Abstract (*with insertions/deletions*):

We report on concentrations of dissolved CH₄, N_2O , O_2 , NO_3^- and NH_4^+ , and corresponding CH₄ and N₂O emissions for river sites in savannah, swamp forest and tropical forest, along the Congo main stem and in several of its tributary systems of the Western Congo Basin, Republic of Congo (ROC), during November 2010 (41 samples; "wet season") and August 2011 (25 samples; "dry season"; CH₄ and N₂O only). Dissolved inorganic nitrogen (DIN: $NH_4^+ + NO_3^-$; wet season; NH_4^+ + NO₃) was dominated by NO₃ (63 ± 19% of DIN), total DIN concentrations (1.5-45.3 µmol L⁻ ¹) being are consistent with negligible near absence of agricultural, domestic and industrial sources. Question: Is this true for all the three land types? Dissolved O₂ (wet season) was mostly undersaturated in swamp forest ($36 \pm 29\%$) and tropical forest ($77 \pm 36\%$) rivers but predominantly super-saturated in savannah rivers (100 \pm 17%). The dissolved concentrations of CH₄ and N₂O were are within previously reported ranges the range of values reported earlier for sub-Saharan African rivers. While Dissolved CH4 was always found to be super-saturated (11.2 - 9553 nmol L⁻ ¹; 440-354400% *Comment: Check this number*); whereas N₂O ranged from strong under-saturation to strong super-saturation (3.2-20.6 nmol L⁻¹; 47-205%). Evidently, rivers of the ROC are During the dry season, concentration means and ranges of CH₄ and N₂O concentrations were indistinguishable quite similar for all the three land types; and whereas seasonal differences in the means and ranges were not significant for N₂O concentration for any land type or for CH₄ in savannah rivers. The latter observation is consistent with seasonal buffering of river discharge by an underlying sand<mark>y-sandstone aquifer. By In contrast, CH₄ concentration in swamp and forest</mark> rivers $\frac{CH_4}{CH_4}$ was significantly higher in the wet season, possibly reflecting suggesting that CH_4 can be derived from floating macrophytes during flooding and/or enhanced methanogenesis in adjacent flooded soils in flood bank. Swamp rivers also exhibited both low (47%) and high (205%) N₂O saturations but wet season values were overall significantly lower than in either tropical forest or savannah rivers. These which rivers were always super-saturated (103-266%) and for which the overall means and ranges of N₂O were not significantly different. In swamp and forest rivers $\frac{9}{2}$ O_2 -saturation (%) co-varied negatively inversely with $\log \frac{1}{2}$ CH₄ saturation (log %) and positively linearly with % N₂O saturation (%). The strong A significant positive correlation for N₂O - O₂ correlation saturation in swamp rivers was coincident is consistent with strong N₂O and O₂ undersaturation, indicating N₂O consumption by during denitrification in the sediments. $\frac{1}{2}$ In savannah rivers persistent N₂O super-saturation and a negative N₂O - O₂ correlation $\frac{may}{may}$ indicate suggest N₂O production mainly by nitrification, consistent with a stronger significant correlation between N₂O and NH₄⁺ than between N₂O and NO₃⁻. Our range $\frac{1}{100}$ of values for CH₄ and N₂O emissions fluxes (33-48705 μ mol CH₄ m⁻² d⁻¹; 1-67 μ mol N₂O m⁻² d⁻¹), is are within the range previously estimated for sub-Saharan African rivers but it includes and associated with uncertainties deriving arising from our use of "basin-wide" values for CH₄ and N₂O gas transfer velocities. Even so, because Furthermore, as we did not account for any contribution from ebullition, which is quite likely for CH₄ is likely to be (at least 20%), our emissions fluxes estimates for CH₄ are probably rather conservative estimates.

Abstract (*with all make up*):

We report on concentrations of dissolved CH₄, N₂O, O₂, NO₃⁻ and NH₄⁺, and corresponding CH₄ and N₂O emissions for river sites in savannah, swamp forest and tropical forest, along the Congo main stem and in several of its tributary systems of the Western Congo Basin, Republic of Congo (ROC), during November 2010 (41 samples; "wet season") and August 2011 (25 samples; "dry season"; CH₄ and N₂O only). Dissolved inorganic nitrogen (DIN: $\frac{NH_4^+ + NO_3^-}{NH_4^+ + NO_3^-}$; wet season) was dominated by NO_{3⁻} (63 ± 19% of DIN), total DIN concentrations (1.5-45.3 μ mol L⁻¹) are consistent with near absence of agricultural, domestic and industrial sources. *Question: Is this true for all the* three land types? Dissolved O₂ (wet season) was mostly under-saturated in swamp forest (36 \pm 29%) and tropical forest (77 \pm 36%) rivers but predominantly super-saturated in savannah rivers $(100 \pm 17\%)$. The dissolved concentrations of CH₄ and N₂O are within the range of values reported earlier for sub-Saharan African rivers. Dissolved CH4 was found to be super-saturated (11.2 - 9553 nmol L⁻¹: 440-354400% Comment: Check this number): whereas N₂O ranged from strong undersaturation to super-saturation (3.2-20.6 nmol L⁻¹; 47-205%). Evidently, rivers of the ROC are persistent local sources of CH₄ and can be a minor source or sink for N₂O. During the dry season, mean and range of CH₄ and N₂O concentrations were quite similar for all the three land types: whereas seasonal differences in the mean and range were not significant for N₂O concentration in any land type or for CH₄ in savannah rivers. The latter observation is consistent with seasonal buffering of river discharge by an underlying sand-sandstone aquifer. In contrast, CH₄ concentration in swamp and forest rivers was significantly higher in the wet season, suggesting that CH₄ can be derived from floating macrophytes during flooding and/or enhanced methanogenesis in adjacent flooded soils. Swamp rivers also exhibit both low (47%) and high (205%) N₂O saturation but wet season values were overall significantly lower than in either tropical forest or savannah rivers. These rivers were always super-saturated (103-266%) and for which the overall mean and range of N₂O were not significantly different. In swamp and forest rivers O_2 -saturation (%) varied inversely with CH₄ saturation (log %) and linearly with N₂O saturation (%). A significant positive correlation for $N_2O - O_2$ saturation in swamp rivers is consistent with N₂O and O₂ under-saturation, indicating N₂O consumption during denitrification in the sediments. In savannah rivers persistent N₂O super-saturation and a negative N₂O - O₂ correlation suggest N₂O production mainly by nitrification, consistent with significant correlation between N₂O and NH₄⁺ than between N₂O and NO₃⁻. Our range of values for CH₄ and N₂O emission fluxes (33-48705 µmol CH₄ m⁻² d⁻¹; 1-67 µmol N₂O m⁻² d⁻¹) are within the range previously estimated for sub-Saharan African rivers and associated with uncertainties arising from our use of "basin-wide" values for CH₄ and N₂O gas transfer velocities. Furthermore, as we did not account for any contribution from ebullition, which is quite likely for CH₄ (at least 20%), our emission fluxes for CH₄ are rather conservative estimates.