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Abstract. It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO, sink,
which indicates the strong need for improved understanding; and spatially explicit estimates of CO, uptake (gross
primary production (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the MOD17A2H GPP
(collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel; 2) to characterisze
relationships between spatial and temporal variability in EC based photosynthetic capacity (Fqy) and quantum
efficiency (a) and earth observation (EO) based vegetation indices (normalized difference vegetation index (NDVI);
renormalized difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared water
stress index (SIWSI)); and 3) to study the applicability of EO up-scaled Foy and o for GPP modelling purposes.
MOD17A2H GPP (collection 6) drastically underestimated GPP-strengly, most likely because maximum light use
efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fqy waswere
closely related to SIWSI being sensitive to equivalent water thickness, whereas a was closely related to RDVI being
affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fqy and o were closely coupled to NDVI and
RDVI, respectively. Modelled GPP based on F and a up-scaled using EO based indices reproduced in situ GPP well
for all except a cropped site that was strongly impacted by anthropogenic land use. Up-scaled GPP for the Sahel 2001-
2014 was 73639 g C m2 y%. This study indicates the strong applicability of EO as a tool for spatially explicit estimates
of GPP, Fqy and a; incorporating EO- based F,y and a in te-dynamic global vegetation models could improve global

estimates of vegetation production, ecosystem processes and biogeochemical and hydrological cycles.
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1 Introduction

Vegetation growth in semi-arid regions is an important sink for fossil fuel emissions. Mean carbon dioxide (CO,)
uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-arid
regions are the main biome driving its inter-annual variability (Ahlstrém et al., 2015; Poulter et al., 2014). Semi-arid
regions even contribute to 60% of the long--term trend in the global terrestrial C sink (Ahlstrém et al., 2015). It is thus
important to understand long-term variability of vegetation growth in semi-arid areas and their-the response of
vegetation to environmental conditions to better quantify and forecast effects of climate change.

The Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna
in the South. The region has experienced numerous severe droughts duringover the last decades, which -that-resulted in
region-wide famines in 1972-1973 and 1984-1985 and localized food shortages across the region in 1990, 2002, 2004,
2011 and 2012 (Abdi et al., 2014; United Nations, 2013). Vegetation production is thereby an important ecosystem
service for livelihoods in the Sahel, but it is under threat. The region is experiencinges—= strong population growth,
increasing the demand on ecosystem services due to cropland expansion, increased pasture stocking rates and fuelwood
extraction (Abdi et al., 2014).

At the same time as we have reports of declining vegetation production, we have contradicting reports of the greening
of the Sahel based on earth observation (EO) data (Dardel et al., 2014; Fensholt et al., 2013). The greening of the Sahel
has mainly been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s
(Hickler et al., 2005). Climate is thus another important factor regulating vegetation production. Semi-arid regions, such
as the Sahel, are particularly vulnerable to climate fluctuations due to their dependency on moisture.

Estimation of gross primary production (GPP), i.e. uptake of atmospheric CO, by vegetation, is still a major challenge
withinfor the remote sensing of ecosystem services. Gross primary production is a main driver of ecosystem services
such as climate regulation, carbon (C) sequestration, C storage, food production; erand livestock grassland production.
Within EO, spatial quantification of GPP generally involves light use efficiency (LUE), defined as the conversion
efficiency of absorbed solar light into CO, uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space
and time due to factors such as plant functional type, drought and temperature, nutrient levels and physiological
limitations of photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has
been applied usirgthrough various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994); or by
modifying a maximum LUE using meteorological variables (Running et al., 2004).

An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation
(PAR) is estimated as a product of the fraction of PAR absorbed by green vegetation (FPAR from MOD15A2)
multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAOQ). A
set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table
(BPLUT). Then maximum LUE is modified depending on air temperature (T,;) and vapour pressure deficit (VPD)
(Running et al., 2004). Sjostrom et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa; and showed
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that it underestimated GPP for semi-arid savannas in the Sahel. Explanations for this underestimation were that the
assigned maximum LUE from BPLUT was set too low and that there were uncertainties in the FPAR product
(MOD15A2). Recently, a new collection of MOD17A2 at a 500 m spatial resolution was released (MOD17A2H;
collection 6) with an updated BPLUT, updated GMAO meteorological data, improved quality control and gap--filling
of the FPAR data from MOD15A2 (Running and Zhao, 2015).

It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et
al., 2005). Additionally, the linearity assumed by the LUE model is not usually-net found as the response of GPP to
incoming light follows more of an asymptotic curve (Cannell and Thornley, 1998). Investigating other methods for
remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of
LUE, we focus on the light response function of GPP at the canopy scale, and spatial and temporal variation of its two
main parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; Foy): and the initial
slope of the light response function (canopy-scale quantum efficiency; o) (Falge et al., 2001; Tagesson et al., 2015a).
Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO, during photosynthesis
(umol CO, m?s™), whereas o is the amount of CO, fixed per incoming PAR (umol CO, pmol PAR™Y). Just-tTo clarify
the difference in LUE and « in this study:;, LUE (umol CO, umol APAR™) is the slope of a linear fit between CO,
uptake and absorbed PAR, whereas o (umol CO, pmol PAR™) is the initial slope of an asymptotic curve against
incoming PAR.

It has been proven that F, and a are closely related to chlorophyll abundance due to their coupling with the electron
transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems, water availability is generally considered to be
the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al.,
2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed
vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and
Pettigrew-Croshy, 1995; Fensholt and Sandholt, 2003). In this study, we will analyse i#fwhether EO vegetation indices
can be used ferto up-scaleing Fo and o and investigate ifwhether this could offer a promising way to map GPP in semi-
arid areas. This potential will be analysed by the use of detailed ground observations from six eddy covariance (EC)
flux tower sites across the Sahel.

The three aims of this study are:

1) To investigate ifwhether the recently released MOD17A2H GPP (collection 6) product is better at capturing
GPP for the Sahel than collection 5.1. We hypothesisze that the MOD17A2H GPP (collection 6) product will
estimate GPP well for the six Sahelian EC sites; because of major changes deremade in comparison to
collection 5.1 (Running and Zhao, 2015).

2) To characterize the relationships between spatial and temporal variability in Fy and a and remotely sensed

vegetation indices. We hypothesise that EO vegetation indices that are closely related to chlorophyll
abundance will be most strongly coupled with spatial and inter-annual dynamics in Fo and o, whereas
vegetation indices closely related to equivalent water thickness will be most strongly coupled with intra-annual
dynamics in Foy and a across the Sahel.

3) To evaluate the applicability of a GPP model based on the light response function using EO vegetation indices

and incoming PAR as input data.
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2 Materials and Methods

2.1 Site description

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards the
Sahara and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohyets,
respectively (Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by
species of Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses such as Schoenefeldia
gracilis, Dactyloctenium aegypticum, Aristida mutabilis; and Cenchrus biflorus dominate the herbaceous layer, but
perennial grasses such as Andropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de
Ridder et al., 1982). From the FLUXNET database (Baldocchi et al., 2001) we selected the six available measurement
sites with EC based CO, flux data from the Sahel (Table 1; Fig. 1). The sites represent a variety of ecosystems present
in the region, from dry fallow bush savanna to seasonally inundated acacia forest. For a full description of the
measurement sites, we refer to Tagesson et al. (2016a) and references in Table 1.

<Table 1>

<Figure 1>

2.2 Data collection

2.2.1 Eddy covariance and hydrometeorological in situ data

Eddy covariance and hydrometeorological data originating from the years between 2005 and 2013 were collected from
the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor set-up consisted of open-
path CO,/H,0 infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate and statistics
were calculated for 30-minute periods. For a full description of the sensor set-up and post processing of EC data, see the
references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers were
filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any
gap-filling or partitioning of NEE to GPP and ecosystem respiration. The collected hydrometeorological data were: air
temperature (T ; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 m depth (SWC; % volumetric
water content), incoming global radiation (Rq; W m), incoming photosynthetically active radiation (PAR; pmol m? s
1), VPD (hPa), peak dry weight biomass (g dry weight m?), C3/C4 species ratio; and soil conditions (nitrogen and C

concentration; %). For a full description of the collected data and sensor set-up, see Tagesson et al. (2016a).

2.2.2 Earth Observation data and gridded ancillary data

Composite products from MODIS/Terra covering the Sahel were acquired at Reverb ECHO (NASA, 2016). Collected
products were GPP (MOD17A2H; collection 6), nadir bidirectional reflectance distribution function adjusted
reflectance (NBAR) (8-day composites; MCD43A4; collection 5.1) at 500x500 m? spatial resolution, the normalized
difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (16-day composites; MOD13Q1;
collection 6) at 250x250 m? spatial resolution. The NBAR product was preferred over the reflectance product
(MODO09A1); in order to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 2014;
Tagesson et al., 2015c). We extracted the median of 3x3 pixels centred at the location of each EC tower. Time series of
EO products were filtered according to MODIS quality control data; MOD17A2H is a gap-filled and filtered product,
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QC data from MCD43A2 were used for filtering of MCD43A4; and bit 2-5 (highest —decreasing quality) was used for
MOD13Q1. Finally, data were gap-filled to daily values using linear interpolation.

We downloaded ERA Interim reanalysis PAR at the ground surface (W m?) with a spatial resolution of 0.25°x0.25°
accumulated for each 3-hour period from 2000-2015 from the European Centre for Medium-Range Weather Forecasts
(ECMWF) (Dee et al., 2011; ECMWF, 2016a).

2.3 Data handling

2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency

To estimate daily values of EC based Fqy and o, the asymptotic Mitscherlich light-response function was fitted
between daytime NEE and incoming PAR using a 7-day moving window with a 1-day time step:

{—axPAR]
NEE = —(Fp)x(1-€' ™ /)+Ry o)

where Foy is CO, uptake at light saturation (photosynthetic capacity; pmol CO, m?s?), Ry is dark respiration
(umol CO, m?s™); and « is the initial slope of the light response curve (quantum efficiency; pmol CO, pmol PAR™)
(Falge et al., 2001). By subtracting Ry from Eqg. 1, the function was forced through zero and GPP was thereby
estimated. To assureensure a high quality of fitted parameters, parameters were excluded from the analysis when fitting

was insignificant (p-value>0.05); and when they were out of range (Fqy and a >peak value of the rainy season times
1.2). Additionally, outliers were filtered following the method by Papale et al. (2006) using a 30-day moving window
with a 1-day time step.

2.3.2 Vegetation indices
The maximum absorption in red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a
and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to chlorophyll
abundance. By far the most common vegetation index is NDVI (Rouse et al., 1974):
NDVI = (PrIR=Preg )

(PN|R+ Pred ) @
where pyr is the reflectance factor in the near infrared (NIR) band (band 2) and pyq is the reflectance factor in the red
band (band 1). Near infrared radiance is reflected by leaf cells since absorption of these wavelengths would result in
overheating of the plant, whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al.,
1965). Normalization is done to reduce effects of atmospheric errors, solar zenith angles; and sensor viewing geometry,
as well as to increaseing the vegetation signal (Qi et al., 1994; Inoue et al., 2008).

A well-known deficiency of NDVI is problems of index saturation at high biomass because absorption of red light at
~670 nm peaks at higher biomass loads, whereas NIR reflectance continues to increase due to multiple scattering effects
(Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing atmospheric and soil background influences, EVI
is designed to increase the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al.,
2002).

EVI=G (pNIR_pred)
(pNIR +C1Prea— CoPoive+ L) (3
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where pye iS the reflectance factor in the blue band (band 3). The coefficients C;=6 and C,=7.5 correct for atmospheric
influences, while L=1 adjusts for the canopy background. The factor G=2.5 is a gain factor.

Another attempt to overcome problems of NDVI saturation was proposed by Roujean and Breon (1995), who
suggested the renormalized difference vegetation index (RDVI), thatwhich combines advantages of DVI (NIR-red) and

NDVI for low and high vegetation cover, respectively:

RDVI = (pNIR_pred)
(pNIR+pred)

As a non-linear index, RDVI is not only less sensitive to variations in geometrical and optical properties of unknown

4

foliage but also less affected by solar and viewing geometry (Broge and Leblanc, 2001). The vegetation index RDVI
was calculated based on NBAR bands 1 and 2.

The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly
sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave
infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid
environments:

SIWSI,, = (pNIR_pSWIRlz) 5)
PNIR T Pswiri2

Prie ~Pswieys)
SIWSI16:(NIR SWIR16 ©

PNIR T Pswir1s

where pgyirz 1S NBAR band 5 (1230-1250 nm) and psyiris iS NBAR band 6 (1628-1652 nm). As the vegetation water
content increases, reflectance in SWIR decreases, indicating that low and high SIWSI values point to sufficient water
conditions and drought stress, respectively.

2.3.3 Incoming PAR across the Sahel

A modified version of the ERA Interim reanalysis PAR was used in the current study as there was an error in the code
producing these PAR estimates; the estimates were generally too low (ECMWF, 2016b). Accordingly, incoming PAR
at the ground surface from ERA Interim was systematically underestimated even though it followed the pattern of PAR
measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to correct for this error, we fitted
and applied an ordinary least squares linear regression between in situ PAR and ERA Interim PAR (Fig. S1). The PAR
produced from this relationship is at the same level as in situ PAR and should be at a correct level even though the

original ERA Interim PAR is actually produced from the red and near infrared part of the spectrum.

2.4 Data analysis

2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with
explanatory variables

The coupling between intra-annual dynamics in Foy and a and the vegetation indices for the different measurement sites
were studied using Pearson correlation analysis. As part of the correlation analysis, we used a bootstrap simulation
methodology with 200 iterations from which the mean and the standard deviation of the correlation coefficients were

calculated (Richter et al., 2012). Relationships between intra-annual dynamics in Fqy and a and the vegetation indices
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for all sites combined were also analysed. In the analysis for all sites, data were normaliszed in-erder-to avoid influence
of spatial and inter-annual variability. Time series of ratios of Foy and o (Fop frac and airac) against the annual peak
values (Fop_peak and apeai; Se€ below for calculation of annual peak values) were estimated for all sites:

F

t
Fopt_frac = E °F (7)
opt_peak
a o
frac = (8)
0Lpeak

The same standardiszation procedure was used for all vegetation indices (Vlyc):

Vi
Vi =——— ©
“ leeak

where VI is the annual peak values of the vegetation indices (14--days running mean with highest annual value). The
irac ANd Fopt rac Were correlated with the different Vg, to investigate the coupling between intra-annual dynamics in
Fopt and o and the vegetation indices for all sites.

Regression trees were used to fill gaps in the daily estimates of Fqy and a. One hundred tree sizes were chosen based
on 100 cross--validation runs, and these trees were then used forto estimateirg Foy and o following the method in
De'ath and Fabricius (2000). We used SWC, VPD, T, PAR; and the vegetation index with the strongest correlation
with intra-annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same
standardiszation procedure as done for Fgy, o, and the vegetation indices was done for the hydrometeorological
variables. The 100 Fy and a output subsets from the regression trees were averaged and used for filling gaps in the
times series of Fq, and a. From these time- series, we estimated annual peak values of Foy and o (Fopt_peak and otpeax) @s
the 14-day running mean with the highest annual value. To investigate spatial and inter-annual variability in Fgy and o
across the measurement sites of the Sahel, F oy peax and apea Were correlated with the annual sum of Ps; yearly means of
Tar, SWC, RH, VPD; and Rg;; annual peak values of biomass;; soil nitrogen and C concentrations;; the C3/C4 ratio;;
and V1 peax.

2.4.2 Parameteriszation and evaluation of the GPP model and evaluation of the MODIS GPP
Based-o0n the basis of Eq. 1 and the outcome of the statistical analysis previously described under subsection 2.4.1 (for
results, see subsect. 3.2), a model for estimating GPP across the Sahel was created:

PAR])

GPP =- Fopt>< (18[ Fon (10)

Firstly, Fopt peak and apeac Were estimated spatially and inter-annually using linear regression functions fitted against the
vegetation indices with strongest relationships to spatial and inter-annual variability in Fop pea and opeac for all sites.
Secondly, exponential regression functions were established for Foy fac and afsc With the vegetation index with the
strongest relationships to intra-annual variability of Fopy frac @nd oiqrac for all sites. By combining these relationships, Fop
and o can be calculated for any day of year and for any point in space across the Sahel:

(Iropt*RD V1)
Fopt = Fopt_peak>< Fopt_frac = (k Fopt* NDVI peak T Meopt Xn FoptX € " a (11)
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1, xRDVle
0= Olpeak X Ofrae = (kax RDVIpeak7L maXnax e( * f )) (12)

where Keop and K, are slopes and megqy, and m,, are intercepts of the linear regressions giving Fop; peak and opeas
respectively; I, and |, are coefficients and ngq, and n,, are intercepts of the exponential regressions giving Fop frac and
frac, Fespectively. Equations 11 and 12 were inserted into Eq. 10, and GPP werewas thereby estimated as:

(e X0tpac KPAR

{ Fot_peak *Fopt_frac ] ( (IroptXRDV e )
GPP = _(Fopt_peak x Fopt_frac )X (1-e i . =-{k Fopt X NDVI peak T M Eopt AN Fopt X € o e

{(—(kuxRDVIpeak-v-muXnaxe('“XRDv'"aC))xPAR ] (13)
x|1 )

e kFoplX’\":’\/lpeak +Megpt Xl FuplXRDVIfrac+nFopl)

The bootstrap simulation methodology was used when fitting the least- squares regression functions for
parameteriszation of the GPP model (Richter et al., 2012). For each of the iterations, some of the EC sites were included
and some were left-eutomitted. The bootstrap simulations generated 200 sets of Keopt, Koy Meopts May Teopts 1oy Neopts Nas
and coefficient of determination (R?). Possible errors (e.g. random sampling errors, aerosols, electrical sensor noise,
filtering and gap-filling errors, clouds; and satellite sensor degradation) can be present in both the predictor and the
response variables. Hence, we selected reduced major axis regressions to account for errors in both predictor and
response variables when fitting the regression functions. The regression models were validated against the left-
eutomitted sites within the bootstrap simulation methodology by calculating the root- mean- square- error (RMSE), and
by fitting an ordinary least squares linear regression between modelled and independent variables.

Similarly, the MODIS GPP product (MOD17A2H;; collection 6) was evaluated against independent GPP from the EC
sites by calculating the RMSE; and by fitting an ordinary least squares linear regression.

3 Results

3.1 Evaluation of the MODIS GPP product

There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and independent
GPP (slope=0.17; intercept=0.11 g C m? d™; R?=0.69; n=598). However, MOD17A2H strongly underestimated
independent GPP (Fig. 2), resulting in a high RMSE (2.69 g C m? d™%). It can be seen that some points for the Kelma
site were quite low for MOD17A2H, whereas they were relatively high for the independent GPP (Fig. 2). Kelma is an
inundated Acacia forest located in a clay soil depression. These differentiated values were found in the beginning of the
dry season, when the depression was still inundated, whereas the larger area was turning dry.

<Figure 2>

3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency

Intra-annual dynamics in Fqy and a differed in amplitude, but were otherwise similar across the measurement sites in
the Sahel (Fig. 3). There was no green ground vegetation during the dry season, and the low photosynthetic activity was
due to few evergreen trees. This resulted in low values for both Fgy and o during the dry season. The vegetation
responded strongly to rainfall, and both Fg; and o increased during the early phase of the rainy season. Generally, F oy

peaked slightly earlier than o (average+ 1 standard deviation: 710 days) (Fig. 3).
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<Figure 3>

All vegetation indices described intra-annual dynamics in Fo reasonably well at all sites (Table 2). The vegetation
index SIWSIy, had the highest correlation for all sites except Wankama Millet, where it was RDVI. When all sites were
combined, all indices described well seasonality in Fqy, but RDVI had the strongest correlation (Table 2).

Intra-annual dynamics in o were also closely coupled to intra-annual dynamics in the vegetation indices for all sites
(Table 2). For a, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow, where it
was EVI. When all sites were combined, all indices described well intra-annual dynamics in a, but RDVI was still the
index with strongest relationship (Table 2).
<Table 2>

The regression trees used for gap-filling explained the intra-annual dynamics in Fq, and o well for all sites (Table 3;
Fig. S2 in Supplementary material). The regression trees explained intra-annual dynamics in Fop better than in o, and
multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to intra-
annual dynamics in Fy for all sites across the Sahel were in the order of RDVI, SWC, VPD, T, and PAR; and for o
they were RDVI, SWC, VPD and T, (Table 3). The strong relationship to SWC and VPD indicates drought stress
during periods of low rainfall. For all sites across the Sahel, incorporating hydrometeorological variables increased the
ability to determine intra-annual dynamics in Foy and o compared to the ordinary least squares linear regressions against
vegetation indices (Table 2, data given as r; Table 3; Fig. 3 and Fig. S2). For all sites, incorporation of these variables
increased R? from 0.81 to 0.87 and from 0.74 to 0.84- for Fopt and a, respectively.
<Table 3>

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency

Large spatial and inter-annual variability in Fop peac and opeac Were found across the six measurement sites in the Sahel;
Fopt_peak ranged between 10.1 pmol CO, m?2s? (Wankama Millet 2005) and 50.0 pmol CO, m?s™ (Dahra 2010), and
Opeak Tanged between 0.020 umol CO, pmol PAR™ (Demokeya 2007) and 0.064 umol CO, pmol PAR™ (Dahra 2010)
(Table 4). The average twe2--week running mean peak values of Fy and o for all sites were 26.4 pumol CO, m?stand
0.040 pmol CO, pmol PAR™, respectively. All vegetation indices determined spatial and inter-annual dynamics well in
both Fop peak and apeac (Table 5); Fop pea Was most closely coupled with NDV1 e, Whereas opeac Was coupled more
closely with RDV sk (Fig. 4). Fop_peax @lso correlated well with peak dry weight biomass, C content in the soil, and
RH, whereas aeax also correlated well with peak dry weight biomass; and C content in the soil (Table 5).

<Table 4>

<Table 5>

<Figure 4>

3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency; and gross primary production across the
Sahel and evaluation of the GPP model

The spatially extrapolated Foy, o and GPP averaged over the Sahel for 2001-2014 were 22.5+1.7 pmol CO, m?s™,
0.0300.002 pmol CO, umol PAR™; and 736239 g C m? y, respectively. At a regional scale, it can be seen that Fqy,
a; and GPP decreased substantially with latitude (Fig. 5). The Hhighest values were found in south-eastern Senegal,
western Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. Lowest values were found
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along the northernmost parts of the Sahel on the border to the Sahara in Mauritania, in northern Mali; and in northern
Niger.

Modelled GPP was similar to independent GPP on average, and there was a strong linear relationship between
modelled GPP and independent GPP for all sites (Fig. 6; Table 6). However, when separating the evaluation between
measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). Wankama
Millet was generally overestimated, whereas the model worked well on average for Demokeya but underestimated high
values (Fig. 7; Table 6). Variability of independent GPP at the other sites was well reproduced by the model (Fig. 7;
Table 6). The final parameters of the GPP model (Eq. 13) are giveashown in Table 7.
<Figure 5>
<Figure 6>
<Figure 7>
< Table 6>
< Table 7>

4 Discussions

Our hypothesis that vegetation indices closely related to equivalent water thickness (SIWSI) would be most strongly
coupled with intra-annual dynamics in F, and o was not rejected for Fy, since this was the case for all sites except for
Wankama Millet (Table 2). However, our hypothesis was rejected for a, since it was more closely related to vegetation
indices related-teof chlorophyll abundance (RDVI and EVI). In the Sahel, soil moisture conditions in the early rainy
season are important for vegetation growth and during this phase vegetation is especially vulnerable to drought
conditions (Rockstrém and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity (Fop)
peaked earlier in the rainy season than a did (Fig. 3), thereby explaining the close relationship of F, to SIWSI. Leaf
area index increased over the growing season and leaf area index is closely coupled with vegetation indices related to
chlorophyll abundance (Tagesson et al., 2009). The increase in leaf area index increased canopy level quantum
efficiency (), which-thereby explainsing the closer relationship of o to RDVI.

Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with
spatial and inter-annual dynamics in Foy and o was not rejected for either Fqy or o; NDVI, EVI; and RDVI all
correlated aH-with spatial and inter-annual dynamics in Fqy and o (Table 5). However, it was surprising that NDV |l peq
had the strongest correlation with spatial and inter-annual variability for Fo, (Table 5). Both EVI and RDVI should be
less sensitive to saturation effects than NDVI (Huete et al., 2002; Roujean and Breon, 1995), and based on this it can be
assumed that peak values of these indices should have stronger relationships to peak values of Fq, and a. However,
vegetation indices with a high sensitivity to changes in green biomass at high biomass loads; getsbecome less sensitive
to green biomass changes at low biomass loads (Huete et al., 2002). The Ppeak leaf area index for ecosystems across the
Sahel is generally ~2 m? m™ or less, whereas the saturation issue of NDVI generally starts at an leaf area index of about
2-5 m? m? (Haboudane et al., 2004).

The Fop_peak €Stimates from Agoufou, Demokeya; and the Wankama sites were similar, whereas Dahra and Kelma
values were high in relation to previously reported canopy-scale Fgp peax from the Sahel (~-8 to -23 pmol m? sec
1) (Hanan et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 2009; Levy et al., 1997; Monteny et
al., 1997). These previous studies reported much lower F; at canopy scale than at leaf scale (e.g. Levy et al. (1997): 10 vs.
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2.1 and 2.7, respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-
mentioned sites. A possible explanation tefor high Fg estimates at Dahra and Kelma could thereforeby be the higher
leaf area index. Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO, exchange
measured at the Dahra field site and explained the high values by a combination of moderately dense herbaceous C4
ground vegetation, high soil nutrient availability, and a grazing pressure resulting in compensatory growth and
fertilization effects. Another possible explanation could be that the West African Monsoon brings a humid layer of
surface air from the Atlantic, possibly increasing vegetation production for the most western part of the Sahel (Tagesson
et al., 2016a).

Our model substantially overestimated GPP for Wankama Millet (Fig. 7f). Being a crop field, this site differed from
the other sites byin its species composition; and ecosystem structure, as well as land and vegetation management. Crop
fields in southwestern Niger are generally characterized by a-rather low production, resulting from decreased fertility
and soil loss caused by intensive land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site may
cause the model, parameteriszed with observations from the other study sites without this strong anthropogenic
influence, to overestimate GPP at this site. Similar results were found by Boulain et al. (2009) when applying an up-
scaling model using leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow,
whereas it was less conclusive for Wankama Millet. The main explanation for this difference was low leaf area index in
millet fields because of a low density of millet stands due to agricultural practice. There is extensive savanna clearing
for food production in the Sahel (Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further
understand impacts of this land cover change on vegetation production and land-atmosphere exchange processes, s
efthere is an urgent need for more study sites covering cropped areas in this region.

In Demokeya, GPP was slightly underestimated for the year 2008 (Fig. 7c) because modelled Fqy was much lower
than the actual measured value in 2008 (the thick black line in Fig. 4). An improvement of the model could be to
incorporate some parameters that constrain or enhance F depending on environmental stress. Indeed, the regression
tree analysis indicated that incorporating hydrometeorological variables increased the ability to predict both Fqy and a.
On the other hand, for spatial upscaling purposes, it has been shown that including modelled hydrometeorological
constraints on LUE decreases the ability to predict vegetation production due to the incorporated uncertainty in these
modelled variables (Fensholt et al., 2006; Ma et al., 2014). For spatial upscaling to regional scales, it is therefore better
to simply use relationships to EO data. This is particularly the case for the Sahel, one of the largest dryland areas in the
world, thatwhich includes only a few sites of hydrometeorological observations.

The pattern seen in the spatially explicit GPP budgets (Fig. 5¢) may be influenced by a range of biophysical and
anthropogenic factors. The clear North-South gradient is expected given the strong North-South rainfall gradient in the
Sahel. The West African Monsoon mentioned above could also be an explanation of high GPP values in the western
part of the Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern
Sahel (Fig. 5c). The areas with highest GPP are sparsely populated woodlands or shrubby savanna with a relatively
dense tree cover (Brandt et al., 2016). However, the maps produced should be used with caution as they are based on
up-scaling of the only six available EC sites that exist in the region; especially given the issues related to the cropped
fields discussed earlier. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual
GPP budget as estimated for these six sites (692489 g C m? y™) (Tagesson et al., 2016a). The range of GPP budgets in
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Fig. 5c is also similar to previous annual GPP budgets reported from other savanna areas across the world (Veenendaal
et al., 2004; Chen et al., 2003; Kanniah et al., 2010; Chen et al., 2016).

Although MOD17A2 GPP has previously been shown to capture GPP in several ecosystems types well (Turner et al.,
2006; Turner et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown to
underestimate it for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjostrém et al., 2013). GPP of Sahelian
drylands have not been captured well by MOD17A2-well (Sjostrom et al., 2013; Fensholt et al., 2006), and as we have
shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product (Fig. 2). The main reason for
this pronounced underestimation is that maximum LUE is set to 0.84 g C MJ™ (open shrubland; Demokeya) and 0.86 g
C MJ? (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLUT, i.e. much lower
than maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 g C MJ™; range: 1.58-3.50
g C MJ™) (Sjbstrom et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C MJ™ (Garbulsky et al., 2010)
and a savanna site in Australia (1.26 g C MJ™) (Kanniah et al., 2009).

Several dynamic global vegetation models have been used for decades to quantify GPP at different spatial and
temporal scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the photosynthesis model
of Farquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity (Zhang et al., 2014).
This and several previous studies have shown that both photosynthetic capacity and efficiency (both a and LUE) can
vary considerably between seasons as well as spatially, and both within and between vegetation types (Eamus et al.,
2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using
broad values based on land cover classes, yet most models apply a constant value, which can cause substantial
inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that
consists of several plant functional types (C3 and C4 species, and a large variability in tree/herbaceous vegetation
fractions) (Scholes and Archer, 1997). This study indicates the strong applicability of EO as a tool for parameteriszing
spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially
explicit estimates of GPP at a high temporal and spatial resolution are essential for environmental change studies in the
Sahel and can contribute to increased knowledge regarding changes in GPP, its relationship to climatic change and

anthropogenic forcing, and estimations of ecosystem processes and biochemical and hydrological cycles.
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Tables

Table 1. Description of the six measurement sites including location, soil type, ecosystem type and dominant species.

Measurement site Coordinates Soil type Ecosystem Dominant species
Agoufou? 15.34°N,  Sandy ferruginous Open woody Trees: Acacia spp., Balanites
(ML-AgG, Mali) 1.48°W Arenosol savannah (4% tree aegyptiaca,
cover) Combretum glutinosum
Herbs: Zornia glochidiata,
Cenchrus biflorus, Aristida
mutabilis, Tragus berteronianus
Dahra” 15.40°N, Sandy luvic Grassland/shrubland ~ Trees: Acacia spp., Balanites
(SN-Dah, Senegal) 15.43°W arenosol Savanna (3% tree aegyptiaca
cover) Herbs: Zornia latifolia, Aristida
adscensionis, Cenchrus biflorus
Demokeya® 13.28°N, Cambic Arenosol Sparse acacia Trees: Acacia spp.,
(SD-Dem, Sudan) 30.48°E savannah (7% tree Herbs: Aristida pallida,
cover) Eragrostis tremula, Cenchrus
biflorus
Kelma? 15.22°N, Clay soil depression Open acacia forest Trees: Acacia seyal, Acacia
(ML-Kem, Mali) 1.57°W (90% tree cover) nilotica, Balanites aegyptiaca
Herbs: Sporobolus hevolvus,
Echinochloa colona,
Aeschinomene sensitive
Wankama Fallow* 13.65°N,  Sandy ferruginous Fallow bush Guiera senegalensis
(NE-WaF, Niger) 2.63°E Arenosol
Wankama Millet® 13.64°N,  Sandy ferruginous Millet crop Pennisetum glaucum
(NE-WaM, Niger) 2.63°E Arenosol
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Table 2. Correlation between intra-annual dynamics in photosynthetic capacity (Fop; Fopt_rac fOr all sites), quantum efficiency (a; o _goc Tor all sites); and the different

vegetation indices for the six measurement sites (Fig. 1). Values are averagest1 standard deviation from 200 bootstrapping runs. The bold values are the indices with

the strongest correlation. EVI is the enhanced vegetation index, NDVI is the normalized difference vegetation index, RDVI is the renormalized difference vegetation

index, SIWSI is the shortwave infrared water stress index. SIWSI , is based on the MODIS Bidirectional Reflectance Distribution Functions (NBAR) band 2 and band
5, whereas SIWSI 4 is based on MODIS NBAR band 2 and band 6.

Measurement site Font a
EVI NDVI RDVI SIWSI,, SIWSI 4 EVI NDVI RDVI SIWSI,, SIWSI 4

ML-AgG 0.89+0.02 0.87+0.02 0.95£0.01 -0.95+0.01  -0.93+0.02 0.92+0.02 0.91+0.01 0.96+0.01 -0.94+0.01 -0.88+0.02
SN-Dah 0.92+0.005 0.91+0.01 0.96+0.003 -0.96+0.004 -0.93+0.01 0.89+0.01 0.90+0.01 0.93+0.01 -0.92+0.01 -0.87+0.01
SD-Dem 0.81+0.01 0.78+0.01 0.91+0.01 -0.93+0.01  -0.90+0.01 0.76+0.02 0.73+0.02 0.86+0.01 -0.82+0.02 -0.79+0.02
MA-Kem 0.77+0.02 0.83+0.02 0.95£0.01 -0.95+0.01  -0.90+0.02 0.69+0.05 0.73+0.04 0.80+0.03 -0.77+0.03 -0.76+0.03
NE-WaF 0.87+0.02 0.81+0.02 0.78£0.02  -0.90+0.01  -0.80+0.02 0.89+0.01 0.84+0.01 0.85+0.01 -0.88+0.01 -0.79+0.01
NE-WaM 0.41+0.05 0.50+0.04 0.72#0.03  -0.55+0.04  -0.43+0.05 0.72+0.02 0.76+0.02 0.81+0.01 -0.75+0.01 -0.72+0.01
All sites 0.860.0 0.79+0.0  0.90+0.0 0.75+0.0 0.70+0.0 0.83+0.01 0.80+0.01 0.86+0.01 0.62+0.01  0.54+0.01
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Table 3. Statistics for the regression tree analysis. The regression tree analysis was used ferto studying relationships
between intra-annual dynamics in the the-photosynthetic capacity (Fop; Fop_frac fOr all sites) and quantum efficiency (a;
o e for all sites) and the explanatory variables for the six measurement sites (Fig. 1). The pruning level is the number

of splits of the regression tree and an indication of complexity of the system.

Explanatory Pruning

Measurement site Variables: level R?
Fon 1 2 3 4 5

ML-AQG SIWSI, Tair PAR SWC 16 0.98
SN-Dah SIWSI,, SWC VPD Tair PAR 84 0.98
SD-Dem SIWSI,, VPD SWC Tair PAR 33 0.97
ML-Kem SIWSI PAR Tair VPD 22 0.98
NE-WaF SIWSI, SWC VPD Tair 14 0.92
NE-WaM RDVI SWC VPD Tair 18 0.75
All sites RDVI SWC Tair VPD 16 0.87
o

ML-AQG RDVI 3 0.95
SN-Dah RDVI VPD SWC Tair PAR 21 0.93
SD-Dem RDVI SWC PAR Tair 16 0.93
ML-Kem RDVI Tair 4 0.75
NE-WaF EVI SWC VPD 10 0.90
NE-WaM RDVI SWC VPD Tair 15 0.86
All sites RDVI SWC VPD Tair 16 0.84
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Table 4. Annual peak values of quantum efficiency (opeak; pmol CO, pmol PAR™) and photosynthetic capacity
(Fopt_peak; tmol CO, m?s™) for the six measurement sites (Fig. 1). The peak values are the 2--week running mean with

highest annual value.

Measurement site Year  dpeak Fopt peak
ML-AgG 2007  0.0396 24.5
SN-Dah 2010  0.0638 50.0

2011 0.0507 42.3
2012 0.0480 39.2
2013 0.0549 40.0
SD-Dem 2007  0.0257 16.5
2008  0.0327 21.0
2009  0.0368 16.5

ML-Kem 2007  0.0526 335
NE-WaF 2005  0.0273 18.2
2006  0.0413 21.0
NE-WaM 2005  0.0252 10.6
2006 0.0200 10.1
Average 0.0399 26.4
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Table 5. Correlation matrix between annual peak values of photosynthetic capacity (Fop peax) and quantum efficiency
(aupeak) and measured environmental variables. P is annual rainfall; T is yearly averaged air temperature at 2 m height;
SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth; Rh is yearly
averaged relative humidity; VPD is yearly averaged vapour pressure deficit; Ry is yearly averaged incoming global
radiation; N and C cont. are soil nitrogen and carbon contents; NDV I, is annual peak normalized difference
vegetation index (NDVI); EVlpa is annual peak enhanced vegetation index (EVI); RDVIe is annual peak
renormalized difference vegetation index (RDVI); SIWSI 15pea is annual peak short--wave infrared water stress index
based on MODIS NBAR band 2 and band 5; and SIWSI g is annual peak short--wave infrared water stress index

based on MODIS NBAR band 2 and band 6. Sample size was 13 for all except the marked explanatory variables.

Explanatory variable F opt_peak OLpeak
Meteorological data

P (mm) 0.24+0.26  0.13x0.27
Tar (°C) -0.07+0.25 -0.01+0.25
SWC (%)* 0.33t0.25  0.16+0.27
Rh (%) 0.73+0.16"  0.60%0.19
VPD (hPa) 0.20£0.26  0.15+0.30
Ry (Wm?) -0.48+0.21 -0.41+0.24
Biomass and edaphic

data

Biomass (g DW m?)®  0.77+0.15°  0.74+0.14"
C3/C4 ratio -0.05£0.26  0.06+0.30
N cont. (%)"° 0.22+0.11  0.35:0.14
C cont. (%)° 0.89+0.06” 0.87+0.07"
Earth observation data

NDVI peak 0.94+0.05" 0.87+0.07*
EVlpeak 0.93+0.04” 0.87+0.07"
RDVpeak 0.93+0.04™ 0.89+0.07"
SIWS| 1202k 0.85+0.08" 0.84+0.08"
SIWS 16pea 0.67+0.12° 0.650.15"
Photosynthetic

variables

Font - 0.94+0.03"

dsample size equals 11.
bsample size equals 9.

* significant at 0.05 level.
** significant at 0.01 level
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Table 6. Statistics regarding the evaluation of the gross primary production (GPP) model for the six measurement sites (Fig. 1). In situ and modelled GPP are averages

+ 1 standard deviation. RMSE is the root- mean- squares- error, and slope, intercept and R? isare from the fitted ordinary least squares linear regression.

Measurement In situ GPP Modelled GPP RMSE Intercept

site (umol CO, m?s™) (umol CO, m?s™) (umol CO, m?s™) slope (umol CO, m?s™) R?
ML-AgG 5.35+6.38 5.97+5.80 2.48+0.10 0.84+0.003 1.46+0.01 0.86+0.002
SN-Dah 9.39+10.17 8.87+9.67 3.99+1.34 0.88+0.002 0.62+0.01 0.85+0.001
SD-Dem 4.26+4.55 3.98+3.90 3.15+1.06 0.63+0.003 1.31+0.007 0.54+0.02
ML-Kem 11.16+8.02 10.52+9.22 4.35£1.23 1.02+0.003 -0.82+0.03 0.78+0.002
NE-WaF 5.77+4.17 6.63+3.53 2.47+1.05 0.70+0.005 2.58+0.02 0.69+0.003
NE-WaM 3.04+1.93 6.35+3.47 4.12+0.99 1.31+0.004 2.37+0.02 0.53+0.003
Average 6.73+7.72 7.02+7.39 3.68+0.55 0.83+0.07 1.34+0.82 0.84+0.07
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Table 7. The parameters for Eq. 13 that waswere used in the final gross primary production (GPP) model. RMSE is the root
mean square error, and R? is the coefficient of determination for the regression models predicting the different variables.

Parameter Value RMSE Rz
79.646.3

Keont 5.1+1.3 0.89+0.05

Mroot -7.3£3.2

I ont 3.5120.19 0.15+0.02  0.88+0.06

Moot 0.03+0.006 O RS

. 0.16+0.02

. 001440007  0-0069+0.0021 0.810.10

Lo 3.7520.27 0.20£0.02  0.80+0.10

n 0.02+0.007 RS RS

o
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5 Figure 1. Land cover classes for the Sahel and the location of the six measurement sites included in the study. The land

cover classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG),
Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Wankama Fallow (NE-WaF); and Wankama Millet (NE-WaM).

The thick black line isare the borders of the Sahel based on the isohytes 150 and 700 mm of annual precipitation (Prince et

al., 1995).
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‘ Figure 2. Evaluation of the MODIS based GPP product MOD17A2H (collection 6) against eddy covariance based GPP from
the six measurement sites (Fig. 1) across the Sahel. The thick black line shows the one-to-one ratio, and the grey dotted line
‘ is the fitted ordinary least squares linear regression.
5

27



opt

a (umol CO, umol PAR™), F__(mmol CO, m?s™))

opt

@ (umol CO, umol PAR), F__(mmol CO, m?s™))

O — Fml | Vig V|F°p'
O-OB T T T T T T T 0,4
a)

0.04 - 40.25

0.02f ‘\\;;\q Ho.1
] I I ol - P LN o —t -0.05

100 200 300
Day of year 2007
0.075 T T T T T T T T T 05
b)
0.05 . 410.25
0.025 s 0
v . |}

0 L L L # o ag ey | . 025
2010 2011 2012 2013 2014
0.05 : — —lear_ —— . T 05

c)
0.025| L‘V‘ {02
&_‘ I
0 1 --- 1 L - L I_.L L _0 1
2007 2008 2009 2010
Year
0.075 T T T T T T T 0.6
d)
005+ <103
0.025 \% 0
-
D 1 1 1 I/ 1 1 '0.3
100 200 300
Day of year 2007
0.05 T T T 0.35
e)
0.025 1 -40.15
oA
0 1 S i - S S J _0.05
2005 2006 2007
Year
0.04 T T T 0.3
f)

0.02}- \w N 40.15
0 “ Mo, 4y
2005 2006 2007

Year

28

Vegetation index

Vegetation index



Figure 3. Dynamics in photosynthetic capacity (Fqx) and quantum efficiency (o) for the six measurement sites. Also

lincluded is alseare dynamics in the vegetation indices with highest correlation to the intra-annual dynamics in Fopt (Vlggp)

and to quantum efficiency (VI,) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-
‘ Dem), d) Kelma (ML-Kem), e) Wankama Fallow (NE-WaF); and f) Wankama Millet (NE-WaM).
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Figure 4. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of a) photosynthetic capacity (Fop peak)
and b) quantum efficiency (opeax) against peak values of normalized difference vegetation index (NDVl,e) and

renormalized difference vegetation index (RDVl ), respectively. The annual peak values were estimated by taking the
annual maximum of a fwe2--week running mean.
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Figure 5. Maps of a) peak values of photosynthetic capacity (Fqp pea) averaged for 2001-2014, b) peak values of quantum
efficiency (apeax) averaged for 2001-2014, and c) annual budgets of GPP averaged for 2001-2014.
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Figure 6. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP from all six measurement
sites across the Sahel. The thick grey line shows the one-to-one ratio, whereas the detted-thin dotted grey line is the fitted

ordinary least squares linear regression.
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Figure 7. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP for the six sites across
Sahel (Fig. 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least
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squares linear regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma
(ML-Kem), e) Wankama Fallow (NE-WaF); and f) Wankama Millet (NE-WaM).
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