ocean warming is known to affect primary productivity both directly and
69 indirectly. In situ surface chl *a* declined exponentially with rise of SST (13–23 °C) in
70 the northeast Atlantic Ocean from latitudes 29 to 63 °N in spring and summer, which
71 was attributed to enhanced stratification and consequent reduced upward transport of
72 nutrients into the upper mixed layer (Poll et al., 2013). The seawater volume-specific
73 primary productivity also decreased with temperature rise due to lower phytoplanton
74 biomass (Poll et al., 2013). Mesocosm experiments have also demonstrated that ocean
75 warming (an increase of 6 °C) can decrease phytoplankton biomass in the Baltic Sea
76 (Lewandowska et al., 2012; Sommer et al., 2015). On the other hand, ocean warming
77 did not affect volume-specific primary productivity in the Baltic Sea (Lewandowska et
78 al., 2012).

79 Increased atmospheric CO₂ is responsible for global warming and the ocean.
80 As a main sink for CO₂, the ocean has absorbed approximately 30% of the emitted
81 anthropogenic carbon dioxide (IPCC, 2013). Such a dissolution of CO₂ increases
82 seawater CO₂ partial pressure and bicarbonate ion levels and decreases pH and
83 carbonate ion concentrations, leading to ocean acidification (OA). By 2100, the
84 projected decline in global-mean surface pH is projected to be approximately 0.065 to

85 0.31, depending on the RCP scenario (IPCC, 2013). In terms of the South China Sea,
86 an accelerated trend of ocean acidification has been reported and the rate of pH
87 decline almost tripled between 1951 and 2000, compared to that between 1840 and
88 1950 (Liu et al., 2014).

89 CO_2 may be a potentially limiting factor for marine primary productivity
90 because of the low CO_2 level in seawater and the low affinity of the enzyme Rubisco
91 for dissolved CO_2 (Falkowski and Raven, 2013). In addition, CO_2 in seawater diffuses
92 approximately 10,000 times slower than in air, leading to its supply rate being much
93 lower than the demand of photosynthetic carbon fixation (Raven, 1993; Riebesell et
94 al., 1993). Although phytoplankton have evolved carbon-concentrating mechanisms
95 (CCMs) to cope with these problems (Giordano et al., 2005; Raven et al., 2012;
96 Reinfelder, 2011), increased CO_2 concentration may still be beneficial since energy
97 saved due to down-regulation of CCMs under elevated CO_2 can be utilized in other
98 metabolic processes (Gao et al., 2012a). Early laboratory and shipboard experiments
99 suggested that increased CO_2 indeed could enhance phytoplankton growth rates and
100 thus marine primary productivity (Riebesell et al., 1993; Hein and Sand-Jensen, 1997;
101 Schippers et al., 2004). Since then, neutral effects of increased CO_2 on growth of
102 phytoplankton assemblages have also been reported (Tortell and Morel, 2002; Tortell
103 et al., 2000). Furthermore, ocean acidification can even reduce primary productivity
104 of surface phytoplankton assemblages when exposed to incident solar radiation (Gao
105 et al., 2012b). Therefore, the effects of ocean acidification on marine primary
106 productivity remain controversial and its interactions with other environmental factors,
107 such as warming, solar UV radiation, hypoxia, etc. are incompletely understood (Gao
108 et al., 2012a; H äder and Gao, 2015; Mostofa, 2016).

109 Ocean warming and acidification, both caused by increasing atmospheric CO_2 ,
110 are proceeding simultaneously. The interactive or combined effects of warming and
111 OA could be completely different from that of either one stressor (Hare et al. 2007,
112 Feng et al., 2009; Gao et al., 2012a, Tatters et al. 2013). Several oceanographic cruises
113 and ship board experiments in the European sector of the Arctic Ocean, showed that

114 gross primary production increased with $p\text{CO}_2$ (145–2099 μatm) and the greatest
115 increase was observed in lower temperature regions, indicating CO_2 -enhanced
116 primary production in the European Arctic Ocean is temperature-dependent (Holding
117 et al., 2015).

118 The South China Sea (SCS) is located between the equator and 23.8 $^{\circ}\text{N}$, from
119 99.1 to 121.1 $^{\circ}\text{E}$, and is one of the largest marginal seas in the world, with a total area
120 of about $3.5 \times 10^6 \text{ km}^2$. Therefore, understanding the effects of ocean warming and
121 acidification on primary production in SCS would help us to define the role of
122 marginal seas in the global carbon cycle. However, only a very few studies on the
123 effects of ocean acidification or warming on primary productivity in the SCS have
124 been reported. Wu and Gao (2010) reported that CO_2 enrichment (700 μatm) did not
125 affect the assimilation number of phytoplankton at a near-shore site in SCS, compared
126 to the ambient CO_2 level (380 μatm). Gao et al. (2012b) demonstrated that increased
127 $p\text{CO}_2$ (800 or 1000 μatm) reduced primary productivity in off-shore stations of the
128 SCS. Therefore, we hypothesized that the effects of ocean acidification or/and
129 warming on primary productivity in SCS would be site-dependent. None of the
130 previous studies have examined co-effects of warming and increased CO_2 on primary
131 production in the SCS. In this study, to test this hypothesis we conducted shipboard
132 microcosm experiments at both near-shore and off-shore stations to determine the
133 combined effects of ocean warming and acidification on biomass, photosynthetic
134 carbon fixation, and dark respiration of phytoplankton assemblages in the SCS.

135 **2 Methods**

136 **2.1 Experimental setup**

137 The experiments were conducted at one off-shore station SEATS (17.9963 $^{\circ}\text{N}$,
138 115.9621 $^{\circ}\text{E}$) and one near-shore station D001 (18.9740 $^{\circ}\text{N}$, 110.7166 $^{\circ}\text{E}$) in the NSCS
139 (Fig. 1). Surface seawater (0–2 m) was collected before sunrise with a 10 L
140 acid-cleaned plastic bucket, filtered (180 μm) to remove large grazers and dispensed
141 into nine microcosms. Microcosms consisted of cylindrical polymethyl methacrylate
142 tanks (32 L, 0.34 m water depth) with water-jacketed space for circulating cooled

143 water, allowing 91% photosynthesis active radiation (PAR, 400–700 nm), 63%
144 ultraviolet-A (UVA, 315–400 nm) and 6% ultraviolet-B (UVB, 280–315 nm)
145 transmission under incident solar radiation. Two levels of temperature (in situ, in situ
146 + 3 °C) and $p\text{CO}_2$ (ambient, ambient + 610 μatm) were used. There were three
147 triplicated treatments: low temperature and low $p\text{CO}_2$, LTLC; high temperature and
148 low $p\text{CO}_2$, HTLC; high temperature and high $p\text{CO}_2$, HTHC. The treatment of low
149 temperature and high $p\text{CO}_2$ was missing due to the lack of microcosms. Microcosm
150 temperature was controlled with circulating coolers (CTP-3000, EYELA, Japan) and
151 stable CO_2 equilibrium with the sea water (variation of $p\text{CO}_2 < 5\%$) was achieved
152 within 24 hours using a CO_2 enricher (CE-100, Wuhan Ruihua Instrument &
153 Equipment Ltd, China). The incubations were conducted for seven days for station
154 SEATS (Aug 3rd–9th 2012) and six days for station D001 (Aug 14th–19th 2012).

155 **2.2 Solar radiance**

156 The incident solar radiation was continuously monitored using an Eldonet
157 broadband filter radiometer (Eldonet XP, Real Time Computer, Germany) that was
158 fixed at the top of the ship. It measured every second and recorded the means over
159 each minute.

160 **2.3 Carbonate chemistry parameters**

161 The seawater pH in the microcosm was recorded with a pH meter (FE20, Mettler
162 Toledo, Greifensee, Switzerland) every hour during the first day of incubation and
163 daily afterwards. The $p\text{CO}_2$ in seawater was maintained with the CO_2 enricher and
164 measured by an automated flowing $p\text{CO}_2$ measuring system (Model 8050, GO, USA).
165 Other carbonate system parameters were derived via CO2SYS (Pierrot et al., 2006),
166 using the equilibrium constants of K_1 and K_2 for carbonic acid dissociation (Roy et al.,
167 1993).

168 **2.4 Chlorophyll a analysis**

169 For the measurement of chlorophyll a (chl a), 500 mL of seawater were filtered
170 onto a Whatman GF/F glass fiber filter (25 mm). Then the filter was placed in 5 ml 93%
171 acetone at -20 °C for 24 h. Chl a concentration was determined with a fluorometer
172 (Trilogy, Turner Designs, USA), following the protocol of Welschmeyer (1994).

173 **2.5 Primary productivity and dark respiration**

174 Seawater samples taken from each microcosm were dispensed into 50 mL quartz
175 tubes inoculated with 5 μ Ci (0.185 MBq) NaH¹⁴CO₃ (ICN Radiochemicals, USA) and
176 incubated for 12 h and 24 h under natural light and day-night conditions. The
177 incubation temperature of every treatment was the same as the corresponding
178 microcosm treatment. After the incubation, the cells were filtered onto a Whatman
179 GF/F glass fiber filter (25 mm), which was immediately frozen and stored at -20°C
180 for later analysis. In the laboratory, each frozen filter was placed into a 20 mL
181 scintillation vial, exposed to HCl fumes overnight, and dried (55 °C, 6 h) to expel
182 non-fixed ¹⁴C (Gao et al., 2007). Then 3 mL scintillation cocktail (Perkin Elmer®)
183 was added to each vial and incorporated radioactivity was counted by a liquid
184 scintillation counting (LS 6500, Beckman Coulter, USA). The daytime primary
185 productivity (DPP) was defined as the amount of carbon fixation during 12 h
186 incubation. The dark respiration was defined as the difference in amount of carbon
187 fixation between 12 h and 24 h. Carbon fixation over 24 h was taken as daily net
188 primary productivity (NPP). Ratio of respiration to photosynthesis (R/P) was
189 expressed as that of respiratory carbon loss to daytime carbon fixation.

190 **2.6 Statistical analyses**

191 Results were expressed as means of replicates \pm standard deviation. Data were
192 analyzed using the software SPSS v.21. The data from each treatment conformed to a
193 normal distribution (Shapiro-Wilk, $P > 0.05$) and the variances could be considered
194 equal (Levene's test, $P > 0.05$). One-way ANOVAs were conducted to assess the
195 significant differences in carbonate chemistry parameters, chl *a*, DPP, NPP, dark
196 respiration, ratio of dark respiration to photosynthesis between three treatments.
197 Tukey HSD was conducted for post hoc investigation. Independent samples t-tests
198 were conducted to compare in situ chl *a*, DPP, NPP, dark respiration, and ratio of dark
199 respiration to photosynthesis between both stations. The threshold value for
200 determining statistical significance was $P < 0.05$.

201 **3 Results**

202 The incident solar radiation during the experiment was recorded (Table 1). The

203 daytime (12 h) mean solar radiation ranged from 927 to 1592 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ at
204 station SEATS while the lowest solar radiance was only 111 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$,
205 with the highest of 1583 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$, at station D001. The average of
206 daytime mean solar radiation over the microcosm incubation at station SEATS was
207 15.52% higher than that at station D001.

208 The changes of the seawater carbonate system under different conditions are
209 shown in Table 2. At station SEATS, an increase of 3 $^{\circ}\text{C}$ in temperature (HTLC) did
210 not alter carbonate parameters except leading to enhanced CO_3^{2-} (Tukey HSD, $P =$
211 0.009). HTHC resulted in a significant decrease in CO_3^{2-} (Tukey HSD, $P < 0.001$) and
212 TA (Tukey HSD, $P = 0.016$) but an increase in CO_2 (Tukey HSD, $P < 0.001$)
213 compared with LTLC. The effect of temperature on carbonate parameters at station
214 D001 were similar to station SEATS, while HTHC increased HCO_3^- (Tukey HSD, $P =$
215 0.046) and did not affect TA (Tukey HSD, $P = 0.203$).

216 The in situ chl a level at station D001 ($0.37 \pm 0.05 \mu\text{g L}^{-1}$) was higher than that at
217 station SEATS ($0.15 \pm 0.02 \mu\text{g L}^{-1}$) (Independent samples t-test, $t = -7.483$, $df = 4$, P
218 = 0.002; Fig. 2a). After seven days incubation in the microcosms at station SEATS,
219 Tukey comparison ($P = 0.05$) showed that higher temperature ($0.46 \pm 0.04 \mu\text{g L}^{-1}$)
220 increased chl a compared with LTLC ($0.23 \pm 0.03 \mu\text{g L}^{-1}$) while HTHC (0.07 ± 0.01
221 $\mu\text{g L}^{-1}$) reduced it (Fig. 2b). The higher temperature ($0.72 \pm 0.07 \mu\text{g L}^{-1}$) also
222 increased chl a compared with LTLC ($0.41 \pm 0.05 \mu\text{g L}^{-1}$) at station D001 (Tukey
223 HSD, $P = 0.001$; Fig. 1b), but with no effect of HTLC ($0.41 \pm 0.04 \mu\text{g L}^{-1}$) (Tukey
224 HSD, $P = 0.988$).

225 The in situ DPP at station D001 ($49.4 \pm 4.5 \mu\text{g C L}^{-1} \text{ d}^{-1}$ or $133.4 \pm 12.1 \mu\text{g C} (\mu\text{g}$
226 chl $a)^{-1} \text{ d}^{-1}$) was dramatically higher than that at station SEATS ($5.1 \pm 0.5 \mu\text{g C L}^{-1} \text{ d}^{-1}$
227 or $34.1 \pm 3.1 \mu\text{g C} (\mu\text{g chl } a)^{-1} \text{ d}^{-1}$), whether normalized to volume of seawater
228 (Independent samples t-test, $t = -17.056$, $df = 4$, $P < 0.001$; Fig. 3a) or chl a
229 (Independent samples t-test, $t = -13.786$, $df = 4$, $P < 0.001$; Fig. 3b). After seven days
230 incubation in microcosms, the DPP normalized to volume of seawater under HTLC
231 ($33.2 \pm 4.8 \mu\text{g C L}^{-1} \text{ d}^{-1}$) at station SEATS was significantly higher than that under
232 LTLC ($9.9 \pm 1.2 \mu\text{g C L}^{-1} \text{ d}^{-1}$) and HTHC ($6.6 \pm 0.6 \mu\text{g C L}^{-1} \text{ d}^{-1}$) (Tukey HSD, $P <$

233 0.001) while the difference between LTLC and HTHC was insignificant (Tukey HSD,
234 $P = 0.380$; Fig. 3c). The pattern at station D001 was similar to SEATS (Fig. 2c). When
235 DPP was normalized to chl *a*, the higher temperature increased primary productivity
236 from 43.2 ± 5.1 to $70.7 \pm 10.1 \mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$ (Tukey HSD, $P = 0.014$) and
237 further to $93.9 \pm 8.1 \mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$ (Tukey HSD, $P < 0.001$) when higher CO₂
238 was combined at station SEATS (Fig. 2d). In contrast, temperature did not affect DPP
239 (Tukey HSD, $P = 0.0924$) and HTHC reduced it from 150.3 ± 4.9 to $128.0 \pm 11.5 \mu\text{g}$
240 C ($\mu\text{g chl } a$) $^{-1} \text{d}^{-1}$ (Tukey HSD, $P = 0.039$) at station D001 (Fig. 3d).

241 The in situ NPP at stations SEATS and D001 were $3.5 \pm 0.1 \mu\text{g C L}^{-1} \text{d}^{-1}$ ($23.2 \pm$
242 $1.0 \mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$) and $37.4 \pm 3.1 \mu\text{g C L}^{-1} \text{d}^{-1}$ ($91.2 \pm 7.5 \mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$)
243 respectively, which indicates that station D001 has higher NPP, irrespective of
244 normalizing to volume of seawater (Independent samples t-test, $t = -18.998$, $df = 4$, P
245 < 0.001 ; Fig. 4a) or chl *a* (Independent samples t-test, $t = -15.511$, $df = 4$, $P < 0.001$;
246 Fig. 4b). After a seven-day incubation in the microcosms, the higher temperature
247 increased NPP to $23.9 \pm 5.3 \mu\text{g C L}^{-1} \text{d}^{-1}$ (Tukey HSD, $P = 0.001$) while HTHC ($5.5 \pm$
248 $0.4 \mu\text{g C L}^{-1} \text{d}^{-1}$) did not change it (Tukey HSD, $P = 0.793$) compared with LTLC ($7.2 \pm$
249 $0.8 \mu\text{g C L}^{-1} \text{d}^{-1}$). The effects of temperature and CO₂ on NPP at station D001 were
250 similar to that at station SEATS. When NPP was normalized to chl *a*, the higher
251 temperature increased NPP from 31.1 ± 3.5 to 50.9 ± 11.3 (Tukey HSD, $P = 0.044$)
252 and further to $78.3 \pm 5.9 \mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$ with the addition of higher CO₂ (Tukey
253 HSD, $P < 0.001$) at station SEATS. On the other hand, neither HT (Tukey HSD, $P =$
254 0.707) nor HTHC (Tukey HSD, $P = 0.057$) affected NPP at station D001.

255 The in situ dark respiration rate at station SEATS was remarkably lower than that
256 at station D001 regardless of normalizing to volume of seawater (Independent
257 samples t-test, $t = -11.568$, $df = 4$, $P < 0.001$; Fig. 5a) or chl *a* (Independent samples
258 t-test, $t = -8.019$, $df = 4$, $P = 0.001$; Fig. 5b). The higher temperature increased dark
259 respiration rate from 2.8 ± 1.2 to $9.3 \pm 0.6 \mu\text{g C L}^{-1} \text{d}^{-1}$ (Tukey HSD, $P < 0.001$) at
260 station SEATS while HTHC reduced it to $1.1 \pm 0.2 \mu\text{g C L}^{-1} \text{d}^{-1}$ (Tukey HSD, $P =$
261 0.009; Fig. 5c). The higher temperature also promoted dark respiration rate at station
262 D001, from 16.9 ± 2.0 to $31.5 \pm 5.1 \mu\text{g C L}^{-1} \text{d}^{-1}$ (Tukey HSD, $P = 0.007$) but HTHC

263 did not alter it (Tukey HSD, $P = 0.516$; Fig. 5c). When it was normalized to chl *a*,
264 higher temperature still increased dark respiration rate from 12.0 ± 1.8 to 19.7 ± 1.4
265 $\mu\text{g C} (\mu\text{g chl } a)^{-1} \text{d}^{-1}$ (Tukey HSD, $P = 0.006$) while the effect of temperature on
266 respiration rate at station D001 was insignificant (Tukey HSD, $P = 0.891$; Fig. 5d).
267 Compared to LTLC, HTHC did not affect respiration rate at either station (Tukey
268 HSD, $P = 0.131$ at station SEATS, $P = 0.348$ at station D001; Fig. 5d).

269 The in situ ratio of respiration to photosynthesis was $31.9 \pm 3.5\%$ at stations
270 SEATS, significantly higher than that ($24.2 \pm 1.3\%$) at station D001 (Independent
271 samples t-test, $t = 3.537$, $df = 4$, $P = 0.0024$; Fig. 6a). After seven days incubation in
272 microcosms, Tukey HSD comparison ($P = 0.05$) showed that higher temperature did
273 not affect the ratio of respiration to photosynthesis but HTHC reduced it from $27.8 \pm$
274 1.6% to $16.5 \pm 1.3\%$ at station SEATS (Fig. 6b). On the contrary, HTHC ($38.7 \pm 3.1\%$)
275 increased the ratio compared to LTLC ($27.3 \pm 2.4\%$), with insignificant effect of
276 temperature alone ($29.5 \pm 3.3\%$) at station D001 (Fig. 6b).

277 **4 Discussion**

278 **4.1 Effects of increased temperature and CO₂ on biomass**

279 The in situ chl *a* concentration at station D001 was higher than that at SEATS,
280 indicating more phytoplankton biomass at station D001. The chl *a* concentration
281 decreases with distance from the coast in the NSCS, mainly due to the change of
282 nutrients (Li et al., 2011). The higher temperature increased chl *a* concentration at
283 both stations, which might be attributed to increased active uptake of nutrients at the
284 elevated temperatures through enhanced enzymatic activities. Algal and
285 cyanobacterial growth commonly increases with temperature within a suitable range
286 (Goldman and Carpenter, 1974; Montagnes and Franklin, 2001; Savage et al., 2004;
287 Boyd et al. 2013) and optimum temperatures for growth of marine phytoplanton are
288 usually several degrees higher than the environmental temperatures (Thomas et al.,
289 2012).

290 On the other hand, the elevated CO₂ offset the positive effect of the higher
291 temperature on chl *a* at station D001, and even reduced chl *a* at station SEATS. High
292 CO₂ can sometimes enhance algal photosynthesis and growth, since CO₂ in seawater

293 is suboptimal for full operation of Rubisco enzymes (Wu et al., 2008 and references
294 therein). On the other hand, positive effects of elevated CO₂ can be affected by other
295 environmental factors. Gao et al. (2012b) demonstrated that rising CO₂ could enhance
296 growth of diatoms at low light intensity, but decrease it at high light intensity. It was
297 found that rising CO₂ concentration lowered the threshold for diatom growth above
298 which photosynthetic active radiation becomes excessive or stressful, owing to
299 reduced energy requirements for inorganic carbon acquisition at elevated CO₂ (Gao et
300 al., 2012b). In the present study, the mean daily solar radiation levels during
301 incubation were 1312 and 1136 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (Table 1), which were far above
302 the threshold light intensity reported for diatoms (Gao et al., 2012b). Consequently,
303 the higher CO₂ combined with the high solar radiation in summer of NSCS may have
304 imposed negative effects on phytoplankton biomass at station SEATS and D001. In
305 addition, the inhibitory effect of higher CO₂ on biomass was more significant at
306 station SEATS than D001. This can be attributed to the higher sensitivity of
307 picoplankton to high solar radiation (Li et al., 2011; Wu et al., 2015), which could be
308 delivered to the interaction of high solar radiation and high CO₂. As shown in Li et
309 al.'s (2011) study, the proportion of picoplankton in phytoplankton assemblages
310 increased with distance off the coasts. Therefore, the dominant species at station
311 SEATS are pico- and nano-phytoplankton, but micro-phytoplankton at station D001
312 (Table 3).

313 **4.2 Effects of increased levels of temperature and CO₂ on primary productivity**

314 The seawater volume-specific DPP at station D001 was higher than station
315 SEATS. This should result from both higher chl *a* concentration and chl *a*-specific
316 DPP at D001. It has been shown that smaller cells exist at SEATS than at D001 (Table
317 3). Smaller cells have been considered to have larger DPP, according to Laws's model
318 (1975). The discrepancy between our finding and Laws's model may be due to the
319 availability of nutrients. Laws's model was based on growth rates obtained from the
320 same nutrient level. Nevertheless, the nutrient level at station D001 is higher than at
321 SEATS (Table 3), leading to higher DPP. The higher temperature increased seawater
322 volume-specific DPP at both stations. This could be attributed to more biomass

323 produced at the warmer conditions, as indicated by chl *a*. High temperature enhanced
324 the chl *a*-specific DPP at station SEATS. However, no positive effects of temperature
325 were found on chl *a*-specific DPP at station D001. The differential effects of
326 temperature on chl *a*-specific DPP between the stations may be due to the
327 phytoplankton community composition, since cyanobacteria and/or
328 pico-phytoplankton have the strongest temperature response in terms of
329 photosynthetic carbon fixation compared to micro- and nano-phytoplankton
330 (Andersson et al., 1994). This finding contributes to the explanation of the dominance
331 of pico-phytoplankton in a warmer ocean (Chen et al., 2014; Montagnes and Franklin,
332 2001; Hare et al. 2007; Morán et al., 2010). HTHC reduced chl *a*-specific DPP at
333 station D001, but increased it at station SEATS. High CO₂ also reduced chl *a*-specific
334 DPP in a previous study, which could result from the interaction of high CO₂ and high
335 solar radiation during the summer in the NSCS (Gao et al., 2012b). The reason that
336 HTHC stimulated chl *a*-specific DPP at station SEATS may be due to a dramatic
337 decline in chl *a* concentration under the HTHC treatment.

338 **4.3 Effects of increased temperature and CO₂ on respiration**

339 The dark respiration rate of phytoplankton at station D001 was higher than that at
340 SEATS, regardless of normalizing to seawater or chl *a*. The respiration rate of algae or
341 cyanobacteria usually increases with cell size (López-Sandoval et al., 2014). Station
342 SEATS has more pico-phytoplankton, which would lead to a lower chl *a*-specific dark
343 respiration rate and then lower seawater volume-specific dark respiration, particularly
344 when combined with lower chl *a* level. The higher temperature increased seawater
345 volume-specific dark respiration at both stations, which could be related to increased
346 chl *a* concentration and/or enhanced respiratory carbon loss at the higher temperature.
347 The higher temperature also increased chl *a*-specific dark respiration rate at station
348 SEATS. This is consistent with Butrón et al.'s (2009) study, in which respiration rates
349 of phytoplankton along Nervio ñ–Ibaizabal estuary showed a positive correlation with
350 temperature. Robarts and Zohary (1987) also found that respiration rate of
351 bloom-forming cyanobacteria was temperature-dependent, with optima over 25 °C.

352 HTHC reduced seawater volume-specific dark respiration at both stations, which

353 should be the consequence of the decreased chl *a* in this treatment. The higher
354 temperature increased chl *a*-specific dark respiration rate at station SEATS, but there
355 was no significant difference between HTHC and LTLC, indicating the higher CO₂
356 inhibited the chl *a*-specific dark respiration rate. Similarly, reduced respiration was
357 found in mesocosm studies (Spilling et al., 2016). In theory, higher CO₂ would inhibit
358 respiratory release of CO₂. Nevertheless, enhanced respiration rate at higher CO₂
359 conditions have been found in laboratory-grown diatoms (Wu et al., 2010),
360 coccolithophores (Jin et al., 2015), mixed phytoplankton assemblages (Jin et al.,
361 2015), and macroalgae as well (Zou et al., 2011). Such increased respiration has been
362 attributed to extra energy demand to cope with increased seawater acidity caused by
363 higher CO₂ (Gao and Campbell, 2014; Raven et al., 2014). Therefore, the effect of
364 increased CO₂ on phytoplankton respiration could be due to the combined effects of
365 CO₂ diffusive resistance and seawater acidity stress. Meanwhile, neither higher
366 temperature alone nor HTHC significantly affected chl *a*-specific dark respiration rate
367 at station D001. One possible reason could be that larger cells are less sensitive to
368 CO₂ diffusive resistance and acidic stress due to thicker diffusion boundary layers
369 around the cells. This hypothetical explanation is worthy of future testing.

370 **4.4 Effects of increased temperature and CO₂ on R/P**

371 Laws's model (1975) has suggested that large phytoplankton cells are likely to
372 consume a smaller fraction of their biomass to compete with small phytoplankton
373 cells in terms of the growth rate, considering small cells have higher gross production
374 rates. Our finding that phytoplankton in station SEATS had a higher R/P than station
375 D001 confirms Laws's model. It was theorized that autotrophic respiration is more
376 sensitive to temperature than photosynthesis and the ratio of R/P was predicted to
377 increase with temperature (Ryan, 1991; Woodwell, 1990; Woodwell et al., 1983).
378 However, the assumption that plant respiration is highly temperature dependent was
379 primarily based on short-term (a few minutes or hours) responses of plants to changes
380 of temperature (Gifford, 1994). In long-term experiments (days or months), the
381 increase in respiration with temperature tended to disappear due to acclimation
382 (Gifford, 1995; Jones, 1977; Reich et al., 2016; Slot and Kitajima, 2015; Ziska and

383 Bunce, 1998). Photosynthetic acclimation to warming is variable (Chalifour and
384 Juneau, 2011; Hancke and Glud, 2004; Schlüter et al., 2014; Staehr and Birkeland,
385 2006). However, a general acclimation response to long-term increased temperature is
386 a rise in optimal temperature of photosynthesis (Gunderson et al., 2010; Kattge and
387 Knorr, 2007; Staehr and Birkeland, 2006). Such shifts in the temperature response of
388 photosynthesis and respiration via physiological acclimation can dampen the increase
389 in R/P at high temperatures, or climate warming would not increase R/P (Reich et al.,
390 2016). In other words, phytoplankton would down-regulate the high sensitivity of
391 respiration to temperature, and maintain a relatively consistent net primary production
392 and hence food web structure in a warming ocean. Although the ratio of R/P did not
393 vary with increased temperature at both stations in our work either, both
394 photosynthesis and respiration were enhanced by the higher temperature. The constant
395 ratio was due to the similar amplitude of increase in photosynthesis and respiration.
396 The incubation period of 7–8 days might not be enough for phytoplankton to
397 acclimate to the increased temperature completely, and therefore the stimulated effects
398 of high temperature on photosynthesis and respiration were still notable. Opposite
399 effects of HTHC on R/P were detected at station SEATS and D001, negative at
400 SEATS and positive at D001. This can be attributed to differential responses of
401 photosynthesis at both stations to HTHC, considering the responses of respiration
402 were similar.

403 **5 Conclusions**

404 This study demonstrates that ocean warming expected to occur by the end of the
405 century would simulate the DPP and also dark respiration of phytoplankton
406 assemblages in NSCS, but this positive effect can be damped or offset when ocean
407 acidification is combined. The responses of phytoplankton assemblages locating
408 different areas to ocean warming and acidification could be contrasting due to various
409 phytoplankton compositions and physical and chemical environments. It seems that
410 phytoplankton assemblages in pelagic areas are more sensitive to ocean warming and
411 acidification. More exhaustive investigations are needed to obtain an accurate view of
412 primary production under future ocean environment.

413 **Acknowledgements**

414 This study was supported by the national key research programs
415 2016YFA0601400, National Natural Science Foundation (41430967; 41120164007),
416 State Oceanic Administration (National Programme on Global Change and Air-Sea
417 Interaction, GASI-03-01-02-04).

418 **References**

419 Andersson, A., Haecky, P., and Hagström, Å.: Effect of temperature and light on the
420 growth of micro-nano-and pico-plankton: impact on algal succession, *Mar. Biol.*,
421 120, 511-520, 1994.

422 Boyd, P.W., Rynearson, T.A., Armstrong, E.A., Fu, F., Hayashi, K., Hu, Z., Hutchins,
423 D.A., Kudela, R.M., Litchman, E., Mulholland, M. R., Passow, U., Strzepek, R.F.,
424 Whittaker, K.A., Yu, E., and Thomas, M.K.: Marine phytoplankton temperature
425 versus growth responses from polar to tropical waters – Outcome of a scientific
426 community-wide study, *PLoS ONE*, 8, e63091, 2013.

427 Butrón, A., Iriarte, A., and Madariaga, I.: Size-fractionated phytoplankton biomass,
428 primary production and respiration in the Nervián–Ibaizabal estuary: A
429 comparison with other nearshore coastal and estuarine ecosystems from the Bay
430 of Biscay, *Cont. Shelf Res.*, 29, 1088-1102, 2009.

431 Casey, K. S. and Cornillon, P.: Global and regional sea surface temperature trends, *J.
432 Clim.*, 14, 3801-3818, 2001.

433 Chalifour, A. and Juneau, P.: Temperature-dependent sensitivity of growth and
434 photosynthesis of *Scenedesmus obliquus*, *Navicula pelliculosa* and two strains of
435 *Microcystis aeruginosa* to the herbicide atrazine, *Aquat. Toxicol.*, 103, 9-17,
436 2011.

437 Chen, B., Liu, H., Huang, B., and Wang, J.: Temperature effects on the growth rate of
438 marine picoplankton. *Mar. Ecol. Prog. Ser.*, 505, 37-47, 2014.

439 Du, C., Liu, Z., Dai, M., Kao, S.-J., Cao, Z., Zhang, Y., Huang, T., Wang, L., and Li,
440 Y.: Impact of the Kuroshio intrusion on the nutrient inventory in the upper
441 northern South China Sea: insights from an isopycnal mixing model,
442 *Biogeosciences*, 10, 6419-6432, 2013.

443 Falkowski, P. G. and Raven, J. A.: *Aquatic photosynthesis*, Princeton University Press,
444 2013.

445 Fang, G., Chen, H., Wei, Z., Wang, Y., Wang, X., and Li, C.: Trends and interannual
446 variability of the South China Sea surface winds, surface height, and surface
447 temperature in the recent decade, *Journal of Geophysical Research Atmospheres*,
448 111, 2209-2223, 2006.

449 Feng, Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y., DiTullio, G. R., Lee, P. A.,
450 Wilhelm, S. W., Rowe, J. M., Sun, J., Nemcek, N., Gueguen, C., Passow, U.,
451 Benner, I., Brown, C., and Hutchins, D. A.: Effects of increased pCO₂ and
452 temperature on the North Atlantic spring bloom. I. The phytoplankton
453 community and biogeochemical response. *Mar. Ecol. Prog. Ser.*, 388, 13-25,

454 2009.

455 Gao, K., Campbell D.: Photophysiological responses of marine diatoms to elevated
456 CO₂ and decreased pH: a review. *Funct. Plant Biol.*, 41, 449-459, 2014.

457 Gao, K., Helbling, E. W., Häder, D.-P., and Hutchins, D. A.: Responses of marine
458 primary producers to interactions between ocean acidification, solar radiation,
459 and warming, *Mar. Ecol. Prog. Ser.*, 470, 167-189, 2012a.

460 Gao, K., Wu, Y., Li, G., W, H., Villafañe, E. V., Helbling E. W.: Solar UV-radiation
461 drives CO₂-fixation in marine phytoplankton: A double-edged sword, *Plant
462 Physiol.*, 144, 54-59, 2007.

463 Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L., Zheng, Y., Jin,
464 P., and Cai, X.: Rising CO₂ and increased light exposure synergistically reduce
465 marine primary productivity, *Nat. Clim. Change*, 2, 519-523, 2012b.

466 Gifford, R.: The global carbon cycle: A viewpoint on the missing sink, *Funct. Plant
467 Biol.*, 21, 1-15, 1994.

468 Gifford, R. M.: Whole plant respiration and photosynthesis of wheat under increased
469 CO₂ concentration and temperature: long-term vs. short-term distinctions for
470 modelling, *Glob. Chang. Biol.*, 1, 385-396, 1995.

471 Giordano, M., Beardall, J., and Raven, J. A.: CO₂ concentrating mechanisms in algae:
472 mechanisms, environmental modulation, and evolution, *Annu. Rev. Plant Biol.*,
473 56, 99-131, 2005.

474 Goldman, J. C. and Carpenter, E. J.: A kinetic approach to the effect of temperature on
475 algal growth, *Limnol. Oceanogr.*, 19, 756-766, 1974.

476 Gunderson, C. A., O'hara, K. H., Campion, C. M., Walker, A. V., and Edwards, N. T.:
477 Thermal plasticity of photosynthesis: the role of acclimation in forest responses
478 to a warming climate, *Glob. Chang. Biol.*, 16, 2272-2286, 2010.

479 Häder, D.-P. and Gao, K.: Interactions of anthropogenic stress factors on marine
480 phytoplankton, *Front. in Environ. Sci.*, 3, 14, 2015.

481 Hancke, K. and Glud, R. N.: Temperature effects on respiration and photosynthesis in
482 three diatom-dominated benthic communities, *Aquat. Microb. Ecol.*, 37, 265-281,
483 2004.

484 Hare, C.E., Leblanc, K., DiTullio, G.R., Kudela, R.M., Zhang, Y., Lee, P.A., Riseman,
485 S., Tortell, P.D. and Hutchins, D.A.: Consequences of increased temperature and
486 CO₂ for algal community structure and biogeochemistry in the Bering Sea, *Mar.
487 Ecol. Prog. Ser.*, 352, 9-16, 2007.

488 Hein, M. and Sand-Jensen, K.: CO₂ increases oceanic primary production, *Nature*,
489 388, 526-527, 1997.

490 Holding, J., Duarte, C., Sanz-Martí, M., Mesa, E., Arrieta, J., Chierici, M., Hendriks,
491 I., Garcíá-Corral, L., Regaudie-de-Gioux, A., and Delgado, A.: Temperature
492 dependence of CO₂-enhanced primary production in the European Arctic Ocean,
493 *Nat. Clim. Change*, 5, 1079–1082, 2015.

494 IPCC: Climate change 2013: The physical science basis. In: Working Group I
495 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
496 Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
497 Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.), Cambridge

498 Univ Press, New York, 2013.

499 Jin, P., Wang, T., Liu, N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., and Gao,
500 K.: Ocean acidification increases the accumulation of toxic phenolic compounds
501 across trophic levels, *Nat. Commun.*, 6, 8714, doi:10.1038/ncomms9714, 2015.

502 Jones, R. I.: The importance of temperature conditioning to the respiration of natural
503 phytoplankton communities, *Br. Phycol. J.*, 12, 277-285, 1977.

504 Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical model of
505 photosynthesis: a reanalysis of data from 36 species, *Plant Cell Environ.*, 30,
506 1176-1190, 2007.

507 López-Sandoval, D. C., Rodríguez-Ramos, T., Cermeño, P., Sobrino, C., and Marañón,
508 E.: Photosynthesis and respiration in marine phytoplankton: Relationship with
509 cell size, taxonomic affiliation, and growth phase, *J. Exp. Mar. Bio. Ecol.*, 457,
510 151-159, 2014.

511 Laws, E. A.: The importance of respiration losses in controlling the size distribution
512 of marine phytoplankton, *Ecology*, 1975, 419-426, 1975.

513 Lewandowska, A. M., Breithaupt, P., Hillebrand, H., Hoppe, H.-G., Jürgens, K., and
514 Sommer, U.: Responses of primary productivity to increased temperature and
515 phytoplankton diversity, *J. Sea Res.*, 72, 87-93, 2012.

516 Li, G., Gao, K., and Gao, G.: Differential impacts of solar UV radiation on
517 photosynthetic carbon fixation from the coastal to offshore surface waters in the
518 South China Sea, *Photochem. Photobiol.*, 87, 329-334, 2011.

519 Li, R. H., Liu, S. M., Li, Y. W., Zhang, G. L., Ren, J. L., and Zhang, J.: Nutrient
520 dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan
521 Island, South China Sea, *Biogeosciences*, 11, 481-506, 2014.

522 Liu, Y., Peng, Z., Zhou, R., Song, S., Liu, W., You, C. F., Lin, Y. P., Yu, K., Wu, C. C.,
523 and Wei, G.: Acceleration of modern acidification in the South China Sea driven
524 by anthropogenic CO₂, *Sci. Rep.*, 4, 1158-1159, 2014.

525 Montagnes, D. J. and Franklin, M.: Effect of temperature on diatom volume, growth
526 rate, and carbon and nitrogen content: reconsidering some paradigms, *Limnol.*
527 *Oceanogr.*, 46, 2008-2018, 2001.

528 Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A., and Li, W. K.: Increasing
529 importance of small phytoplankton in a warmer ocean, *Glob. Chang. Biol.*, 16,
530 1137-1144, 2010.

531 Mostofa, K. M.: Reviews and Syntheses: Ocean acidification and its potential impacts
532 on marine ecosystems, *Biogeosciences*, 13, 1767, 2016.

533 Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO₂
534 system calculations, ORNL/CDIAC-105a. Carbon Dioxide Information Analysis
535 Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
536 Tennessee, 2006. 2006.

537 Poll, W., Kulk, G., Timmermans, K., Brussaard, C., Woerd, H., Kehoe, M., Mojica, K.,
538 Visser, R., Rozema, P., and Buma, A.: Phytoplankton chlorophyll a biomass,
539 composition, and productivity along a temperature and stratification gradient in
540 the northeast Atlantic Ocean, *Biogeosciences*, 10, 4227-4240, 2013.

541 Raven, J.: Limits on growth rates, *Nature*, 361, 209-210, 1993.

542 Raven, J. A., Beardall, J., and Giordano, M.: Energy costs of carbon dioxide
543 concentrating mechanisms in aquatic organisms. *Photosynthesis Res.*, 121,
544 111-124, 2014.

545 Raven, J. A., Giordano, M., Beardall, J., and Maberly, S. C.: Algal evolution in
546 relation to atmospheric CO₂: carboxylases, carbon-concentrating mechanisms
547 and carbon oxidation cycles, *Phil. Trans. R. Soc. B*, 367, 493-507, 2012.

548 Reich, P. B., Sendall, K. M., Stefanski, A., Wei, X., Rich, R. L., and Montgomery, R.
549 A.: Boreal and temperate trees show strong acclimation of respiration to
550 warming, *Nature*, 531, 633-636, 2016.

551 Reinfelder, J. R.: Carbon concentrating mechanisms in eukaryotic marine
552 phytoplankton, *Annu. Rev. Mar. Sci.*, 3, 291-315, 2011.

553 Riebesell, U., Wolf-Gladrow, D., and Smetacek, V.: Carbon dioxide limitation of
554 marine phytoplankton growth rates, *Nature*, 361, 249-251, 1993.

555 Robarts, R. D. and Zohary, T.: Temperature effects on photosynthetic capacity,
556 respiration, and growth rates of bloom-forming cyanobacteria, *N. Z. J. Mar.
557 Freshwater Res.*, 21, 391-399, 1987.

558 Roy, R. N., Roy, L.N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E.,
559 Ryan, M. G.: Effects of climate change on plant respiration, *Ecol. Appl.*, 1, 157-167,
560 1991.

561 Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B., and Charnov, E. L.: Effects
562 of body size and temperature on population growth, *Am. Nat.*, 163, 429-441,
563 2004.

564 Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric CO₂ promotes
565 phytoplankton productivity, *Ecol. Lett.*, 7, 446-451, 2004.

566 Schlüter, L., Lohbeck, K. T., Gutowska, M. A., Groger, J. P., Riebesell, U., and
567 Reusch, T. B. H.: Adaptation of a globally important coccolithophore to ocean
568 warming and acidification, *Nat. Clim. Change*, 4, 1024-1030, 2014.

569 Slot, M. and Kitajima, K.: General patterns of acclimation of leaf respiration to
570 elevated temperatures across biomes and plant types, *Oecologia*, 177, 885-900,
571 2015.

572 Sommer, U., Paul, C., and Moustaka-Gouni, M.: Warming and ocean acidification
573 effects on phytoplankton—from species shifts to size shifts within species in a
574 mesocosm experiment, *PLoS One*, 10, e0125239, 2015.

575 Spilling, K., Paul, A.J., Virkkala, N., Hastings, T., Lischka, S. , Stuhr, A., Bermudez,
576 R., Czerny, J., Boxhammer, T., Schulz, K.G., Ludwig, A., and Riebesell U.:
577 Ocean acidification decreases plankton respiration: evidence from a mesocosm
578 experiment. *Biogeosciences Discuss.*, doi:10.5194/bg-2015-608, 2016.

579 Staehr, P. A. and Birkeland, M. J.: Temperature acclimation of growth, photosynthesis
580 and respiration in two mesophilic phytoplankton species, *Phycologia*, 45,
581 648-656, 2006.

582 Thomas, M. K., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: A global pattern
583 of thermal adaptation in marine phytoplankton, *Science*, 338, 1085-1088, 2012.

584 Tatters, A.O., Roleda. M.Y., Schnetzer, A., Fu, F.-X., Hurd, C., Boyd, P.W., Caron,
585 D.A., Lie, A.A.Y., Hoffmann, L. and Hutchins, D.A.: Short term and long term

586 conditioning of a temperate marine diatom community to acidification and
587 warming, *Phil. Trans. R. Soc. B*, 368, 20120437, doi:10.1098/rstb.2012.0437,
588 2013.

589 Tortell, P. D. and Morel, F. M.: Sources of inorganic carbon for phytoplankton in the
590 eastern Subtropical and Equatorial Pacific Ocean, *Limnol. Oceanogr.*, 47,
591 1012-1022, 2002.

592 Tortell, P. D., Rau, G. H., and Morel, F. M.: Inorganic carbon acquisition in coastal
593 Pacific phytoplankton communities, *Limnol. Oceanogr.*, 45, 1485-1500, 2000.

594 Welschmeyer, N. A.: Fluorometric analysis of chlorophyll *a* in the presence of
595 chlorophyll *b* and pheopigments. *Limnol. Oceanogr.*, 39, 1985-1992, 1994.

596 Woodwell, G. M.: The effects of global warming, *Global warming: the Greenpeace*
597 *report*, 1990. 116-132, 1990.

598 Woodwell, G. M., Hobbie, J., Houghton, R., Melillo, J., Moore, B., Peterson, B., and
599 Shaver, G.: Global deforestation: contribution to atmospheric carbon dioxide,
600 *Science*, 222, 1081-1086, 1983.

601 Wu, H., Zou, D., and Gao, K.: Impacts of increased atmospheric CO₂ concentration
602 on photosynthesis and growth of micro-and macro-algae, *Sci. China Ser. C Life*
603 *Sci.*, 51, 1144-1150, 2008.

604 Wu, J., Chung, S., Wen, L., Liu, K., Chen, Y., Chen, H., and Karl, D.: Dissolved
605 inorganic phosphorus, dissolved iron, and *Trichodesmium* in the oligotrophic
606 South China Sea. *Glob. Biogeochemical Cycles*, 17, 1008,
607 doi:10.1029/2002GB001924, 2003.

608 Wu, Y., Gao, K.: Combined effects of solar UV radiation and CO₂-induced seawater
609 acidification on photosynthetic carbon fixation of phytoplankton assemblages in
610 the South China Sea. *Chin. Sci. Bull.*, 55, 3680-3686, 2010.

611 Wu, Y., Gao, K., and Riebesell, U.: CO₂-induced seawater acidification affects
612 physiological performance of the marine diatom *Phaeodactylum tricornutum*,
613 *Biogeosciences (BG)*, 7, 2915-2923, 2010.

614 Wu, Y., Li, Z., Du, W., and Gao, K.: Physiological response of marine centric diatoms
615 to ultraviolet radiation, with special reference to cell size. *J. Photoch. Photobio.*
616 B, 153,1-6, 2015.

617 Ziska, L. H. and Bunce, J. A.: The influence of increasing growth temperature and
618 CO₂ concentration on the ratio of respiration to photosynthesis in soybean
619 seedlings, *Glob. Chang. Biol.*, 4, 637-643, 1998.

620 Zhang, G., Pang, Y., Chen, S., Wu, Z., Chen, D., Wang, D., and Huang, B.: Study on
621 the communities of the *Netz*-phytoplankton in the coastal waters of Hainan
622 Island in the early summer, *Trans. Oceanol. Limnol.*, 3, 97-104, 2014.

623 Zou, D., Gao, K., and Luo, H.: Short- and long-term effects of elevated CO₂ on
624 photosynthesis and respiration in the marine macroalga *Hizikia fusiformis*
625 (Sargassaceae, Phaeophyta) grown at low and high N supplies, *J. Phycol.*, 47,
626 87-97, 2011.

627

628

629 Table 1. The daytime (12 h) mean solar radiation (PAR, $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) during
630 incubation at stations SEATS and D001.

SEATS		D001	
Date	Solar radiation	Date	Solar radiation
03/08/2012 ^a	1454	14/08/2012 ^a	1512
04/08/2012	1304	15/08/2012	1480
05/08/2012	1146	16/08/2012	400
06/08/2012	1113	17/08/2012	111
07/08/2012	927	18/08/2012	1520
08/08/2012	1592	19/08/2012	1583
09/08/2012	1582	20/08/2012 ^b	1346
10/08/2012 ^b	1381	Mean ^c	1136
Mean ^c	1312		

631 ^aThe dates for measurements of photosynthetic carbon fixation in situ. ^bThe dates for
632 measurements of photosynthetic carbon fixation experiencing temperature and $p\text{CO}_2$
633 treatments. ^cMean represents the average of daytime mean solar radiation over seven
634 or six days microcosm incubation.

635

636 Table 2. Parameters of the seawater carbonate system at different incubation
 637 conditions. Measurements and estimation of the parameters were described in
 638 Methods. Data are the means \pm SD (n = 3). LTLC, low temperature and low $p\text{CO}_2$;
 639 HTLC, high temperature and low $p\text{CO}_2$; HTHC, high temperature and high $p\text{CO}_2$.
 640 DIC = dissolved inorganic carbon, TA = total alkalinity. Different superscript letters
 641 indicate significant differences between treatments within one station.

642

	SEATS			D001		
	LTLC	HTLC	HTHC	LTLC	HTLC	HTHC
Temperature (°C)	30.5 \pm 1.0	33.5 \pm 1.0	33.5 \pm 1.0	28.5 \pm 1.0	31.5 \pm 1.0	31.5 \pm 1.0
pH _T	8.07 \pm 0.01	8.05 \pm 0.01	7.68 \pm 0.01	8.02 \pm 0.01	8.01 \pm 0.01	7.68 \pm 0.01
$p\text{CO}_2$ (μatm)	390.0 \pm 19.5	390.0 \pm 19.5	1000.0 \pm 70.0	420.0 \pm 25.2	420.0 \pm 25.2	1030.0 \pm 60.0
DIC ($\mu\text{mol kg}^{-1}$)	2056.4 \pm 49.2 ^a	1986.6 \pm 47.1 ^a	1999.9 \pm 91.4 ^a	1969 \pm 67.7 ^a	1896.5 \pm 64.8 ^a	2039.1 \pm 69.5 ^a
HCO_3^- ($\mu\text{mol kg}^{-1}$)	1758.4 \pm 47.5 ^{ab}	1681.2 \pm 45.4 ^a	1838.4 \pm 86.5 ^b	1719.2 \pm 63.7 ^a	1640.9 \pm 60.7 ^a	1882.3 \pm 66.4 ^b
CO_3^{2-} ($\mu\text{mol kg}^{-1}$)	288.2 \pm 1.2 ^b	296.2 \pm 1.2 ^c	138.1 \pm 3.3 ^a	238.8 \pm 3.4 ^b	245.3 \pm 3.5 ^b	131.6 \pm 1.7 ^a
CO_2 ($\mu\text{mol kg}^{-1}$)	9.8 \pm 0.5 ^a	9.1 \pm 0.5 ^a	23.5 \pm 1.7 ^b	11.0 \pm 0.7 ^a	10.3 \pm 0.7 ^a	25.2 \pm 1.5 ^b
TA ($\mu\text{mol kg}^{-1}$)	2443.5 \pm 47.9 ^a	2387.7 \pm 45.8 ^a	2170.7 \pm 92.0 ^b	2294.2 \pm 68.6 ^a	2260.0 \pm 33.9 ^a	2199.4 \pm 68.5 ^a

643

644 Table 3. Physical, chemical, and biological parameters at stations SEATS and D001.

645 SST: seawater surface temperature; N: $\text{NO}_3^- + \text{NO}_2$ ($\mu\text{mol L}^{-1}$); P: PO_4^{3-} ($\mu\text{mol L}^{-1}$).

646 Data of nutrients and phytoplankton composition are derived from literatures.

647

Station	SST	Salinity	pH _T	N	P	Dominant phytoplankton
SEATS	28.7	32.9	8.07	<0.1 ^a	<0.01 ^b	Pico- and nano-phytoplankton ^c
D001	26.8	33.5	8.03	>1 ^d	>0.1 ^d	Micro-phytoplankton ^e

648 ^aDu et al. (2013); ^bWu et al. (2003); ^cLi et al. (2011); ^dLi et al. (2014); ^eZhang et al. (2014).

649

650

651

652

653

654

655

656

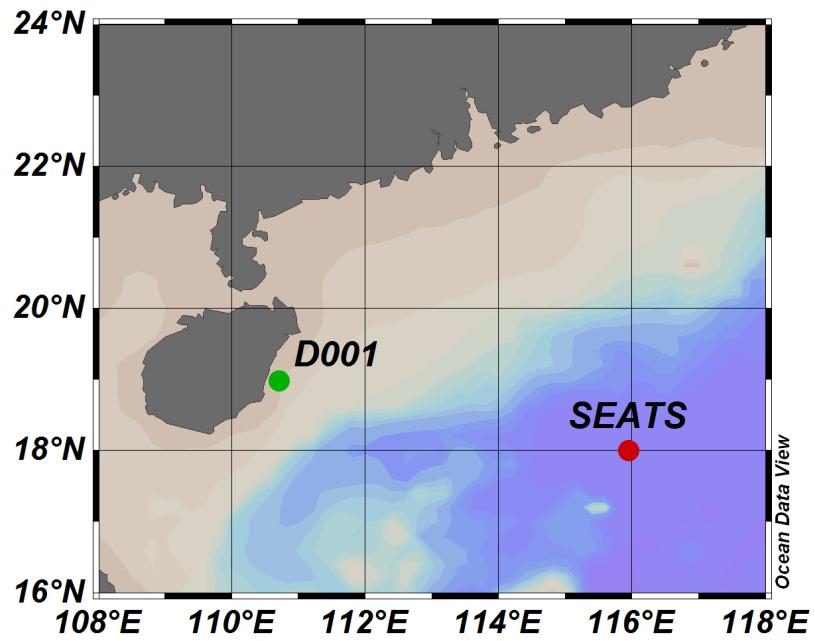
657

658 **Figure captions**

659 **Figure 1.** Experimental stations in the northern South China Sea.

660 **Figure 2.** Chl *a* concentration in situ (a) and after temperature and *p*CO₂ treatments in
661 microcosms (b). The microcosm incubations lasted seven days at station SEATS and
662 six days at station D001. The error bars indicate the standard deviations (n = 3). The
663 different letters above the error bars represent significant (*P* < 0.05) differences
664 between stations in panel (a) and between treatments in panel (b).

665 **Figure 3.** Daytime primary productivity (DPP) in situ (a, b) and after temperature and
666 *p*CO₂ treatments in microcosms (c, d). The microcosm incubations lasted seven days
667 at station SEATS and six days at station D001. The error bars indicate the standard
668 deviations (n = 3). The different letters above the error bars represent significant (*P* <
669 0.05) differences between stations in panels (a, b) and between treatments in panels (c,
670 d).

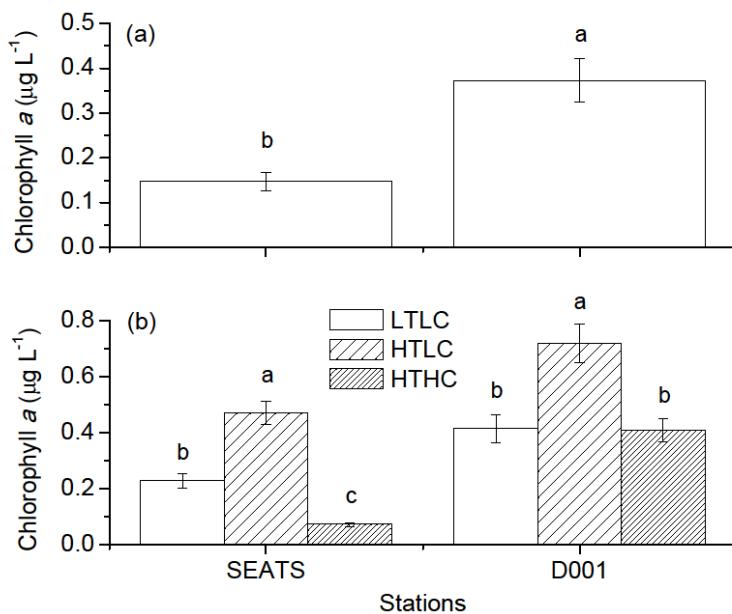

671 **Figure 4.** Net primary productivity (NPP) in situ (a, b) and after temperature and
672 *p*CO₂ treatments in microcosms (c, d). The microcosm incubations lasted seven days
673 at station SEATS and six days at station D001. The error bars indicate the standard
674 deviations (n = 3). The different letters above the error bars represent significant (*P* <
675 0.05) differences between stations in panels (a, b) and between treatments in panels (c,
676 d).

677 **Figure 5.** Dark respiration in situ (a, b) and after temperature and *p*CO₂ treatments in
678 microsoms (c, d). The microcosm incubations lasted seven days at station SEATS and
679 six days at station D001. The error bars indicate the standard deviations (n = 3). The
680 different letters above the error bars represent significant (*P* < 0.05) differences
681 between stations in panels (a, b) and between treatments in panels (c, d).

682 **Figure 6.** The ratio of respiration to photosynthesis in situ (a, b) and after temperature
683 and *p*CO₂ treatments (c, d) in microcosms. The microcosm incubations lasted seven
684 days at station SEATS and six days at station D001. The error bars indicate the
685 standard deviations (n = 3). The different letters above the error bars represent
686 significant (*P* < 0.05) differences between stations in panels (a, b) and between
687 treatments in panels (c, d).

688

689


690

691

692

693

Figure 1

694
695
696

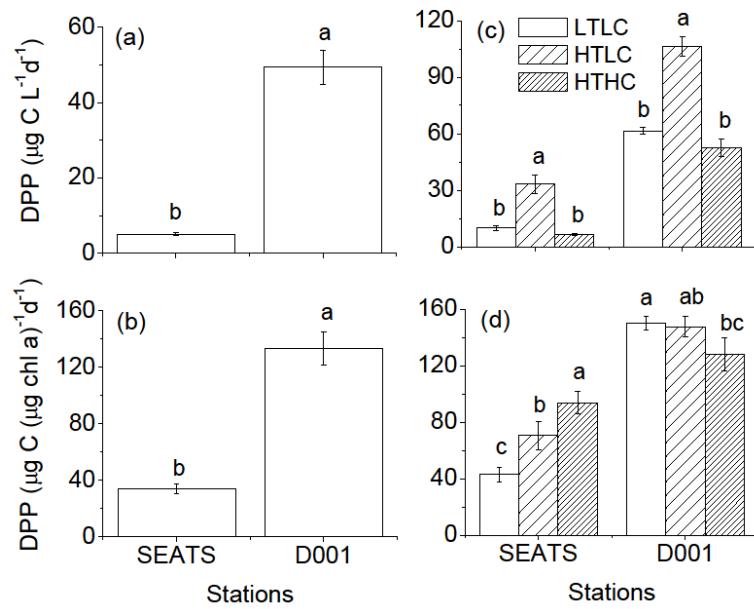


Figure 3

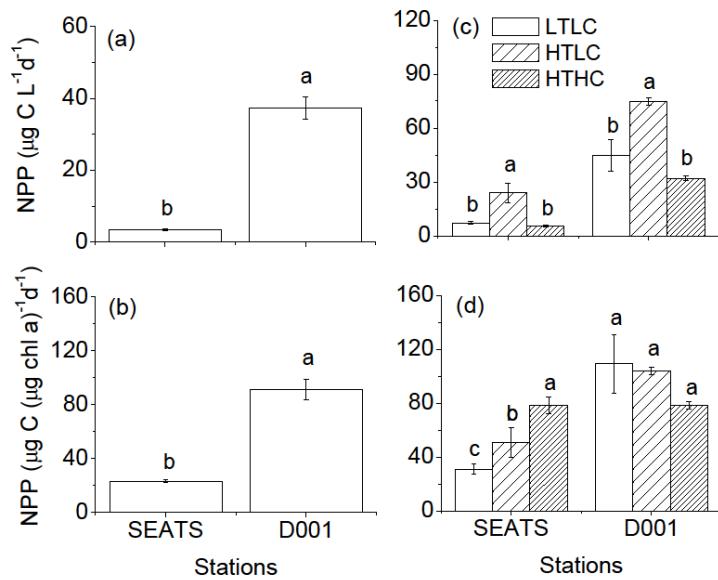


Figure 4

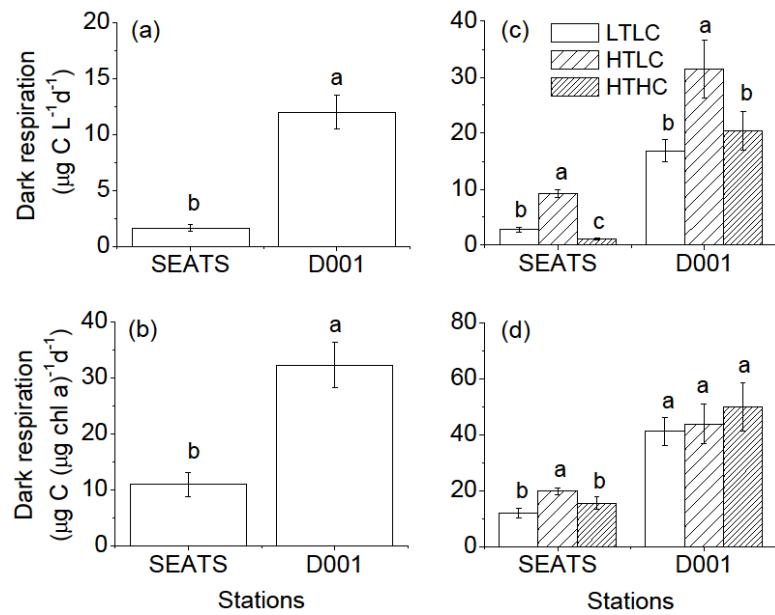


Figure 5

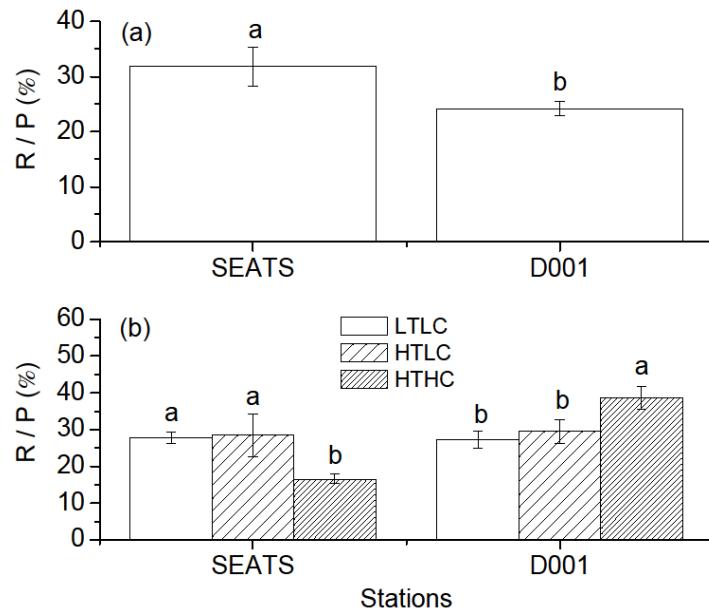


Figure 6