
Response to Editors comments: 

Non-public comments to the Author: 

1. P1 L20: No need for “human induced”; “fossil fuel emissions” already indicates its relationship to 

humans 

Response: This has been taken care of (L20, L41; where L is line in revised manuscript). 

2. P1 L22-26: sentence structure is awkward; please use semi-colons instead of full stops; the first word 

in each sub-phrase should be in lowercase; insert “and” between the second and third sub-phrases 

Response: This has been taken care of (L22-L27). 

3. Balance the Abstract with respect to the importance of EVI, NDVI, and RDVI in the analysis; you do 

not mention EVI  

Response: We have now incorporated which vegetation indices that were used in the analysis 

(L25-L27).    

4. P2 L42: “are even the main biome…”; in context of the entire sentence, I am unsure what this means; 

please rephrase 

Response: This has been changed to: “Mean carbon dioxide (CO2) uptake by terrestrial 

ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-

arid regions are the main biome driving its inter-annual variability (Ahlström et al., 2015; 

Poulter et al., 2014). Semi-arid regions even contribute to 60% of the long term trend in the 

global terrestrial C sink (Ahlström et al., 2015).” (L41-44) 

5. P2 L49: is “productivity” the right word? Do you mean “production”? Please make changes throughout 

the manuscript. 

Response: This has been taken care of throughout the manuscript. 

6. P2 L50: “under high pressure” is ambiguous; you may rewrite as “under threat” 

Response: This has been taken care of (L51). 

7. P2 L59: “Climate is thus another factor…to their vulnerability to moisture conditions”; this sentence 

could be made into two separate sentences. Remove the “and” and capitalize the “S” in “semi-arid region 

such as…” 

Response: This has been taken care of (L57-58). 

8. Many unnecessary uses of “the”; you may remove without loss of meaning 

Response: This has been taken care of throughout the manuscript. 

9. P2 L63: “defined as the efficiency to convert absorbed solar light into CO2 uptake…” can be written as 

“defined as the conversion efficiency of absorbed sunlight to C uptake…” 

Response: This has been taken care of (L62). 

10. P2 L74: “level” is not needed 

Response: This has been taken care of (L73). 



 

11. P3 L75-80 (and other places in the manuscript): Do not change verb tense midsentence 

Response: This has been taken care of throughout the manuscript. 

12. P3 L103-105: “To evaluate…”; awkward sentence, please rephrase; what is there to evaluate? 

Response: This has been changed to: “To investigate if the recently released MOD17A2H GPP 

(collection 6) product is better at capturing GPP for the Sahel than collection 5.1.” (L102-105) 

13. P4 L136 (and other places in the manuscript): “according” should be “according to”  

Response: This has been taken care of throughout the manuscript. 

14. P5 L156 and P7 L236-237: these sentences are not needed; just indicate what was used/done, not 

what was needed; similar filler is used throughout the manuscript 

Response: Fillers have been removed throughout the manuscript.  

15. Never start a sentence with a symbol, a number, or an acronym. Please spell out each time when 

used at the start of a sentence; make changes throughout the manuscript. 

Response: This has been taken care of throughout the manuscript. 

16. Simplify hydrological and meteorological to “hydrometeorological”  

Response: This has been taken care of throughout the manuscript. 

17. P5 L173: “the fitting was insignificant (p-value < 0.05)…”; should it read “p-value > 0.05”? 

Response: This has been taken care of (L167). 

18. P5 L175: can be modified as “using a 30-day moving window with a 1-day time step”; not clear; 

please elaborate 

Response: This has been taken care of (L168). 

19. The manuscript needs some level of streamlining; e.g., results appearing in the Methods section 

(e.g., P6 L213-214) should be moved to their appropriate section; redundant material throughout the 

manuscript should be removed (e.g., P8 L274, P10 L357-359, and other places in the manuscript) 

Response: The result in the method section in the previous version of the manuscript has been 

moved to the supplementary material. Redundant material throughout the manuscript has 

been removed. 

20. P5 214-216: I am unsure what you mean by this statement 

Response: This section has been completely changed (L206-L214). 

21. Many statements in the manuscript are vague in nature, please be more specific (see e.g., P5 L178 

and L214-215, and P10 L355 with “…to a certain level…”) 

Response: We have tried to be more specific throughout the revised manuscript. 

22. P7 L247: I am unsure what is meant by “robustness”; please be specific 

Response: This has been revised throughout the manuscript. 



23. P8 L253-270: simplify detail; you may consider placing intermediate equations in a Table  

Response: We fully agree, we have simplified this section and removed some of the 

unnecessary intermediate equations (Section 2.4.2). 

24. P8 L273: “We used 200 iterations and different measurements sites…”; this suggests that 200 

different measurement sites were used; I know this is not the case, please rephrase if the sentence is 

needed; i.e., “different” is vague, be specific 

Response: This has been clarified in the revised manuscript (L258-260). 

25. P8 L280: “left-out subsamples”; this was not addressed before, please introduce in the appropriate 

place 

Response: Within the bootstrap simulation methodology some sites were included and some 

were left-out. This has been clarified in the revised manuscript (L258-260). 

26. P8 L282 (and other places in the manuscript): “in situ variables” is better termed as “independent 

variables”; the emphasis is on the fact that the variables are independent predictors of a dependent 

variables opposed to the variables being measured in the field 

Response: This has been changed throughout the manuscript.  

27. A flowchart of methods and information flow would be helpful in understanding the work  

Response: It is our hope that the revised clarified manuscript makes this flowchart 

unnecessary. However, if this is still considered required after the review of the revised 

manuscript we are naturally willing to include such a flowchart.  

28. P10 L335: “works on average well…” should be “works well on average…”; similar constructions can 

be found throughout the manuscript, please consider changing 

Response: This has been taken care of throughout the manuscript. 

29. P11 L366-367: “…including blue-band information…”; what is the significance of this? Also, the entire 

sentence (L366-368) needs revising, currently awkward 

Response: We agree, this sentence has been removed. 

30. I am pleased to see that you have considered to incorporate additional maps showing regional impact 

on GPP and other variables; this added information should help you develop a more convincing 

Discussion; redundancy in the current discussion should be removed 

Response: Redundancy in the previous discussion has been removed and the additional maps 

are discussed in the revised manuscript.  

31. The heading of Table 3 is awkward, “statistics” do not “study”; please revise 

Response: This has been taken care of (Table 3). 

 



Response to comments by Reviewer #1 
 
A. Summary 
This paper uses data from six eddy covariance flux sites distributed across the Sahel of West 
Africa to examine patterns in space and time of carbon fluxes (GPP) as characterized by two key 
canopy-scale parameters (maximum photosynthetic uptake, called Fopt in this paper, and initial 
quantum yield, termed alpha). The authors also explore the relationships between the two GPP 
parameters and a variety of satellite vegetation indices providing (in theory at least) opportunities 
for spatial upscaling of the site-based results. This is an interesting paper reporting useful results. 
 
Response: Thank you very much, and also thank you f or insightful comments that helped 
improving the manuscript. 
 
B. Main Points 
1. Regional GPP estimation. It is a pity the authors didn’t take the final step to evaluate GPP 
across the region using the fitted models. At least, we don’t see a map of these estimates, only 
point-based comparisons with the 6 field sites. In Section 2.4.1 the authors describe a “full model” 
for the regression tree used to characterize fluxes and predict Fopt and alpha at the field sites. In 
Section 2.4.2 they continue to describe an approach to derive parameters on a pixel-by-pixel basis 
where not all edaphic data (e.g. soil moisture) are available. However, we don’t see the results of 
this analysis in the form of a map or other representation. Could this be added? 
 
Response: We agree with the reviewer; in the previo us version of the manuscript we did not 
include the full gridded map because the spatial up -scaling requires some very heavy 
computer processing. However, we have now borrowed computer power from the 
university, and in the revised version of the manus cript we have included a full gridded map 
of peak F opt , peak α and an annual sum of GPP (L322-L326; where L is li ne in revised 
manuscript , Fig. 5). 
 
2. Prior work: The authors should refer to some considerable prior work that will be relevant to this 
analysis. See Global Change Biology 4, 523-538 (1998) and numerous HAPEX-Sahel papers in 
the J. Hydrology 1997 for earlier and quite detailed analysis of flux measurements in Sahelian 
vegetation. The GCB paper, for example, analyses Fopt and alpha as a leaf-level variable in 
considerable detail. Note that the canopy scale Fopt and alpha investigated here incorporate the 
effects of changing LAI during the season. This rather complicates the situation for this analysis, as 
the authors state on line 351. 
 
Response: Thank you for this suggestion, we agree t hat it was a good idea to extend the 
comparison of the results of our analysis to the re sults of previously published research. 
This has been incorporated into the revised manuscr ipt (L360-374).  
 
3. Peak uptake rates: the field measurements at some sites seem abnormally high. The earlier 
data in the GCB paper references above was for a southern Sahel site with LAI likely higher than 
any of these sites, but with maximum Fopt of only -15-20 umol m-2 s-1. 
 
Response: 1) The leaf area index value of the HAPEX –Sahel West-Central fallow savanna 
site in (Hanan et al., 1998) is not larger than at the Dahra and Kelma sites, which are the two 
sites of our study with very high F opt  and α. Peak LAI is 2.1 for Dahra and 2.7 for Kelma, so i t 
is considerably higher than 1.2 as given in (Hanan et al., 1998). The higher LAI can thereby 
explain parts of the higher F opt  estimates. 
2) (Hiernaux et al., 2009) and (Dardel et al., 2014 ) showed above ground peak biomass in 
southwestern Niger which are comparable, and nowada ys slightly lower than what is 
reported for the Gourma area (which in addition rec eives less rain).  



Hanan et al 1997 (J Hydrology) report above ground peak biomass of 1000 and 1500 kg/ha 
for the grass and shrub fallow sites, which is much  lower than what is reported for the 
Dahra site (Mbow et al., 2013), which also receives  less rainfall. This is in line with a 
productivity gradient over these 3 sites, possibly caused by soil fertility and fallow 
management in southwestern Niger.  
3) The reason for high estimates of F opt and α are the very high net CO2 fluxes measured by 
the eddy covariance systems. For the Dahra field si te, we have performed a rigorous quality 
check of the data, please see (Tagesson et al., 201 6) and we are certain that the measured 
values are correctly measured. Tagesson et al. (201 6) have tried to explain the high net CO 2 
flux values by that there is a combination of dense  herbaceous C4 ground vegetation, high 
soil nutrient availability, a grazing pressure resu lting in compensatory growth and 
fertilization effects, and the West African Monsoon  bring a humid layer of surface air from 
the Atlantic, possibly increasing vegetation produc tivity for the most western part of Sahel. 
This info has been included in the revised manuscri pt (L360-374).  
 
4. Possible unit issues: this is an impertinent question, but looking at the massive multipliers 
between the author’s estimates and independent estimates in Figures 2 (incoming PAR) and 3 
(GPP) I couldn’t help wondering if there might be some unit issues. In the case of PAR the 
conversion of PAR in W/m2 to umol m-2 s-1 varies somewhat based on solar angle and 
atmospheric conditions but is typically 4.2 umol/W. This is more than the 3.09 of the fitted slope, 
but is it really possible that the ERA PAR product is underestimating actual incoming PAR so 
consistently by a whopping 70% ! Similarly for Figure 3, if the MODIS product is in units of 
g/m2/day carbon and the authors have retained their data in units g/m2/day CO2 this would give 
an inherent slope in Figure 3 of 12/44 = 0.273. Again this doesn’t entirely account for their 
calculated slope of 0.17, but might be worth double-checking. 
 
Response: Yes, we absolutely understand your concer n here, and we have been looking at 
these conversions many times to make absolutely sur e that the conversions are correctly 
done: 
 

1. PAR values: 
The average raw in-situ PAR = 483 µmol m-2 s-1 
 
The average raw ECMWF PAR = 350503 (J m-2 summed fo r 3 hours) 
 
To get ECMWF PAR to (W m-2): raw ECMWF PAR was divi ded by (60sec*60 minutes*3 
hours) => 
Average ECMWF PAR (W m-2) =350503/(60*60*3)= 32 W m -2.  
 
To convert ECMWF PAR (W m-2) to µmol m-2 we multiplied with 4.57 (Sager and McFarlan e, 
1997):  
 
Average ECMWF PAR ( µmol m-2 s-1) =32*4.57= 148 µmol m-2 s-1 
 
Average in-situ PAR ( µmol m-2 s-1)/ Average ECMWF PAR ( µmol m-2 s-1) = 483/148 = 3.2 
 
So we think that the PAR conversion is correctly do ne. We recently found out that the issue 
is related to a major error in the code of ECMWF su rface PAR:  
“The surface incident value (code 58) seems erroneo usly low. For example, in locations in 
the Celtic Sea, surface PAR is typically around 20%  to 25% of the clear sky value (code 20), 
and about a third of in-situ measurement of surface  PAR. Cause: We have shortwave bands 
that include 0.442-0.625 micron, 0.625-0.778 micron  and 0.778-1.24 micron. PAR is coded as 
if it was intending to sum all of the radiation in the first of these and 0.42 of the second (to 



account for the fact that PAR is normally defined t o stop at 0.7 microns. However, PAR is in 
fact calculated from the sum of the second band plu s 0.42 of the third.” (ECMWF, 2016).  
  This indicates that the ERA-interim surface PAR p roduct is actually not PAR, but rather 
incoming red and near infrared. However, we still i ntend to use this data source since we 
relate the gridded ECMWF PAR to in-situ measured PA R and used this relationship to 
convert ECMWF PAR to the proper level. The relation ship should be ok, even if it is relating 
in-situ PAR to a different part of the spectrum; th e final product is still PAR at a reasonable 
level. The conversion of ERA interrim PAR is descri bed in the revised manuscript (L207-
214).  
 

2. MODIS GPP: 
An example for GPP of Agofou: 
 
Average in-situ GPP -1.34 µmol CO2 m-2 sec-1 
 
Convert it to g CO2 m-2 and s-1: 
 
1 mol=44 g CO2 and micro= µ=10-6 
 

� Average in-situ GPP =0.000059 g CO2 m-2 s-1 
 
Convert it to g CO2 m-2 and 8 d-1:   
 
8 days = (8*24*60*60) seconds 
 
0.000059 g CO2 m-2 s-1 * (8*24*60*60) 
 

� Average in-situ GPP =40.7 g CO2 m-2 and 8 day-1: 
 
Convert it to g C m-2 and 8 d-1:    
 
1 g CO2 = 0.27 g C 
 
Average in-situ GPP = 40.7*0.27= 11.0 g C m-2 and 8  day-1: 
 
 
Average raw MODIS GPP for Agofou: 24.1  
 
Scaling factor: 0.0001 => 
 
Modis GPP (kg C m-2 and 8 day-1)=0.00241 kg C m-2 a nd 8 day-1 
 
Modis GPP (g C m-2 and 8 day-1)=0.00241 *1000 = 2.4 1 g C m-2 and 8 day-1. 
 
Again, we agree that this major underestimation is strange, but we believe that all 
conversions are correctly done.  
 
C. Minor Points 
Line 42: While it is appropriate to mention that significant inter-annual variability in global carbon 
cycle arises in semi-arid regions relating to rainfall variability and fire (particularly in the mesic 
savannas, more so than the Sahel; eg. Williams et al Carbon Balance and Management 2007), it 
would be an exaggeration to state that the semiarid regions are “driving long-term trends”. 
 



Response: We agree with the reviewer that this was not a very clear sentence. But still, 
according (Ahlström et al., 2015) semi-arid region are driving the long term trends. We have 
clarified this in the revised manuscript: 
 
“Vegetation growth in semi-arid regions is an impor tant sink for fossil fuel emissions. Mean 
carbon dioxide (CO 2) uptake by terrestrial ecosystems is dominated by highly productive 
lands, mainly tropical forests, whereas semi-arid r egions are the main biome driving its 
inter-annual variability (Ahlström et al., 2015; Po ulter et al., 2014). Semi-arid regions even 
contribute to 60% of the long term trend in the glo bal terrestrial C sink (Ahlström et al., 
2015).”(L41-44) 
 
Line 52: “continuous cropping” is very rare in the Sahel (outside of areas with irrigation 
opportunities, anyway). In the drier northern regions pastoralist communities may attempt a dryland 
crop, but with little expectation of success. Even in the wetter southern Sahel where the crop site in 
this paper is located, most fields are fallowed. In the highly populated regions near the capital city 
of Niger, rotations have reduced, but it would be wrong to imply that “continuous cropping is 
practiced” widely.  
 
Response: Thank you for noticing this, this sentenc e has been removed.  
 
Line 107: “find evidence” is awkward here. Perhaps substitute “characterize”. 
 
Response: Yes, we fully agree. Characterize is much  better. Thank you very much. 
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Response to comments by Reviewer #2 
 
General comments: This is an interesting paper providing detailed descriptions of spatial and 
temporal dynamics in canopy light-response parameters at CO2 flux observation sites across Sahel 
region. The authors evaluated MODIS GPP, and reported its serious problem. This paper 
demonstrated the applicability of alternative model to scale up EC flux-based GPP to regional or 
continental scales, using EO-based spectral vegetation indices. The dynamics of photosynthetic 
parameters and some interpretations of several vegetation indices presented in this paper are 
valuable to estimate CO2 budget in semi-arid ecosystems, which have included large uncertainties 
so far. Overall presentation is well structured and clear. The purpose of this paper fits well to this 
journal. 
 
Response: Thank you very much, and also thank you f or insightful comments that helped 
improving our manuscript.  
 
Specific comments: 
1. The intra-annual dynamics in Fopt and α were well explained with the vegetation indices in 
relation to the seasonal changes in water thickness and chlorophyll abundance. But the shorter 
term variations in Fopt and α (Fig. 4) do not seem to be explained sufficiently by the regression tree 
analysis. Some stress events may affect them. Please show the relationships with meteorological 
variables such as SWC or VPD additionally, and describe more information on the related specific 
stress events. 
 
Response: We are truly sorry, but we do not complet ely agree. In Table 3, results from the 
regression trees are presented and the coefficient of determination (R 2) is larger than 0.9 for 
most sites; when all sites are combined it was 0.87  and 0.84 for F opt and α respectively. So 
we would say that the regression trees describe the  short term variability in F opt  and α pretty 
well. To further clarify this, we have incorporated  a figure to the supplementary material 
with both measured and regression tree predicted F opt  and α. This indicates that SWC and 
VPD have a strong influence on the short term varia bility, since these explanatory variables 
are included in most regression trees (Table 3). Th is info is included in the revised 
manuscript (L232-239; L296-304; where L is line in revised manuscript).  
 
2. The result of strong underestimation of ERA Interim PAR against in situ PAR is surprising and 
important information. Please confirm the ERA Interim PAR data: it is W m-2 (Line 157), but µmol 
m-2 s-1 (Fig.2). In addition, there seems to be some different tendencies in the relationships in Fig. 
2, maybe depending on the periods and sites. Were the PAR sensors calibrated regularly? PAR 
sensors tend to deteriorate as aging. Please check the deterioration in PAR by comparison with 
the simultaneously measured Rg. 
 
Response: We completely understand your concern reg arding this relationship, and we 
were very concerned ourselves. 1) Regarding the in- situ PAR data; we agree, two PAR 
sensors standing next to each other can easily give  quite different values, and some minor 
differences between in-situ PAR and ECMWF could pos sibly be explained by this issue. 
However, the sensors have been sent for calibration  regularly, and they have been 
intercalibrated before and after each rainy season.  So this should not be a major issue. The 
different tendencies seen is most likely related to  the fact that ECMWF PAR is given in UTC 
time for each 3h. We converted this to local time w hen comparing against the in-situ data, 
and different periods of the day thereby might get slightly different tendencies in the 
relationship.  
   2) Regarding the unit conversions: we have been looking at these conversions many 
times to make absolutely sure that the conversions are correctly done: 
 



The average raw in-situ PAR = 483 µmol m-2 s-1 
 
The average raw ECMWF PAR = 350503 (J m-2 summed fo r 3 hours) 
 
To get ECMWF PAR to (W m-2): raw ECMWF PAR was divi ded by (60sec*60 minutes*3 
hours) => 
Average ECMWF PAR (W m-2) =350503/(60*60*3)= 32 W m -2.  
 
To convert ECMWF PAR (W m-2) to µmol m-2 we multiplied with 4.57 (Sager and McFarlan e, 
1997):  
 
Average ECMWF PAR ( µmol m-2 s-1) =32*4.57= 148 µmol m-2 s-1 
 
Average in-situ PAR ( µmol m-2 s-1)/ Average ECMWF PAR ( µmol m-2 s-1) = 483/148 = 3.2 
 
So we think that the PAR conversion is correctly do ne. We recently found out that the issue 
is related to a major error in the code of ECMWF:   
“The surface incident value (code 58) seems erroneo usly low. For example, in locations in 
the Celtic Sea, surface PAR is typically around 20%  to 25% of the clear sky value (code 20), 
and about a third of in-situ measurement of surface  PAR.  Cause: We have shortwave bands 
that include 0.442-0.625 micron, 0.625-0.778 micron  and 0.778-1.24 micron. PAR is coded as 
if it was intending to sum all of the radiation in the first of these and 0.42 of the second (to 
account for the fact that PAR is normally defined t o stop at 0.7 microns. However, PAR is in 
fact calculated from the sum of the second band plu s 0.42 of the third.” (ECMWF, 2016).  
 
  This indicates that the ERA-interim surface PAR p roduct is actually not PAR, but rather 
incoming red and near infrared. However, we still i ntend to use this data source since we 
relate the gridded ECMWF PAR to in-situ measured PA R and used this relationship to 
convert ECMWF PAR to the proper level. The relation ship should be ok, even if it is relating 
in-situ PAR to a different part of the spectrum; th e final product is still PAR at a reasonable 
level. The conversion of ERA interrim PAR is descri bed in the revised manuscript (L207-
214).  
 
 
3. This paper aims to provide a model to scale up observed canopy scale GPP to regional or 
continental scales, using EO-based spectral vegetation indices. The readers will expect a final map 
of spatial distribution of GPP in semi-arid areas, and the map would make this paper more 
valuable. 
 
Response: We agree with the reviewer, in the previo us version we did not include the full 
gridded map because the spatial up-scaling requires  some very heavy computer 
processing. However, we have now borrowed computer power from the university, and in 
the revised version of the manuscript we have inclu ded a full gridded map of average peak 
Fopt , average peak  α and an average annual sum of GPP 2001-2014 (L322-L 326; Fig. 5).  
 
Minor comments: 
Line 184: What do you mean by “air-water interface”? 
 
Response: We agree that the formulation was not cle ar. This has been corrected in the 
revised manuscript:  
 



“The NIR radiance is reflected by the leaf cells si nce an absorption of these wavelengths 
would result in overheating of the plant whereas re d radiance is absorbed by chlorophyll 
and its accessory pigments (Gates et al., 1965).” ( L177-178) 
 
Table 2: Correlation between “intra-annual” dynamics 
 
Response: Thank you for pointing this out. This has  been taken care of. 
 
Please unify the descriptions: use Foptf rac and _frac for intra-annual dynamics instead 
Fopt and α in Table 2, 3, as described in the text. 
 
Response: Thank you for pointing this out. The F opt  and α were not normalised to F opt_frac  
and α_frac  for all analysis, they were only normalised when t he analysis was conducted for 
all sites. This has been clarified in the revised m anuscript (L222-334). In Table 2 and 3, it 
has also been incorporated that it was F opt  and α  for all single site analysis, whereas it was 
Fopt_frac  and α_frac  for all sites analysis. 
 
Fig 3: Some points of ML-Kem are quite low (nearly 0) for MODIS GPP, while around 
8 g C m-2 d-1 for EC GPP. Why? 
 
Response: Kelma is an inundated Acacia forest locat ed in a clay-soil depression. These 
differentiated values are from the beginning of the  dry season, when the depression 
continues to have high CO 2 fluxes since it is still inundated, whereas, the l arger area was 
turning dry. The EC based footprint covers this dep ression and in-situ GPP was thereby 
high, whereas the satellite based GPP covering the larger area estimated low values. This 
info is included in the revised manuscript (L275-27 8). 
 
Please unify the descriptions: α instead of QE, as described in the text. Clarify the labels and 
scales on X-axes. 
 
Response: We have now inserted α into the figures. Scales has been unified on the x -axis.  
 
(f) What is the reason that VI decreased less than 0.15 before the growing season in 
2007 at NE-WaM? 
 
Response: There are two possible reasons: 1) Uncert ainty in the remote sensing data. The 
end of the dry season and the beginning of the rain y season is the period of highest 
uncertainty in the satellite data due to aerosol an d cloud contamination. This could possibly 
affect the VI to a low value. 2) Another possible e xplanation is that NE-WaM is a millet field. 
Agricultural practice is that before the rainy seas on farmers cut the shrubs in their fields. 
The fields are thereby cleared of vegetation before  the sowing, which would decrease the VI 
substantially.  
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Abstract. It has been shown that vegetation growth in semi-arid regions is an important sink for human induced fossil 21 

fuel emissions for the variability of the global terrestrial CO2 sink, which indicates the strong need for improved 22 

understanding, and spatially explicit estimates of CO2 uptake (gross primary productivityproduction (GPP)) in semi-arid 23 

ecosystems. This study has three aims: 1) to evaluate the MOD17A2H GPP (collection 6) product against eddy 24 

covariance (EC) based GPP for six sites across the Sahel. ; 2) To to find evidence oncharacterise the relationships 25 

between spatial and temporal variability in EC based photosynthetic capacity (Fopt) and quantum efficiency (α) and 26 

earth observation (EO) based vegetation indices (normalized difference vegetation index (NDVI); renormalized 27 

difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared water stress index 28 

(SIWSI)); and  3) To to study the applicability of EO up-scaled Fopt and α for GPP modelling purposes. MOD17A2H 29 

GPP (collection 6) underestimated GPP strongly, most likely because the maximum light use efficiency is set too low 30 

for semi-arid ecosystems in the MODIS algorithm. The Iintra-annual dynamics in Fopt was closely related to the 31 

shortwave infrared water stress index (SIWSI) closely coupledbeing sensitive to equivalent water thickness, whereas α 32 

was closely related to the renormalized difference vegetation index (RDVI) affected by chlorophyll abundance. Spatial 33 

and inter-annual dynamics in Fopt and α were closely coupled to the normalized difference vegetation index (NDVI) and 34 

RDVI, respectively. Modelled GPP based on Fopt and α up-scaled using EO based indices reproduced in situ GPP well 35 

for all but except a cropped site. The cropped site that was strongly impacted by intensive anthropogenic land use. Up-36 

scaled GPP for Sahel 2001-2014 was 736±39 g C m-2 y-1. This study indicates the strong applicability of EO as a tool 37 
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for parameterising spatially explicit estimates of GPP, Fopt and αphotosynthetic capacity and efficiency; incorporating 38 

EO-based Fopt and α this inin to dynamic global vegetation models could improve global estimations estimates of 39 

vegetation productivityproduction, ecosystem processes and biogeochemical and hydrological cycles. 40 

 41 

Keywords: Remote sensing, Gross Primary Productivity, MOD17A2H, light use efficiency, photosynthetic capacity, 42 

quantum efficiency 43 

1 Introduction 44 

Vegetation growth in semi-arid regions is an important sink for human induced fossil fuel emissions. Mean carbon 45 

dioxide (CO2) uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, 46 

whereas Semisemi-arid regions are even the main biome driving long-term trends andits  inter-annual variability 47 

(Ahlström et al., 2015; Poulter et al., 2014). in carbon dioxide (CO2) uptake by terrestrial ecosystems Semi-arid regions 48 

even contribute to 60% of the long term trend in the global terrestrial C sink (Ahlström et al., 2015). (Ahlström et al., 49 

2015; Poulter et al., 2014). It is thus important to understand the long-term variability of vegetation growth in semi-arid 50 

areas and their response to environmental conditions to better quantify and forecast the effects of climate change. 51 

   The Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna 52 

in the southSouth. The region has experienced numerous severe droughts during the last decades that resulted in region-53 

wide famines in 1972-1973 and 1984–1985 and localized food shortages across the region in 1990, 2002, 2004, 2011 54 

and 2012 (Abdi et al., 2014; United Nations, 2013). Vegetation productivity production is thereby an important 55 

ecosystem service for the people living livelihoodin the Sahel, but it is under high pressurethreat. The region 56 

experiences a strong population growth, increasing the demand on the ecosystem services due to cropland expansion, 57 

increased pasture stocking rates and fuelwood extraction (Abdi et al., 2014). Continuous cropping is practised to meet 58 

the demand of the growing population and has resulted in reduced soil fertility, which affects vegetation productivity 59 

negatively (Samaké et al., 2005; Chianu et al., 2006).  60 

   At the same time as we have reports of declining vegetation productivityproduction, we have contradicting reports of 61 

greening of the Sahel based on earth observation (EO) remote sensing data (Dardel et al., 2014; Fensholt et al., 2013). 62 

The greening of the Sahel has mainly been attributed to alleviated drought stress conditions due to increased 63 

precipitation since the mid-1990s (Hickler et al., 2005). Climate is thus another important factor regulating vegetation 64 

productivityproduction. S and semi-arid regions, such as the Sahel, are particularly vulnerable to climate fluctuations 65 

due to their vulnerability dependency to moisture conditions. 66 

   Estimation of gross primary productivityproduction (GPP), i.e. uptake of atmospheric CO2 by vegetation, is still a 67 

major challenge within remote sensing of ecosystem services. GPP Gross primary production is a main driver of 68 

ecosystem services such as climate regulation, carbon (C) sequestration, C storage, food production, or livestock 69 

grassland production. Within earth observation (EO), spatial quantification of GPP generally involves light use 70 

efficiency (LUE), defined as the conversion efficiency to convertof absorbed solar light into CO2 uptake (Monteith, 71 

1972, 1977). It has been shown that LUE varies in space and time due to factors such as plant functional type, drought 72 

and temperature, nutrient levels and physiological limitations of photosynthesis (Garbulsky et al., 2010; Paruelo et al., 73 

2004; Kergoat et al., 2008). The LUE concept has been applied using various methods, either by using a biome-specific 74 

Field Code Changed

Field Code Changed
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LUE constant (Ruimy et al., 1994), or by modifying a maximum LUE using meteorological variables (Running et al., 75 

2004).  76 

   An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging 77 

Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation 78 

(PAR) is estimated as a product of the fraction of PAR absorbed by the green vegetation (FPAR from MOD15A2) 79 

multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A 80 

set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table 81 

(BPLUT). Then maximum LUE is modified depending on air temperature (Tair) and vapor pressure deficit (VPD) levels 82 

(Running et al., 2004). Sjöström et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa, and showed 83 

that it was underestimatingunderestimated GPP for semi-arid savannas in the Sahel. Explanations for this 84 

underestimation were that the assigned maximum LUE from the BPLUT is was set too low and uncertainties in the 85 

FPAR (MOD15A2) product. Recently, a new collection of MOD17A2 at 500 m spatial resolution was released 86 

(MOD17A2H; collection 6) with an updated BPLUT, updated GMAO meteorological data,  improved quality control 87 

and gap filling of the FPAR data from MOD15A2 (Running and Zhao, 2015).  88 

   It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et 89 

al., 2005). Additionally, the linearity assumed by the LUE model is usually not found  as the response of GPP to 90 

incoming light follows more of an asymptotic curve (Cannell and Thornley, 1998). Investigating other methods for 91 

remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of 92 

LUE we focus on the light response function of GPP at the canopy scale, and spatial and temporal variation of its two 93 

main parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; Fopt), and the initial 94 

slope of the light response function (canopy-scale quantum efficiency; α) (Falge et al., 2001; Tagesson et al., 2015a). 95 

Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO2 during photosynthesis 96 

(µmol CO2 m
-2 s-1) whereas α is the amount of CO2 fixed per incoming PAR (µmol CO2 µmol PAR-1). Just to clarify the 97 

difference in LUE and α in this study; LUE (µmol CO2 µmol APAR-1) is the slope of a linear fit between CO2 uptake 98 

and absorbed PAR, whereas α (µmol CO2 µmol PAR-1) is the initial slope of an asymptotic curve against incoming 99 

PAR. 100 

   It has been proven that Fopt and α are closely related to chlorophyll abundance due to their coupling with the electron 101 

transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems water availability is generally considered to be 102 

the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al., 103 

2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed 104 

vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and 105 

Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study we will analyse if EO vegetation indices can be 106 

used for up-scaling Fopt and α and investigate if this could offer a promising way to map GPP in semi-arid areas. This 107 

potential will be analysed by the use of detailed ground observations from six different eddy covariance (EC) flux 108 

towermeasurement sites (eddy covariance flux towers) across the Sahel.  109 

The three aims of this study are: 110 

1) To evaluate the recently released MOD17A2H GPP (collection 6) product and to investigate if the recently 111 

released MOD17A2H GPP (collection 6) product it is better at capturing GPP levels for the Sahel than 112 

collection 5.1. We hypothesise that MOD17A2H GPP (collection 6) product will estimate GPP well for the six 113 
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Sahelian measurement EC sites, because of  the major changes done in comparison to collection 5.1  (Running 114 

and Zhao, 2015).  115 

2) To find evidencecharacterize on the relationships between spatial and temporal variability in Fopt and α and 116 

remotely sensed vegetation indices. We hypothesise that remotely sensedEO vegetation indices that are closely 117 

related to chlorophyll abundance can be used for quantifyingwill be most strongly coupled with spatial and 118 

inter-annual dynamics in Fopt and α. , whereas vVegetation indices closely related to equivalent water thickness 119 

will be most strongly coupled with are closely linked to intra-annual dynamics in Fopt and α across the Sahel. 120 

3) To evaluate the applicability of a GPP model based on the light response function using remotely sensedEO 121 

vegetation indices and incoming PAR as input data. 122 

 123 

2 Materials and Methods 124 

2.1 Site description  125 

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards the 126 

Sahara and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohytes, 127 

respectively (Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by 128 

species of Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses such as Schoenefeldia 129 

gracilis, Dactyloctenium aegypticum, Aristida mutabilis, and Cenchrus biflorus dominate the herbaceous layer, but 130 

perennial grasses such as Andropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de 131 

Ridder et al., 1982). From the FLUXNET database (Baldocchi et al., 2001), we selected the six available measurement 132 

sites with eddy covarianceEC based CO2 flux data from the Sahel (Table 1; Fig. 1). The sites represent a variety of the 133 

ecosystems present in the region, from dry fallow bush savanna to seasonally inundated acacia forest. For a full 134 

description of the measurement sites, we refer to Tagesson et al. (2016a) and the references in Table 1.  135 

<Table 1> 136 

<Figure 1> 137 

 138 

2.2 Data collection 139 

2.2.1 Eddy covariance,  and hydrological and meteorological in situ data 140 

Eddy covariance (EC), and hydrological and meteorological data originating from the years between 2005 and 2013 141 

were collected from the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor set-up 142 

consisted of open-path CO2/H2O infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate 143 

and statistics were calculated for 30-min periods. For a full description of sensor set up and post processing of the EC 144 

data, see references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers 145 

were filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without 146 

any gap-filling or partitioning of NEE to GPP and ecosystem respiration. We alsoThe collected hydrological and 147 

meteorological data were: air temperature (Tair; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 148 

m depth (SWC; % volumetric water content), incoming global radiation (Rg; W m-2), incoming photosynthetically 149 

active radiation (PAR; µmol m-2 s-1), VPD (hPa), peak dry weight biomass (g dry weight m-2), C3/C4 species ratio, and 150 
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soil conditions (nitrogen and C concentration; %). For a full description of the collected data and sensor set-up, see 151 

Tagesson et al. (2016a).  152 

 153 

2.2.2 Earth Observation data and gridded ancillary data 154 

Remotely sensedC composite products from the MODIS/Terra L4 from covering the Sahel were collected acquired at 155 

Reverb ECHO (NASA, 2016).  The Ccollected products were GPP (MOD17A2H; collection 6),  and the Nadir nadir 156 

Bidirectional bidirectional Reflectance reflectance Distribution distribution Ffunction (BRDF) adjusted adjusted 157 

reflectance reflectance (NBAR) (8-day composites; MCD43A4; collection 5.1) at 500*500 m2 spatial resolution, and 158 

the normalized difference vegetation index (NDVI), and the enhanced vegetation index (EVI) (16-day composites; 159 

MOD13Q1; collection 6) at 250*250 m2 spatial resolution. The NBAR product was preferred over the reflectance 160 

product (MOD09A1), in order to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 161 

2014; Tagesson et al., 2015c). We extracted the median of the 3x3 pixels centred at the location of the each EC towers. 162 

The Ttime series of the remotely sensedEO products were filtered according to the MODIS quality control data; 163 

MOD17A2H is a gap-filled and filtered product, QC data from MCD43A2 were used for the filtering of MCD43A4; 164 

and bit 2-5 (highest –decreasing quality) was used for MOD13Q1. Finally, data were gap-filled to daily values using 165 

linear interpolation. 166 

   For a GPP model to be applicable on a larger spatial scale, a gridded data set of incoming PAR is needed. We 167 

downloaded ERA Interim reanalysis PAR at the ground surface (W m-2) with a spatial resolution of 0.25°×0.25° 168 

accumulated for each 3-hour period 2000-2015 from the European Centre for Medium-Range Weather Forecasts 169 

(ECMWF) (Dee et al., 2011; ECMWF, 2016a).  170 

 171 

2.3 Data handling 172 

2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 173 

Both linear and hyperbolic equations have been used for investigating the response of GPP to incoming light (Wall and 174 

Kanemasu, 1990; Campbell et al., 2001). However, they do not represent the lower part of the light response function 175 

particularly well, and we thereby instead choose to use the asymptotic Mitscherlich light-response function (Inoue et al., 176 

2008; Falge et al., 2001). The To estimate daily values of EC based Fopt and α, the asymptotic Mitscherlich light-177 

response function was fitted between daytime NEE and incoming PAR using a 7-day moving window with a 1-day time 178 

step: 179 

d
F

PARα

opt R)e(1)(FNEE opt +−×−=












 ×−

         (1)
 

180 

where Fopt is the CO2 uptake at light saturation (photosynthetic capacity; µmol CO2 m
-2 s-1), Rd is dark respiration 181 

(µmol CO2 m
-2 s-1), and α is the initial slope of the light response curve (quantum efficiency; µmol CO2 µmol PAR-1) 182 

(Falge et al., 2001). By subtracting Rd from Eq. 1, the function is was forced through zero and GPP is was thereby 183 

estimated. We fitted Eq. 1 using 7-day moving windows with 1 day time steps and generating daily values of Fopt and α. 184 

To assure high quality of the fitted parameters, parameters were excluded from the analysis when the fitting was 185 

insignificant (p-value><0.05), and when they were out of range (Fopt and α >peak value of the rainy season times 1.2). 186 
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Additionally, outliers were filtered following the method by Papale et al. (2006) using a 30-day moving windows with a 187 

1- day time steps.  188 

 189 

2.3.2 Vegetation indices 190 

We analysed the relationship between Fopt, α and some commonly applied vegetation indices: 191 

The maximum absorption in the red wavelengths generally occurs at 682 nm as this is the peak absorption for 192 

chlorophyll a and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to 193 

chlorophyll abundance. By far the most common vegetation index is the NDVI (Rouse et al., 1974):  194 

( )
( )redNIR

redNIR

ρρ

ρρ
NDVI

+
−=

          (2) 
195 

where ρNIR is the reflectance factor in the near infrared (NIR) band (band 2) and ρred is the reflectance factor in the red 196 

band (band 1). The Near infrared NIR radiance is scattered by the air-water interfaces between the cellsreflected by leaf 197 

cells since absorption of these wavelengths would result in overheating of the plant whereas red radiance is absorbed by 198 

chlorophyll and its accessory pigments (Gates et al., 1965). Normalization is done to reduce effects of atmospheric 199 

errors, solar zenith angles, and sensor viewing geometry, as well as increasing the vegetation signal (Qi et al., 1994; 200 

Inoue et al., 2008).  201 

   A well-known issue withdeficiency of the NDVI is that it saturatesproblems of index saturation at high biomass 202 

because the absorption of red light at ~670 nm peaks at higher biomass loads whereas NIR reflectance continues to 203 

increase due to multiple scattering effects (Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing 204 

atmospheric and soil background influences, EVI is designed to increases the signal from the vegetation and maintain 205 

sensitivity in high biomass regions (Huete et al., 2002).  206 

( )
( )LρCρCρ

ρρ
GEVI

blue2red1NIR

redNIR

+−+
−

=         
(3) 

207 

where ρblue is the reflectance factor in the blue band (band 3). The coefficients C1=6 and C2=7.5 correct for atmospheric 208 

influences, while L=1 adjust for the canopy background. The factor G=2.5 is the a gain factor. 209 

   Another attempt to overcome the issueproblems of NDVI saturation was proposed by Roujean and Breon (1995), 210 

Roujean and Breon (1995) who suggested which the renormalized difference vegetation index (RDVI) that combines 211 

the advantages of the DVI (NIR-red) and the NDVI for low and high vegetation cover, respectively:  212 

( )
( )redNIR

redNIR

ρρ

ρρ
RDVI

+
−

=           (4)
 

213 

As a non-linear index, RDVI is not only less sensitive to variations in the geometrical and optical properties of 214 

unknown foliage but also less affected by the solar and viewing geometry (Broge and Leblanc, 2001). RDVI was 215 

calculated based on NBAR bands 1 and 2. 216 

   The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly 217 

sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave 218 

infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid 219 

environments:  220 
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( )
( )12SWIRNIR

12SWIRNIR
12

ρρ

ρρ
SIWSI

+
−

=          (5) 221 

( )
( )16SWIRNIR

16SWIRNIR
16

ρρ

ρρ
SIWSI

+
−

=          (6) 222 

where ρswir12 is NBAR band 5 (1230-1250 nm) and ρswir16 is NBAR band 6 (1628-1652 nm). As the vegetation water 223 

content increases, the reflectance in the SWIR decreases indicating that low and high SIWSI values point to sufficient 224 

water conditions and drought stress, respectively. 225 

 226 

2.3.3 Incoming PAR across the Sahel 227 

A modified version of the ERA Interim reanalysis PAR was used in the current study as an error in the code producing 228 

these PAR estimates was identified by the data distributor causing PAR values to be too low (ECMWF, 2016b). 229 

Accordingly, incoming PAR at the ground surface from ERA Interim was systematically underestimated even though it 230 

followed the pattern of PAR measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to 231 

correct for this error, we fitted and applied an ordinary least square linear regression between in situ PAR and ERA 232 

Interim PAR (Fig. S1). The produced PAR from this relationship is at the same level as measured PAR in situ and 233 

should be at a correct level even though the original ERA Interim PAR is actually produced from the red and near 234 

infrared part of the spectrum.   235 

 236 

Incoming PAR at the ground surface from ERA Interim followed the pattern of PAR measured at the six sites in situ 237 

closely, but it was systematically underestimated (Fig.  in supplementary material2). An ordinary least square linear 238 

regression was thereby fitted between ERA Interim PAR and PAR measured in situ (PARin situ=3.09* PARERA interim 239 

+23.07; coefficient of determination (R2)=0.93; n=37976).    We therebyaThe regression line was used .   240 

 241 

<Figure 2> 242 

 243 

2.4 Data analysis 244 

2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with 245 

explanatory variables 246 

In a first step,T the coupling between intra-annual dynamics in Fopt and α and the vegetation indices for the different 247 

measurement sites were studied using Pearson correlation analysis. As part of the correlation analysis, we used 248 

bootstrap simulations with 200 iterations from which mean and standard deviation of the correlation coefficients were 249 

calculated (Richter et al., 2012). Relationships between intra-annual dynamics in Fopt and α and the vegetation indices 250 

for all sites combined were also analysed. In the analysis for all sites, data were normalised in order to avoid influence 251 

of the spatial and inter-annual variability. T, time series of ratios of Fopt and α (Fopt_frac and αfrac) against the annual peak 252 

values (Fopt_peak and αpeak; see below for calculation of annual peak values) were estimated for all sites: 253 

opt_peak

opt
opt_frac F

F
F =           (7) 254 
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peak
frac

α

α
α =            (8) 255 

The same standardisation procedure was used for all vegetation indices (VIfrac): 256 

peak
frac VI

VI
VI =            (9) 257 

where VIpeak is the annual peak values of the vegetation indices (14 days running mean with highest annual value). Such 258 

a standardisation gives fractions of how Fopt, α and VI varies over the season in relationship to the annual peak value, 259 

and it removes the spatial and inter-annual variation, and mainly intra-annual dynamics remains. The coupling between 260 

αfrac and Fopt_frac and the different VIfrac were examined using Pearson correlation analysis for all sites. 261 

 The robustness of the correlation coefficients was estimated by using a bootstrap simulation with 200 iterations in the 262 

correlation analysis (Richter et al., 2012).  263 

   In order to investigate spatial and inter-annual variability in Fopt and α for the measurement sites, gaps needed to be 264 

filled. Regression trees were used to fill gaps in the daily estimates of Fopt and α. One hundred tree sizes were chosen 265 

based on 100 cross validation runs, and these trees were then used for estimating the Fopt and α following the method in 266 

De'ath and Fabricius (2000). We used SWC, VPD, Tair, PAR, and the vegetation index with strongest correlation with 267 

intra-annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same standardisation 268 

procedure as done for Fopt, α, and the vegetation indices was done for the hydrological and meteorological variables. 269 

The 100 Fopt and α output subsets from the regression trees were averaged and used for filling the gaps in the times 270 

series of Fopt and α. From these time-series we estimated annual peak values of Fopt and α (Fopt_peak and αpeak) as the 14-271 

day running mean with highest annual value.  272 

   To investigate spatial and inter-annual variability in Fopt and α across the measurement sites of the Sahel, annual peak 273 

values of Fopt and α (Fopt_peak and αpeak ; 14 days running mean with highest annual value) were correlated with the 274 

annual sum of P, yearly means of Tair, SWC, RH, VPD, Rg, annual peak values of biomass, soil nitrogen and C 275 

concentrations, C3/C4 ratio, and VIpeak using Pearson linear correlations. Again, we used a bootstrap simulation 276 

methodology with 200 iterations in order to estimate the robustness of the correlations.  277 

 278 

 279 

2.4.2 Parameterisation and evaluation of the GPP model and evaluation of the MODIS GPP  280 

The GPP model 281 

Based on Eq. 1 and the outcome of the statistical analysis previously described under subsection 2.4.1 (for results see 282 

subsect. 3.2), a model for estimating GPP across the Sahel was created: 283 

)e(1FGPP optF

PARα

opt













 ×−

−×−=           (10)
 

284 

The model is applicable for each point in space and time. Firstly, Fopt_peak and αpeak were estimated spatially and inter-285 

annually using linear regression functions fitted against the vegetation indices with the strongest relationships to spatial 286 

and inter-annual variability in Fopt_peak and αpeak for all sites:.  287 

FoptpeakFoptopt_peak mNDVIkF +×=          (11) 288 
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αpeakαpeak mRDVIkα +×=          (12) 289 

where kFopt and kα are the slopes of the lines and mFopt and mα are the intercepts. Secondly, to estimate the Fopt_frac and 290 

αfrac for each day of the year, linear exponential regression functions were established for Fopt_frac and α frac with the 291 

vegetation index with the strongest relationships to intra-annual variability of Fopt_frac and αfrac for all sites, as follows:. 292 

By combining these relationships,  293 

( )fracFopt RDVIl
Foptopt_frac enF

××=          (13) 294 

( )fracα RDVIl
αfrac enα

××=           (14) 295 

where lFopt and lα are the slopes of the lines and nFopt and nα are the intercepts. Eq. 11-14 provide the relationships to 296 

estimate Fopt and α can be calculated for any day of the year and for any point in space across the Sahel:  297 

( ) ( )( )fracFopt RDVIl
FoptFoptpeakFoptopt_fracopt_peakopt enmNDVIkFFF

××+×=×=      (1511) 298 

( ) ( )( )fracα RDVIl
ααpeakαfracpeak enmRDVIkααα

××+×=×=        (1612) 299 

where kFopt and kα are slopes and mFopt and mα are intercepts of the linear regressions giving Fopt_peak and αpeak, 300 

respectively; lFopt and lα are coefficients and nFopt and nα are intercepts of the exponential regressions giving Fopt_frac and 301 

αfrac, respectively. Eq. uation 15 11 and 16 12 can bewere put inserted into Eq. 10 and GPP is were thereafter thereby 302 

estimated as: 303 

( )
( )

( ) ( )( )( )
( ) ( )( )

( )( )
)e1

enmNDVIke(1FFGPP
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     (17)  305 

generating a final model as: 306 
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      (1813) 307 

 308 

2.4.3 Parameterisation and evaluation of modelled GPP and evaluation of the MODIS GPP product 309 

   A bootstrap simulation methodology with 200 iterations was used when fitting the least-square regression functions In 310 

for parameterisation of theorder to estimate the robustness of the GPP model and its parameters, we used a bootstrap 311 

simulation methodology when fitting the empirical relationships. We used 200 iterations and different measurement 312 

sites were used in the different runs when fitting the empirical relationships (Richter et al., 2012). For each of the 313 

iterations, some of the EC sites were included and some were left-out. The runsThe bootstrap simulations generated 200 314 

sets of kFopt , kα, mFopt, mα, lFopt , lα, nFopt, nαslopes, intercepts, , and coefficient of determination (coefficients of 315 

determination (R2)), from which the medians and the standard deviations were estimated. Possible errors (e.g. random 316 
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sampling errors, aerosols, electrical sensor noise, filtering and gap-filling errors, clouds, and satellite sensor 317 

degradation) can be present in both the predictor and the response variables. Hence, we selected reduced major axis 318 

linear regressions to account for errors in both predictor and response variables when fitting the regression functions. 319 

The regression models were validated against the left-out subsamples sites within the bootstrap simulation methodology 320 

by calculating the root-mean-square-error (RMSE), and by fitting an ordinary least squares linear regression between 321 

modelled and in situindependent variables. 322 

   Similarly, the MODIS GPP product (MOD17A2H, collection 6) was evaluated against in situindependent GPP from 323 

the EC sites by calculating RMSE, and by fitting an ordinary least squares linear regression. 324 

 325 

3 Results 326 

3.1 Evaluation of the MODIS GPP product 327 

There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and the 328 

independent in situ GPP (slope 0.17; intercept 0.11 g C m-2 d-1; R2 0.69; n=598). However, MOD17A2H strongly 329 

underestimated in situindependent GPP (Fig. 23) resulting in high RMSE (2.69 g C m-2 d-1). It can be seen that some 330 

points for the Kelma site were quite low for MOD17A2H, whereas they were relatively high for the independent GPP 331 

(Fig. 2). Kelma is an inundated Acacia forest located in a clay soil depression. These differentiated values were found in 332 

the beginning of the dry season, when the depression was still inundated, whereas the larger area was turning dry.  333 

 334 

<Figure 32> 335 

 336 

 337 

3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 338 

Intra-annual dynamics in Fopt and α differed in amplitude, but were otherwise similar across the measurement sites in 339 

the Sahel (Fig. 43). There is was no green ground vegetation during the dry season, and the low photosynthetic activity 340 

is was due to few evergreen trees. This results resulted in low values for both Fopt and α during the dry season. The 341 

vegetation responded strongly to rainfall, and both Fopt and α increased during the early phase of the rainy season. 342 

Generally, Fopt peaked slightly earlier than α (average± 1 standard deviation: 7±10 days) (Fig. 43).  343 

<Figure 43>  344 

   All vegetation indices described well intra-annual dynamics in Fopt well for all sites (Table 2). SIWSI12 had the 345 

highest correlation for all sites except Wankama Millet, where it was RDVI. When all sites were combined, all indices 346 

described well seasonality in Fopt well, but RDVI had the strongest correlation (Table 2).  347 

      The Iintra-annual dynamics in α were also closely coupled to intra-annual dynamics in the vegetation indices for all 348 

sites (Table 2). For α, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow 349 

where it was EVI. When all sites were combined all indices described well intra-annual dynamics in α well, but RDVI 350 

was still the index with the strongest relationship (Table 2).  351 

<Table 2>   352 

   The regression trees used for gap-filling explained well the the intra-annual dynamics in Fopt and α well for all sites 353 

(Table 3; Fig. S2 in Supplementary material). The regression trees explained intra-annual dynamics in Fopt better than in 354 

α, and multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to 355 
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intra-annual dynamics in Fopt for all sites across the Sahel were in the order of RDVI, SWC, VPD, Tair, and PAR; and 356 

for α they were RDVI, SWC, VPD and Tair (Table 3). The strong relationship to SWC and VPD indicates drought stress 357 

during periods of low rainfall. For all sites across Sahel, incorporating hydrological and meteorological variables 358 

increased the ability to determine intra-annual dynamics in Fopt and α compared to the ordinary least squares linear 359 

regressions against the RDVIvegetation indices (Table 2, data given as r; Table 3; Fig. 3 and Fig. S2). For all sites, The 360 

incorporation of these variables increased the R2 from 0.81 to 0.87 and from 0.74 to 0.84, for Fopt and α respectively.  361 

<Table 3>  362 

 363 

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency 364 

Large spatial and inter-annual variability in Fopt_peak and αpeak were found across the six measurement sites in the Sahel ; 365 

Fopt_peak ranged between 10.1 µmol CO2 m
-2 s-1 (Wankama Millet 2005) and 50.0 µmol CO2 m

-2 s-1 (Dahra 2010), and 366 

αpeak ranged between 0.020 µmol CO2 µmol PAR-1 (Demokeya 2007) and 0.064 µmol CO2 µmol PAR-1 (Dahra 2010) 367 

(Table 4). The average two week running mean peak values of Fopt and α for all sites were 26.4 µmol CO2 m
-2 s-1 and 368 

0.040 µmol CO2 µmol PAR-1, respectively. However, the ranges were large; Fopt_peak ranged between 10.1 µmol CO2 m
-369 

2 s-1 (Wankama Millet 2005) and 50.0 µmol CO2 m
-2 s-1 (Dahra 2010), and αpeak ranged between 0.020 370 

µmol CO2 µmol PAR-1 (Demokeya 2007) and 0.064 µmol CO2 µmol PAR-1 (Dahra 2010) (Table 4). All vegetation 371 

indices determined well spatial and inter-annual dynamics in Fopt_peak and αpeak well (Table 5). NDVIpeak was most 372 

closely coupled with Fopt_peak whereas RDVIpeak was closest coupled with αpeak (Fig. 54). Fopt_peak also correlated well 373 

with peak dry weight biomass, C content in the soil, and RH, whereas αpeak also correlated well with peak dry weight 374 

biomass, and C content in the soil (Table 5).  375 

<Table 4> 376 

<Table 5> 377 

<Figure 54>  378 

 379 

3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency, and gross primary 380 

productivityproduction  across the Sahel and evaluation of the GPP model 381 

The spatially extrapolated Fopt, α and GPP averaged over Sahel for 2001-2014 were 22.5±1.7 µmol CO2 m
-2 s-1, 382 

0.030±0.002 µmol CO2 µmol PAR-1, and 736±39 g C m-2 y-1, respectively. At regional scale it can be seen that Fopt, α, 383 

and GPP decreased substantially with latitude (Fig. 5). Highest values were found in south-eastern Senegal, western 384 

Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. (Brandt et al., 2016)Lowest values 385 

were found along the northernmost parts of Sahel on the border to Sahara in Mauritania, in northern Mali, and in 386 

northern Niger.  387 

   Modelled GPP was similar to in situdependent GPP on average, and there was a strong linear relationship between 388 

modelled GPP and independent  situ GPP for all sites (Fig. 6; Table 6).  However, when separating the evaluation 389 

between measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). 390 

Wankama Millet is was generally overestimated whereas the model works worked well on average well for Demokeya 391 

but underestimates underestimated high values (Fig. 7; Table 6). Variability of independent  situ GPP at the other sites 392 

is was well reproduced by the model (Fig. 7; Table 6).  The final parameters of the GPP model (Eq. 1813) are given in 393 

Table 7. 394 
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<Figure 5> 395 

<Figure 6> 396 

<Figure 7> 397 

< Table 6> 398 

< Table 7> 399 

 400 

4 Discussion 401 

Vegetation productivity of semi-arid savanna ecosystems is primarily driven by intra-annual rainfall distribution 402 

(Eamus et al., 2013; Brümmer et al., 2008; Moncrieff et al., 1997), and in the Sahel soil moisture conditions at the early 403 

rainy season are especially important (Rockström and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). We 404 

thereby hypothesised that vegetation indices closely related to equivalent water thickness (SIWSI) would be strongly 405 

linked to intra-annual dynamics in Fopt and α. Our hypothesis that vegetation indices closely related to equivalent water 406 

thickness (SIWSI) would be most strongly coupled with intra-annual dynamics in Fopt and α was not rejected for Fopt, 407 

since this was also the case for all sites except for Wankama Millet (Table 2). The Wankama millet is a cropped 408 

agricultural site whereas all other sites are savanna ecosystems. However, our hypothesis was rejected for α, since it 409 

was more closely related to vegetation indices related to chlorophyll abundance (RDVI and EVI). Leaf area index 410 

increases over the growing season and it is closely related to the vegetation indices coupled with chlorophyll abundance 411 

(Tagesson et al., 2009). This increases the canopy level quantum efficiency (α) which explains the close relationship of 412 

α to RDVI. However, Fopt peaked earlier in the rainy season than α (Fig. 4). In Sahel, soil moisture conditions in the 413 

early rainy season are important for vegetation growth and during this phase vegetation is especially vulnerable to 414 

drought conditions (Rockström and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity 415 

(Fopt) peaked earlier in the rainy season than α did (Fig. 3), thereby explaining the close relationship of Fopt to SIWSI. 416 

Leaf area index increased over the growing season and leaf area index is closely coupled with vegetation indices related 417 

to chlorophyll abundance (Tagesson et al., 2009). The increase in leaf area index increased canopy level quantum 418 

efficiency (α), which thereby explains the closer relationship of α to RDVI.  Vegetation during this phase is vulnerable 419 

to drought conditions explaining the close relationship of Fopt to SIWSI. Fopt can only increase up to a certain level due 420 

to other constraining factors (nutrient, water and meteorological conditions) which could explain its closer relationship 421 

with SIWSI12 than with RDVI. 422 

   Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with 423 

spatial and inter-annual dynamics in Fopt and α was not rejected for either Fopt or α; NDVI, EVI, and RDVI all had close 424 

correlation with spatial and inter-annual dynamics in Fopt and α (Table 5). However, iWe hypothesised that remotely 425 

sensed vegetation indices closely related to chlorophyll abundance can be used for quantifying spatial and inter-annual 426 

dynamics in Fopt and α. Indeed, NDVI, EVI, and RDVI all had close correlations with the spatial and inter-annual 427 

dynamics in Fopt and α (Table 5). It was surprising that NDVIpeak had the strongest correlation with spatial and inter-428 

annual variability for Fopt (Table 5). Both EVI and RDVI should be less sensitive to saturation effects than NDVI (Huete 429 

et al., 2002; Roujean and Breon, 1995), and based on this we it can be assumed that peak values of these indices should 430 

have stronger relationships to peak values of Fopt and α. However, vegetation indices with a high sensitivity to changes 431 

in green biomass at high biomass loads, gets less sensitive to green biomass changes at low biomass loads (Huete et al., 432 

Field Code Changed

Field Code Changed
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2002). Peak leaf area index for ecosystems across the Sahel is approximately generally ~2 or less, whereas the 433 

saturation issue of NDVI generally starts at an leaf area index of about 2-5 (Haboudane et al., 2004). 434 

   The Fopt_peak estimates from Agoufou, Demokeya, and the Wankama sites were similar whereas Dahra and Kelma 435 

values were high in relation to previously reported canopy-scale Fopt_peak from Sahel (~-8 to -23 µmol m-2 sec-1) (Hanan 436 

et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 2009; Levy et al., 1997; Monteny et al., 1997). 437 

These previous studies reported much lower Fopt at canopy scale than at leaf scale (e.g. Levy et al. (1997): 10 vs. 44 µmol 438 

m-2 sec-1; Boulain et al. (2009): 8 vs. 50 µmol m-2 sec-1). Leaf area index at Dahra and Kelma peaked at 2.1 and 2.7, 439 

respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-mentioned 440 

sites. A possible explanation to high Fopt estimates at Dahra and Kelma could thereby be the higher leaf area index. 441 

Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO2 exchange measured at the 442 

Dahra field site and explained the high values by a combination of moderately dense herbaceous C4 ground vegetation, 443 

high soil nutrient availability, a grazing pressure resulting in compensatory growth and fertilization effects. Another 444 

possible explanation could be that the West African Monsoon bring a humid layer of surface air from the Atlantic, 445 

possibly increasing vegetation production for the most western part of Sahel (Tagesson et al., 2016a).  446 

 Additionally, atmospheric scattering is much higher in the shorter wavelengths making EO-based vegetation indices 447 

including blue-band information very sensitive to the atmospheric correction (Fensholt et al., 2006b), possibly 448 

explaining the lower correlation for EVI.(Hanan et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 449 

2009; Levy et al., 1997; Monteny et al., 1997; Timouk et al., 2009; Tagesson et al., 2015a); Tagesson et al. (2016b); 450 

(Tagesson et al., 2016a)   Our model substantially overestimates overestimated GPP for Wankama Millet (Fig. 7f). As 451 

aBeing a crop field, this site differs differed in particular from the other studied sites by its species composition, 452 

ecosystem structure, as well as land and vegetation management. Crop fields in southwestern Niger are generally 453 

characterized by a rather low productivityproduction resulting from decreased fertility and soil loss caused by intensive 454 

land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site may cause the model parameterised with 455 

observations from the other study sites without this strong anthropogenic influence to overestimate GPP at this site. The 456 

model parameterised using observation from the other measurement sites without this strong anthropogenic influence 457 

thus overestimates GPP. Similar results were found by Boulain et al. (2009) when applying an up-scaling model using 458 

leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow whereas it was less 459 

conclusive for Wankama Millet. The main explanation was low leaf area index in millet fields because of a low density 460 

of millet stands due to agricultural practice. There is extensive savanna clearing for food production in the Sahel 461 

(Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further understand the impacts of this land cover 462 

change on vegetation productivityproduction and land atmosphere exchange processes, it is of urgent need for more 463 

study sites covering cropped areas in this region. 464 

 465 

   In Demokeya, GPP is was slightly underestimated for the year 2008 (Fig. 7c) because modelled Fopt (the thick black 466 

line in Fig. 5) is was much lower than the actual measured value in 2008 (the thick black line in Fig. 4). An 467 

improvement of the model could be to incorporate some parameters that constrain or enhance Fopt depending on 468 

environmental stress. Indeed, the regression tree analysis indicated that incorporating climatic and hydrometeorological 469 

variables increased the ability to predict both Fopt and α. On the other hand, for spatial upscaling purposes, it has been 470 

shown that including modelled hydrometeorological climatic constraints on LUE decreases the ability to predict 471 

Field Code Changed
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vegetation productivityproduction due to the incorporated uncertainty in these modelled meteorological variables 472 

(Fensholt et al., 2006; Ma et al., 2014). For spatial upscaling to regional scales it is therefore better to simply use 473 

relationships to EO data. This is particularly the case for the Sahel, one of the largest dryland areas in the world that is 474 

characterised byincludes only a few sites of hydrometeorological meteorological observations. 475 

   The pattern seen in the spatially explicit GPP budgets (Fig. 5c) may be influenced by a range of biophysical and 476 

anthropogenic factors. The clear North-South gradient is expected given the strong North-South rainfall gradient in 477 

Sahel. The West African Monsoon mentioned above could also be an explanation to high GPP values in the western 478 

part of Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern Sahel 479 

(Fig. 5c). The areas with highest GPP are sparsely populated woodlands or shrubby savanna with a relatively dense tree 480 

cover (Brandt et al., 2016). However, the produced maps should be used with caution as they are based on up-scaling of 481 

the only six available EC sites that exist in the region; especially given the issues related to the cropped fields discussed 482 

above. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual GPP budget as 483 

estimated for these six sites (692±89 g C m-2 y-1) (Tagesson et al., 2016a). The range of GPP budgets in Fig. 5c is also 484 

similar to previous annual GPP budgets reported from other savanna areas across the world (Veenendaal et al., 2004; 485 

Chen et al., 2003; Kanniah et al., 2010; Chen et al., 2016).  486 

   Although MOD17A2 GPP has previously been shown to relatively well capture GPP relatively well in several 487 

different ecosystems (Turner et al., 2006; Turner et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 488 

2009), it has been shown to be underestimated for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjöström 489 

et al., 2013). GPP of Sahelian drylands have not been well captured by MOD17A2 (Sjöström et al., 2013; Fensholt et 490 

al., 2006), and as we have shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product 491 

(Fig. 2). The main reason for this major pronounced underestimation is that maximum LUE is set to 0.84 g C MJ-1 492 

(open shrubland; Demokeya) and 0.86 g C MJ-1 (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama 493 

Fallow) in the BPLUT, i.e. much lower than maximum LUE measured at the Sahelian measurement sites of this study 494 

(average: 2.47 g C MJ-1; range: 1.58-3.50 g C MJ-1) (Sjöström et al., 2013; Tagesson et al., 2015a), a global estimate of 495 

~1.5 g C MJ-1 (Garbulsky et al., 2010), and a savanna site in Australia (1.26 g C MJ-1) (Kanniah et al., 2009). 496 

  497 

   Several state of the art dynamic global vegetation models have been used for decades to quantify GPP at different 498 

spatial and temporal scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the 499 

photosynthesis model by Farquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity 500 

(Zhang et al., 2014). This and several previous studies have shown that both photosynthetic capacity and efficiency 501 

(both α and LUE) can considerably vary considerably between seasonsally as well as and spatially, and both within and 502 

between vegetation types (Eamus et al., 2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This 503 

variability is difficult to estimate using broad values based on land cover classes, yet most models apply a constant 504 

value which can cause substantial inaccuracies in the estimates of seasonal and spatial variability in GPP. This is 505 

particularly a problem in savannas that comprises of several plant functional types (C3 and C4 species, and a large 506 

variability in tree/herbaceous vegetation fractions) (Scholes and Archer, 1997). This study indicates the strong 507 

applicability of EO as a tool for parameterising spatially explicit estimates of plant physiological variables, which could 508 

improve our ability to simulate GPP. Spatially explicit estimates of GPP at a high temporal and spatial resolution are 509 

essential for current globalenvironmental change studies in Sahel and would bemake a major asset for advantageous in 510 
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the analysis of changes in GPP, its relationship to climatic change and anthropogenic forcing, and estimations of 511 

ecosystem processes and biochemical and hydrological cycles.   512 
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Tables  804 

Table 1. Description of the six measurement sites including location, soil type, ecosystem type and dominant species. 805 
Measurement site Coordinates Soil type Ecosystem Dominant species 

Agoufoua 

(ML-AgG, Mali) 
15.34°N, 
1.48°W 

Sandy ferruginous 
Arenosol 

Open woody 
savannah (4% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca, 

Combretum glutinosum 
Herbs: Zornia glochidiata, 
Cenchrus biflorus, Aristida 

mutabilis, Tragus berteronianus 
Dahrab 

(SN-Dah, Senegal) 
15.40°N, 
15.43°W 

Sandy luvic 
arenosol 

Grassland/shrubland 
Savanna (3% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca 

Herbs: Zornia latifolia, Aristida 
adscensionis, Cenchrus biflorus 

Demokeyac 

(SD-Dem, Sudan) 
13.28°N, 
30.48°E 

Cambic Arenosol Sparse acacia 
savannah (7% tree 

cover) 

Trees: Acacia spp.,  
Herbs: Aristida pallida, 

Eragrostis tremula, Cenchrus 
biflorus 

Kelmaa 

(ML-Kem, Mali) 
15.22°N, 
1.57°W 

Clay soil depression Open acacia forest 
(90% tree cover) 

Trees: Acacia seyal, Acacia 
nilotica, Balanites aegyptiaca 
Herbs: Sporobolus hevolvus, 

Echinochloa colona, 
Aeschinomene sensitive 

Wankama Fallowd 

(NE-WaF, Niger) 
13.65°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Fallow bush Guiera senegalensis 

Wankama Millete 

(NE-WaM, Niger) 
13.64°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Millet crop Pennisetum glaucum 

a(Timouk et al., 2009) 806 
b(Tagesson et al., 2015b) 807 
c(Sjöström et al., 2009) 808 
d(Velluet et al., 2014) 809 
e(Boulain et al., 2009)810 
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Table 2. Correlation between intra-annual dynamics in photosynthetic capacity (Fopt; Fopt_frac for all sites), quantum efficiency (α; α_frac for all sites), and the different 

vegetation indices for the six measurement sites (Fig. 1). Values are averages±1 standard deviation from 200 bootstraping runs. The bold values are the indices with the 

strongest correlation. EVI is the enhanced vegetation index, NDVI is the normalized difference vegetation index, RDVI is the renormalized difference vegetation 

index, SIWSI is the shortwave infrared water stress index. SIWSI12 is based on the MODIS Bidirectional Reflectance Distribution Functions (NBAR) band 2 and band 

5, whereas SIWSI16 is based on MODIS NBAR band 2 and band 6.  

Measurement site Fopt α 
  EVI NDVI RDVI SIWSI12 SIWSI16 EVI NDVI RDVI SIWSI12 SIWSI16 

ML-AgG 0.89±0.02 0.87±0.02 0.95±0.01 -0.95±0.01 -0.93±0.02 0.92±0.02 0.91±0.01 0.96±0.01 -0.94±0.01 -0.88±0.02 
SN-Dah 0.92±0.005 0.91±0.01 0.96±0.003 -0.96±0.004 -0.93±0.01 0.89±0.01 0.90±0.01 0.93±0.01 -0.92±0.01 -0.87±0.01 
SD-Dem 0.81±0.01 0.78±0.01 0.91±0.01 -0.93±0.01 -0.90±0.01 0.76±0.02 0.73±0.02 0.86±0.01 -0.82±0.02 -0.79±0.02 
MA-Kem 0.77±0.02 0.83±0.02 0.95±0.01 -0.95±0.01 -0.90±0.02 0.69±0.05 0.73±0.04 0.80±0.03 -0.77±0.03 -0.76±0.03 
NE-WaF 0.87±0.02 0.81±0.02 0.78±0.02 -0.90±0.01 -0.80±0.02 0.89±0.01 0.84±0.01 0.85±0.01 -0.88±0.01 -0.79±0.01 
NE-WaM 0.41±0.05 0.50±0.04 0.72±0.03 -0.55±0.04 -0.43±0.05 0.72±0.02 0.76±0.02 0.81±0.01 -0.75±0.01 -0.72±0.01 

All sites  0.86±0.0 0.79±0.0 0.90±0.0 0.75±0.0 0.70±0.0 0.83±0.01 0.80±0.01 0.86±0.01 0.62±0.01 0.54±0.01 
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Table 3. Statistics for the regression tree analysis. The regression tree analysis was used for studying relationships 

between intra-annual dynamics in the the photosynthetic capacity (Fopt; Fopt_frac for all sites) and quantum efficiency (α; 

α_frac for all sites) and the explanatory variables for the six measurement sites (Fig. 1). The pruning level is the number 

of splits of the regression tree and an indication of complexity of the system. 

Measurement site 
Explanatory 
variables:     

Pruning 
level 

R2 

Fopt 1 2 3 4 5 
  

ML-AgG SIWSI12 Tair PAR SWC  16 0.98 

SN-Dah SIWSI12 SWC VPD Tair PAR 84 0.98 

SD-Dem SIWSI12 VPD SWC Tair PAR 33 0.97 

ML-Kem SIWSI12 PAR Tair VPD  22 0.98 

NE-WaF SIWSI12 SWC VPD Tair  14 0.92 

NE-WaM RDVI SWC VPD Tair  18 0.75 

All sites  RDVI SWC Tair VPD  16 0.87 

α 
       

ML-AgG RDVI  
   

3 0.95 

SN-Dah RDVI VPD SWC Tair PAR 21 0.93 

SD-Dem RDVI SWC PAR Tair  16 0.93 

ML-Kem RDVI Tair    4 0.75 

NE-WaF EVI SWC VPD   10 0.90 

NE-WaM RDVI SWC VPD Tair  15 0.86 

All sites RDVI SWC VPD Tair  16 0.84 
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Table 4. Annual peak values of quantum efficiency (αpeak; µmol CO2 µmol PAR-1) and photosynthetic capacity 

(Fopt_peak; µmol CO2 m
-2 s-1) for the six measurement sites (Fig. 1). The peak values are the 2 week running mean with 

highest annual value.  

Measurement site Year αpeak Fopt_peak 

ML-AgG 2007 0.0396 24.5 
SN-Dah 2010 0.0638 50.0 

2011 0.0507 42.3 
2012 0.0480 39.2 
2013 0.0549 40.0 

SD-Dem 2007 0.0257 16.5 
2008 0.0327 21.0 
2009 0.0368 16.5 

ML-Kem 2007 0.0526 33.5 
NE-WaF 2005 0.0273 18.2 

2006 0.0413 21.0 
NE-WaM 2005 0.0252 10.6 
  2006 0.0200 10.1 

Average   0.0399 26.4 
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Table 5. Correlation matrix between annual peak values of photosynthetic capacity (Fopt_peak) and quantum efficiency 

(αpeak) and measured environmental variables. P is annual rainfall; Tair is yearly averaged air temperature at 2 m height; 

SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth; Rh is yearly 

averaged relative humidity; VPD is yearly averaged vapour pressure deficit; Rg is yearly averaged incoming global 

radiation; N and C cont. are soil nitrogen and carbon contents; NDVIpeak is annual peak normalized difference 

vegetation index (NDVI); EVIpeak is annual peak enhanced vegetation index (EVI); RDVIpeak is annual peak 

renormalized difference vegetation index (RDVI); SIWSI12peak is annual peak short wave infrared water stress index 

based on MODIS NBAR band 2 and band 5; and SIWSI16peak is annual peak short wave infrared water stress index 

based on MODIS NBAR band 2 and band 6. Sample size was 13 for all except the marked explanatory variables. 

 Explanatory variable Fopt_peak αpeak 

Meteorological data    
P (mm) 0.24±0.26 0.13±0.27 
Tair (°C) -0.07±0.25 -0.01±0.25 

SWC (%)a 0.33±0.25 0.16±0.27 

Rh (%) 0.73±0.16* 0.60±0.19 

VPD (hPa) 0.20±0.26 0.15±0.30 

Rg (W m-2) -0.48±0.21 -0.41±0.24 

Biomass and edaphic 
data 

  

Biomass (g DW m-2)a 0.77±0.15* 0.74±0.14* 
C3/C4 ratio -0.05±0.26 0.06±0.30 
N cont. (%)b 0.22±0.11 0.35±0.14 
C cont. (%)b 0.89±0.06**  0.87±0.07**  
Earth observation data   
NDVI peak 0.94±0.05**  0.87±0.07** 
EVIpeak 0.93±0.04**  0.87±0.07**  
RDVIpeak 0.93±0.04**  0.89±0.07**  
SIWSI12peak 0.85±0.08**  0.84±0.08**  
SIWSI16peak 0.67±0.12* 0.65±0.15* 

Photosynthetic 
variables 

  

Fopt - 0.94±0.03**  
asample size equals 11. 
bsample size equals 9. 
* significant at 0.05 level. 
** significant at 0.01 level 
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Table 6. Statistics regarding the evaluation of the gross primary productivityproduction (GPP) model for the six measurement sites (Fig. 1). In situ and modelled GPP 

are averages ± 1 standard deviation. RMSE is the root-mean-squares-error, and slope, intercept and R2 is from the fitted ordinary least squares linear regression. 

Measurement 
site 

In situ GPP 
(µmol CO2 m

-2 s-1) 
Modelled GPP 

(µmol CO2 m
-2 s-1) 

RMSE 
(µmol CO2 m

-2 s-1) slope 
Intercept 

(µmol CO2 m
-2 s-1) R2 

ML-AgG 5.353.55±5.456.38 53.9791±5.5480 1.832.48±0.10 
0.9784±0.060

03 0.501.46±0.0301 
0.9086±0.0

021 

SN-Dah 9.1439±10.1217 8.6087±10.729.67 3.8599±1.34 
0.9988±0.070

02 -0.440.62±1.110.01 
0.8785±0.0

4001 

SD-Dem 3.834.26±4.4255 3.6198±4.513.90 3.0515±1.06 
0.7963±0.180

03 0.611.31±0.75.007 
0.5954±0.1

102 

ML-Kem 11.1716±7.988.02 10.7352±10.509.22 5.064.35±1.23 
1.1602±0.200

03 -2.29-0.82±1.650.03 
0.7978±0.1

2002 

NE-WaF 3.915.77±4.0817 5.386.63±3.5973 2.5547±1.05 
0.8570±0.150

05 2.0858±1.480.02 
0.7569±0.0

8003 

NE-WaM 2.253.04±2.001.93 5.516.35±3.9347 4.1312±0.99 
1.6331±0.450

04 1.842.37±1.010.02 
0.6853±0.0

035 
Average 5.316.73±7.1572 5.807.02±7.5339 3.5668±0.6055 0.9483±0.07 0.851.34±0.9282 0.84±0.0807 
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Table 7. The parameters for Eq. 18 13 that was used in the final gross primary productivityproduction (GPP) model. RMSE 

is the root mean square error, and R2 is the coefficient of determination of for the linear regression models predicting the 

different variables. 

Parameter Value RMSE R2 

kFopt  79.6±6.3 
5.1±1.3 0.89±0.05 

mFopt 
-7.3±3.2 

lFopt  1.813.51±0.0719 
0.3315±0.0402 0.7988±0.064 

nFopt 
-

0.850.03±0.07006 

kα  0.16±0.02 
0.0069±0.0021 0.81±0.10 

m α 
-0.014±0.007 

l  α 1.203.75±0.0527 
0.3820±0.0402 0.7180±0.0410 

n α -0.980.02±0.0067 
 

 5 
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Figures 

 

 

Figure 1. Land use cover classes for the Sahel and the location of the six measurement sites included in the study. The land 5 

cover classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG), 

Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Wankama Fallow (NE-WaF), and Wankama Millet (NE-WaM). 

The thick black line is the borders of the Sahel based on the isohytes 150 and 700 mm of annual precipitation (Prince et al., 

1995). 
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Figure 2. Photosynthetically active radiation (PAR) measured in situ against gridded ERA Interim ground surface PAR 

extracted for the six measurement sites (Figure 1) across the Sahel from European Centre for Medium-Range Weather 

Forecasts, ECMWF (2016b). The grey line is the ordinary least square linear regression.  

 5 
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Figure 32. Evaluation of the MODIS based GPP product MOD17A2H collection 6 against eddy covariance based GPP from 

the six measurement sites (Fig. 1) across the Sahel. The thick black line shows the one-to-one ratio, and the thin grey dotted 

line is the fitted ordinary least square linear regression.  

 5 
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Figure 43. Dynamics in photosynthetic capacity (Fopt) and quantum efficiency (QE, α) for the six measurement sites. 

Included is also dynamics in the vegetation indices with highest correlation to the intra-annual dynamics in Fopt (VIFopt) and 

to quantum efficiency (VIαQE) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), 

d) Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 

 5 
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Figure 54. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of a) photosynthetic capacity (Fopt_peak) 5 

and b) quantum efficiency (QEpeak; αpeak) against peak values of normalized difference vegetation index (NDVIpeak) and 

renormalized difference vegetation index (RDVIpeak), respectively. The annual peak values were estimated by taking the 

annual maximum of a two week running mean.  
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Figure 5. Maps of a) peak values of photosynthetic capacity (Fopt_peak) averaged for 2001-2014, b) peak values of quantum 

efficiency (αpeak) averaged for 2001-2014, and c) annual budgets of GPP averaged for 2001-2014.  
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Figure 6. Evaluation of the modelled gross primary productivityproduction (GPP) (Eq. 1813) against in situ GPP from all 

six measurement sites across the Sahel. The thick grey line shows the one-to-one ratio, whereas the dotted thin grey line is 

the fitted ordinary least square linear regression.  
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Figure 7. Evaluation of the modelled gross primary productivityproduction (GPP) (Eq. 1813) against in situ GPP for the six 

sites across Sahel (Fig. 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted 
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ordinary least square linear regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), 

d) Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 


