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Abstract. It has been shown that vegetation growth in semi-arid regions is importantfor-the.var ﬁi-lit-yof the global }(
terrestrial CO, sink, which indicates the strong need for improved understanding, and spatially explicit estimates of CO,
uptake (gross primary production (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the
MOD17A2H GPP (collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel; 2) to
characterise relationships between spatial and temporal variability in EC based photosynthetic capacity (Fy,) and
quantum efficiency (&) and earth observation (EQ) based vegetation indices (normalized difference vegetation index
(NDVI); renormalized difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared
water stress index (SIWSI)); and 3) to study the applicability of EO up-scaled F, and o for GPP modelling purposes.
MOD17A2H GPP (collection 6) underestimated GPP strongly, most likely because maximum light use efficiency is set
too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fg, was closely related to SIWSI
being sensitive to equivalent water thickness, whereas ¢ was closely related to RDVI affected by chlorophyll
abundance. Spatial and inter-annual dynamics in F,, and o were closely coupled to NDVI and RDVI, respectively.
Modelled GPP based on F,, and « up-scaled using EO based indices reproduced in situ GPP well for all except a
cropped site that was strongly impacted by anthropogenic land use. Up-scaled GPP for Sahel 2001-2014 was 736+39 g
Cni” . This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, F,, and «;
incorporating EO-based F,, and « in to dynamic global vegetation models could improve global estimates of vegetation

production, ecosystem processes and biogeochemical and hydrological cycles.
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1 Introduction

Vegetation growth in semi-arid regions is an important sink for fossil fuel emissions. Mean carbon dioxide (CO,)
uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-arid
regions are the main biome driving its inter-annual variability (Ahlstrém et al., 2015; Poulter et al., 2014). Semi-arid
regions even contribute to 60% of the long term trend in the global terrestrial C sink (Ahlstrom et al., 2015). It is thus
important to understand long-term variability of vegetation growth in semi-arid areas and their response to
environmental conditions to better quantify and forecast effects of climate change.

Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna in the
South. The region has experienced numerous severe droughts during the last decades that resulted in region-wide
famines in 1972-1973 and 1984-1985 and localized food shortages across the region in 1990, 2002, 2004, 2011 and
2012 (Abdi et al., 2014; United Nations, 2013). Vegetation production is thereby an important ecosystem service for
livelihood in Sahel, but it is under threat. The region experiences a strong population growth, increasing the demand on
ecosystem services due to cropland expansion, increased pasture stocking rates and fuelwood extraction (Abdi et al.,
2014).

At the same time as we have reports of declining vegetation production, we have contradicting reports of greening of
the Sahel based on earth observation (EQ) data (Dardel et al., 2014; Fensholt et al., 2013). The greening of Sahel has
mainly been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s
(Hickler et al., 2005). Climate is thus another important factor regulating vegetation production. Semi-arid regions, such
as Sahel, are particularly vulnerable to climate fluctuations due to their dependency @ moisture genditions:

Estimation of gross primary production (GPP), i.e. uptake of atmospheric CO; by vegetation, is still a major challenge
within remote sensing of ecosystem services. Gross primary production is a main driver of ecosystem services such as
climate regulation, carbon (C) sequestration, C storage, food production, or livestock grassland production. Within EO,
spatial quantification of GPP generally involves light use efficiency (LUE), defined as the conversion efficiency of
absorbed solar light into CO; uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space and time due
to factors such as plant functional type, drought and temperature, nutrient levels and physiological limitations of
photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has been applied
using various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994), or by modifying a
maximum LUE using meteorological variables (Running et al., 2004).

An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation
(PAR) is estimated as a product of the fraction of PAR absorbed by green vegetation (FPAR from MODISA2)
multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A
set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table
(BPLUT). Then maximum LUE is modified depending on air temperature (T,;) and vapor pressure deficit (VPD)
(Running et al., 2004). Sjostrom et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa, and showed
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that it underestimated GPP for semi-arid savannas in Sahel. Explanations for this underestimation were that the assigned
maximum LUE from BPLUT was set too low and uncertainties in the FPA (MOD15A23 jproduct” Recently, a new
collection of MOD17A2 at 500 m spatial resolution was released (MOD17A2H; collection 6) with an updated BPLUT,
updated GMAO meteorological data, improved quality control and gap filling of the FPAR data from MODIS5SA2
(Running and Zhao, 2015).

It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et
al., 2005). Additionally, the linearity assumed by the LUE model is usually not found as the response of GPP to
incoming light follows more of an asymptotic curve (Cannell and Thomley, 1998). Investigating other methods for
remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of
LUE we focus on the light response function of GPP at canopy scale, and spatial and temporal variation of its two main
parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; F,), and the initial slope of
the light response function (canopy-scale quantum efficiency; «) (Falge et al., 2001; Tagesson et al., 2015a).
Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CQ, during photosynthesis
(umol CO, m? s™") whereas « is the amount of CO, fixed per incoming PAR (umol CO, pmol PAR™). Just to clarify the
difference in LUE and o in this study; LUE (umol CO, pumol APAR™) is the slope of a linear fit between CO, uptake
and absorbed PAR, whereas o (umol CO, umol PAR™) is the initial slope of an asymptotic curve against incoming
PAR.

It has been proven that F,, and « are closely related to chlorophyll abundance due to their coupling with the electron
transport rate (Ide et al.,, 2010). Additionally, in semi-arid ecosystems water availability is generally considered to be
the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al.,
2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed
vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and
Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study we will analyse if EO vegetation indices can be
used for up-scaling F,; and a and investigate if this could offer a promising way to map GPP in semi-arid areas. This
potential will be analysed by the use of detailed ground observations from six eddy covariance (EC) flux tower sites
across Sahel.

The three aims of this study are:

1) To investigate if the recently released MOD17A2H GPP (collection 6) product is better at capturing GPP for
Sahel than collection 5.1. We hypothesise that MOD17A2H GPP (collection 6) product will estimate GPP well
for the six Sahelian EC sites, because of major changes done in comparison to collection 5.1 (Running and
Zhao, 2015).

2) To characterize the relationships between spatial and temporal variability in F, and a and remotely sensed
vegetation indices. We hypothesise that EO vegetation indices that are closely related to chlorophyll
abundance will be most strongly coupled with spatial and inter-annual dynamics in F,, and «, whereas
vegetation indices closely related to equivalent water thickness will be most strongly coupled with intra-annual
dynamics in F.y and a across Sahel.

3) To evaluate the applicability of a GPP model based on the light response function using EO vegetation indices

and incoming PAR as input data.
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2 Materials and Methods

2.1 Site description

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards Sahara
and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohyets, respectively
(Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by species of
Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al.,, 1996). Annual grasses such as Schoenefeldia gracilis,
Dactyloctenium aegypticum, Aristida mutabilis, and Cenchrus biflorus dominate the herbaceous layer, but perennial
grasses such as Andropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de Ridder et
al., 1982). From the FLUXNET database (Baldocchi et al., 2001) we selected the six available measurement sites with
EC based CO, flux data from Sahel (Table 1; Fig. 1). The sites represent a variety of ecosystems present in the region,
from dry fallow bush savanna to seasonally inundated acacia forest. For a full description of the measurement sites, we
refer to Tagesson et al. (2016a) and references in Table 1.

<Table 1>

<Figure 1>

2.2 Data collection

2.2.1 Eddy covariance and hydrometeorological in situ data

Eddy covariance and hydrometeorological data originating from the years between 2005 and 2013 were collected from
the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor set-up consisted of open-
path CO,/H,O infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate and statistics
were calculated for 30-min periods. For a full description of sensor set up and post processing of EC data, see
references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers were
filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any
gap-filling or partitioning of NEE to GPP and ecosystem respiration. The collected hydrometeorological data were: air
temperature (T,;; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 m depth (SWC; % volumetric
water content), incoming global radiation (Ry; W m'?), incoming photosynthetically active radiation (PAR; pmol m™ s
"), VPD (hPa), peak dry weight biomass (g dry weight m™?), C3/C4 species ratio, and soil conditions (nitrogen and C

concentration; %). For a full description of collected data and sensor set-up, see Tagesson et al. (2016a).

2.2.2 Earth Observation data and gridded ancillary data /®

Composite products from MODIS/Terra covering Sahel were acquired at Rc{y‘érb ECHO (NASA, 2016). Collected
products were GPP (MODI17A2H; collection 6), nadir bidirectional r(}ﬁecmnce distribution function adjusted
reflectance (NBAR) (8-day composites; MCD43A4; collection 3.1) at 50“3‘500 m’ spatial resolution, the normalized
difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (16-day composites; MODI3QI;
collection 6) at 250&250 m’ spatial resolution. The NBAR product was preferred over the reflectance product
(MODO09A1), in ordfl‘ to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 2014;
Tagesson et al., 2015¢). We extracted the median of 3x3 pixels centred at the location of each EC tower. Time series of

EO products were filtered according to MODIS quality centrol data; MOD17A2H is a gap-filled and filtered product,
3 :
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QC data from MCD43A2 were used for filtering of MCD43A4; and bit 2-5 (highest —decreasing quality) was used for
MOD13Q]l. Finally, data were gap-filled to daily values using linear interpolation.

We downloaded ERA Interim reanalysis PAR at the ground surface (W m™) with a spatial resolution of 0.25°x(.25°
accumulated for each 3-hour period 2000-2015 from the European Centre for Medium-Range Weather Forecasts
(ECMWF) (Dee et al., 2011; ECMWF, 2016a).

2.3 Data handling
2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency
To estimate daily values of EC based F,,, and «, the asymptotic Mitscherlich light-response function was fitted between
daytime NEE and incoming PAR using a 7-day moving window with a 1-day time step:
[5)
NEE = —(F,,)x(I-¢* ™ ’)+R, (1)

where F,, is CO, uptake at light saturation (photosynthetic capacity; pmol CO, m?s™), Ry is dark respiration
(pmol CO, m™s™), and a is the initial slope of the light response curve (quantum efficiency; pmol CO, pmol PAR™)
(Falge et al., 2001). By subtracting Ry from Eq. 1, the function was forced through zero and GPP was thereby estimated.
To assure high quality of fitted parameters, parameters were excluded from the analysis when fitting was insignificant
(p-value>0.05), and when they were out of range (Fop and a >peak value of the rainy season times 1.2). Additionally,
outliers were filtered following the method by Papale et al. (2006) using a 30-day moving window with a 1-day time

step.

2.3.2 Vegetation indices
The maximum absorption in red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a
and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to chlorophyll
abundance. By far the most common vegetation index is NDVI (Rouse et al., 1974):
NDV] = (Pyir—Prea)

Nk Pred) @)
where pyg is the reflectance factor in near infrared (NIR) band (band 2) and Prea 15 the reflectance factor in the red band
(band 1). Near infrared radiance is reflected by leaf cells since absorption of these wavelengths would result in
overheating of the plant whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al., 1965).
Normalization is done to reduce effects of atmospheric errors, solar zenith angles, and sensor viewing geometry, as well
as increasing the vegetation signal (Qi et al., 1994; Inoue et al., 2008).

A well-known deficiency of NDVI is problems of index saturation at high biomass because absorption of red light at
~670 nm peaks at higher biomass loads whereas NIR reflectance continues to increase due to multiple scattering effects
(Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing atmospheric and soil background influences, EVI
is designed to increaseﬂ the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al.,

2002).

Evl:G (leR_pred}
(PMR‘*'CIPred“‘Cszlue"' L) (3)



187 where py, 1s the reflectance factor in the blue band (band 3). The coefficients C;=6 and C,=7.5 correct for atmospheric
188 influences, while L=1 adjust for the canopy background. The factor G=2.5 is a gain factor.

189 Another attempt to overcome problems of NDVI saturation was proposed by Roujean and Breon (1995) who
190 suggested the renormalized difference vegetation index (RDVI) that combines advantages of DVI (NIR-red) and NDVI
191 for low and high vegetation cover, respectively:

(Pvik=Prea) —ﬂfle U?‘)@'\IA‘HC v(’:) ;yﬁcie,;(_

(Prsr*Prea) ~
. A _ Neve
193 As a non-linear index, RDVI is not only less sensitive to variations in geometrical and optical properties of unknown J‘_ ’r
A g
194 foliage but also less affected by solar and viewing geometry (Broge and Leblanc, 2001). RDVI was calculated based on 9 ot ‘
195  NBAR bands 1 and 2. Sautem s

196 The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly W \ﬂ" e

192 RDVI=

197 sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave QCA/O AR AV

f 7
198 infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid _ﬂ, /
199 environments:
(P —PSWIR]g) N
200  SIWSI,, = & )
G;N}R+ Pswir12 ) L\,ﬂ\.«/\.lj‘l
_ (pNIR ~Pswiris ) W (“'(ML

201 SIWSI,, = 6
(‘;NIR"' Pswir g j

202 where pira s NBAR band 5 (1230-1250 nm) and pyyis 1s NBAR band 6 (1628-1652 nm). As the vegetation water
203 content increases, reflectance in SWIR decreases indicating that low and high SIWSI values point to sufficient water

204 conditions and drought stress, respectively.

- te it m\‘es Lo
206  2.3.3 Incoming PAR across Sahel ( Cj Qg ”__(Lg "(’UC‘ |CB‘U-) .

207 A modified version of the ERA Interim reanalysis PAR was used in the ozlrrent study as an error in the code producing
208 these PAR estimates; was<identified~by—the=data=dis too low (ECMWF, 2016b).

209 Accordingly, incoming PAR at the ground surface from ERA Interim was systematically underestimated even though it

210 followed the pattern of PAR measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to
211 correct for this error, we fitted and applied an ordinary least square linear regression between in situ PAR and ERA
212 Interim PAR (Fig. S1). The@ﬁ? from this relationship is at the same level as in situ PAR and should be at a
213 correct level even though the original ERA Interim PAR is actually produced from the red e;nd near infrared part of the
214 spectrum.

215

216 2.4 Data analysis

217 2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with
218  explanatory variables

219 The coupling between intra-annual dynamics in F,, and « and the vegetation indices for the different measurement sites

220 were studied using Pearson correlation analysis. As part of the correlation analysis, we used bootstrap simulations with

221 200 iterations from which mean and standard deviation of the correlation coefficients were calculated (Richter et al.,
/{\ &,\% C\Mr 2SS & !
5 06 259~ Zl" C
2 Me g
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222 2012). Relationships between intra-annual dynamics in F,,; and « and the vegetation indices for all sites combined were
223 also analysed. In the analysis for all sites, data were normalised in order to avoid influence of spatial and inter-annual
224 variability. Time series of ratios of Fy, and o (Fyp e and ag,.) against the annual peak values (Fop peak and Opeq; see

225 below for calculation of annual peak values) were estimated for all sites:

F
226 Foplfﬁ“ac = Fn_pl N
opt_peak
a
227 Ope = (8)
apcak

228 The same standardisation procedure was used for all vegetation indices (Vig,.):

A%

229 Vlge =— (9) I\
leca.k rd - 3\"0"‘1
230 where VI, is the annual peak values of the vegetation indices (14 days running mean with highest annual value). The
—— | S {J»é

231 coupling between tg,, and Fop rac and the different Vg, were examined using Pearson correlation analysis for all sites. y
232 Regression trees were used to fill gaps in the daily estimates of F,, and a. One hundred tree sizes were chosen based Q ‘ 'jfl T/
233 on 100 cross validation runs, and these trees were then used for estimating F,, and a following the method in De'ath 2_2 O

€ 3
234 and Fabricius (2000). We used SWC, VPD, T, PAR, and the vegetation index with st‘rongest correlation with intra- —

235 annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same standardisation procedure

236 as done for F,y, o, and the vegetation indices was done for the hydrometeorological variables. The 100 F,, and « output

237 subsets from the regression trees were averaged and used for filling gaps in the times series of F,, and «. From these

238 time-series we estimated annual peak values of F,y and o (Fyp pek and ay) as the 14-day running mean with highest

239 annual value. To investigate spatial and inter-annual variability in F,,, and « across the measurement sites of the Sahel,

240 Fopt peak and opeq were correlated with the annual sum of P, yearly means of T,;, SWC, RH, VPD, R,, annual peak

241 values of biomass, soil nitrogen and C concentrations, C3/C4 ratio, and VI W 0, ’\: J

242 : —_

243 2.4.2 Parameterisation and evaluation of the GPP model and evaluation of the MODIS GPP

244 Based on Eq. 1 and outcome of the statistical analysis previously described under subsection 2.4.1 (for results see

245 subsect. 3.2), a model for estimating GPP across Sahel was created:
)

246  GPP= uFop‘x(lﬂe[ L (10)

247 Firstly, Fop peak and eq were estimated spatially and inter-annually using linear regression functions fitted against the
248 vegetation indices with strongest relationships to spatial and inter-annual variability in Fy e, and o for all sites.
249 Secondly, exponential regression functions were established for Fy .. and og, with the vegetation index with the
250 strongest relationships to intra-annual variability of Foy s and o, for all sites. By combining these relationships, Foy

251 and « can be calculated for any day of year and for any point in space across Sahel:

s )
252 Fo opt_peakx Faptifmc = (kFcth NDleeak+ :mFopl X“F()plxe P - (l l)

pt =

253 =Xl =(kuxRDleeak+m“ nuxe“"xp‘wl"”)) (12)



254 where Ko and k, are slopes and my,, and m, are intercepts of the linear regressions giving Fop, pea and tpea,
255 respectively; lgop and 1, are coefficients and ng,p, and n, are intercepts of the exponential regressions giving Fop e and

256 fracs TESpectively. Equation 11 and 12 were inserted into Eq. 10 and GPP were thereby estimated as:

(*(ﬂmkxurm }(PAR ]
Fopt_peakFopt s lpon XRD VI,
GPP = _(Fopt_peakx Fop(_ﬁ'dc )X( l-e P S = _((k Fopt NDV[Peak+ Mg Xn FOll'txe( o " )))
257 { —(](“><I{D\flm_‘k+maI Xnmxe“““mwfm )}<PAR (13)
s j—a (kf'nrHXNDlemk +Meop )(IFu}JIXRDVII‘mc"'nanI} ) & \/9&
ARt
258 A bootstrap simulation methodology with 200 iterations was used when fitting the{ast-square regression functions

259  for parameterisation of the GPP model (Richter et al., 2012). For each of the iterations, some of the EC sites were

e o &
260 included and some were lefi-out. The bootstrap simulations generated 200 sets of Ko, Koo Mpgpe Ma, lropis Lo Nropts N

261 and coefficient of determination (R?), from which the medians and the standard deviations were estimated. Possible

——

262 errors (e.g. random sampling errors, aerosols, electrical sensor noise, filtering and gap-filling errors, clouds, and satellite
263 sensor degradation) can be present in both the predictor and the response variables. Hence, we selected reduced major
264  axis regressions to account for errors in both predictor and response variables when fitting the regression functions. The
265 regression models were validated against the left-out sites within the bootstrap simulation methodology by calculating
266 the root-mean-square-error (RMSE), and by fitting an ordinary least squares linear regression between modelled and
267 independent variables.

268 Similarly, the MODIS GPP product (MODI7A2H, collection 6) was evaluated against independent GPP from the EC
269 sites by calculating RMSE, and by fitting an ordinary least squares linear regression.

270

271 3 Results

272 3.1 Evaluation of the MODIS GPP product

273 There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and independent
274 GPP (slope=0.17; intercept=0.11 g C m™ d'; R*=0.69; n=598). However, MODI17A2H strongly underestimated
275 independent GPP (Fig. 2) resulting in high RMSE (2.69 g C m™ d''). It can be seen that some points for the Kelma site
276 were quite low for MOD17A2H, whereas they were relatively high for the independent GPP (Fig. 2). Kelma is an
277 inundated Acacia forest located in a clay soil depression. These differentiated values were found in the beginning of the
278 dry season, when the depression was still inundated, whereas the larger area was turning dry.

279 <Figure 2>

280

281 3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency

282 Intra-annual dynamics in F,, and a differed in amplitude, but were otherwise similar across the measurement sites in
283 Sahel (Fig. 3). There was no green ground vegetation during the dry season, and the low photosynthetic activity was
284 due to few evergreen trees. This resulted in low values for both F,, and « during the dry season. The vegetation
285 responded strongly to rainfall, and both F,, and a increased during the early phase of the rainy season. Generally, F,,
286 peaked slightly earlier than « (average+ 1 standard deviation: 7+10 days) (Fig. 3).

287 <Figure 3>
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All vegetation indices described ygr intra-annual dynamics in F, ﬁ‘i}" all sites (Table 2). SIWSI,, had the highest
correlation for all sites except Wankama Millet, where it was RDVI. When all sites were combined, all indices
described well seasonality in F,y, but RDVI had the strongest correlation (Table 2).

Intra-annual dynamics in a were also closely coupled to intra-annual dynamics in the vegetation indices for all sites
(Table 2). For a, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow where it
was EVI. When all sites were combined all indices described well intra-annual dynamics in ¢, but RDVI was still the
index with strongest relationship (Table 2).
<Table 2> i e

The regression trees used for gap-filling explained@;mra-annual dynamics in F, and «¥for all sites (Table 3;
Fig. 82 in Supp]emeﬁtary material). The regression trees explained intra-annual dynamics in F,, better than in g, and
multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to intra-
annual dynamics in F,p, for all sites across Sahel were in the order of RDVI, SWC, VPD, T,,, and PAR; and for «a they
were RDVI, SWC, VPD and T, (Table 3). The strong relationship to SWC and VPD indicates drought stress during
periods of low rainfall. For all sites across Sahel, incorporating hydrometeorological variables increased the ability to
determine intra-annual dynamics in F,, and a compared to the ordinary least squares linear regressions against
vegetation indices (Table 2, data given as r; Table 3; Fig. 3 and Fig. S2). For all sites, incorporation of these variables
increased R* from 0.81 to 0.87 and from 0.74 to 0.84, for Fo and a respectively.
<Table 3>

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency

Large spatial and inter-annual variability in Foy nax and o, were found across the six measurement sites in Sahel;
Fopt peak ranged between 10.1 pmol CO, m? s (Wankama Millet 2005) and 50.0 pmol CO, m? s (Dahra 2010), and
Upeax Tanged between 0.020 pmel CO, umol PAR™ (Demokeya 2007) and 0.064 pmol CO, umol PAR™ (Dahra 2010)
(Table 4). The average two week running mean peak values of F,, and a for all sites were 26.4 pmol CO; m™ s an
0.040 pmol CO, umol PAR™, respectively. All vegetation indices determiné spatial and inter-annual dynamic;\in
Fopt_peax and ttpeq (Table 5). NDVI,.. was most closely coupled with Fop,_@l}ereas RDVI,ca was ﬂssas&-couplcdfith

Opeax (F1g. 4). Fop peai also correlated well with peak dry weight biomass, ¥ Content in the soil, and RH, whereas/ o,

also correlated well with peak dry weight biomass, and C content in the soil (Table 5). % o~

<Table 4> 4

<Table 5> /“/(\' ot
Clogt

<Figure 4> -

3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency, and gross primary production across
Sahel and evaluation of the GPP model

The spatially extrapolated F,y. o and GPP averaged over Sahel for 200172014 were 22.5+1.7 pmol CO, m?s!,
0.030+0.002 pmol CO, pumol PAR™, and 73639 g C m™ y™', respectively. A/ti;gional scale it can be seen that F,, o,
and GPP decreased substantially with latitude (Fig. 5). Highest values were found in south-eastern Senegal, western
Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. Lowest values were found along

the northernmost parts of Sahel on the border to Sahara in Mauritania, in northern Mali, and in northern Niger.
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Modelled GPP was similar to independent GPP on average, and there was a strong linear relationship between
modelled GPP and independent GPP for all sites (Fig. 6; Table 6). However, when separating the evaluation between
measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). Wankama
Millet was generally overestimat djw ereas the model worked well on average for Demokeya but underestimated high
values (Fig. 7; Table 6). Variability”of independent GPP at the other sites was well reproduced by the model (Fig. 7;
Table 6). The final parameters of the GPP model (Eq. 13) are given in Table 7.
<Figure 5>
<Figure 6>
<Figure 7>
< Table 6>
< Table 7>

4 Discussions

Our hypothesis that vegetation indices closely related to equivalent water thickness (SIWSI) would be most strongly
coupled with intra-annual dynamics in F,, and a was not rejected for Fg,, since this was the case for all sites except for
Wankama Millet (Table 2). However, our hypothesis was rejected for ¢, since it was more closely related to vegetation
indices related to chlorophyll abundance (RDVI and EVI). In Sahel, soil moisture conditions in the early rainy season
are important for vegetation growth and during this phase vegetation is especially vulnerable to drought conditions
(Rockstrém and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity (F,,) peaked
earlier in the rainy season than a did (Fig. 3), thereby cxplaining the close relationship of F,y, to SIWSI. Leaf area index
increased over the growing season and leaf area indexﬁ.c]osely coupled with vegetation indices related to chlorophyll
abundance (Tagesson et al., 2009). The increase in leaf a’ga index increased canopy level quantum efficiency (), which
thereby explains the closer relationship of « to RDVIL.

Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with
spatla}/%&mter-annual dynamics in F,,, and o was not rejected for either Fy, or a; NDVI, EVI, and RDVI all-had-etese
correlatran with spatial and inter-annual dynamics in F,, and o (Table 5). However, it was surprising that NDVI,.,. had
the str&mgest correlation with spatial and inter-annual variability for F,, (Table 5). Both EVI and RDVI should be less
sensitive to saturation effects than NDVI (Huete et al., 2002; Roujean and Breon, 1995), and based on this it can be
assumed that peak values of these indices should have stronger relationships to peak values of Foy and a. However,

vegetation indices with a high sensitivity to changes in green biomass at high biomass loads, gets less sensitive to green

biomass changes at low biomass loads (Huete et ak,_2002). Peak leaf area index for ecosystems across Sahel is 7.
generally ~2 or less, whereas the s ation issue of V1 generally starts at an leaf area index of about 2-5 Wl
(Haboudane @.,/2004). it S s

WA
The Fup pear estimates from Agotfou, Demokeya.-and the Wankama sites were similar whereas Dahra and Kelma

values were high in relation to previously reported canopy-scale Fop peax from Sahel (~-8 to -23 pmol m~ sec’) (Hanan
et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 2009; Levy et al., 1997; Monteny et al., 1997).
These previous studies reported much lower F,, at canopy scale than at leaf scale (e.g. Levy et al. (1997): 10 vs. 44 pmol
m” sec’'; Boulain et al. (2009): & vs. 50 umol m~ sec'). Leaf area index at Dahra and Kelma peaked at 2.1 and 2.7,

respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-mentioned

10

W

[

R

Y



366
367
368
369
370
371
372
313
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

sites. A possible explanation to high F,, estimates at Dahra and Kelma could thereby be th; hi.ghe.r leaf ;clr;s;ami-ﬁd_e.x.
Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO; exchange measured at the
Dabhra field site and explained the high values by a combination of moderately dense herbaceous C4 ground vegetation,
high soil nutrient availability, and a grazing pressure resulting in compensatory growth and fertilization effects. Another
possible explanation could be that the West African Monsoon bring a humid layer of surface air from the Atlantic,
possibly increasing vegetation production for the most western part of Sahel (Tagesson et al., 2016a).

Our model substantially overestimated GPP for Wankama Millet (Fig. 7f). Being a crop field, this site differed from
the other studied sites by its species composition, ecosystem structure, as well as land and vegetation management.
Crop fields in southwestern Niger are generally characterized by a rather low production resulting from decreased
fertility and soil loss caused by intensive land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site
may cause the model parameterised with observations from the other study sites without this strong anthropogenic
influence to overestimate GPP at this site. Similar results were found by Boulain et al. (2009) when applying an up-
scaling model using leaf area index for Wankama Millet and Wankama Faﬁ-_ow. It worked well for Wankama fallow
whereas it was less conclusive for Wankama Millet. The main exp]anatim;vas low leaf area index in millet fields
because of a low density of millet stands due to agricultural practice. There is extensive savanna clearing for food
production in Sahel (Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further understand impacts
of this land cover change on vegetation production and lar{gal osphere exchange processes, it is of urgent need for
more study sites covering cropped areas in this region. \f

In Demokeya, GPP was slightly underestimated for the year 2008 (Fig. 7c) because modelled Fop was much lower
than the actual measured value in 2008 (the thick black line in Fig. 4). An improvement of the model could be to
incorporate some parameters that constrain or enhance F,, depending on environmental stress. Indeed, the regression
tree analysis indicated that incorporating hydrometeorological variables increased the ability to predict both F,, and .
On the other hand, for spatial upscaling purposes, it has been shown that including modelled hydrometeorological
constraints on LUE decreases the ability to predict vegetation production due to the incorporated uncertainty in these
modelled variables (Fensholt et al., 2006; Ma et al., 2014). For spatial upscaling to regional scales it is therefore better
to simply use relationships to EO data. This is particularly the case for Sahel, one of the t dryland areas in the
world that includes only a few sites of hydrometeorological observations. o e

The pattern .seen in the spatially explicit GPP budgets (Fig. 5¢) may be influenced ))/y aTange of biophysical and
anthropogenic factors. The clear North-South gradient is expected given the strongﬂilorth-South rainfall gradient in
Sahel. The West African Monsoon mentioned above could also be an explanation}é high GPP values in the western
part of Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern Sahel
(Fig. 5¢). The areas with highest GPP are sparsely populated woodlands or shrubby savanna with a relatively dense tree
cover (Brandt et al., 2016). However, the(p d maps should be used with caution as they are based on up-scaling of

the only six available EC sites that exist in the region; especially given the issues related to the cropped fields discussed

><400 ‘Bbeve. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual GPP budget as

401
402
403

estimated for these six sites (692489 g C m™ v'') (Tagesson et al., 2016a). The range of GPP budgets in Fig. 5¢ is also
similar to previous annual GPP budgets reported from other savanna areas across the world (Veenendaal et al., 2004;

Chen et al., 2003; Kanniah et al., 2010; Chen et al., 2016).
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Although MOD17A2 GPP has previously been shown to redatively wel capture GPP in several-differefit ecosystcn)é i ,e“

(Turner et al., 2006; Tu er et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown
to 55: underestimategd for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjostrom et al., 2013). GPP of
Sahelian drylands have not been fwellcaptured by MOD17AZ%(Sjostrom et al., 2013; Fensholt et al., 2006), and as we
have shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) producf (Fig. 2). The main
reason for this pronounced underestimation is that maximum LUE is set to 0.84 g C MJ" (open shrubland; Demokeya)
and 0.86 g C MJ! (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLUT, i.e.
much lower than maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 g C MJ;
range: 1.58-3.50 ¢ C MJ™") (Sjostrom et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C M
(Garbulsky et al., 2010), and a savanna site in Australia (1.26 g C MJ™) (Kanniah et al., 2009).
eral dynamic global vegetation models have been used for decades to quantify GPP at different spatial and
poral scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the photosynthesis model
%{F rquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity (Zhang et al., 2014).
'Zand several previous studies have shown that both photosynthetic capacity and efficiency (both « and LUE) can
vary considerably between seasons as well as spatially, and both within and between vegetation types (Eamus et al.,
2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using
broad values based on land cover classes, yet most models apply a constant value which can cause substantial
inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that
més%é‘r%'!plam functional types (C3 and C4 species, and a large variability in tree/herbaceous vegetation
fractior% (Scholes and Archer, 1997). This study indicates the strong applicability of EO as a tool for parameterising

spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially

425 Aexplicil estimates of GPP at a high temporal and spatial resolution are essential for environmental change studies in

GL\;\( W26 (N Sahel and make a major asset for the analysis of changes in GPP, its relationship to climatic change and anthropogenic
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forcing, and estimations of ecosystem processes and biochemical and hydrological cycles.
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