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Abstract. It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO2 sink, 20 

which indicates the strong need for improved understanding, and spatially explicit estimates of CO2 uptake (gross 21 

primary production (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the MOD17A2H GPP 22 

(collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel; 2) to characterisze 23 

relationships between spatial and temporal variability in EC based photosynthetic capacity (Fopt) and quantum 24 

efficiency (α) and earth observation (EO) based vegetation indices (normalized difference vegetation index (NDVI); 25 

renormalized difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared water 26 

stress index (SIWSI)); and  3) to study the applicability of EO up-scaled Fopt and α for GPP modelling purposes. 27 

MOD17A2H GPP (collection 6) drastically underestimated GPP strongly, most likely because maximum light use 28 

efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt waswere 29 

closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being 30 

affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and 31 

RDVI, respectively. Modelled GPP based on Fopt and α up-scaled using EO based indices reproduced in situ GPP well 32 

for all except a cropped site that was strongly impacted by anthropogenic land use. Up-scaled GPP for the Sahel 2001-33 

2014 was 736±39 g C m-2 y-1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates 34 

of GPP, Fopt and α; incorporating EO- based Fopt and α in to dynamic global vegetation models could improve global 35 

estimates of vegetation production, ecosystem processes and biogeochemical and hydrological cycles. 36 

 37 
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1 Introduction 40 

Vegetation growth in semi-arid regions is an important sink for fossil fuel emissions. Mean carbon dioxide (CO2) 41 

uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-arid 42 

regions are the main biome driving its inter-annual variability (Ahlström et al., 2015; Poulter et al., 2014). Semi-arid 43 

regions even contribute to 60% of the long- term trend in the global terrestrial C sink (Ahlström et al., 2015). It is thus 44 

important to understand long-term variability of vegetation growth in semi-arid areas and their the response of 45 

vegetation to environmental conditions to better quantify and forecast effects of climate change. 46 

   The Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna 47 

in the South. The region has experienced numerous severe droughts duringover the last decades, which  that resulted in 48 

region-wide famines in 1972-1973 and 1984–1985 and localized food shortages across the region in 1990, 2002, 2004, 49 

2011 and 2012 (Abdi et al., 2014; United Nations, 2013). Vegetation production is thereby an important ecosystem 50 

service for livelihoods in the Sahel, but it is under threat. The region is experiencinges a strong population growth, 51 

increasing the demand on ecosystem services due to cropland expansion, increased pasture stocking rates and fuelwood 52 

extraction (Abdi et al., 2014).  53 

   At the same time as we have reports of declining vegetation production, we have contradicting reports of the greening 54 

of the Sahel based on earth observation (EO) data (Dardel et al., 2014; Fensholt et al., 2013). The greening of the Sahel 55 

has mainly been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s 56 

(Hickler et al., 2005). Climate is thus another important factor regulating vegetation production. Semi-arid regions, such 57 

as the Sahel, are particularly vulnerable to climate fluctuations due to their dependency on moisture. 58 

   Estimation of gross primary production (GPP), i.e. uptake of atmospheric CO2 by vegetation, is still a major challenge 59 

withinfor the remote sensing of ecosystem services. Gross primary production is a main driver of ecosystem services 60 

such as climate regulation, carbon (C) sequestration, C storage, food production, orand livestock grassland production. 61 

Within EO, spatial quantification of GPP generally involves light use efficiency (LUE), defined as the conversion 62 

efficiency of absorbed solar light into CO2 uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space 63 

and time due to factors such as plant functional type, drought and temperature, nutrient levels and physiological 64 

limitations of photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has 65 

been applied usingthrough various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994), or by 66 

modifying a maximum LUE using meteorological variables (Running et al., 2004).  67 

   An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging 68 

Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation 69 

(PAR) is estimated as a product of the fraction of PAR absorbed by green vegetation (FPAR from MOD15A2) 70 

multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A 71 

set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table 72 

(BPLUT). Then maximum LUE is modified depending on air temperature (Tair) and vapour pressure deficit (VPD) 73 

(Running et al., 2004). Sjöström et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa, and showed 74 
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that it underestimated GPP for semi-arid savannas in the Sahel. Explanations for this underestimation were that the 75 

assigned maximum LUE from BPLUT was set too low and that there were uncertainties in the FPAR product 76 

(MOD15A2). Recently, a new collection of MOD17A2 at a 500 m spatial resolution was released (MOD17A2H; 77 

collection 6) with an updated BPLUT, updated GMAO meteorological data,  improved quality control and gap- filling 78 

of the FPAR data from MOD15A2 (Running and Zhao, 2015).  79 

   It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et 80 

al., 2005). Additionally, the linearity assumed by the LUE model is not usually not found  as the response of GPP to 81 

incoming light follows more of an asymptotic curve (Cannell and Thornley, 1998). Investigating other methods for 82 

remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of 83 

LUE, we focus on the light response function of GPP at the canopy scale, and spatial and temporal variation of its two 84 

main parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; Fopt), and the initial 85 

slope of the light response function (canopy-scale quantum efficiency; α) (Falge et al., 2001; Tagesson et al., 2015a). 86 

Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO2 during photosynthesis 87 

(μmol CO2 m-2 s-1), whereas α is the amount of CO2 fixed per incoming PAR (μmol CO2 μmol PAR-1). Just tTo clarify 88 

the difference in LUE and α in this study;, LUE (μmol CO2 μmol APAR-1) is the slope of a linear fit between CO2 89 

uptake and absorbed PAR, whereas α (μmol CO2 μmol PAR-1) is the initial slope of an asymptotic curve against 90 

incoming PAR. 91 

   It has been proven that Fopt and α are closely related to chlorophyll abundance due to their coupling with the electron 92 

transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems, water availability is generally considered to be 93 

the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al., 94 

2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed 95 

vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and 96 

Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study, we will analyse ifwhether EO vegetation indices 97 

can be used forto up-scaleing Fopt and α and investigate ifwhether this could offer a promising way to map GPP in semi-98 

arid areas. This potential will be analysed by the use of detailed ground observations from six eddy covariance (EC) 99 

flux tower sites across the Sahel.  100 

The three aims of this study are: 101 

1) To investigate ifwhether the recently released MOD17A2H GPP (collection 6) product is better at capturing 102 

GPP for the Sahel than collection 5.1. We hypothesisze that the MOD17A2H GPP (collection 6) product will 103 

estimate GPP well for the six Sahelian EC sites, because of  major changes donemade in comparison to 104 

collection 5.1  (Running and Zhao, 2015).  105 

2) To characterize the relationships between spatial and temporal variability in Fopt and α and remotely sensed 106 

vegetation indices. We hypothesise that EO vegetation indices that are closely related to chlorophyll 107 

abundance will be most strongly coupled with spatial and inter-annual dynamics in Fopt and α, whereas 108 

vegetation indices closely related to equivalent water thickness will be most strongly coupled with intra-annual 109 

dynamics in Fopt and α across the Sahel. 110 

3) To evaluate the applicability of a GPP model based on the light response function using EO vegetation indices 111 

and incoming PAR as input data. 112 

 113 
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2 Materials and Methods 114 

2.1 Site description  115 

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards the 116 

Sahara and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohyets, 117 

respectively (Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by 118 

species of Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses such as Schoenefeldia 119 

gracilis, Dactyloctenium aegypticum, Aristida mutabilis, and Cenchrus biflorus dominate the herbaceous layer, but 120 

perennial grasses such as Andropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de 121 

Ridder et al., 1982). From the FLUXNET database (Baldocchi et al., 2001) we selected the six available measurement 122 

sites with EC based CO2 flux data from the Sahel (Table 1; Fig. 1). The sites represent a variety of ecosystems present 123 

in the region, from dry fallow bush savanna to seasonally inundated acacia forest. For a full description of the 124 

measurement sites, we refer to Tagesson et al. (2016a) and references in Table 1.  125 

<Table 1> 126 

<Figure 1> 127 

 128 

2.2 Data collection 129 

2.2.1 Eddy covariance and hydrometeorological in situ data 130 

Eddy covariance and hydrometeorological data originating from the years between 2005 and 2013 were collected from 131 

the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor set-up consisted of open-132 

path CO2/H2O infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate and statistics 133 

were calculated for 30-minute periods. For a full description of the sensor set up and post processing of EC data, see the 134 

references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers were 135 

filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any 136 

gap-filling or partitioning of NEE to GPP and ecosystem respiration. The collected hydrometeorological data were: air 137 

temperature (Tair; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 m depth (SWC; % volumetric 138 

water content), incoming global radiation (Rg; W m-2), incoming photosynthetically active radiation (PAR; μmol m-2 s-139 
1), VPD (hPa), peak dry weight biomass (g dry weight m-2), C3/C4 species ratio, and soil conditions (nitrogen and C 140 

concentration; %). For a full description of the collected data and sensor set-up, see Tagesson et al. (2016a).  141 

 142 

2.2.2 Earth Observation data and gridded ancillary data 143 

Composite products from MODIS/Terra covering the Sahel were acquired at Reverb ECHO (NASA, 2016).  Collected 144 

products were GPP (MOD17A2H; collection 6), nadir bidirectional reflectance distribution function adjusted 145 

reflectance (NBAR) (8-day composites; MCD43A4; collection 5.1) at 500×500 m2 spatial resolution, the normalized 146 

difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (16-day composites; MOD13Q1; 147 

collection 6) at 250×250 m2 spatial resolution. The NBAR product was preferred over the reflectance product 148 

(MOD09A1), in order to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 2014; 149 

Tagesson et al., 2015c). We extracted the median of 3x3 pixels centred at the location of each EC tower. Time series of 150 

EO products were filtered according to MODIS quality control data; MOD17A2H is a gap-filled and filtered product, 151 
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QC data from MCD43A2 were used for filtering of MCD43A4; and bit 2-5 (highest –decreasing quality) was used for 152 

MOD13Q1. Finally, data were gap-filled to daily values using linear interpolation. 153 

   We downloaded ERA Interim reanalysis PAR at the ground surface (W m-2) with a spatial resolution of 0.25°×0.25° 154 

accumulated for each 3-hour period from 2000-2015 from the European Centre for Medium-Range Weather Forecasts 155 

(ECMWF) (Dee et al., 2011; ECMWF, 2016a).  156 

 157 

2.3 Data handling 158 

2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 159 

 To estimate daily values of EC based Fopt and α, the asymptotic Mitscherlich light-response function was fitted 160 

between daytime NEE and incoming PAR using a 7-day moving window with a 1-day time step: 161 

d
F

PARα

opt R)e(1)(FNEE opt +−×−=









 ×−

         (1)
 

162 

where Fopt is CO2 uptake at light saturation (photosynthetic capacity; μmol CO2 m-2 s-1), Rd is dark respiration 163 

(μmol CO2 m-2 s-1), and α is the initial slope of the light response curve (quantum efficiency; μmol CO2 μmol PAR-1) 164 

(Falge et al., 2001). By subtracting Rd from Eq. 1, the function was forced through zero and GPP was thereby 165 

estimated. To assureensure a high quality of fitted parameters, parameters were excluded from the analysis when fitting 166 

was insignificant (p-value>0.05), and when they were out of range (Fopt and α >peak value of the rainy season times 167 

1.2). Additionally, outliers were filtered following the method by Papale et al. (2006) using a 30-day moving window 168 

with a 1-day time step.  169 

 170 

2.3.2 Vegetation indices 171 

The maximum absorption in red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a 172 

and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to chlorophyll 173 

abundance. By far the most common vegetation index is NDVI (Rouse et al., 1974):  174 

( )
( )redNIR

redNIR

ρρ
ρρNDVI

+
−

=           (2) 
175 

where ρNIR is the reflectance factor in the near infrared (NIR) band (band 2) and ρred is the reflectance factor in the red 176 

band (band 1). Near infrared radiance is reflected by leaf cells since absorption of these wavelengths would result in 177 

overheating of the plant, whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al., 178 

1965). Normalization is done to reduce effects of atmospheric errors, solar zenith angles, and sensor viewing geometry, 179 

as well as to increaseing the vegetation signal (Qi et al., 1994; Inoue et al., 2008).  180 

   A well-known deficiency of NDVI is problems of index saturation at high biomass because absorption of red light at 181 

~670 nm peaks at higher biomass loads, whereas NIR reflectance continues to increase due to multiple scattering effects 182 

(Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing atmospheric and soil background influences, EVI 183 

is designed to increase the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al., 184 

2002).  185 

( )
( )LρCρCρ

ρρ
GEVI

blue2red1NIR

redNIR

+−+
−

=         
(3) 

186 
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where ρblue is the reflectance factor in the blue band (band 3). The coefficients C1=6 and C2=7.5 correct for atmospheric 187 

influences, while L=1 adjusts for the canopy background. The factor G=2.5 is a gain factor. 188 

   Another attempt to overcome problems of NDVI saturation was proposed by Roujean and Breon (1995), who 189 

suggested the renormalized difference vegetation index (RDVI), thatwhich combines advantages of DVI (NIR-red) and 190 

NDVI for low and high vegetation cover, respectively:  191 

( )
( )redNIR

redNIR

ρρ
ρρ

RDVI
+

−
=           (4)

 
192 

As a non-linear index, RDVI is not only less sensitive to variations in geometrical and optical properties of unknown 193 

foliage but also less affected by solar and viewing geometry (Broge and Leblanc, 2001). The vegetation index RDVI 194 

was calculated based on NBAR bands 1 and 2. 195 

   The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly 196 

sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave 197 

infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid 198 

environments:  199 

( )
( )12SWIRNIR

12SWIRNIR
12 ρρ

ρρ
SIWSI

+
−

=          (5) 200 

( )
( )16SWIRNIR

16SWIRNIR
16 ρρ

ρρ
SIWSI

+
−

=          (6) 201 

where ρswir12 is NBAR band 5 (1230-1250 nm) and ρswir16 is NBAR band 6 (1628-1652 nm). As the vegetation water 202 

content increases, reflectance in SWIR decreases, indicating that low and high SIWSI values point to sufficient water 203 

conditions and drought stress, respectively. 204 

 205 

2.3.3 Incoming PAR across the Sahel 206 

A modified version of the ERA Interim reanalysis PAR was used in the current study as there was an error in the code 207 

producing these PAR estimates; the estimates were generally too low (ECMWF, 2016b). Accordingly, incoming PAR 208 

at the ground surface from ERA Interim was systematically underestimated even though it followed the pattern of PAR 209 

measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to correct for this error, we fitted 210 

and applied an ordinary least squares linear regression between in situ PAR and ERA Interim PAR (Fig. S1). The PAR 211 

produced from this relationship is at the same level as in situ PAR and should be at a correct level even though the 212 

original ERA Interim PAR is actually produced from the red and near infrared part of the spectrum.   213 

 214 

2.4 Data analysis 215 

2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with 216 

explanatory variables 217 

The coupling between intra-annual dynamics in Fopt and α and the vegetation indices for the different measurement sites 218 

were studied using Pearson correlation analysis. As part of the correlation analysis, we used a bootstrap simulation 219 

methodology with 200 iterations from which the mean and the standard deviation of the correlation coefficients were 220 

calculated (Richter et al., 2012). Relationships between intra-annual dynamics in Fopt and α and the vegetation indices 221 
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for all sites combined were also analysed. In the analysis for all sites, data were normaliszed in order to avoid influence 222 

of spatial and inter-annual variability. Time series of ratios of Fopt and α (Fopt_frac and αfrac) against the annual peak 223 

values (Fopt_peak and αpeak; see below for calculation of annual peak values) were estimated for all sites: 224 

opt_peak

opt
opt_frac F

F
F =           (7) 225 

peak
frac α

αα =            (8) 226 

The same standardiszation procedure was used for all vegetation indices (VIfrac): 227 

peak
frac VI

VIVI =            (9) 228 

where VIpeak is the annual peak values of the vegetation indices (14- days running mean with highest annual value). The 229 

αfrac and Fopt_frac were correlated with the different VIfrac to investigate the coupling between intra-annual dynamics in 230 

Fopt and α and the vegetation indices for all sites. 231 

   Regression trees were used to fill gaps in the daily estimates of Fopt and α. One hundred tree sizes were chosen based 232 

on 100 cross- validation runs, and these trees were then used forto estimateing Fopt and α following the method in 233 

De'ath and Fabricius (2000). We used SWC, VPD, Tair, PAR, and the vegetation index with the strongest correlation 234 

with intra-annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same 235 

standardiszation procedure as done for Fopt, α, and the vegetation indices was done for the hydrometeorological 236 

variables. The 100 Fopt and α output subsets from the regression trees were averaged and used for filling gaps in the 237 

times series of Fopt and α. From these time- series, we estimated annual peak values of Fopt and α (Fopt_peak and αpeak) as 238 

the 14-day running mean with the highest annual value. To investigate spatial and inter-annual variability in Fopt and α 239 

across the measurement sites of the Sahel, Fopt_peak and αpeak were correlated with the annual sum of P,; yearly means of 240 

Tair, SWC, RH, VPD, and Rg,; annual peak values of biomass,; soil nitrogen and C concentrations,; the C3/C4 ratio,; 241 

and VIpeak. 242 

 243 

2.4.2 Parameteriszation and evaluation of the GPP model and evaluation of the MODIS GPP  244 

Based oOn the basis of Eq. 1 and the outcome of the statistical analysis previously described under subsection 2.4.1 (for 245 

results, see subsect. 3.2), a model for estimating GPP across the Sahel was created: 246 

)e(1FGPP optF
PARα

opt









 ×−

−×−=           (10)
 

247 

Firstly, Fopt_peak and αpeak were estimated spatially and inter-annually using linear regression functions fitted against the 248 

vegetation indices with strongest relationships to spatial and inter-annual variability in Fopt_peak and αpeak for all sites. 249 

Secondly, exponential regression functions were established for Fopt_frac and αfrac with the vegetation index with the 250 

strongest relationships to intra-annual variability of Fopt_frac and αfrac for all sites. By combining these relationships, Fopt 251 

and α can be calculated for any day of year and for any point in space across the Sahel:  252 

( ) ( )( )fracFopt RDVIl
FoptFoptpeakFoptopt_fracopt_peakopt enmNDVIkFFF ××+×=×=     (11) 253 
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( ) ( )( )fracα RDVIl
ααpeakαfracpeak enmRDVIkααα ××+×=×=        (12) 254 

where kFopt and kα are slopes and mFopt and mα are intercepts of the linear regressions giving Fopt_peak and αpeak, 255 

respectively; lFopt and lα are coefficients and nFopt and nα are intercepts of the exponential regressions giving Fopt_frac and 256 

αfrac, respectively. Equations 11 and 12 were inserted into Eq. 10, and GPP werewas thereby estimated as: 257 

( )
( )

( ) ( )( )( )
( ) ( )( )

( )( )
)e1

enmNDVIke(1FFGPP

FoptfracFoptFoptpeakFopt

fracRDVIαl
ααpeakα

fracFoptopt_fracopt_peak

fracpeak

nRDVIlmNDVIk
PARenmRDVIk

RDVIl
FoptFoptpeakFopt

FF
PARαα

opt_fracopt_peak



















−×

×+×−=−××−=















+×+×

××+×−

×










×

××−

×
  (13) 258 

    The bootstrap simulation methodology was used when fitting the least- squares regression functions for 259 

parameteriszation of the GPP model (Richter et al., 2012). For each of the iterations, some of the EC sites were included 260 

and some were left-outomitted. The bootstrap simulations generated 200 sets of kFopt, kα, mFopt, mα, lFopt, lα, nFopt, nα, 261 

and coefficient of determination (R2). Possible errors (e.g. random sampling errors, aerosols, electrical sensor noise, 262 

filtering and gap-filling errors, clouds, and satellite sensor degradation) can be present in both the predictor and the 263 

response variables. Hence, we selected reduced major axis regressions to account for errors in both predictor and 264 

response variables when fitting the regression functions. The regression models were validated against the left-265 

outomitted sites within the bootstrap simulation methodology by calculating the root- mean- square- error (RMSE), and 266 

by fitting an ordinary least squares linear regression between modelled and independent variables. 267 

   Similarly, the MODIS GPP product (MOD17A2H,; collection 6) was evaluated against independent GPP from the EC 268 

sites by calculating the RMSE, and by fitting an ordinary least squares linear regression. 269 

 270 

3 Results 271 

3.1 Evaluation of the MODIS GPP product 272 

There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and independent 273 

GPP (slope=0.17; intercept=0.11 g C m-2 d-1; R2=0.69; n=598). However, MOD17A2H strongly underestimated 274 

independent GPP (Fig. 2), resulting in a high RMSE (2.69 g C m-2 d-1). It can be seen that some points for the Kelma 275 

site were quite low for MOD17A2H, whereas they were relatively high for the independent GPP (Fig. 2). Kelma is an 276 

inundated Acacia forest located in a clay soil depression. These differentiated values were found in the beginning of the 277 

dry season, when the depression was still inundated, whereas the larger area was turning dry.  278 

<Figure 2> 279 

 280 

3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 281 

Intra-annual dynamics in Fopt and α differed in amplitude, but were otherwise similar across the measurement sites in 282 

the Sahel (Fig. 3). There was no green ground vegetation during the dry season, and the low photosynthetic activity was 283 

due to few evergreen trees. This resulted in low values for both Fopt and α during the dry season. The vegetation 284 

responded strongly to rainfall, and both Fopt and α increased during the early phase of the rainy season. Generally, Fopt 285 

peaked slightly earlier than α (average± 1 standard deviation: 7±10 days) (Fig. 3).  286 
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<Figure 3>  287 

   All vegetation indices described intra-annual dynamics in Fopt reasonably well at all sites (Table 2). The vegetation 288 

index SIWSI12 had the highest correlation for all sites except Wankama Millet, where it was RDVI. When all sites were 289 

combined, all indices described well seasonality in Fopt, but RDVI had the strongest correlation (Table 2).  290 

      Intra-annual dynamics in α were also closely coupled to intra-annual dynamics in the vegetation indices for all sites 291 

(Table 2). For α, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow, where it 292 

was EVI. When all sites were combined, all indices described well intra-annual dynamics in α, but RDVI was still the 293 

index with strongest relationship (Table 2).  294 

<Table 2>   295 

   The regression trees used for gap-filling explained the intra-annual dynamics in Fopt and α well for all sites (Table 3; 296 

Fig. S2 in Supplementary material). The regression trees explained intra-annual dynamics in Fopt better than in α, and 297 

multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to intra-298 

annual dynamics in Fopt for all sites across the Sahel were in the order of RDVI, SWC, VPD, Tair, and PAR; and for α 299 

they were RDVI, SWC, VPD and Tair (Table 3). The strong relationship to SWC and VPD indicates drought stress 300 

during periods of low rainfall. For all sites across the Sahel, incorporating hydrometeorological variables increased the 301 

ability to determine intra-annual dynamics in Fopt and α compared to the ordinary least squares linear regressions against 302 

vegetation indices (Table 2, data given as r; Table 3; Fig. 3 and Fig. S2). For all sites, incorporation of these variables 303 

increased R2 from 0.81 to 0.87 and from 0.74 to 0.84, for Fopt and α, respectively.  304 

<Table 3>  305 

 306 

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency 307 

Large spatial and inter-annual variability in Fopt_peak and αpeak were found across the six measurement sites in the Sahel; 308 

Fopt_peak ranged between 10.1 μmol CO2 m-2 s-1 (Wankama Millet 2005) and 50.0 μmol CO2 m-2 s-1 (Dahra 2010), and 309 

αpeak ranged between 0.020 μmol CO2 μmol PAR-1 (Demokeya 2007) and 0.064 μmol CO2 μmol PAR-1 (Dahra 2010) 310 

(Table 4). The average two2- week running mean peak values of Fopt and α for all sites were 26.4 μmol CO2 m-2 s-1 and 311 

0.040 μmol CO2 μmol PAR-1, respectively. All vegetation indices determined spatial and inter-annual dynamics well in 312 

both Fopt_peak and αpeak (Table 5); Fopt_peak was most closely coupled with NDVIpeak, whereas αpeak was coupled more 313 

closely with RDVIpeak (Fig. 4). Fopt_peak also correlated well with peak dry weight biomass, C content in the soil, and 314 

RH, whereas αpeak also correlated well with peak dry weight biomass, and C content in the soil (Table 5).  315 

<Table 4> 316 

<Table 5> 317 

<Figure 4>  318 

 319 

3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency, and gross primary production across the 320 

Sahel and evaluation of the GPP model 321 

The spatially extrapolated Fopt, α and GPP averaged over the Sahel for 2001-2014 were 22.5±1.7 μmol CO2 m-2 s-1, 322 

0.030±0.002 μmol CO2 μmol PAR-1, and 736±39 g C m-2 y-1, respectively. At a regional scale, it can be seen that Fopt, 323 

α, and GPP decreased substantially with latitude (Fig. 5). The Hhighest values were found in south-eastern Senegal, 324 

western Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. Lowest values were found 325 
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along the northernmost parts of the Sahel on the border to the Sahara in Mauritania, in northern Mali, and in northern 326 

Niger.  327 

   Modelled GPP was similar to independent GPP on average, and there was a strong linear relationship between 328 

modelled GPP and independent GPP for all sites (Fig. 6; Table 6). However, when separating the evaluation between 329 

measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). Wankama 330 

Millet was generally overestimated, whereas the model worked well on average for Demokeya but underestimated high 331 

values (Fig. 7; Table 6). Variability of independent GPP at the other sites was well reproduced by the model (Fig. 7; 332 

Table 6). The final parameters of the GPP model (Eq. 13) are givenshown in Table 7. 333 

<Figure 5> 334 

<Figure 6> 335 

<Figure 7> 336 

< Table 6> 337 

< Table 7> 338 

 339 

4 Discussions 340 

Our hypothesis that vegetation indices closely related to equivalent water thickness (SIWSI) would be most strongly 341 

coupled with intra-annual dynamics in Fopt and α was not rejected for Fopt, since this was the case for all sites except for 342 

Wankama Millet (Table 2). However, our hypothesis was rejected for α, since it was more closely related to vegetation 343 

indices related toof chlorophyll abundance (RDVI and EVI). In the Sahel, soil moisture conditions in the early rainy 344 

season are important for vegetation growth and during this phase vegetation is especially vulnerable to drought 345 

conditions (Rockström and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity (Fopt)  346 

peaked earlier in the rainy season than α did (Fig. 3), thereby explaining the close relationship of Fopt to SIWSI. Leaf 347 

area index increased over the growing season and leaf area index is closely coupled with vegetation indices related to 348 

chlorophyll abundance (Tagesson et al., 2009). The increase in leaf area index increased canopy level quantum 349 

efficiency (α), which thereby explainsing the closer relationship of α to RDVI.  350 

   Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with 351 

spatial and inter-annual dynamics in Fopt and α was not rejected for either Fopt or α; NDVI, EVI, and RDVI all 352 

correlated all with spatial and inter-annual dynamics in Fopt and α (Table 5). However, it was surprising that NDVIpeak 353 

had the strongest correlation with spatial and inter-annual variability for Fopt (Table 5). Both EVI and RDVI should be 354 

less sensitive to saturation effects than NDVI (Huete et al., 2002; Roujean and Breon, 1995), and based on this it can be 355 

assumed that peak values of these indices should have stronger relationships to peak values of Fopt and α. However, 356 

vegetation indices with a high sensitivity to changes in green biomass at high biomass loads, getsbecome less sensitive 357 

to green biomass changes at low biomass loads (Huete et al., 2002). The Ppeak leaf area index for ecosystems across the 358 

Sahel is generally ~2 m2 m-2 or less, whereas the saturation issue of NDVI generally starts at an leaf area index of about 359 

2-5 m2 m-2 (Haboudane et al., 2004). 360 

   The Fopt_peak estimates from Agoufou, Demokeya, and the Wankama sites were similar, whereas Dahra and Kelma 361 

values were high in relation to previously reported canopy-scale Fopt_peak from the Sahel (~-8 to -23 μmol m-2 sec-362 
1) (Hanan et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 2009; Levy et al., 1997; Monteny et 363 

al., 1997). These previous studies reported much lower Fopt at canopy scale than at leaf scale (e.g. Levy et al. (1997): 10 vs. 364 
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44 μmol m-2 sec-1; Boulain et al. (2009): 8 vs. 50 μmol m-2 sec-1). The Lleaf area index at Dahra and Kelma peaked at 365 

2.1 and 2.7, respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-366 

mentioned sites. A possible explanation tofor high Fopt estimates at Dahra and Kelma could thereforeby be the higher 367 

leaf area index. Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO2 exchange 368 

measured at the Dahra field site and explained the high values by a combination of moderately dense herbaceous C4 369 

ground vegetation, high soil nutrient availability, and a grazing pressure resulting in compensatory growth and 370 

fertilization effects. Another possible explanation could be that the West African Monsoon brings a humid layer of 371 

surface air from the Atlantic, possibly increasing vegetation production for the most western part of the Sahel (Tagesson 372 

et al., 2016a).  373 

   Our model substantially overestimated GPP for Wankama Millet (Fig. 7f). Being a crop field, this site differed from 374 

the other sites byin its species composition, and ecosystem structure, as well as land and vegetation management. Crop 375 

fields in southwestern Niger are generally characterized by a rather low production, resulting from decreased fertility 376 

and soil loss caused by intensive land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site may 377 

cause the model, parameteriszed with observations from the other study sites without this strong anthropogenic 378 

influence, to overestimate GPP at this site. Similar results were found by Boulain et al. (2009) when applying an up-379 

scaling model using leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow, 380 

whereas it was less conclusive for Wankama Millet. The main explanation for this difference was low leaf area index in 381 

millet fields because of a low density of millet stands due to agricultural practice. There is extensive savanna clearing 382 

for food production in the Sahel (Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further 383 

understand impacts of this land cover change on vegetation production and land-atmosphere exchange processes, it is 384 

ofthere is an urgent need for more study sites covering cropped areas in this region. 385 

   In Demokeya, GPP was slightly underestimated for the year 2008 (Fig. 7c) because modelled Fopt was much lower 386 

than the actual measured value in 2008 (the thick black line in Fig. 4). An improvement of the model could be to 387 

incorporate some parameters that constrain or enhance Fopt depending on environmental stress. Indeed, the regression 388 

tree analysis indicated that incorporating hydrometeorological variables increased the ability to predict both Fopt and α. 389 

On the other hand, for spatial upscaling purposes, it has been shown that including modelled hydrometeorological 390 

constraints on LUE decreases the ability to predict vegetation production due to the incorporated uncertainty in these 391 

modelled variables (Fensholt et al., 2006; Ma et al., 2014). For spatial upscaling to regional scales, it is therefore better 392 

to simply use relationships to EO data. This is particularly the case for the Sahel, one of the largest dryland areas in the 393 

world, thatwhich includes only a few sites of hydrometeorological observations. 394 

   The pattern seen in the spatially explicit GPP budgets (Fig. 5c) may be influenced by a range of biophysical and 395 

anthropogenic factors. The clear North-South gradient is expected given the strong North-South rainfall gradient in the 396 

Sahel. The West African Monsoon mentioned above could also be an explanation of high GPP values in the western 397 

part of the Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern 398 

Sahel (Fig. 5c). The areas with highest GPP are sparsely populated woodlands or shrubby savanna with a relatively 399 

dense tree cover (Brandt et al., 2016). However, the maps produced should be used with caution as they are based on 400 

up-scaling of the only six available EC sites that exist in the region; especially given the issues related to the cropped 401 

fields discussed earlier. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual 402 

GPP budget as estimated for these six sites (692±89 g C m-2 y-1) (Tagesson et al., 2016a). The range of GPP budgets in 403 
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Fig. 5c is also similar to previous annual GPP budgets reported from other savanna areas across the world (Veenendaal 404 

et al., 2004; Chen et al., 2003; Kanniah et al., 2010; Chen et al., 2016).  405 

   Although MOD17A2 GPP has previously been shown to capture GPP in several ecosystems types well (Turner et al., 406 

2006; Turner et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown to 407 

underestimate it for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjöström et al., 2013). GPP of Sahelian 408 

drylands have not been captured well by MOD17A2 well (Sjöström et al., 2013; Fensholt et al., 2006), and as we have 409 

shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product (Fig. 2). The main reason for 410 

this pronounced underestimation is that maximum LUE is set to 0.84 g C MJ-1 (open shrubland; Demokeya) and 0.86 g 411 

C MJ-1 (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLUT, i.e. much lower 412 

than maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 g C MJ-1; range: 1.58-3.50 413 

g C MJ-1) (Sjöström et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C MJ-1 (Garbulsky et al., 2010), 414 

and a savanna site in Australia (1.26 g C MJ-1) (Kanniah et al., 2009). 415 

   Several dynamic global vegetation models have been used for decades to quantify GPP at different spatial and 416 

temporal scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the photosynthesis model 417 

of Farquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity (Zhang et al., 2014). 418 

This and several previous studies have shown that both photosynthetic capacity and efficiency (both α and LUE) can 419 

vary considerably between seasons as well as spatially, and both within and between vegetation types (Eamus et al., 420 

2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using 421 

broad values based on land cover classes, yet most models apply a constant value, which can cause substantial 422 

inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that 423 

consists of several plant functional types (C3 and C4 species, and a large variability in tree/herbaceous vegetation 424 

fractions) (Scholes and Archer, 1997). This study indicates the strong applicability of EO as a tool for parameteriszing 425 

spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially 426 

explicit estimates of GPP at a high temporal and spatial resolution are essential for environmental change studies in the 427 

Sahel and can contribute to increased knowledge regarding changes in GPP, its relationship to climatic change and 428 

anthropogenic forcing, and estimations of ecosystem processes and biochemical and hydrological cycles.   429 
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Tables  721 

Table 1. Description of the six measurement sites including location, soil type, ecosystem type and dominant species. 722 
Measurement site Coordinates Soil type Ecosystem Dominant species 

Agoufoua 

(ML-AgG, Mali) 
15.34°N, 
1.48°W 

Sandy ferruginous 
Arenosol 

Open woody 
savannah (4% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca, 

Combretum glutinosum 
Herbs: Zornia glochidiata, 
Cenchrus biflorus, Aristida 

mutabilis, Tragus berteronianus 
Dahrab 

(SN-Dah, Senegal) 
15.40°N, 
15.43°W 

Sandy luvic 
arenosol 

Grassland/shrubland 
Savanna (3% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca 

Herbs: Zornia latifolia, Aristida 
adscensionis, Cenchrus biflorus 

Demokeyac 

(SD-Dem, Sudan) 
13.28°N, 
30.48°E 

Cambic Arenosol Sparse acacia 
savannah (7% tree 

cover) 

Trees: Acacia spp.,  
Herbs: Aristida pallida, 

Eragrostis tremula, Cenchrus 
biflorus 

Kelmaa 

(ML-Kem, Mali) 
15.22°N, 
1.57°W 

Clay soil depression Open acacia forest 
(90% tree cover) 

Trees: Acacia seyal, Acacia 
nilotica, Balanites aegyptiaca 
Herbs: Sporobolus hevolvus, 

Echinochloa colona, 
Aeschinomene sensitive 

Wankama Fallowd 

(NE-WaF, Niger) 
13.65°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Fallow bush Guiera senegalensis 

Wankama Millete 

(NE-WaM, Niger) 
13.64°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Millet crop Pennisetum glaucum 

a(Timouk et al., 2009) 723 
b(Tagesson et al., 2015b) 724 
c(Sjöström et al., 2009) 725 
d(Velluet et al., 2014) 726 
e(Boulain et al., 2009)727 
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Table 2. Correlation between intra-annual dynamics in photosynthetic capacity (Fopt; Fopt_fra c for all sites), quantum efficiency (α; α_frac for all sites), and the different 

vegetation indices for the six measurement sites (Fig. 1). Values are averages±1 standard deviation from 200 bootstrapping runs. The bold values are the indices with 

the strongest correlation. EVI is the enhanced vegetation index, NDVI is the normalized difference vegetation index, RDVI is the renormalized difference vegetation 

index, SIWSI is the shortwave infrared water stress index. SIWSI12 is based on the MODIS Bidirectional Reflectance Distribution Functions (NBAR) band 2 and band 

5, whereas SIWSI16 is based on MODIS NBAR band 2 and band 6.  

Measurement site Fopt α 
  EVI NDVI RDVI SIWSI12 SIWSI16 EVI NDVI RDVI SIWSI12 SIWSI16 
ML-AgG 0.89±0.02 0.87±0.02 0.95±0.01 -0.95±0.01 -0.93±0.02 0.92±0.02 0.91±0.01 0.96±0.01 -0.94±0.01 -0.88±0.02 
SN-Dah 0.92±0.005 0.91±0.01 0.96±0.003 -0.96±0.004 -0.93±0.01 0.89±0.01 0.90±0.01 0.93±0.01 -0.92±0.01 -0.87±0.01 
SD-Dem 0.81±0.01 0.78±0.01 0.91±0.01 -0.93±0.01 -0.90±0.01 0.76±0.02 0.73±0.02 0.86±0.01 -0.82±0.02 -0.79±0.02 
MA-Kem 0.77±0.02 0.83±0.02 0.95±0.01 -0.95±0.01 -0.90±0.02 0.69±0.05 0.73±0.04 0.80±0.03 -0.77±0.03 -0.76±0.03 
NE-WaF 0.87±0.02 0.81±0.02 0.78±0.02 -0.90±0.01 -0.80±0.02 0.89±0.01 0.84±0.01 0.85±0.01 -0.88±0.01 -0.79±0.01 
NE-WaM 0.41±0.05 0.50±0.04 0.72±0.03 -0.55±0.04 -0.43±0.05 0.72±0.02 0.76±0.02 0.81±0.01 -0.75±0.01 -0.72±0.01 
All sites  0.86±0.0 0.79±0.0 0.90±0.0 0.75±0.0 0.70±0.0 0.83±0.01 0.80±0.01 0.86±0.01 0.62±0.01 0.54±0.01 
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Table 3. Statistics for the regression tree analysis. The regression tree analysis was used forto studying relationships 

between intra-annual dynamics in the the photosynthetic capacity (Fopt; Fopt_frac for all sites) and quantum efficiency (α; 

α_frac for all sites) and the explanatory variables for the six measurement sites (Fig. 1). The pruning level is the number 

of splits of the regression tree and an indication of complexity of the system. 

Measurement site Explanatory 
variables:     

Pruning 
level R2 

Fopt 1 2 3 4 5   
ML-AgG SIWSI12 Tair PAR SWC  16 0.98 
SN-Dah SIWSI12 SWC VPD Tair PAR 84 0.98 
SD-Dem SIWSI12 VPD SWC Tair PAR 33 0.97 
ML-Kem SIWSI12 PAR Tair VPD  22 0.98 
NE-WaF SIWSI12 SWC VPD Tair  14 0.92 
NE-WaM RDVI SWC VPD Tair  18 0.75 
All sites  RDVI SWC Tair VPD  16 0.87 
α        
ML-AgG RDVI     3 0.95 
SN-Dah RDVI VPD SWC Tair PAR 21 0.93 
SD-Dem RDVI SWC PAR Tair  16 0.93 
ML-Kem RDVI Tair    4 0.75 
NE-WaF EVI SWC VPD   10 0.90 
NE-WaM RDVI SWC VPD Tair  15 0.86 
All sites RDVI SWC VPD Tair  16 0.84 
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Table 4. Annual peak values of quantum efficiency (αpeak; μmol CO2 μmol PAR-1) and photosynthetic capacity 

(Fopt_peak; μmol CO2 m-2 s-1) for the six measurement sites (Fig. 1). The peak values are the 2- week running mean with 

highest annual value.  

Measurement site Year αpeak Fopt peak 
ML-AgG 2007 0.0396 24.5 
SN-Dah 2010 0.0638 50.0 

 
2011 0.0507 42.3 

 
2012 0.0480 39.2 

 
2013 0.0549 40.0 

SD-Dem 2007 0.0257 16.5 

 
2008 0.0327 21.0 

 
2009 0.0368 16.5 

ML-Kem 2007 0.0526 33.5 
NE-WaF 2005 0.0273 18.2 

 
2006 0.0413 21.0 

NE-WaM 2005 0.0252 10.6 
  2006 0.0200 10.1 
Average   0.0399 26.4 
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Table 5. Correlation matrix between annual peak values of photosynthetic capacity (Fopt_peak) and quantum efficiency 

(αpeak) and measured environmental variables. P is annual rainfall; Tair is yearly averaged air temperature at 2 m height; 

SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth; Rh is yearly 

averaged relative humidity; VPD is yearly averaged vapour pressure deficit; Rg is yearly averaged incoming global 

radiation; N and C cont. are soil nitrogen and carbon contents; NDVIpeak is annual peak normalized difference 

vegetation index (NDVI); EVIpeak is annual peak enhanced vegetation index (EVI); RDVIpeak is annual peak 

renormalized difference vegetation index (RDVI); SIWSI12peak  is annual peak short- wave infrared water stress index 

based on MODIS NBAR band 2 and band 5; and SIWSI16peak  is annual peak short- wave infrared water stress index 

based on MODIS NBAR band 2 and band 6. Sample size was 13 for all except the marked explanatory variables. 

 Explanatory variable Fopt_peak αpeak 

Meteorological data    
P (mm) 0.24±0.26 0.13±0.27 
Tair (°C) -0.07±0.25 -0.01±0.25 
SWC (%)a 0.33±0.25 0.16±0.27 

 Rh (%) 0.73±0.16* 0.60±0.19 
VPD (hPa) 0.20±0.26 0.15±0.30 
Rg (W m-2) -0.48±0.21 -0.41±0.24 
Biomass and edaphic 
data 

  

Biomass (g DW m-2)a 0.77±0.15* 0.74±0.14* 
C3/C4 ratio -0.05±0.26 0.06±0.30 
N cont. (%)b 0.22±0.11 0.35±0.14 
C cont. (%)b 0.89±0.06** 0.87±0.07** 
Earth observation data   
NDVI peak 0.94±0.05** 0.87±0.07** 
EVIpeak 0.93±0.04** 0.87±0.07** 
RDVIpeak 0.93±0.04** 0.89±0.07** 
SIWSI12peak 0.85±0.08** 0.84±0.08** 
SIWSI16peak 0.67±0.12* 0.65±0.15* 
Photosynthetic 
variables 

  

Fopt - 0.94±0.03** 
asample size equals 11. 
bsample size equals 9. 
* significant at 0.05 level. 
** significant at 0.01 level 
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Table 6. Statistics regarding the evaluation of the gross primary production (GPP) model for the six measurement sites (Fig. 1). In situ and modelled GPP are averages 

± 1 standard deviation. RMSE is the root- mean- squares- error, and slope, intercept and R2 isare from the fitted ordinary least squares linear regression. 

Measurement 
site 

In situ GPP 
(μmol CO2 m-2 s-1) 

Modelled GPP 
(μmol CO2 m-2 s-1) 

RMSE 
(μmol CO2 m-2 s-1) slope 

Intercept 
(μmol CO2 m-2 s-1) R2 

ML-AgG 5.35±6.38 5.97±5.80 2.48±0.10 0.84±0.003 1.46±0.01 0.86±0.002 
SN-Dah 9.39±10.17 8.87±9.67 3.99±1.34 0.88±0.002 0.62±0.01 0.85±0.001 
SD-Dem 4.26±4.55 3.98±3.90 3.15±1.06 0.63±0.003 1.31±0.007 0.54±0.02 
ML-Kem 11.16±8.02 10.52±9.22 4.35±1.23 1.02±0.003 -0.82±0.03 0.78±0.002 
NE-WaF 5.77±4.17 6.63±3.53 2.47±1.05 0.70±0.005 2.58±0.02 0.69±0.003 
NE-WaM 3.04±1.93 6.35±3.47 4.12±0.99 1.31±0.004 2.37±0.02 0.53±0.003 
Average 6.73±7.72 7.02±7.39 3.68±0.55 0.83±0.07 1.34±0.82 0.84±0.07 

 

24 
 



Table 7. The parameters for Eq. 13 that waswere used in the final gross primary production (GPP) model. RMSE is the root 

mean square error, and R2 is the coefficient of determination for the regression models predicting the different variables. 

Parameter Value RMSE R2 
kFopt  79.6±6.3 

5.1±1.3 0.89±0.05 
mFopt -7.3±3.2 
lFopt  3.51±0.19 

0.15±0.02 0.88±0.06 
nFopt 0.03±0.006 

α  0.16±0.02 
0.0069±0.0021 0.81±0.10 

m α -0.014±0.007 
l α 3.75±0.27 

0.20±0.02 0.80±0.10 
n α 0.02±0.007 

 

 

  5 

25 
 
 



 
Figures 

 

 
Figure 1. Land cover classes for the Sahel and the location of the six measurement sites included in the study. The land 5 

cover classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG), 

Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Wankama Fallow (NE-WaF), and Wankama Millet (NE-WaM). 

The thick black line isare the borders of the Sahel based on the isohytes 150 and 700 mm of annual precipitation (Prince et 

al., 1995). 

 10 

26 
 
 



 
Figure 2. Evaluation of the MODIS based GPP product MOD17A2H (collection 6) against eddy covariance based GPP from 

the six measurement sites (Fig. 1) across the Sahel. The thick black line shows the one-to-one ratio, and the grey dotted line 

is the fitted ordinary least squares linear regression.  
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Figure 3. Dynamics in photosynthetic capacity (Fopt) and quantum efficiency (α) for the six measurement sites. Also 

Iincluded is alsoare dynamics in the vegetation indices with highest correlation to the intra-annual dynamics in Fopt (VIFopt) 

and to quantum efficiency (VIα) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-

Dem), d) Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 

 5 
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Figure 4. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of a) photosynthetic capacity (Fopt_peak) 

and b) quantum efficiency (αpeak) against peak values of normalized difference vegetation index (NDVIpeak) and 5 

renormalized difference vegetation index (RDVIpeak), respectively. The annual peak values were estimated by taking the 

annual maximum of a two2- week running mean.  
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Figure 5. Maps of a) peak values of photosynthetic capacity (Fopt_peak) averaged for 2001-2014, b) peak values of quantum 

efficiency (αpeak) averaged for 2001-2014, and c) annual budgets of GPP averaged for 2001-2014.  
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Figure 6. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP from all six measurement 

sites across the Sahel. The thick grey line shows the one-to-one ratio, whereas the dotted thin dotted grey line is the fitted 

ordinary least squares linear regression.  
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Figure 7. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP for the six sites across 

Sahel (Fig. 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least 
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squares linear regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma 

(ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 
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