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Abstract. The effect of ocean acidification on growth and calcification of the marine algae Emiliania huxleyi, was investigated

in a series of mesocosm experiments where enclosed water volumes that comprised a natural plankton community were exposed

to different carbon dioxide (CO2) concentrations. Calcification rates observed during those experiments were found to be

highly variable, even among replicate mesocosms that were subject to similar CO2 perturbations. Here, data from an ocean

acidification mesocosm experiment are reanalysed with an optimality-based dynamical plankton model. According to our5

model approach, cellular calcite formation is sensitive to variations in CO2 at the organism-level. We investigate the temporal

changes and variability in observations, with focus on resolving observed differences in total alkalinity and particulate inorganic

carbon (PIC). We explore how much of the variability in the data can be explained by variations of the initial conditions and

by the level of CO2 perturbation. Nine mesocosms of one experiment were sorted into three groups of high, medium and

low calcification rates and analysed separately. The spread of the three optimised ensemble model solutions captures most10

of the observed variability. Our results show that small variations in initial abundance of coccolithophores and the prevailing

physiological acclimation states generate differences in calcification that are larger than those induced by ocean acidification.

Accordingly, large deviations between optimal mass flux estimates of carbon and of nitrogen are identified even between

mesocosms that were subject to similar ocean acidification conditions. With our model-based data analysis we document how

an ocean acidification response signal in calcification can be disentangled from the observed variability in PIC.15

1 Introduction

Much knowledge about growth and mortality of phytoplankton has been inferred from experiments where environmental

factors like light, temperature, and nutrient availability have been predominantly controlled, e.g. in laboratory experiments

with batch cultures or with chemostats. Typically, these experiments are designed to determine a physiological response to

variations of a single factor, e.g. explaining changes in photosynthetic rate when exposed to different light conditions (e.g.20

Platt et al., 1977; Marra and Heinemann, 1982; Lewislg and Smith, 1983; Geider et al., 1985; Harrison and Platt, 1986;

Harding Jr et al., 1987). Many laboratory experiments are performed with monocultures, with the advantage that physiological

responses may then become well expressed in measurements while variability between replicates or even between repeated

experiments should remain low. In this context a series of laboratory studies with monocultures of calcifying coccolithophores

were conducted to investigate responses in calcification to variations in carbonate chemistry, often with Emiliania huxleyi, (e.g.25
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Zondervan et al., 2002; Iglesias-Rodriguez et al., 2008; Langer et al., 2009; Barcelos e Ramos et al., 2010). These studies

were motivated by the expectation that the observed trend in OA will affect calcifying algae and that their physiology is likely

sensitive to the seawater’s calcite saturation state (Feely et al., 2004; Orr et al., 2005).

The repeated laboratory OA experiments showed ambiguous responses in calcification to variations in carbon dioxide (CO2)

concentrations and Findlay et al. (2011) pointed out that differences in laboratory methodology, but also details in experimen-5

tal design, are likely the reason for the large observed variability in E. huxleyi responses to changes in carbonate chemistry.

Similarly, Engel et al. (2014) stressed that variations in the observed ratio between particulate inorganic carbon and partic-

ulate organic carbon (PIC:POC ratio) increase with the decrease of measured relative growth rates, depending on whether

"low” growth conditions were balanced (as achieved with chemostats) or resulted from unresolved transient nutrient-limitation

effects in batch cultures. This ongoing discussion is accompanied by the question of how representative the outcomes of10

monoculture laboratory experiments are, to allow for reliable future projections of OA effects on oceanic calcification rates of

coccolithophores and on possible climate feedbacks.

If we seek to make inference about future changes in calcification under oceanic conditions, experimental data are needed

that consider more realistic environmental conditions with a natural phytoplankton community that may include calcifying

algae like Emiliania huxleyi. A series of studies were conducted to investigate effects of OA on plankton dynamics. Among15

those were experiments with tanks or bags called mesocosms, with some enclosed water volume that typically comprised a

natural plankton community. These mesocosms were typically perturbed and exposed to different CO2 concentrations, e.g.

Pelagic Ecosystem CO2 Enrichment (PeECE) studies (Riebesell et al., 2008). Few studies focused on the impact of OA on

growth of E. huxleyi. In contrast to monoculture laboratory experiments, CO2 perturbation mesocosm experiments yield “net”

community response signals that are anticipated to be more indicative for possible future changes in oceanic calcification20

of coccolithophores. Replicate mesocosms with similar initial nutrient, as well as initial dissolved inorganic carbon (DIC)

concentrations typically show comparable temporal response patterns, i.e. an exponential growth phase until nutrients become

depleted and a post-bloom period where chlorophyll a concentrations decline. However, replicate mesocosms that all included

E. huxleyi exhibited large deviations in calcification responses, thereby altering carbonate chemistry. Such variability was well

reflected in total alkalinity (TA) measurements of the PeECE-I experiment (Delille et al., 2005). Furthermore, during PeECE-I25

it happened that mesocosms with high and low calcification rates were revealed among replicates in all three CO2 treatments.

To find enhanced variability in calcification in mesocosm experiments is comprehensable and can be attributed to the likely

mixture of superimposed responses of multiple plankton species even within replicates of similar CO2 perturbation. Thus, small

deviations in the initial relative mass distribution of photoautotrophs, zooplankton, and detritus between replicate mesocosms

can translate into some pronounced variability in measurements even under similar environmental conditions (e.g. Eggers et al.,30

2014).

Here we investigate data and their variability of replicate mesocosms during the PeECE-I experiment. For this we take a

modelling approach to simulate environmental conditions and the predominant dynamics of nine individual mesoscosms as

described in Engel et al. (2005) and in Delille et al. (2005). Joassin et al. (2011) presented a dynamical model to simulate the

mass flux of carbon (C), nitrogen (N), and of phosphorus (P) for the same PeECE-I experiment. Their model resolves growth35
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and losses of E. huxleyi together with interdependencies between bacteria, viruses, detritus, and dissolved organic matter

(DOM). The model of Joassin et al. (2011) also features the exudation and coagulation process of dissolved polysaccharides

(here referred to as dissolved combined carbohydrates, dCCHO) to form transparent exopolymer particles (TEP). In the study

of Joassin et al. (2011) some emphasis is put on the enhanced mortality of E. huxleyi due to viral lysis and on the variable

stoichiometry (C:N ratio) of the particulate organic matter (POC:PON ratio). They did not attempt to resolve a dependency5

between calcification and CO2 concentration and therefore restricted their simulations to one treatment with three replicate

mesocosms that were exposed to present day CO2 concentrations.

The focus of our model approach is different in that we distinguish between two phytoplankton functional types, calcifying

algae (e.g. E. Huxleyi) and bulk non-calcifying algae, i.e. an unresolved combination of picoplankton, dinoflagellates and

diatoms. We assume a CO2 sensitivity for the ratio of calcification to net carbon fixation (photosynthesis minus respiration),10

based on results from the meta-analysis of Findlay et al. (2011). In our data-model synthesis we concentrate on the initialisation

(initial filling) of the mesocosms, with possible variations in the relative distribution of plankton and detritus resolved in our

model. A data assimilation (DA) method is employed for the estimation of parameter values, which helps to disentangle and

understand some of the differences and commonalities seen in observations, in particular in TA and PIC data, but also in

measurements of dissolved inorganic nitrogen (DIN) and DIC, chlorophyll a, as well as in particulate organic nitrogen (PON)15

and POC.

First we will briefly provide some background information about the experimental setup of PeECE-I, including irradiance,

temperature and salinity, as these environmental factors enter our model simulations. This will be followed by a description

of the model equations that include components of the optimality-based approach to simulate algal growth, using parameter-

isations proposed by Pahlow et al. (2013). Thereafter, the data assimilation method for parameter estimation will be briefly20

explained. Specific details of the model and of the data assimilation method are given in the Appendix. Ensembles of three

distinct model solutions will be presented together with their mass flux estimates of C and N. We will discuss the problem of

identifying initial conditions in combination with important model parameters. We will also address the problem of resolving

the variability observed in the accumulation of PIC and how this variability is related to the expression of the CO2 effect

introduced to the model.25

2 Material and methods

For our analysis we consider the setup and data of the PeECE-I experiment, a study conducted at the Marine Biological

Field Station (Raunefjorden, 60.3◦N, 5.2◦E) of the University of Bergen, Norway between 31 May and 25 June 2001 (Engel

et al., 2005; Delille et al., 2005). The objective of this study was to investigate OA effects on marine calcifying algae (coccol-

ithophores) captured in polyethylene bags of enclosed water volumes (mesocosms) and perturbed by different levels of CO230

concentrations. A dynamical plankton ecosystem model is used for simulations of N and carbon C flux within each mesososm.

We apply a data assimilation method to identify best estimates of model parameter values together with initial conditions for

model simulations.
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2.1 Experimental data

Nine mesocosms of 2 m diameter and 11 m3 volume were filled with unfiltered, post-bloom, nutrient depleted water from the

fjord. After the filling of the mesocosms, nutrients were added so that all mesocosms had similar initial nutrient concentrations,

approximately 15 mmol m−3 of nitrate together with nitrite and 0.5 mmol m−3 of phosphate. Like the nutrients, the initial total

alkalinity (TA) in all nine bags were 2146 mmol m−3 approximately (or if normalised to unit mass ≈ 2200 µmol kg−1).5

The bags were covered with air-tight tents of tetra-fluroethylene foil that allowed 95% of photosynthetically active radiation

(PAR) to pass through. The mesocosm bags were subject to three different levels of perturbation of partial pressure of CO2:

a) mesocosms 1-3, referred to as M1, M2, and M3, were exposed to similarly high DIC levels (initial DIC = 2119 mmol m−3

, 2119 mmol m−3 , 2122 mmol m−3) with 700 ppmV of initial pCO2, b) M4, M5, and M6 started from DIC = 2048 mmol

m−3 , 2056 mmol m−3 , 2040 mmol m−3 with a corresponding pCO2=370 ppmV, and treatment c) with initial DIC = 191910

mmol m−3, 1929 m−3, 1927 m−3 with 180 ppmV pCO2 in mesocosms M7, M8, and M9. Thus, data from three replicate

mesocosms are available for each of the three CO2 treatments. For each mesocosm the partial pressure of atmospheric CO2

above the surfaces was largely controlled by a continuous injection of gas with a treatment specific, individually prescribed

CO2 content. Because there was an open space between surface of mesocosms and the tents, we assumed the pCO2 in the

air above the mesocosms’ surfaces to be a mixture of 90% of the pertubed pCO2 inside a mesocosm and 10% of the actual15

atmospheric pCO2 (340 ppm) in all replicates.

Daily samples were collected and measured over a period of 23 days. For every mesocosm temperature and salinity data

were interpolated to hourly values for direct use as environmental input for model simulations (Fig. 1). Hourly photosynthetic

available radiation (PAR) data were derived from meteorological global irradiance measurements of the Geophysical institute

at Bergen (Skartveit et al., 2001). Figure (1) shows that temperature increased by approximately 3 Degree Celsius during the20

experiment and variations between the different mesocosms remained small. Small but noticeable differences exist between

mesocosms with respect to salinity. In all mesocosms a gradual decrease in salinity was observed, from S=31.3 to approximately

S=30.8. The PAR data exhibit variations on an hourly scale, due to changes in cloud cover.

2.2 Modelling approach

For model simulations we assume that all mesocosms are homogeneously mixed, as we neglect an explicit representation25

of vertical turbulent mixing (0D-model approach). Furthermore, we assume no light gradient in mesocosms and use depth

integrated hourly irradiance data to force the model. The applied model equations describe mass exchange rates of N and C

between compartments of 1) dissolved inorganic nitrogen and carbon (DIN and DIC), 2) N and C biomass of coccolithophores

and other phytoplankton (CoccoN and CoccoC , PhyN and PhyC), 3) zooplankton (ZooN and ZooC), and 4) detritus (DetN

and DetC), and 5) labile dissolved organic N and C (DON and DOC), Fig. (2). As due to the design of the PeECE-I experiment30

our model includes some additional features. . The first is that we consider an explicit representation of dissolved combined

carbohydrates (dCCHO) that act as precursors for transparent exopolymer particles (TEPC), similar to Schartau et al. (2007)

and Joassin et al. (2011). Since our model resolves changes in TA along with DIC so that we can also derive pH values and the
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corresponding partial pressure of CO2 (pCO2). We neither resolve viral infections nor bacterial biomass explicitly, as done in

Joassin et al. (2011). Microbial activity is implicitly considered by parameterisations of hydrolysis and remineralisation. Both

processes are assumed to be temperature dependent but are independent of changes in bacteria biomass. Instead, hydrolysis

and remineralisation rates are calculated as being proportional to substrate availability only. Likewise, any effects by viral lysis

remain unspecified and are an integral part of a single total mortality that is assigned to phytoplankton and coccolithophores.5

In the following, the general model equations of mass flux of C and N are described as sources and sinks, inducing changes in

the mass concentration of the respective state variables.

2.2.1 Photoautotrophs

In our model we distinguish between calcifying and non-calcifying photoautotrophs, coccolithophores (Cocco) and other bulk

phytoplankton (Phy). Respective net photoautotrophic growth rates (µcocco/phy) are described as rates of gross carbon fixation10

(V C) minus some corresponding sum of respiration costs (rC) due to the synthesis of chlorphyll a, nutrient assimilation,

and maintenance: µcocco/phy = V C - rC . The proportions of V C and rC are determined by optimal resource allocation while

energetic trade-offs are imposed, as described in Pahlow et al. (2008). These physiological equations of optimal allocation have

been shown to be well applicable for a series of different conditions (e.g. including diazotrophy) and scales (e.g. Smith et al.,

2011; Pahlow et al., 2013; Arteaga et al., 2014; Fernández-Castro et al., 2016). Here we neglect diazotrophy as well as the15

effect of phosphorus availability on nitrogen uptake and thus on algal growth. From the data we could not infer any phosphorus

limitation of growth prior to nitrogen depletion and we assume that cellular nitrogen (N) directly limits the net growth rate

of photoautrophs (µcocco/phy). Nitrogen is generally necessary for synthesising enzymes. According to the model approach of

Pahlow and Oschlies (2009), the major metabolic pathways within the algae are regulated by the resources allocated to produce

these enzymes. Thus, key processes like photosynthesis, chlorophyll a synthesis and net carbon fixation become affected by20

internal resource allocation. The model maximises the photoautotrophic growth rates by optimising the allocation of resources

to nutrient acquisition sites and to the light harvesting complex (LHC). The auxiliary variables mentioned above are described

in Table A.1 in Appendix (A). The detailed equations are given in Appendix (A.2).

Biomass concentrations of photoautotrophs: The biomass build-up (net growth) of photoautotrophs depends on the amount

of N and C assimilated by the algae minus losses because of aggregation, grazing by zooplankton and because of exudation or25

leakage of organic matter. The sources minus sinks (sms) terms of the photoautotrophs’ biomass are:

sms of photoautotroph biomass = C and N uptake− exudation/leakage− aggregation− grazing

The corresponding sms (source minus sink) differential equations of C and N biomass for phytoplankton and coccolithophores

are given in Appendix(A.2).

30

Chlorophyll a concentrations: The synthesis of chlorophyll a (Chl) is represented by an optimal trade-off between photo-

synthesis and respiratory costs in the chloroplast of a cell. The synthesis rate depends on the degree of light saturation (SI ),

on the amount of net carbon fixed inside chloroplasts, and on the chlorophyll-to-carbon ratio (θ). Also, the chlorophyll syn-
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thesis rate is sensitive to changes in cellular nitrogen-to-carbon (N:C), QN . The descriptions of the above introduced auxiliary

variables are given in Table A.1. Like for biomass, the parameterisations for chlorophyll a are identical for the calcifying and

non-calcifying phytoplankton in our model:

sms of chlorophyll a = synthesis of chlorophyll a− aggregation− grazing

The respective differential equations for chlorophyll a of non-calcifying phytoplankton (with subscripts phy) and coccol-5

ithophores (cocco) are listed in Appendix (A.2).

Formation of particulate inorganic carbon (PIC): The process of calcification in our model depends on the amount of

energy provided through photosynthesis and is simply expressed by a ratio of PIC formation per carbon fixed (fPIC, Eq. A.21).

The differential equation of PIC describes a net accumulation rate (formation minus dissolution) and no explicit distinctions10

can be made with respect to how PIC becomes eventually distributed between algal biomass, detritus or zooplankton:

sms of particulate inorganic carbon = calcification by coccolithophores−dissolution of coccoliths (calcite)

The differential equations for precipitation and dissolution of PIC are given in Appendix (A.4).

15

2.2.2 Zooplankton

The grazing losses of the photoautotrophs are resolved with an explicit representation of zooplankton biomass. With our

grazing approach (Holling type III) no distinctions are made between micro- and mesozooplankton or between different feeding

types. Changes in zooplankton biomass are subject to a mortality (Mzoo; e.g. losses to higher trophic levels). Other loss terms

represent respiratory costs (rzoo) as well as excretion (γzoo). Zooplankton restore C and N towards a constant N:C ratio20

(Qzooconst) of 0.19. The restoring time (τ ) in our model is equal to one day. It mimics an increase in respiration (rzoo) if N:C

ratio falls below Qzooconst and an increase in excretion (γNzoo) if N:C is above Qzooconst. Details of auxiliary variables related to the

zooplankton compartment of the model are given in Table A.1. The buildup of zooplankton biomass depends on the total prey

concentrations (phytoplankton and coccolithophores):

sms of zooplankton biomass = grazing on phytoplankton + grazing on coccolithophore25

− respiration (or excretion)−mortality

The differential equation for zooplankton biomass and grazing function are given in Appendix (A.5).
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2.2.3 Detritus

Detritus comprises a variety of components with particles of different sizes and sinking rates (Fasham et al., 1990). The

detritus resolved by our model simply combines dead plankton biomass and fecal pellets. Sources of detrital C,- and N mass

are given in terms of phytoplankton aggregation and mortality of zooplankton. Aggregation is parameterised with quadratic

loss terms of the photoautotrophs. These aggregation equations resolve interactions between two types of particles (small5

cells of photoautotrophs and large aggregates of detritus): a) aggregation of cells of photoautrophs and b) aggregation of small

photoautotrophs with larger detritus, see details in the Appendix (A). The two particle-type approach allows a trade-off between

accuracy of estimated mass flux and the resolution of particle size (Ruiz et al., 2002). We assume that hydrolysis is temperature

dependent and that it is responsible for the degradation of detritus, acting as a source for (labile) LDON and LDOC. The

equations of detrital C and N can thus be described as:10

sms of detritus = aggregation of phytoplankton + aggregation of coccolithophore

+ zooplankton mortality − hydrolysis

The respective differential equations of detrital C and N mass are given in the Appendix (A.7).

15

2.2.4 Dissolved inorganic compounds (DIN, DIC) and total alkalinity (TA)

Dissolved inorganic nitrogen (DIN): The DIN pool represents the total concentration of nitrate, nitrite and ammonium. Nitro-

gen utilisation by phytoplankton and coccolithophores is a sink of DIN, whereas heterotrophic excretion and remineralisation

of LDON are the major sources:

sms of dissolved inorganic nitrogen =−N uptake by phytoplankton−N uptake by coccolithophores20

+ excretion by heterotrophs + remineralisation

The sms differential equation for DIN is given in Appendix (A.8).

Dissolved inorganic carbon (DIC): The DIC pool combines CO2, bicarbonate and carbonate. The primary sinks of DIC are net

carbon fixation to support photoautotrophic growth (µcocco/phy) and calcification of coccolithophores. We do not differentiate25

between the utilisation of CO2 and bicarbonate for algal growth and calcification. Note that net carbon fixation (µcocco/phy)

in our model becomes slightly negative in the absence of light (dark respiration of the photoautotrophs). Total heterotrophic

respiration acts as major DIC source and is expressed by zooplankton respiration and by the remineralisation of dissolved
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organic carbon (LDOC + dCCHO):

sms of dissolved inorganic carbon =− net C uptake by phytoplankton − net C uptake by coccolithophores

− calcification + dissolution of PIC + zooplankton respiration

+ remineralisation + gas exchange

The corresponding differential equation for DIC is listed in Appendix (A.8).5

Total alkalinity (TA): Temporal changes in TA in our model are due to the sinks and sources of DIN and DIP (∆DIP =

1
16 ·∆DIN), process of precipitation and dissolution of calcite plates produced by the calcifying algae. We follow the nutrient-

H+ compensation principle described in Wolf-Gladrow et al. (2007). In our model we are resolving the nitrogen flux of

zooplankton excretion but we are eventually not resolving any associated net change in TA (total alkalinity). This is because10

we cannot differentiate between the excretion of ammonium (NH+
4 ) and of nitrate (NO−

3 ) and nitrite (NO−
2 ). The excretion of

one mole NH+
4 would increase TA by one mole, whereas the excretion of one mole NO−

3 or NO−
2 would decrease TA by one

mole (Wolf-Gladrow et al., 2007). In other words, we indirectly impose that half of the N excretion by zooplankton is NH+
4

and the other half is NO−
3 and NO−

2 , which would introduce a net TA change of zero. Measured values of DIN, TA, and DIC

on day one of the experiment were taken as initial conditions for respective mesocosms.15

sms of total alkalinity = N and P uptake by phytoplankton + N and P uptake by coccolithophores

− calcification by coccolithophores + dissolution of calcite

− remineralisation of dissolved organic N and P

The differential equation for TA is given in the Appendix (A.8).

20

2.2.5 Dissolved labile organic matter and transparent exoplymer particles

Dissolved organic matter (DOM) is produced by exudation of the photoautotrophs and by hydrolysis of detrital matter. The

DOM is subject to remineralisation, being the source of DIN and DIC. The applied model distinguishes between dissolved

combined carbohydrates (dCCHO) and a residual fraction of labile dissolved organic carbon and nitrogen (LDOC and LDON).

This distinction is made because only dCCHO are simulated to act as precursors for the formation of transparent exopolymer25

particles (TEP). In our model the DOM’s primary source is freshly exuded and leaked organic matter from photoautotrophs.

An addtional source of DOM is due to degradation of detrital matter (hydrolysis and microbial exudation) in response to

bacterial activity. The fraction of exudates that enter the dCCHO pool may vary between expontential growth phase and during

periods of nutrient limited growth, described as two modes of exudation in Schartau et al. (2007). We therefore introduced a

parameterisation (f cocco/phydCCHO , Eq. A.39) that simulates such shift in quality of the exudates, depending on the respective cell30
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quota of the coccolithophores and of the other phytoplankton (QNcocco/phy). Remineralisation and microbial respiration are

respective sinks of LDOC and LDON. Table A.1 lists all associated auxiliary variables. The equations for labile DOC and

DON are described as follows (with details given in Appendix, A.9):

sms of labile dissolved organic matter = exudation by photoautotrophs

+ hydrolysis/degradation of detritus + hydrolysis/degradation of gels5

− remineralisation/respiration of dissolved organic matter

Dissolved combined carbohydrates (dCCHO): By introducing dCCHO we account for an additional sink of DOC other

than microbial degradation, which is the physical-chemical transformation of dissolved to particulate matter, here resolved as10

the coagulation of dCCHO to form TEP carbon (TEPC). This transformation is parameterised as an aggregation process, as

proposed in Engel et al. (2004) and effectually applied in Schartau et al. (2007) and in Joassin et al. (2011), (see details in

Appendix, A.10):

sms of dissolved combined carbohydrates = exudation − coagulation of dCCHO

− aggregation of dCCHO with TEP − remineralisation of dCCHO15

Transparent exopolymer particles (TEP): The carbon content of TEP (TEPC) is explicitly resolved because it can be a

significant constituent of POC measurements (Verdugo et al., 2004). This consideration is important for our data-model syn-

thesis, in particular because it affects the stoichiometric C:N ratio of particulate organic matter. The sink terms of dCCHO,20

described before, are the only sources for TEPC in our model approach. The degradation of TEPC is parameterised similar to

the hydrolysis of detritus:

sms of transparent exopolymer particles (TEPC) = coagulation of dCCHO + aggregation of dCCHO with TEP

−degradation

The corresponding differential equation for TEPC production is listed in the Appendix (A.10).25

2.2.6 Model parameters and initial conditions

Out of 33 model parameters, 26 parameters are fixed and remaining 7 parameters (4 initial condition parameters (fcocco, fzoo,

fdet. PON0) and 3 ecological parameters (αphy , αcocco, Q0) enter the optimisation procedure. The decision on which parame-

ters should become subject to optimisation is based on a series of preceding parameter optimisations and subsequent sensitivity

analyses. A major objective is to reduce the number of parameters for optimisation to a meaningful minimum. This facilitates30
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the identification of those parameter values that are of primary concern. Since we address differences in initial conditions in

our study, we consider four parameters that determine these differences and they need to become subject to optimisation. The

additionally selected three growth parameters are amongst those to which the model solution is most sensitive. The model so-

lutions are also highly sensitive to variations of the maximum potential nitrogen uptake rate (V N0 ). This parameter is excluded

from optimisation, because it is not possible to obtain estimates of (V N0 ) that are independent of estimates of the photosynthetic5

efficiency. Therefore, a value is assigned to V N0 that is typical and was used for simulations of other experiments (e.g. Pahlow

et al., 2013), ensuring credible estimates of those parameters that are optimised in our study. The mesocosm experiment covers

only a short post-bloom period and we found other parameters, like maximum grazing rates and the aggregation parameters, to

be weakly constrained by the available data. Their consideration for optimisation would impede the identification of the other

more important parameters. Values assigned to those parameters that are excluded from optimisation are adapted from other10

studies (e.g. Pahlow et al., 2013; Schartau et al., 2007).

Initial condition values for some of the state variables in the model are computed by initial condition parameters, given

in fractions. The initial biomass during the start of the experiments, specified by PON0, is distributed between living and

non-living biomass, which is determined by the parameter of the initial detritus fraction (fdet). The living biomass is further

distributed between photoautotrophs and zooplankton, specified by the initial zooplankton fraction parameter (fzoo). Finally,15

the remaining relative distribution of photoautotrophic biomass is set by fcocco. For example, a value of fcocco = 1 would mean

that all photoautotrophic biomass is associated with the presence of coccolithophores exclusively.

PON0 = DetN0 + ZooN0 + CoccoN0 + PhyN0 (1)

with the individual fractions:

DetN0 = fdet ·PON0 (2)20

ZooN0 = fzoo · (PON0−DetN0) (3)

CoccoN0 fcocco · (PON0−DetN0−ZooN0) (4)

PhyN0 = (1− fcocco) · (PON0−DetN0−ZooN0) (5)

For initial zooplankton, coccolithophore and phytoplankton biomass we apply a constant C:N ratio of 6.625. We consider a

higher C:N ratio (= 2 · 6.625) only for initial detritus. Since the mesocosms were filled with post-bloom, nutrient depleted25

water masses, we assume that all dead particulate organic matter has a C:N ratio that is rather typical for such post-bloom

conditions. Initial condition of PIC, DIC, and TA are taken from the data for respective mesocosm, whereas we assume same

small fixed values (e.g. DON = 0.05 mmol m−3, DOC = 102.5 mmol m−3, dCCHO = 1.0 mmol m−3 and TEPC = 3.5 mmol

m−3) as initial conditions for all mesocosms.

2.3 Design of data assimilation (DA) approach30

A peculiarity of the PeECE-I experiment is that high and low changes in total alkalinity (TA) were found in all three CO2 treat-

ments, in response to differences in calcification (Delille et al., 2005). Because the three distinct patterns in calcification (Fig.
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3) are attributable to all three treatments means that a factor other than the CO2 perturbations induced variations between the

individual mesocosms. For all other observations no such clear pattern could be identified. We designed our data assimilation

approach according to this finding and therefore investigate three possible situations (model solutions) that differ in their TA

response: low, medium and high calcification (referred to as LC, MC, and HC respectively). Thus, for each of these three (LC,

MC and HC) situations we find three mesocosms that were subject to three different CO2 levels (initial 700 ppmV, 370 ppmV,5

and 180 ppmV). By adapting the same nomenclature as in Engel et al. (2005) and in Delille et al. (2005), we can assign the

mesocosms M1, M6, and M8 to those with low calcification rates (highest TA), M2, M5, and M7 to the ones with medium

calcification and finally M3, M4, and M9 to mesocosms with high calcification rates (lowest TA).

2.3.1 Definition of cost function (data-model misfit)

In our data assimilation approach we consider data from the three cases (LC, MC, and HC) separately, but we make identical10

statistical assumptions. The observation vector (yi) contains daily means of three mesocosms of the following measurements:

1) dissolved inorganic carbon (DIC, mmol m−3), 2) dissolved inorganic nitrogen (DIN) (nitrate + nitrite, mmol m−3), 3)

chlorophyll a (Chl a, mg m−3), 4) particulate organic nitrogen (PON, mmol m−3), 5) particular ogranic carbon (POC, mmol

m−3), 6) particulate inorganic carbon (PIC, mmol m−3), 7) total alkalinity (TA, mmol m−3). Like the data vector yi, the vector

Hi (x) represents mean values of three simulated mesocosms for each calcification case (LC, MC, and HC). It combines15

results of model states: C and N biomass concentrations of the photoautotrophs (PhyN & PhyC and CoccoN & CoccoC),

of zooplankton (ZooN & ZooC), of detritus (DetN & DetC), and carbon concentration of transparent exopolymers particles

(TEPC). The vector of differences (di) between observation (yi) and model results Hi (x) is given as:

di = yi−Hi (x) =



DICi

(NO−
3 + NO−

2 )i

Chl ai

PONi

POCi

PICi

TAi


︸ ︷︷ ︸

data

−



DICi

DINi

(Chlphy + Chlcocco)i

(PhyN + CoccoN + ZooN + DetN)i

(PhyC + CoccoC + ZooC + DetC + TEPC)i

PICi

TAi


︸ ︷︷ ︸

model results

(6)

20

For the cases LC, MC, and HC we calculated daily residual standard errors (σi) based on the measurements. Unlike other

variables, the estimation of the standard errors for DIC is not straightforward because of the different CO2 levels. For the

derivation of the standard errors we considered the differences (offsets) of the mean initial DIC concentrations between the

different CO2 treatments. DIC concentrations of those mesososms that were initially exposed to high CO2 (DIC) concentrations25

are “offset”-corrected so that their initial mean DIC matches the initial mean of the present day DIC concentrations. Mesocosms
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of the low CO2 treatment were adjusted likewise. In this manner, all initial mean DIC concentrations have become identical, but

changes and variations (between the mesocosms) with respect to these mean values remain. Thus, variances of the respective

LC, MC, and HC mesocosms can be calculated after applying these (two) offset corrections to all DIC data of the high- and

low CO2 treatements. Eventually, individual standard errors for the LC, MC, and HC mesocosms are derived for all sampling

dates.5

The time-varying covariance matrices Ri are constructed with Si (with diagonal elements of standard errors, see Eq. B.3

in Appendix B) together with some correlation matrices (C(y)). Correlations between measurements were computed based on

data of all nine mesocosms. Two matrices C(y) have been derived from data for two distinct periods: 1) the exponential growth

phase, and 2) the post-bloom period.

Ri = Si ·C(y) ·Si (7)10

Equation (7) is applied because correlations between observations can change from pre-bloom period to post-bloom period. For

example, PON and DIC are strongly negatively correlated during the exponential growth phase but become weakly positively

correlated during the post-bloom period, when both, DIC and PON, decrease. The correlation matrices, C(y), for the two

respective periods are also given in the Appendix (B).

A maximum likelihood (ML) estimator is applied, meaning that no explicit prior information is considered for the estimation15

of parameter values. Eventually, we use three similar cost functions but with data (y) and covariances (R) from the respective

three mesocosms of each case. These daily data (yi) are available for a period of Nt =23 days, with subscript i indicating the

day when measurements were made. The elements of the parameter vector of interest (Θ) are those parameters listed in Table

(1), including the initial value of PON0 and initial condition parameters that further specify how PON0 is distributed between

detritus, zooplankton, coccolithophores and the remaining photoautotrophs. For a maximum likelihood (ML) estimation of the20

parameters (including the initial conditions) we maximise the conditional probability of explaining the data given our model

together with a set of values assigned to the parameters (to each element of Θ):

p(y|Θ) = constant · exp[−1

2

Nt∑
i=1

dTi R
−1
i di]∝ exp[−1

2
J(Θ)] (8)

The ML estimate of parameter values can be found by actually identifying the minimum of the exponent of p(y|Θ) of Eq. (8),

since the constant term is independent of Θ. We thus compute and minimise the following cost function J(Θ):25

J(Θ) =

Nt∑
i=1

(yi−Hi (x))
T
R−1
i (yi−Hi (x)) (9)

We not only wish to identify the minimum of J(Θ) that corresponds with one best estimate of parameter values (Θ̂) but

also confine a credible region of parameter estimates. This credible region tells us how reliable the parameter estimates are

(yielding lower and upper credibility limits) and resolves correlations (collinearities) between the parameters. The parameter

optimisation procedure implemented in this study is described in detail in the Appendix (B).30
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3 Results

3.1 Parameter estimates for specific mesocosms with low, medium, and high calcification

The same seven model parameters (Table 1) were optimised for all three calcification cases (LC, MC, and HC) independently,

using data from respective mesocosms. With our data assimilation approach we can thus specify commonalities and differences

between model solutions for mesocosms with LC, MC and HC. Table (2) lists all ML estimates, which correspond with the best5

model solutions obtained with the Markov Chain Monte Carlo (MCMC) method. Collinearities are expressed by the correlation

coefficients of two parameter combinations, which we have also calculated based on results of the MCMC method (Table 3).

Credible intervals limits for each parameter were derived from nonparametric probability densities of the MCMC estimates.

The figure (4) shows cumulative density function (CDF) for corresponding posterior probability distributions. The steeper the

CDF increase the narrower the 95% credible interval of the parameter estimate. According to the width of credible intervals10

we find uncertainty ranges of initial conditions parameters fdet, fzoo and PON0 to be generally small for all three cases of

calcification respectively. The initial condition parameters are best constrained for the solution of medium calcification (MC).

The parameter fcocco shows the largest uncertainty for the HC case. A large fraction ( ≈ 90 %) of initial biomass comprises

of detrital matter in all three solutions. Table (4) shows mean concentration values of PON0, DetN0, ZooN0, CoccoN0 and

PhyN0 along with their uncertainties according to respective MCMC estimates. Initial zooplankton concentration is highest in15

HC solutions. Thus, more photoautotrophic biomass is lost due to grazing by zooplankton and less by aggregation in model

solutions for HC, which is reflected by the negative correlation between initial condition parameters fzoo and fdet. For those

parameters that do not specify the initial conditions we hoped to find all credible intervals to overlap, which would have sug-

gested insignificant differences between the estimates. A single set of values of these parameters could then be unambiguously

used for simulations of all nine mesocosms, independently of how the values of the initial conditions turned out to be. This is20

not the case, as can be seen in Fig. (4) and in the correlation coefficients (Table 3). Estimates of the subsistence quota (Q0) are

lower for the mesocosms with high and medium calcification rates. Apparently, lowerQ0 and higher αcocco values are required

to buildup high coccolithophores biomass in mesocosms with high calcification rates as initial coccolithophores concentration

is low and grazing pressure is high.

During the post-bloom period, the mesocosms pooled in HC reveal TA changes that are consistently higher than in the LC25

mesocosms. In fact, these differences become well reflected in our parameter estimates. Thus, our optimised ensemble model

solutions are providing the statistical evidence that HC and LC are significantly different. With respect to the mesocosms

assigned to the MC (medium calcification) case we see in our parameter estimates and ensemble model solutions that they are

rather close to conditions also met by the HC mesocosms. In this case the differences in parameter estimates (between MC and

HC) are small, although we find significantly different estimates for αcocco and for fzoo between MC and HC (see Fig. 4). Thus,30

we may have one or two out of the three MC mesocosms that might have been better assigned to the HC case. However, this is

reflected in our data assimilation results and we are primary concerned with the upper and lower extremes in calcification, as

resolved by the six mesocosms in the LC and HC cases.
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3.2 Data-model comparison

The variational range of parameter estimates (Fig. 4) induce ensembles of model trajectories (model results) that are statistically

indistinguishable (or equivalent). Based on these posterior ensemble parameter estimates of all three calcification solutions we

find a general good agreement between model results and the data, (Fig. 5).

The ensembles reflect uncertainty ranges in model solutions, which correspond nicely with most of the variability in obser-5

vations. Almost the entire range of variability in TA is recovered with our three distinct solutions of calcification. The observed

variability in POC is captured with the optimal ensemble model solutions. Only few maximum values seen in POC data remain

unresolved, likely because we have optimised parameters that hardly introduce changes in the solution of TEPC concentrations.

The model solutions exhibit some faster increase in the accumulation of PON during the exponential growth phase, in spite the

fact that DIN data are matched well. Although this systematic model offset (bias) is pronounced, it does not correspond with10

any similar model bias in POC. Another general offset can be seen for simulated Chl a concentrations during the post-bloom

period. Our model shows sharp draw down in Chl a in all three solutions (HC, MC and LC) during the post-bloom period,

whereas observed Chl a values are more variable.

3.2.1 Variations in calcification in response to growth conditions

According to our model approach we resolve changes in the rate of calcification relative to the carbon that is assimilated for15

growth of the coccolithophores. For the period of nutrient repletion the values of the molar calcification-to-C-assimilation ratio

(∆PIC : ∆C ≈ 0.5) are smaller than the values under nutrient depleted growth conditions. All ensembles of model solutions

(LC, MC, and HC) reveal a similar behaviour, with variations in ∆PIC : ∆C greater than 0.5 (up to 2.2) for growth rates

between 0 and 0.3 d−1. These variations depend on the light-acclimation state (e.g. θcocco), fluctuations in irradiance and on

cell quota (QNcocco). The variations in ∆PIC : ∆C during nutrient depleted period can be attributed to fluctuations in carbon20

assimilation due to production of TEPC .

3.2.2 Distinctions between model results of low, and high calcification (LC and HC)

Optimised model results of low calcification (LC) yield the highest TA values of all mesocosms, being in accordance with the

TA data. DIN concentrations are well resolved by the model and variations of the ensemble DIN simulations are similarly low as

in observations. The previously mentioned biases in PON and Chl a are most conspicuous in this LC ensemble of optimal model25

results. Variability in the POC data of the LC mesocosms is not captured by the model ensemble. But simulation results (solid

lines in Fig. 7) match the POC mean of the three mesocosms. For PIC we also find a good agreement between model ensemble

results and data. However, a noticeable potential bias exists for the PIC response in the high CO2 treatment (M1), where model

results overestimate PIC data during the maximum bloom period and shortly after nutrient depletion. This overestimation is

more pronounced in mesocosm with high CO2 treatment. The LC ensemble successfully reproduces amplitude of Chl a peak30

seen in data, this is also the case in the solutions of HC mesocosms.
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DIN (dissolved inorganic nitrate) is well resolved in the HC (high calcification) solutions (Fig. 8). Simulated Chl a also

fits well to observations. HC solutions yield largest variability in DIC, TA and PIC amongst all optimised solutions, which

we mainly attribute to the large uncertainty ranges of the model parameters fcocco and αcocco. The HC solutions show sharp

drawdown in DIC during the bloom period compared to other solution (LC). This can be explained by an enhanced calcification

activity due to high growth rates of coccolithophores in HC during the bloom period. Again, model overestimates observed5

PIC values (M3) under high CO2 conditions shortly after the maximum of bloom. PON is best reproduced in this HC case in

comparison to LC. Although model’s HC solutions reproduce the entire variability in observed PIC, the corresponding best fits

(to M3, M4, M9) underestimate PIC data.

3.2.3 Integrated flux estimates of carbon and nitrogen (C and N budgets of mesocosms)

The ensemble model solutions for LC and HC constitute two extremes and we therefore concentrate on the C and N budgets10

of these two cases. Carbon and N flux estimates were computed as integrals over the entire 23 days period. Figure (9) show

mean C and N flux estimates and their standard errors of the LC solutions of the low and high CO2 treatments. Figure (10)

shows the corresponding flux estimates for the HC solution. We learn from these flux estimates that the simulated C and N

mass flux estimates differ more between the mesocosms with different calcification rates than between the mesocosms exposed

to different CO2 levels. In both cases (LC and HC) most inorganic carbon and nitrogen (DIC and DIN) are utilised by non-15

calcifiers ( ≈ 56 % in case of HC and ≈ 64 % in the LC solution), despite the differences between LC and HC. Generally,

more carbon fixation (with C:N uptake ratio of 168:10 ≈ 17) occurs in the HC than in the LC mesocosms (C:N uptake ratio ≈
13). Flux budgets show that non-calcifiers clearly dominate in mesocosms with low calcification rates, and in HC mesocosms

coccolithophores and bulk phytoplankton biomasses are comparable (Figs. 9 and 10). Although grazing, in general, is high in

HC mesocosms (Table 4), there is a trend of higher grazing pressure on bulk phytoplankton than on coccolithophores. This20

is shown by N flux estimates, where zooplankton gain nearly 57% of their total biomass through grazing on non-calcifiers

in HC and LC. According to our model solutions, the coccolithophores are always less vulnerable to grazing than the bulk

phytoplankton. This model behaviour may not be fully conclusive, because we have no information about the actual grazing

rates or about grazing preferences. A noticeable difference between high and low calcification model ensembles is in terms

of mortality of zooplankton. Higher mortality is seen in HC solutions. Since the carbon fixation in HC is high, exudation and25

leakage rates are also higher. Accordingly, TEPC production is enhanced in HC solutions. Unlike estimates of C flux, the N

fluxes in HC and LC ensembles are similar, e.g. aggregation losses of phytoplankton and of coccolithophores are 3 ± 0.4 and

2 ± 0.4 mmol N m−3 in HC, and 3.4 ± 2 · 10−3 and 1.5 ± 2 · 10−3 mmol N m−3 in LC respectively. Similarly, flux estimates

of all mesocosms show almost same rates of DIN utilisation, excretion, exudation and remineralisation.

4 Discussion30

The data assimilation approach applied in this study was designed to resolve differences in TA and thus in calcification, while

variations in other data (e.g. DIN, PON, and POC) should also be explained with our model. We distinguished between meso-
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cosms with high, medium and low calcification rates (HC, MC, and LC) and their respective data were used to come up with

optimal estimates of initial conditions and of some important physiological model parameters. Ideally, we would have identified

similar optimal values of the physiological parameters and would have obtained different estimates of the initial conditions for

all three cases, HC, MC and LC respectively. However, our results reflect a more complex picture and our optimised values for

the initial conditions also depend on the best estimates for the model parameters. The initial conditions could not be constrained5

independently and model solutions of the HC case do not automatically imply a higher initial abundance of coccolithophores

relative to the other, non-calcifying, phytoplankton. Likewise, the LC solution does not require a lower initial biomass of calci-

fying algae. Instead of differences in relative species abundance, the initial physiological conditioning, e.g. acclimation states

of the algae, seems relevant as well, which is in the end reflected in the estimates of the physiological parameters Q0, αcocco,

and αphy). An alternative data assimilation approach would be to optimise the physiological model parameters (Q0, αcocco,10

and αphy) together with the initial conditions (PON0, fdet, fzoo, and fcocco) for mesocosms of one calcification case in a first

step, e.g. the MC case (using data of mesocosms M2, M5, M7). In a second step we could have fixed the optimised physio-

logical model parameters Q0, αcocco, and αphy (as identified with data of e.g. the MC case) and would have then estimated

only the initial condition parameters for the other mesocosms, e.g. low and high calcification (LC and HC). This alternative

approach does work (not shown), but we learned that we may then put too much confidence into those estimates of Q0, αcocco,15

and αphy obtained first, e.g. estimates for the MC mesocosms. It can even obscure the fact that collinearities exist between

some initial condition estimates and the other model parameters. Furthermore, with such alternative approach we could end up

with different estimates of the initial conditions, if we would have started with data of either the HC or LC mesocosms first

instead. The design of our data assimilation approach is more challenging but it is better suited to disclose major uncertainties

and collinearities in estimating initial conditions together with model parameters of algal growth.20

4.1 Uncertainty ranges in parameter estimates and variability in model solutions

Large variations can be seen in the data of PIC, reflecting the variability measured in TA. Since optimal ensembles of model

solutions were derived for three distinct cases of calcification (LC, MC and HC), we automatically capture most of the observed

variability in PIC with our simulations. The spread of the ensemble solutions for TA and PIC is smaller in each of the three cases

relative to the observed total range. This means that the respective uncertainties in our parameter estimates are small enough25

to obtain three distinctive ensembles of model solutions. However, as discussed before, it is not possible to identify optimal

values of the initial condition parameter fcocco independently from estimates of the other physiological model parameters.

This situation is aggrevating but not unusual (Schartau et al., 2016). For instance, in a sensitivity study with a regional marine

ecosystem model Gibson and Spitz (2011) stressed that collinearities exist between initial conditions and the values assigned

to the biological parameters.30

The posterior uncertainties in the estimates of the subsistence quota, (Q0), are rather small, if compared with the uncertainty

ranges of the other parameter estimates. Likewise, parameter estimates of the initial condition parameters PON0, fdet, and

fzoo are fairly confined. The variational range that we see in our model solutions is mainly induced by uncertainties in estimates

of the photosynthesis parameters αcocco, αphy and of fcocco. The combination of these three parameters mainly determine the
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spread in model solutions with respect to the amount of C-fixation and also calcification. This also explains why the ensemble

model solutions exhibit only small variations in DIN and PON concentrations and thus in our N-flux estimates.

Variability in POC is much more pronounced than in PON. All three model solutions show a steep increase in POC:PON

ratio as soon as algal growth becomes nutrient limited (Fig. 11). The variability seen in the POC:PON ratio is thus mainly

due to a temporal variation in QN (N:C ratio of both photoautotrophs) and thus of the algal growth conditions. The temporal5

variations in QN eventually disperse into zooplankton biomass and detritus, inducing elevations of their respective C:N ratios

during the post bloom period. Another contribution to the elevation of POC:PON ratios is also related to changes in POC

because it constitutes concentrations of TEPC, which is explicitly resolved in our model.

Our results show an increase in molar ∆PIC : ∆C-assimilation at low net growth rates (µcocco) under nutrient limited

conditions (Fig. 6) in both HC and LC cases. These variations are translated in to some variability seen in the PIC:POC ratio.10

Variability in PIC:POC is discussed in Engel et al. (2014), where they collected and analysed data of diverse experiments

and documented an increase (up to fourfolds) in values of cellular PIC:POC at relative growth rate (RGR) ≈ 0.2 d−1 and

below in various CO2 treatments. The reason for a sharp increase in molar ∆PIC:∆C-assimilation ratio at low growth rates

in our model is because of a down regulation of light harvesting complex (LHC). Such model behaviour is in agreement with

the interpretation of Barcelos e Ramos et al. (2012), who describe calcification as a process into which the coccolithophores15

can channel excess energy. In order to maximise (optimise) growth rate under nutrient depleted and high light conditions, the

model allocates more resources and energy to support nutrient acquisition than to the light harvesting complex (indicated by

low f0LHC
cocco values). Since ∆PIC:∆C-assimilation is inversely related to f0LHC

cocco in our model, an increase in calcification

(relative to C-fixation) is obtained at low growth rates. The maximum of ∆PIC:∆C-assimilation ratio in our simulations are in

accordance with those found in Barcelos e Ramos et al. (2010).20

4.1.1 Differences between high and low calcification solutions (HC and LC)

The optimised model solutions for HC and LC reveal significant differences in the development of coccolithophore biomass. As

discussed before, these differences are not solely attributable to differences in the relative proportions of initial biomass concen-

trations. In fact, the optimisations yielded estimates that suggest fairly similar initial coccolithophore biomass concentrations

between all nine mesocosms. Eggers et al. (2014) stressed that variations in initial plankton composition can be responsible for25

large differences in the responses observed on community level, thereby masking any possible CO2 effect on photosynthesis

or calcification. Briefly, our results not only support the findings of Eggers et al. (2014), they provide additional insight to the

problem of resolving a CO2 response in the presence of variability in measurements. One added message compared to Eggers

et al. (2014) is that our mass flux estimates are shown to differ more between the different calcification solutions than between

the different CO2 treatments. This situation exemplifies that simulation results (e.g. future model projections) may involve30

uncertainties in flux estimates that are larger than the CO2 effect introduced to the model (e.g. by following Findlay et al.,

2011). Another added message is that initial conditions may not be independently estimated from estimates of phytoplankton

growth parameters, like αphy and αcocco. This is particularly relevant for model assessment and model analyses of mesocosm

experiments. We stress that the original design of the experiment was meaningful, in particular with respect to the initial filling
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of the mesocosms in the PeECE-I experiment. The retrospective separation of the CO2 response signal from the system’s vari-

ability was only possible because mesocosms with similar initial conditions were subject to different CO2 concentrations. Such

separation would be more difficult in retrospective if mesocosms with similar initial conditions would have been (by chance)

exposed to similar CO2 levels.

From a modelling perspective it is helpful to know about the initial individual mass contributions to PON0, including de-5

tails in the initial composition of the plankton. But the level of compositional detail remains unclear, since these variations

in individual plankton composition will in the end always translate into some variational (uncertainty) range in e.g. the initial

photo-acclimation state, since our model approach only distinguishes between calcifiers and all other, non-calcifying, phyto-

plankton. These considerations were disregarded when we designed this study and we originally thought of the importance of

the relative mass distributions between the state variables resolved by our model, while imposing fixed initial stoichiometric10

ratios (C:N and Chla:N). It seems plausible to allow for some variations of the initial stoichiometric ratios as well.

For now we are interested in the question: what induces the different model solutions for LC and HC, in spite of similar initial

conditions in the concentrations of coccolithophores and phytoplankton? First of all, we have some differences between the

relative proportions of initial detrital, zooplankton, and photoautotrophic biomass (e.g. DetN:ZooN:(PhyN+CoccoN) = 80:10:1

for HC and 28:3:1 for LC). The difference between these ratios point towards net photoautotrophic growth rates that are higher15

in the LC case than in the HC case, since losses due to grazing and aggregation must be lower in the LC case. However, the

initial conditions in mesocosms of the LC case do not automatically yield model solutions of highest photoautotrophic growth.

Instead we find overall reduced growth rates but some pronounced differences in the relative proportions of biomass between

the coccolithophores and the non-calcifying phytoplankton (Fig. 12). The reason for these differences lies primarily in the

relative differences between the estimates of the physiological parameters, with estimates of αcocco being always smaller than20

of αphy . The photosynthetic efficiency of the coccolithophores remains clearly smaller (LC case) or can become similar (HC

case) relative to the other, non-calcifying, phytoplankton. Major differences between the LC and HC solutions can thus be

attributed to higher αcocco values (median αcocco = 1.7 mol C (g Chl a)−1 m2 W−1 d−1) in HC posterior distribution compared

to LC (median αcocco = 1.4 mol C (g Chl a)−1 m2 W−1 d−1). The estimates of αcocco are negatively correlated with the

estimates of fcocco (Table 4) and we may therefore look on the combination of the two parameters. To do so we compare two25

extreme solutions, selected from the ensemble solutions of LC and HC respectively. One extreme solution yields the lowest

calcification among all HC solutions, based on the parameter combination (αcocco = 1.84 mol C (g Chl a)−1 m2 W−1 d−1

, fcocco = 0.34). The other selected solution represents the highest calcification of all LC solutions, which corresponds with

(αcocco = 1.59 mol C (g Chl a)−1 m2 W−1 d−1 , fcocco = 0.35). Thus, it is mainly the photosynthetic efficiency αcocco to which

the model solution is highly sensitive to. Hence, a difference of≈ 0.3 mol C (g Chl a)−1 m2 W−1 d−1 can effectively determine30

the differences in our simulations with respect to rates of carbon fixation and calcification. The build-up of comparable nitrogen

biomass of coccolithophores and bulk phytoplankton in HC solutions are achieved with identical Q0 values and only nuanced

differences in values between αcocco and αphy . In contrast, bulk phytoplankton (non-calcifiers) outcompete coccolithophores

during the bloom period in the LC solutions (Fig. 12).
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Differences in photosynthetic efficiency estimates for the LC and HC cases could possibly be invoked for two reasons: a)

because of unresolved differences in initial photo-acclimation states (e.g. different light-history during the filling period), since

we assume identical initial Chl:N (θNcocco = θNphy) and N:C (Qcocco = Qphy) ratios for all nine mesocosms (and thus for LC,

MC, and HC), or b) because of unresolved varying conditions in irradiance. To impose identical surface PAR forcing on all

nine mesocosms might not be appropriate and the arrangement of neighbouring mesocosms may have caused some shading5

effects. From the available data and with our model approach it is not possible to resolve such varying conditions afterwards.

4.2 Model biases

Model biases disclose systematic deviations of simulation results from observations, which may point towards i) erroneous

model counterparts to observations (definition of H(x) in Eq. 9) or ii) deficiencies in model dynamics (errors in x). Some bias

is related to the increase in PON concentration during the late phase of exponential growth (between days 10 and 12, Fig. 12).10

The noticeable bias (temporal offset) in simulated PON concentrations can be explained with an apparent overestimation of

initial coccolithophore biomass. The estimates of fcocco turned out to be highest, if compared with the estimates for the low

and high calcification (LC and HC) model solutions. Furthermore, the range of credible values for fcocco is small (Fig. 4).

Both estimates, of fcocco and of PON0, lead to an inital biomass concentration of coccolithophores that is approximately three

times higher than in the LC case and even six times the initial concentration of the model solutions for HC.15

With our model we do not distinguish between growth of picoplankton and the other non-calcifying phytoplankton during

the initial bloom phase. The initial abundance of picoplankton (mainly Micromonas spp.) and their decline was observed during

the early pre-bloom period of the PeECE-I experiment (Engel et al., 2005). This explains why our simulated Chl a and PON

concentrations are lower compared to observations between day 1 and day 4. Another discrepancy between simulated and

observed Chl a exists during the post-bloom period. We assume that this bias is mainly because we do not account for detrital20

chlorophyll pigments (presumably of inactive or destroyed cells) in our model. Formation of detritus is associated with the

aggregation of coccolithophores and of the other phytoplankton to form detritus (simulated as a transfer of algal biomass into

detritus) in our model, and the fate of Chl a within the detritus compartment remains unresolved. Once N and C biomass of the

photoautotrophs are transformed to detritus, an associated flux of Chl a is disregarded. An explicit consideration of the fate of

Chl a would likely improve model performance and some refinements in this respect are recommended for the future.25

Results of our data-model synthesis also exhibit a small but distinctive bias in the calcification response to elevated CO2

levels. The distinctions we made with respect to mesocosms of LC, MC and HC helped us to identify such bias. This bias

implies that the CO2 effect on calcification, as introduced to our model, is slightly smaller than in the observations, which will

be discussed in detail hereafter.

4.3 Disentangling CO2 effect from the observed variability in PIC30

We considered a simple CO2 relationship that mimics only OA effects on calcification. It is a dependency that was adopted

from the meta-analysis of Findlay et al. (2011). With this CO2 dependence we can already capture differences in PIC formation.

The CO2 sensitivity that we introduced to our model is only effective with respect to the ratio of calcification versus C-fixation,
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thereby reducing the overall calcification rate under high CO2 conditions. This effect turned out to be small compared to the

total variability seen in PIC data. According to our model setup we do not consider any potential changes in vulnerability to

predation (or edibility) of the coccolithophores due to elevated CO2. Likewise, any additional CO2 effects, e.g. on the rate of

aggregation, are not accounted for. Such effects remain unresolved and therefore the comparison of our budget calculations

yield only small differences between high and low CO2 levels, in particular with respect to nitrogen flux estimates. Thus,5

differences in C and N budgets between the two extreme calcification cases, LC and HC, are more pronounced than between

different levels of CO2. To resolve consecutive ecological effects in response to a reduction of the relative calcification rate we

would have needed explicit data, i.e. revealing differences in grazing and aggregation rates between the individual mesocosms.

With the PON and POC data used in our data assimilation approach it is not possible to distinguish between different coccol-

ithophore loss terms like grazing and aggregation, since detritus and zooplankton are both constituents of the same PON and10

POC measurements.

The advantage of resolving LC, MC and HC solutions separately is that for each case we can compare data with model

results of mesocosms individually, of low (glacial), medium (present), and high (future) CO2 treatments. In other words, for

every LC, MC, and HC case we resolve three mesocosms, of which each was subject to different CO2 levels. This way we have

separated differences between LC, MC, and HC from variations induced by a CO2 effect. Doing so reveals PIC formation to15

be be systematically overestimated by the model for all mesocosms of the future treatment (Figs. 7 and 8, MC case not shown).

In contrast to Delille et al. (2005), our results show an early onset of calcification in mesocosms of the high CO2 treatment

between day 10 and day 15. It indicates that the CO2 effect introduced to our model is likely too weak. This becomes evident

according to positive model-data residuals in PIC between day 13 and day 18 for those mesocosms with future treatment (Fig.

13). It is not evident for the glacial and present day CO2 treatments, where the corresponding residuals do not show a systematic20

positive offset.

Figure (14) shows the total variability seen in PIC data together with the full variational range of all ensemble model

solutions. In addition, we depict those ranges in simulated PIC that are solely due to the CO2 effect, based on the two extreme

calcification solutions (lowest and highest simulated PIC) and the best model solution (according to the lowest cost function

values) for the MC mesocosms. If we compare the simulated CO2 response signal on calcification with the total variability in25

PIC (in Fig. 14) we find that the CO2 effect remains small. This situation demonstrates the difficulty in isolating a distinctive

CO2 signal from the total variability seen in PIC observations. However, with our model-based analysis approach this CO2

signal becomes well detectable.

5 Conclusions

An analysis of data of a mesocosm experiment is often approached by first grouping individual mesocosms according to the30

level of perturbation (e.g. the level of DIC added). In some cases, such apparently self-evident approach may not help to reveal

some basic phenomenon in mesocosm experiments. For a meaningful data analysis the mesocosms need not be exclusively

differentiated by the different levels of perturbation but may first be sorted by major differences between relevant response
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signals, as done with respect to the magnitude of calcification in our study (by differentiating between LC, MC, and HC). In

mesocosm experiments these differences in responses are likely associated with variations in initial conditions.

With our data assimilation approach we could disentangle three distinctive ensembles of model solutions that represent

mesocosms with high, medium and low calcification rates. The results of our data-model synthesis show that the initial relative

abundance of coccolithophores and the prevailing physiological acclimation states drive the bloom development and determine5

the amount of calcification in the mesocosms. Small variations of these two initial factors between the mesocosms can gener-

ate differences in calcification that are larger than the change in calcification induced by OA. In spite of this difficulty, a CO2

response signal may still be identifiable, as long as mesocosms that reveal strongest similarities (with respect to initial compo-

sition of plankton and their physiological state) are not used as replicates for similar CO2 conditions (perturbations). Instead,

mesocosms with similar initial conditions should be exposed to different levels of OA. Such favourable starting conditions10

were met in the mesocosm experiment described in Engel et al. (2005) and Delille et al. (2005), as well as in the experiment of

Eggers et al. (2014).

An alternative approach to setting up mesocosms is to gradually increase the level of perturbation for a series of mesocosms.

This way a gradient of different perturbation levels is introduced. The advantage then is that mesocosms that have been collated

according to e.g. lowest and highest response signals (or likewise according to similarities in initial conditions) may then be15

separately analysed with respect to their responses to the individual levels of perturbation.

From this modelling study we infer that collinearities exist between estimates of initial conditions and physiological model

parameters, in particular for the photosynthetic efficiencies αphy , αcocco and the initial fraction of coccolithophores deter-

mined by fcocco. Therefore, it is not possible to identify initial concentration of photoautotrophs independently of parameters

responsible for phytoplankton growth in HC, MC and LC model solutions. This was only found because we optimised initial20

conditions together with physiological parameters for HC, MC and LC mesocosms separately. By this seperation we could

better specify the CO2 effect on PIC formation. Doing so we could identify a systematic overestimation of calcification in our

model and we conclude that our simulated CO2 effect on PIC formation is even too weak.
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Figure 1. Forcing variables for all nine mesocosms: The upper panel shows temperature, linearly interpolated to hourly values between

daily observations. The middle panel displays hourly interpolated salinity values and the lower panel reveals the irradiance data with hourly

temporal variations resolved.
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Figure 2. Schematic representation of the model: boxes characterise individual compartments that are represented by one and more model

state variable. The arrows represent key biogeochemical processes (named in red) between compartments. One compartment includes dis-

solved inorganic carbon and nitrogen (DIC and DIN). This comartment also embeds total alkalinity (TA). Biomass and chlorophyll concen-

trations of photoautotrophs are resolved with respect to carbon and nitrogen explicitly (referred to as PhyC and CoccoC, PhyN and CoccoN,

and Chlphy and Chlcocco respectively). Variations in carbon and nitrogen biomass are also resolved for zooplankton (ZooC and ZooN) and

for detritus (DetC and DetN). Dissolved combined carbohydrates (dCCHO) are distinguished from other labile dissolved organic matter,

desribed as LDOC and LDON. Only dCCHO are assumed to act as precursor for the formation of transparent exopolymer particles, whose

carbon content is explicitly resolved (TEPC). One compartment represent the formation and dissolution of particulate inorganic carbon (PIC),

affecting DIC as well as TA.
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Figure 3. The left panel in the figure shows three distinct calcification patterns, reflected in total alkalinity (TA) data. Those mesocosms that

exhibit high TA values (a reduced drawdown during the bloom and post-bloom period) feature rates of low calcification (LC, in blue color).

Mesocosms with low TA values (a strong reduction of TA) reveal rates of high calcification (HC, marked red). Rates of medium calcification

(MC) are assigned to the remaining mesocosms (with intermediate TA values, marked black). The right panel shows the respective different

CO2 treatments in the same colors as for LC, MC, and HC. The figure shows that each calcification case (LC, MC, and HC) includes

mesocosm of all three CO2 treatments.
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Figure 4. Probability distributions of the initial condition and physiological model parameters: the cumulative sum of non-parametric prob-

ability densities (CDF) were derived from the posteriors of the Markov Chain Monte Carlo (MCMC) approach. The bars on the bottom of

each panels show respective 95% credible (uncertainty) ranges of the parameter estimates.
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Figure 5. Full variational range of model outputs due to uncertainties in parameter estimates. Model ensembles of high,medium and low

calcification solutions compared with observations.
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Figure 6. Molar calcification-to-C-fixation ratio compared to net growth rate of coccos (µcocco) in high and low calcification solutions.
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Figure 7. Low calcification solution. The coloured bands represent ensemble of model results according to a posteriori and symbols show

observations.
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Figure 8. High calcification solution. The coloured bands represent ensemble of model results according to a posteriori and symbols show

observations.
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Figure 9. Carbon and nitrogen fluxes estimated by the model in mesocosms with low observed calcification but different CO2 treatment, high

(a) and low (b). All the arrows that point downwards show flux estimates from the respective compartment on the right hand side, whereas

arrows pointing upwards show values on the left hand side.
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Figure 10. Carbon and nitrogen fluxes estimated by the model in mesocosms with high observed calcification but different CO2 treatment,

high (a) and low (b). All the arrows that point downwards show flux estimates from the respective compartment on the right hand side,

whereas arrows pointing upwards show values on the left hand side.
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Figure 12. Simulated nitrogen biomass concentrations of photoautotrophs and zooplankton in high and low calcification solutions.
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Figure 14. Full spread of model solutions according to credible range in parameter estimates, inlcuding ensemble solutions of high, medium

and low calcification (light brown shaded area). Symbols represent observations of all mesocosms. Khaki shaded bands show CO2 effect in

the model, for solutions with lowest, medium and highest calcification rates.
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7 Tables

Initial conditions & parameters for optimisation Description Unit

1) PON0 Initial concentration of particulate organic nitrogen mmol N m−3

2) fdet fraction of PON0 assigned to non-living detritus -

3) fzoo fraction of living PON0 assigned to zooplankton -

4) fcocco Initial coccolithophore fraction of photoautotrophs -

5) Q0 subsistence quota (minimum cellular N:C ratio) mol mol−1

6) αcocco Photosynthetic efficiency of coccolithophores mol C (g Chla)−1 m2 W−1 d−1

7) αphy Photosynthetic efficiency of non-calcifying phytoplankton mol C (g Chla)−1 m2 W−1 d−1

Table 1. Initial conditions and model parameters that are subject to optimisation.

Parameter Description LC MC HC Units

PON0 Parameter of initial PON concentration 1.25 1.90 1.61 mmol N m−3

fdet Parameter of initial detritus fraction 0.89 0.89 0.89 -

fzoo Parameter of initial zoopl. fraction 0.72 0.63 0.88 -

fcocco Parameter of initial coccolithophore fraction 0.39 0.88 0.40 -

Q0 Subsistence N:C ratio 5.5 ·10−2 4.2 ·10−2 4.2 ·10−2 -

αcocco Photosynth. light absorpt. coeff. of coccolithoph. 1.40 0.50 1.66 mol C (g Chl a)−1 m2 W−1 d−1

αphy Photosynth. light absorpt. coeff. of non-calcifiers 1.73 3.10 1.71 mol C (g Chl a)−1 m2 W−1 d−1

Table 2. Maximum likelihood parameter estimates of three model solutions: low, medium, and high calcification (LC, MC, and HC)
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fdet fzoo fcocco Q0 αcocco αphy

PON0 -0.03 / 0.03 / -0.30 0.57 / 0.48 / 0.51 -0.10 / 0.29 / 0.66 0.05 / -0.20 / -0.34 0.11 / 0.03 / -0.56 -0.10 / 0.19 / 0.60

fdet 1 -0.51 / -0.33 / -0.92 0.13 / 0.01 / -0.28 0.23 / 0.25 / 0.11 -0.15 / -0.10 / 0.10 0.13 / 0.03 / -0.40

fzoo . 1 -0.47 / 0.24 / 0.5 -0.11 / -0.30 / -0.16 0.50 / 0.52 / -0.38 -0.42 / 0.22 / 0.63

fcocco . . 1 0.10 /-0.12 / -0.25 -0.99 / -0.15 / -0.95 0.99 / 0.93 / 0.93

Q0 . . . 1 -0.10 / -0.25 / 0.18 0.13 / 0.10 / -0.26

αcocco . . . . 1 -0.97 / -0.18 / -0.87

αphy . . . . . 1

Table 3. Correlation coefficients of parameter estimates of low, medium, and high calcification model solutions (LC, MC, and HC). Corre-

lation coefficients ≥ 0.6 are marked bold face.

State variable name LC / mmol N m−3 MC HC

PON0 1.2 ± 0.01 1.9 ± 0.01 1.7 ± 0.1

DetN0 1.1 ± 4 · 10−4 1.7 ± 1 · 10−3 1.6 ± 0.01

ZooN0 0.1 ± 1 · 10−3 0.1 ± 1 · 10−3 0.2 ± 0.01

CoccoN0 0.02 ± 2 · 10−3 0.06 ± 1 · 10−3 0.01 ± 2 · 10−3

PhyN0 0.02 ± 2 · 10−3 0.01 ± 4 · 10−4 0.01 ± 3 · 10−3

Table 4. Mean initial values of PON (PON0), detritus (DetN0), zooplankton (ZooN0), coccolithophores (CoccoN0) and bulk phytoplankton

(PhyN0) according to posterior of the (initial condition) parameter estimates of three solutions: low, medium, and high calcification (LC,

MC, and HC).
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Appendices
A Supplementary model equations

A.1 Arrhenius relation

The affect of temperature on the metabolic rates and biological activities of the vast majority of organisms is given by the

Arrhenius relationship (Sibly et al., 2012).5

Tf = exp[−AE .(
1

T
− 1

Tref
)] (A.1)

where Tref is reference temperature, given in units Kelvin (K). and approximately equals to 293.15 K (Table A.1).

A.2 Photoautotrophs

The resource allocation depends on the cellular nitrogen-to-carbon (N:C) ratio, expressed by the cell quota (QN ). QN is the

cellular N biomass normalised to carbon/energy units. The availability of resources that can be allocated is estimated by the10

relative difference between QN from and a subsistence quota (Q0). Q0 is the minimum N:C ratio required for a photoau-

totrophic cell to survive. As QN approaches Q0 less resources can be allocated (e.g. to the light harvesting complex) and algal

growth becomes limited. Under balanced optimal conditions we can approximate fV ≈ f0V for photoautotrophs. An optimal

allocation of nutrients to specific cellular sites (or cell compartments) is thus determined by a trade-off between three fractions:

a) a fraction that is allocated to the nutrient acquisition complex (fV ), b) a fraction attached to structural proteins (expressed15

as Qs/QN ), and c) a remaining fraction (1 - fV - Qs/Q) that can be allocated to the light harvesting complex and thus pro-

motes the synthesis of chlorophyll a (Pahlow et al., 2013). An optimal allocation factor (f0V ) for nutrient uptake is derived

by maximising net growth rate with respect to nutrient uptake and thus fV (Eq. A.3 in Appendix A). Under nutrient depleted

conditions, some higher growth rate of a algal cell can be maintained by increasing f0V to the cost of resources that can be

assigned to the light-harvesting complex (referred to as f0LHC ; the optimal allocation factor for LHC). In consequence, the20

mobilisation of resources (N in this study) for nutrient acquisition (induced by an increase of f0V ) reduces the rate of chloro-

phyll a synthesis. Vice-versa for light-limited conditions, growth rate of a cell is optimised by investing more resources to light

harvesting complex of a cell, which enhances the rate of chlorophyll a synthesis. This is achieved for low values of f0V .

In the model the optimal allocation factor for light harvesting complex in an algal cell is calculated from f0V and Q0:

Qs =
Q0

2
(A.2)25

f0Vphy/cocco =
Qs

QNcocco/phy
− ζN · (QNcocco/phy −Q0) (A.3)
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f0LHCcocco/phy = 1 − Qs
QNcocco/phy

− f0Vcocco/phy (A.4)

where ζN is the cost of N uptake in a photoautotrophic cell, given in units mol mol−1; and Qs is the N quota attached with

structural proteins, given in units mol N (mol C)−1. In our model maximum N assimilation rate and maximum carbon fixation

rates are numerically identical.5

V Nmax = V N0 · Tf (A.5)

V Cmax = V C0 · Tf (A.6)

where V Nmax and V Cmax are maximum N assimilation and maximum carbon fixation rates, given in units mol N (mol C)−1 d−1

and mol C (mol C)−1 d−1. Model parameters V N0 and V C0 are photoautotrophic potential N assimilation and C fixation rates,10

given in units mol N (mol C)−1 d−1 and mol C (mol C)−1 d−1(Table A.1).

The total N uptake rate of photoautotrophs is calculated from the local N uptake rate (Pahlow et al., 2013). The latter is

calculated from maximum N assimilation rate, potential nutrient affinity and dissolved inorganic nitrogen concentration (DIN).

V̂ N = (

√
1

V Nmax
+

√
1

A0 · (DIN)
)−2 (A.7)15

V Nphy/cocco = f0Vcocco/phy · V̂
N (A.8)

where V̂ N is the local N uptake of photoautotrophs, given in units mol N (mol C)−1 d−1. A0 is potential nutrient affinity of

respective algae in units m3 (mol C)−1 d−1 (Table A.1).

The gross carbon fixation rate of calcifiers and non-calcifiers is calculated from day length, degree of light saturation, f0LHC and20

V Cmax:

V Ccocco/phy = Ld . f0LHC
cocco/phy · V

C
max · S

cocco/phy
I (A.9)

where V Ccocco/phy is the gross carbon-fixation by photoautotrophs, given in units mol C (mol C)−1 d−1, Ld is the day length

as a fraction of 24 hours. For more details see Table (A.1). Sphy/coccoI is the degree of light saturation in photoautotrophs and

calculated as:25

S
cocco/phy
I = 1− exp(−

α · θ̂cocco/phy · I
V C0

) (A.10)
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θ̂cocco/phy is Chl:C ratio in the chloroplast of a cell (Pahlow and Oschlies, 2009; Pahlow et al., 2013), given in units mg Chl

(mmol C)−1.

The differential equations of C and N biomass for phytoplankton and coccolithophores are:

d

dt
PhyC = (µphy − CNfact · γN ) · PhyC − Aphy

QNphy
− Gphy
QNphy

(A.11)5

d

dt
CoccoC = (µcocco − CNfact · γN ) · CoccoC − Acocco

QNcocco
− Gcocco
QNcocco

(A.12)

d

dt
PhyN = V Nphy · PhyC − γN · PhyN − Aphy − Gphy (A.13)

d

dt
CoccoN = V Ncocco · CoccoC − γN · CoccoN − Acocco − Gcocco (A.14)

10

A description of auxiliary variables is given in Table (A.1). We stress that the parameterisations in Eqs. (A.11 and A.12) are

identical for both photoautrophic groups (coccolithophores and non-calcifying algae), but some of the corresponding optimised

parameter values may turn out to be different between the two.

The differential equations for chlorophyll a of non-calcifying phytoplankton (with subscripts phy) and coccolithophores

(cocco) are:15

d

dt
Chlcocco/phy = (µcocco/phy +

θ̇cocco/phy

θcocco/phy
) ·Chlcocco/phy − Acocco/phy . θ

N
cocco/phy − Gcocco/phy . θ

N
cocco/phy (A.15)

Where θNcocco/phy are the respective cellular Chl:N ratios in units mg Chl (mmol N)−1 (Table A.1). The terms θ̇cocco/phy are

the time derivatives of θcocco/phy . The regulation of θphy and θcocco upon on the buildup and limitation of chlorophyll a is

determined by optimality-based criteria.

The regulation term for chlorophyll a synthesis (Schl) is given as:20

Schl =
θ̇cocco/phy

θcocco/phy
= (

1

ζChl
·
∂Acocco/phy
∂θ̂cocco/phy

) + Q̇Ncocco/phy ·
θ̂cocco/phy

θcocco/phy
· ( 2 ·Qs
QNcocco/phy ·Q

N
cocco/phy

+ ζN ) (A.16)

∂Acocco/phy
∂θ̂cocco/phy

= Ld · V Cmax·[
αcocco/phy · I

V Cmax
·(1− Scocco/phyI )·(1− ζChl · θ̂cocco/phy) − Scocco/phyI · ζChl]−RChlM · ζChl (A.17)

where, A is an auxiliary variable that contains all light dependent terms (Pahlow and Oschlies, 2009; Pahlow et al., 2013) and

has the unit d−1; ζChl and ζN are costs of chlorophyll a synthesis and N assimilation, given in units mol C (g Chl)−1 and mol25

C (mol N)−1 (Table A.1). The derivative term (∂A
∂θ̂

) is given in units mol C (g Chl)−1 d−1.

A.3 Respiration costs

Total respiration cost in a cell includes costs due to chlorophyll synthesis, nutrient acquisition and cell maintenance.

rcphy/cocco =RChlphy/cocco + ζN · V Nphy/cocco +RM (A.18)
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where respiration cost due to synthesis of chlorophyll a is given as:

RChlphy/cocco = (V Cphy + f0LHC
phy/cocco · R

Chl
M ) · ζChl · θ̂phy/cocco (A.19)

where RM is maintenance respiration cost of a cell, given in units d−1. Detailed description of auxiliary variables is given in

the Table (A.1).

A.4 PIC formation and regulation of calcification5

PIC formation can be written as a single differential equation:

d

dt
PIC = (fCO2

· fPIC · µcocco) ·CoccoC − τdissol ·PIC (A.20)

where τdissol is the dissolution rate of PIC, given in units d−1. Parameterisation of calcite-to-Corganic ratio is given by Eq. (A.21),

whereas regression model of Findlay et al. (2011) to quantify effect of different CO2 concentrations on PIC formation is

represented by Eq. (A.22).10

fPIC =
1

2
+

sPIC

1 + exp(sPIC · f0LHC
cocco)

(A.21)

fCO2 =−0.0097 ·CO2 aq + 0.9654 (A.22)

with aqueous carbon dioxide CO2 aq concentrations normalised to water mass instead of volume, given in units µmol kg−1.

A reference rate of PIC formation under nutrient replete and light saturated conditions is prescribed as a molar ratio of fPIC =15

0.5 mol PIC formed per mol C assimilated into organic matter, Eq. (A.21). The molar ratio (fPIC) is assumed to increase when

the fraction of resources allocated to the light harvesting complex (LHC) of a cell (f0LHC
cocco) decreases. According to our model

approach the process of calcification can be interpreted as an additional pathway for dissipating excess energy (Barcelos e

Ramos et al., 2012), as is the case under high light conditions when chlorophyll a synthesis rates diminish (induced by a

reduction of f0LHC
cocco). On the one hand, PIC formation becomes enhanced under high light conditions, while less resources20

become allocated to light harvesting complex. On the other hand, calcification is reduced or ceases under conditions of low or

no light. Under nutrient depleted conditions, when more resources become allocated to nutrient uptake sites rather than to light

harvesting complex, the rate of calcification per net carbon fixation also increases. For low (nutrient limited) growth rates under

saturated (or high) light conditions the parameterisation fPIC can yield maxima in the calcite-to-Corganic ratio (of the calcifying

algae) that may reach values of 2 and slightly above. The function fCO2
in Eq. (A.20) has no dimension and it simulates the25

effect of varying CO2 concentrations on fPIC.

A.5 Zooplankton

The sms differential equations for zooplankton carbon and nitrogen biomass are:

d

dt
ZooC =

Gphy
QNphy

+
Gcocco
QNcocco

− rzoo −
Mzoo

Qzoo
(A.23)

41



d

dt
ZooN = Gphy + Gcocco − γNzoo − Mzoo (A.24)

Equations below represent Holling type III grazing dynamics.

Gphy = gm .
(PhyN2)

ε+ (PhyN2)
. ZooN (A.25)5

Gcocco = gm .
(CoccoN2)

ε+ (CoccoN2)
. ZooN (A.26)

where gm is the nitrogen specific maximum grazing rate on photoautotrophs, given in units d−1; and ε is the half saturation

constant for grazing, given in units (mmol N)2 m−6.

A.6 Zooplankton respiration and excretion10

Respiration is parameterized as a function of respiration maintenance rate coefficient, temperature dependent metabolic rates

and carbon concentration of heterotroph.

rzoo =Rbasal . Tf . ZooC (A.27)

Similarly, excretion is parameterised as a function of respiration maintenance rate to basal metabolism, temperature dependent

metabolic rates and nitrogen concentration of heterotroph.15

γzoo =Rbasal . Tf . ZooN (A.28)

A.7 Detritus

The corresponding differential equations of detrital C and N mass are:

d

dt
DetC =

Aphy
QNphy

+
Acocco
QNcocco

+
Mzoo

Qzoo
−ωdet ·Tf ·DetC (A.29)

20

d

dt
DetN =Aphy +Acocco +Mzoo−ωdet ·Tf ·DetN (A.30)

Aggregation equations for bulk phytoplankton and coccolithophores are given below.

Aphy = φagg ·PhyN ·DetN + φagg ·PhyN2 (A.31)

25

Acocco = φagg ·CoccoN ·DetN +φagg ·CoccoN2 (A.32)
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A.8 Dissolved inorganic compounds (DIN, DIC) and total alkalinity (TA)

The nitrogen uptake (V Ncocco/phy) is carbon-specific and is therefore given as a rate of N utilisation per carbon, in units mol N

(mol C) −1 d−1 (Pahlow and Oschlies, 2009):

d

dt
DIN =−(V Nphy ·PhyC +V Ncocco ·CoccoC) + γNzoo + ρ ·Tf ·LDON (A.33)

The sources of DIN are calculated from zooplankton excretion (γNzoo) and the remineralisation of LDON.5

The sms differential equation for DIC is given below:

d

dt
DIC =−µphy ·PhyC− (1 +fCO2 ·fpic) ·µcocco ·CoccoC + τdissol ·PIC + rzoo+ρ ·Tf · (LDOC + dCCHO) + FDIC (A.34)

Calculations of air-sea gas exchange (FDIC) within mesocosms are based on original carbonate chemistry code provided by

the Ocean Carbon-Cycle Model Intercomparison Project (Orr, 1999). The original code was refined to include an accelerated

iteration scheme for pH and pCO2 calculations (Christoph Völker, personal communication), as already applied in Schartau10

et al. (2007).

The differential equation listed below accounts for TA in the system:

d

dt
TA = (1 + 1/16) · (

V Nphy
QNphy

·PhyN +
V Ncocco
QNcocco

·CoccoN)− 2 · (fCO2
· fPIC ·µcocco ·CoccoC− τdissol ·PIC)

− (1 + 1/16) · ρ ·Tf ·LDON (A.35)

Measured values of DIN, TA, and DIC on day one of the experiment were taken as initial conditions for respective mesocosms.15

A.9 Dissolved labile organic matter

The differential equations for dissolved organic matter are given below:

d

dt
LDOC = Cfact · γN ·

[
(1− fphydCCHO) ·PhyC + (1− f coccodCCHO) ·CoccoC

]
+ωdet ·Tf ·DetC

+ωgel ·Tf ·TEPC− ρ ·Tf ·LDOC (A.36)

20

d

dt
LDON = γN · (PhyN + CoccoN) +ωdet ·Tf ·DetN− ρ ·Tf ·LDON (A.37)

A.10 dCCHO and TEPC

The differential equation for dissolved combined carbohydrates(dCCHO) is given as:

d

dt
dCCHO = Cfact · γN ·

[
fphydCCHO ·PhyC + f coccodCCHO ·CoccoC

]
−φdCCHO · dCCHO2−φTEP · dCCHO ·TEPC

− ρ ·Tf · dCCHO (A.38)25
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Given below is the parameterisation to estimate the fraction of phytoplankton exudates that become available to be part of

dCCHO during two distinct modes of carbon overconsumption decscribed in Schartau et al. (2007).

f
cocco/phy
dCCHO =

[
1 + pdCCHO · exp(1−Qs/QNcocco/phy)

]−1

(A.39)

where pdCCHO is the fraction of DOC that enters dCCHO pool. Coagulation parameter of dCCHO (φdCCHO) is derieved from

product of αdCCHO (stickiness between dCCHO and dCCHO) and βdCCHO (C-specific collision rates between dCCHO and5

dCCHO). Likewise, coagulation parameter of dCCHO-TEPC (φTEPC) is computed from the product of αTEPC (stickiness be-

tween dCCHO and TEPC) and βTEPC (C-specific collision rates between dCCHO and TEPC). αdCCHO and αTEPC have no units

as they are probabilities, whereas βdCCHO and βTEPC are given in units m3 (mmol C)−1 d−1. Values of αdCCHO , αTEPC , βdCCHO

and βTEPC are taken from (Schartau et al., 2007).

φdCCHO = αdCCHO ·βdCCHO

φdCCHO = (0.87 · 10−3) · 0.86 = 7.48 · 10−4
(A.40)10

φTEPC = αTEPC ·βTEPC

φTEPC = 0.4 · 0.064 = 2.56 · 10−2
(A.41)

The differential equation for formation of TEPC is shown below:

d

dt
TEPC = φdCCHO · dCCHO2 +φTEP · dCCHO ·TEPC−ωgel ·Tf ·TEPC (A.42)
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Auxiliary variables & functions Description Unit

Tf Arrhenius temperature dependency -

fV resource fraction allocated for nutrient acquisition -

f0
V optimal allocation value of fV -

f0
LHC optimal resource allocation to light harvesting complex (LHC) -

µ net growth rates of respective photoautotrophs d−1

Qs N quota attached with structural proteins mol N (mol C)−1

V̂ N photoautotrophic local N uptake rate of rate mol N (mol C)−1 d−1

V C photoautotophic gross carbon fixation rates mol C (mol C)−1 d−1

rC respiration rates d−1

VNmax photoautotrophic maximum N assimilation rates mol N (mol C)−1 d−1

V Cmax photoautotrophic maximum C fixation rates mol C (mol C)−1 d−1

VN carbon-specific nitrogen uptake rate mol N (mol C)−1 d−1

QN molar cellular nitrogen-to-carbon (N:C) ratio (cell quota) mol N (mol C)−1

θ chlorophyll a-to-carbon (Chl:C) ratio of photoautotrophs g Chl (mol C)−1

θ̇ time derivative of θ g Chl (mol C)−1 d−1

θN chlorophyll a-to-nitrogen (Chl:N) ratio of photoautotrophs g Chl (mol N)−1

SI degree of light saturation for photosynthesis -

Schl regulation term for chlorophyll synthesis mol C (mol N)−1

Ld day length as a fraction of 24 hours -

I Mean irradiance Wm−2 d−1

θ̂ photautotrophic chloroplast Chl:C ratio g Chl (mol C)−1

A variable representing all light-dependent terms d−1

G nitrogen-specific rates of zooplankton grazing mmol N m−3 d−1

rzoo zooplankton respiration mmol C m−3 d−1

γNzoo zooplankton excretion of nitrogen mmol N m−3 d−1

Mzoo nitrogen-specific zooplankton mortality mmol N m−3 d−1

A nitrogen-specific rates of aggregation mmol N m−3 d−1

fPIC calcification relative to net carbon fixation mol PIC (mol C)−1

FDIC flux due to air-sea gas exchange mmol C m−3 d−1

fCO2 regression model of CO2 effect on calcification -

fdCCHO fraction of exudates assigned to dCCHO -

αdCCHO stickiness between dCCHO and dCCHO -

βdCCHO C-specific collision rates between dCCHO and dCCHO m3 (mmol C)−1 d−1

αTEPC stickiness between dCCHO and TEPC -

βTEPC C-specific collision rates between dCCHO and TEPC m3 (mmol C)−1 d−1

Model parameters (fixed) Value

1) γN photoautotrophic loss rate of organic nitrogen 0.1 d−1

2)CNfact enhancement factor of carbon exudation relative to γN 1.0 -

3) ρ remineralisation rate of dissolved organic matter 0.05 d−1

4)ωdet hydrolysis/degradation rate of detritus 0.02 d−1

5)ωgel hydrolysis/degradation rate of TEPC 0.01 d−1

6) τdissol dissolution rate of particulate inorganic carbon 0.01 d−1

7)φdCCHO coagulation parameter of dCCHO 7.48 · 10−4 m3 (mmol C)−1 d−1

8)φTEPC coagulation parameter of dCCHO-TEPC 2.56 · 10−2 m3 (mmol C)−1 d−1

9) Tref reference temperature forAE relation 293.15 K

10)AE slope of arrhenius relationship 4500 K

11) aw light attenuation due to water column 0.04 m−1

12) ac light attenuation due to chlorophyll a 0.05 (mg Chla)−1 m3

13)RChlM cost of chlorophyll maintenance 0.1 d−1

14)RM total respiration maintenance cost 0.05 d−1

15) ζChl cost of photosynthesis coefficient 0.6 mol C (g Chla)−1

16) ζN cost of N uptake 0.7 mol C (mol N)−1

17)A0 potential nutrient affinity 1 m3 mol C−1 d−1

18) VN0 photoautotrophic potential N assimilation rate 4.0 mol C (mol N)−1

19) V C0 photoautotrophic potential C fixation rate 4.0 mol C (mol C)−1

20) γN algal nitrogen loss rate 0.1 d−1

21)φagg aggregation rate 0.01 m3 (mmol N)−1 d−1

22) pdCCHO minimum DOC fraction allocated to dCCHO 0.2

23) gm nitrogen specific maximum grazing rate 0.2 d−1

24) ε prey capture rate normalised to maximum grazing rate 1 (mmol N)2 m−6

25)Mzoo mortality rate of zooplankton 0.05 d−1

26)Rbasal zooplankton basal respiration rate 0.05 d−1

27) pPIC slope of ∆PIC formed per ∆C assimilated 5.0 mol PIC (mol C)−1

Table A.1. Auxiliary model variables and model parameters.
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B Data assimilation

B.1 Parameter optimisation procedure

The entire optimisation procedure of each (LC, MC, and HC) case is subject to five consecutive analysis steps:

1) adjustment of parameters while considering published typical values −→ specify model solution that is in qualitative

(visual) good agreement with observations of the medium calcification MC case5

2) application of simulated annealing algorithm (SANN), see (Bélisle, 1992), to effectively scan and minimise the seven-

dimensional manifold (Θ,J(Θ)), while avoiding to get trapped into local minima of J(Θ) −→ obtain global estimate of

Θ

3) local refinement of the parameter estimate, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden,

1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) −→ identify maximum likelihood estimate that corresponds with10

the global minimum (Θ̂,,J(Θ̂))

4) calculation of the inverse of second derivatives of J(Θ) with respect to every parameter (Hjj = ∂2J/∂Θ2
j at Θ̂, which is

a point-wise approximation of the diagonal elements of a Hessian matrixH)−→ derive marginal errors (standard errors,√
H−1
jj ) of the estimated parameter values

5) application of a Markov Chain Monte Carlo (MCMC) method, using the marginal error information of 4) to confine cred-15

ible range of optimal parameter values −→ derive posterior confidence limits of parameter estimates and collinearities

(correlations) between parameter estimates.

For steps 2, 3, and 5 the R package FME is applied, as coded and described by Soetaert and Petzoldt (2010). The plankton

ecosystem model was coded and compiled as shared library in FORTRAN so that we can apply a FORTRAN-R wrapper func-

tion. This wrapper allows us to take advantage of fast numerical Euler forward integrations of the model equations while, at the20

same time, we can benefit from the R platform and its freely available packages. The cost function J(Θ) is evaluated in R. The

Markov Chain Monte Carlo (MCMC) method employed here is based on the Adaptive Metropolis-Hastings (AMH) algorithm

(Haario et al., 2001), which is also available with the R package FME. The AMH algorithm generates a new parameter vector

(Θ∗) by perturbing the original vector Θ, inferred from a “proposal” distribution (Metropolis et al., 1953). The standard devia-

tion information required for generating the initial proposal (Gaussian) distribution in the AMH algorithm is derived from the25

diagonal elements of Hessian matrix. We approximated the diagonal elements of the Hessian with finite central differences, as

described in e.g. Matear (1995), Kidston et al. (2011), and in Kreus and Schartau (2015). To do so we imposed an incremental

step size of 1% variation to the respective parameter values.
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B.2 Data correlation matrices

Correlations during pre-bloom (ti; i = 1, ... , 13) between mesocosms with medium observed calcification in matrix form are

given below:

C(y) =



DIC DIN Chla PON POC PIC TA

DIC 1 0.57 −0.95 −0.77 −0.95 −0.89 0.88

DIN . 1 −0.56 −0.52 −0.53 −0.58 0.53

Chla . . 1 0.71 0.91 0.81 −0.77

PON . . . 1 0.87 0.77 −0.65

POC . . . . 1 0.83 −0.77

PIC . . . . . 1 −0.95

TA . . . . . . 1


(B.1)

Correlations during post-bloom period (ti; i = 14, ... , 22) are:5

C(y) =



DIC DIN Chla PON POC PIC TA

DIC 1 0.22 0.27 0.29 −0.83 −0.93 0.94

DIN . 1 0.3 0.31 −0.23 −0.22 0.24

Chla . . 1 0.99 0.01 −0.44 0.49

PON . . . 1 −0.02 −0.45 0.50

POC . . . . 1 0.65 −0.64

PIC . . . . . 1 −0.99

TA . . . . . . 1


(B.2)

Residual standard errors (σi) were calculated based on daily measurements between the mesocosms of similar observed calci-

fication and can be written in matrix notation with off-diagonal elements being zero:

Si =


σ
(DIC)
i 0 · · · 0

0 σ
(DIN)
i · · ·

...
...

...
. . . 0

0 · · · 0 σ
(TA)
i

 (B.3)

10
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