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Abstract. It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO- sink,
which indicates the strong need for improved understanding and spatially explicit estimates of CO, uptake (gross
primary production (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the MOD17A2H GPP
(collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel; 2) to characterize
relationships between spatial and temporal variability in EC based photosynthetic capacity (Fop) and quantum
efficiency (a) and earth observation (EQ) based vegetation indices (normalized difference vegetation index (NDVI):
renormalized difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared water
stress index (SIWSI)): and 3) to study the applicability of EO upscaled F,, and o for GPP modelling purposes.
MODI7A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is
set oo low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fon were closely related to
SIWSI being sensitive to equivalent water thickness, whereas « was closely related to RDVI being affected by
chlorophyll abundance. Spatial and inter-annual dynamics in F,, and o were closely coupled to NDVI and RDVI,
respectively. Modelled GPP based on Fg, and o« upscaled using EO based indices reproduced in situ GPP well for all
except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001-2014
was 736439 ¢ C m” y™'. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of
GPP, F.y and « incorporating EO based F,, and a in dynamic global vegetation models could improve global

estimates of vegetation production. ecosystem processes and biogeochemical and hydrological cycles.
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Vegetation growth in semi-arid regions is an important sink for fossil fuel emissions. Mean carbon dioxide (CO,)

uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-arid L

regions ate thg main biome driving its inter-annual variability (Ahlstrdm et al.. 2015; Poulter et al.. 2014). Semi-arid
regio s exen contribute to 60% of the long-term trend in the global terrestrial C sink (Ahlstrom et al., 2015). It is thus

important to dinderstand long-term variability of vegetation growth in semi-arid areas and the response of vegetation to

environmental conditions to better quantify and forecast effects of climate change.

The Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna
in the South. The region has experienced numerous severe droughts over the last decades, which resulted in region-wide
famines in 1972-1973 and 19841985 and localized food shortages across the region in 1990, 2002, 2004, 2011 and
2012 (Abdi et al., 2014; United Nations, 2013). Vegetation production is thereby an important ecosystem service for
livelihoods in the Sahel, but it is under threat. The region is experiencing strong population growth, increasing the
demand on ecosystem services due to cropland expansion, increased pasture stocking rates and fuelwood extraction
(Abdi et al., 2014).

At the same time as we have reports of declining vegetation production. we have contradicting reports of the greening
of the Sahel based on earth observation (EO) data (Dardel et al., 2014 Fensholt et al.. 2013). The greening of the Sahel
has mainly been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s
(Hickler et al.. 2005). Climate is thus another important factor regulating vegetation production. Semi-arid regions, such
as the Sahel. are particularly vulnerable to climate fluctuations due to their dependency on moisture.

Estimation of gross primary production (GPP), i.e. uptake of atmospheric CO, by vegetation, is still a major challenge
for the remote sensing of ecosystem services. Gross primary production is a main driver of ecosystem services such as
climate regulation, carbon (C) sequestration, C storage, food production and livestock grassland production. Within EO.
spatial quantification of GPP generally involves light use efficiency (LUE). defined as the conversion efficiency of
absorbed solar light into CO; uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space and time due
to factors such as plant functional type, drought and temperature, nutrient levels and physiological limitations of
photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has been applied
through various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994) or by modifying a
maximum LUE using meteorological variables (Running et al., 2004).

An example of a LUE based model is the standard GPP product from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation
(PAR) is estimated as a product of the fraction of PAR absorbed by green vegetation (FPAR from MODIS5A2)
multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A
set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table
(BPLUT). Then maximum LUE is modified depending on air temperature (T,,) and vapour pressure deficit (VPD)
(Running et al., 2004). Sjistrom et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa and showed
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that it underestimated GPP for semi-arid savannas in the Sahel. Explanations for this underestimation were that the
assigned maximum LUE from BPLUT was set too low and that there were uncertainties in the FPAR product
(MOD15A2). Recently. a new collection of MODI17A2 at a 500 m spatial resolution was released (MODI17A2H:
collection 6) with an updated BPLUT, updated GMAO meteorological data, improved quality control and gap-filling of
the FPAR data from MOD15A2 (Running and Zhao. 2015).

It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et

al., 2005). Additionally. theAimearity assumed by the LUE model is not usually found as the response of GPP to

incoming light follows mote df ah asymptotic curve (Cannell and Thernley, 1998). Investigating other methods for

remotely determining GPP\is #ius of great importance, especially for semi-arid environments. Therefore, instead of
LUE, we focus on the light response function of GPP at the canopy scale, and spatial and temporal variation of its two
main parameters: maximum GPP under light saturation (canopy-scale photosynthetic capécity: Fop) and the initial slope
of the light response function (canopy-scale quantum efficiency; a) (Falge et al. 2001; Tagesson et al.. 2015a).
Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO, during photosynthesis
(pmol CO, m™ s™'), whereas a is the amount of CO, fixed per incoming PAR (umol CO, pmol PAR™). To clarify the
difference in LUE and « in this study. LUE (umol CO, umol APAR™) is the slope of a linear fit between CO, uptake
and absorbed PAR. whereas o (pmol CO, pmol PAR™) is the initial slope of an asymptotic curve against incoming
PAR.

It has been proven that F,, and a are closely related to chlorophyll abundance due to their coupling with the electron
transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems, water availability is generally considered to be
the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al.,
2005 Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed
vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and
Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study, we will analyse whether EO vegetation indices
can be used to upscale F,, and a and investigate whether this could offer a promising way to map GPP in semi-arid
areas. This potential will be analysed by the use of detailed ground observations from six eddy covariance (EC) flux
tower sites across the Sahel.

The three aims of this study are:

1) To investigate whether the recently released MOD17A2H GPP (collection 6) product is better at capturing
GPP for the Sahel than collection 5.1. We hypothesize that the MOD17A2H GPP (collection 6) product will
estimate GPP well for the six Sahelian EC sites because of major changes made in comparison to collection
5.1 (Running and Zhao, 2015).

2) To characterize the relationships between spatial and temporal variability in F ., and o and remotely sensed
vegetation indices. We hypothesise that EO vegetation indices that are closely related to chlorophyll
abundance will be most strongly coupled with spatial and inter-annual dynamics in F, and a, whereas
vegetation indices closely related to equivalent water thickness will be most strongly coupled with intra-annual
dynamics in F, and a across the Sahel.

3) To evaluate the applicability of a GPP model based on the light response function using EQO vegetation indices

and incoming PAR as input data.



2 Materials and Methods

2.1 Site description

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards the
Sahara and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohyets,
respectively (Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by
species of Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses such as Schoenefeldia
gracilis, Dactyloctenium aegypticum, Aristida mutabilis and Cenchrus biflorus dominate the herbaceous layer, but
perennial grasses such as Andropogon gavanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de
Ridder et al., 1982). From the FLUXNET database (Baldocchi et al., 2001) we selected the six available measurement
sites with EC based CO- flux data from the Sahel (Table 1: Fig. 1). The sites represent a variety of ecosystems present
in the region, from dry fallow bush savanna to seasonally inundated acacia forest. For a full description of the
measurement sites, we refer to Tagesson et al. (2016a) and references in Table 1.

<Table 1>

<Figure 1>

2.2 Data collection

2.2.1 Eddy covariance and hydrometeorological in situ data

Eddy covariance and hydrometeorological data originating from the years between 2005 and 2013 were collected from
the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor setup consisted of open-
path CO-/H,0 infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz fate and statistics
were calculated for 30-minute periods. For a full description of the sensor setup and post processing of EC data, see the
references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers were
filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any
gap-filling or partitioning of NEE to GPP and ecosystem respiration. The GE@ ﬁ}ﬁrometeorological data™were: air
temperature (T;; °C), rainfall (P; mm), relative air humidity (Rh: %), soil moist:lre at 0.1 m depth (SWC; % volumetric
water content). incoming global radiation (R,; W m™), incoming photosynthetically active radiation (PAR; pmol m?’s
"), VPD (hPa), peak dry weight biomass (g dry weight m?), C3/C4 species ratio and soil conditions (nitrogen and C

cancentration; %). For a full description of the collected data and sensor setup, see Tagesson et al. (2016a).

2.2.2 Earth Observation data and gridded ancillary data

Composite products from MODIS/Terra covering the Sahel were acquired at Reverb ECHO (NASA, 2016). Collected
products were GPP (MODI17A2H; collection 6), nadir bidirectional reflectance distribution function adjusted
reflectance (NBAR) (8-day composites; MCD43A4: collection 5.1) at 500x500 m” spatial resolution, the normalized
difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (16-day composites; MODI3Ql;
collection 6) at 250x250 m® spatial resolution. The NBAR product was preferred over the reflectance product
(MODO09A1) in order to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 2014;
Tagesson et al., 2015¢). We extracted the median of 3x3 pixels centred at the location of each EC tower. Time series of

EO products were filtered according to MODIS quality control data; MOD17A2H is a gap-filled and filtered product,
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QC data from MCD43A2 were used for filtering of MCD43A4; and bit 2-5 (highest —decreasing quality) was used for
MODI3QI. Finally, data were gap-filled to daily values using linear interpolation.

We downloaded ERA Interim reanalysis PAR at the ground surface (W m™) with a spatial resolution of (0.25°x0.25°
accumulated for each 3-hour period from 2000-2015 from the European Centre for Medium-Range Weather Forecasts

(ECMWF) (Dee et al., 2011; ECMWF, 2016a).

2.3 Data handling
2.3.1 Intra-annual dynamics in photesynthetic capacity and quantum efficiency
To estimate daily values of EC based Fou and @, the asymptotic Mitscherlich light-response function was fitted
between daytime NEE and incoming PAR using a 7-day moving window with a I-day time step:
bR

NEE = —(F )x(l—e( Yo ])+Rd (1)

opt
where Fo, is CO, uptake at light saturation (photosynthetic capacity; pmol CO, m?s"'). R, is dark respiration
(pmol CO, m™s™") and « is the initial slope of the light response curve (quantum efficiency; pmol CO, umol PAR™)
(Falge et al.. 2001). By subtracting Ry from Eq. 1. the function was forced through zero and GPP was thereby
estimated. To ensure a high quality of fitted parameters, parameters were excluded from the analysis when fitting was
msignificant (p-value>0.05) and when they were out of range (Fop and @ >peak value of the rainy season times 1.2).
Additionally. outliers were filtered following the method by Papale et al. (2006) using a 30-day moving window with a

1-day time step.

2.3.2 Vegetation indices
The maximum absorption in red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a
and b (Thenkabail et al., 2000). which makes vegetation indices that include the red band sensitive to chlorophyll
abundance. By far the most common vegetation index is NDVI (Rouse et al.. 1974):
NDVI = (D.\'fR_prea‘)

NIRFPred ) l 2)
where pyx is the reflectance factor in the near infrared (NIR) band (band 2) and p,4 is the reflectance factor in the red
band (band 1). Near infrared radiance is reflected by leaf cells since absorption of these wavelengths would result in
overheating of the plant, whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al..
1965). Normalization is done to reduce effects of atmospheric errors, solar zenith angles and sensor viewing geometry,
as well as to increase the vegetation signal (Qi et al.. 1994: Inoue et al.. 2008).

A well-known deficiency of NDVI is problems of index saturation at high biomass because absorption of red light at
~670 nm peaks at higher biomass loads, whereas NIR reflectance continues to increase due to multiple scattering effects
(Mutanga and Skidmore, 2004: Jin and Eklundh, 2014). By reducing atmospheric and soil background influences. EVI
is designed to increase the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al..

2002).

EVI=G (PNIR—Pmd)
Pxir+CiPrea=Coppiye+ L) (3)
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where py,. is the reflectance factor in the blue band (band 3). The coefficients C,=6 and C,=7.5 correct for atmospheric
influences, while L=1 adjusts for the canopy background. The factor G=2.5 is a gain factor.

Another attempt to overcome problems of NDVI saturation was proposed by Roujean and Breon (1995). who
suggested the renormalized difference vegetation index (RDVI), which combines advantages of DVI (NIR-red) and

NDVI for low and high vegetation cover, respectively:

RDVI = (PN/R—PM/) @)
v (F_’Nm +Pred j

As a non-linear index, RDVI is not only less sensitive to variations in geometrical and optical properties of unknown
foliage but also less affected by solar and viewing geometry (Broge and Leblanc, 2001). The vegetation index RDVI
was calculated based on NBAR bands I and 2.

The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly
sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index. the shortwave
infrared water stress index (STWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid

environments:

SIWSI,, = (pNIR_pSWTRlz) (5)

NIR T Pswir 2

SIWS, = (PNIR pswmm) ©)
(BNER+pS\t\’IR|()j

where p.yi2 is NBAR band 5 (1230-1250 nm) and p.i6 is NBAR band 6 (1628-1652 nm). As the vegetation water

content increases, reflectance in SWIR decreases, indicating that low and high SIWSI values point to sufficient water

conditions and drought stress, respectively.

2.3.3 Incoming PAR across the Sahel

A modified version of the ERA Interim reanalysis PAR was used in the current study as there was an error in the code
producing these PAR estimates: the estimates were generally too low (ECMWF, 2016b). Accordingly, incoming PAR
at the ground surface from ERA Interim was systematically underestimated even though it followed the pattern of PAR
measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to correct for this error, we fitted
and applied an ordinary least squares linear regression between in situ PAR and ERA Interim PAR (Fig. S1). The PAR
produced from this relationship is at the same level as in situ PAR and should be at a correct level even though the

original ERA Interim PAR is actually produced from the red and near infrared part of the spectrum.

2.4 Data analysis

2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with
explanatory variables

The coupling between intra-annual dynamics in F,, and « and the vegetation indices for the different measurement sites
were studied using Pearson correlation analysis. As part of the correlation analysis, we used a bootstrap simulation
methodology with 200 iterations from which the mean and the standard deviation of the correlation coefficients were

calculated (Richter et al., 2012). Relationships between intra-annual dynamics in F,, and a and the vegetation indices
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for all sites combined were also analysed. In the analysis for all sites, data were normalized to avoid influence of spatial
and inter-annual variability. Time series of ratios of Fopand o (F o frac and @, ) against the annual peak values (F gy peak
and @, see below for calculation of annual peak values) were estimated for all sites:

F,

opt
Fopl_l'mc = F = (7)
opt_peak
_a
Ofrge =— (#)
apeak

The same standardization procedure was used for all vegetation indices (Ve ):

VI

frac =
\ peak

VI (9)

where VI, is the annual peak values of the vegetation indices (14-day running mean with highest annual value). The
Opac and Foy g were correlated with the different VI, to investigate the coupling between intra-annual dvnamics in
F o and a and the vegetation indices for all sites.

Regression trees were used to fill gaps in the daily estimates of F opt and a. One hundred tree sizes were chosen based
on 100 cross-validation runs. and these trees were then used to estimate F opt and a following the method in De'ath and
Fabricius (2000). We used SWC, VPD, T,,. PAR and the vegetation index with the strongest correlation with intra-
annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same standardization
procedure as done for F,, @, and the vegetation indices was done for the hydrometeorological variables. The 100 F opl
and o output subsets from the regression trees were averaged and used for filling gaps in the times series of Foy and o
From these time series. we estimated annual peak values of Fop and @ (Fop pear and o) as the 14-day running mean
with the highest annual value. To investigate spatial and inter-annual variability in Fop and a across the measurement
sites of the Sahel. Fopt peak 80d @ o Were correlated with the annual sum of P; yearly means of T,,. SWC, RH, VPD and

Rg: annual peak values of biomass: soil nitrogen and C concentrations: the C3/C4 ratio: and VI sk

2.4.2 Parameterization and evaluation of the GPP model and evaluation of the MODIS GPP
On the basis of Eq. 1 and the outcome of the statistical analysis previously described under subsection 2.4.1 (for results,
see subsect. 3.2), a model for estimating GPP across the Sahel was created:

( —exPAR J
~ Foo 5
GPP =—F, x(I—¢ ) (10)

Firstly, Fop peax and @, were estimated spatially and inter-annually using linear regression functions fitted against the
vegetation indices with strongest relationships to spatial and inter-annual variability in F opt_peak and oy for all sites.
Secondly, exponential regression functions were established for F opt_frec ANd @, with the vegetation index with the
strongest relationships to intra-annual variability of Foptfrae @and @, for all sites. By combining these relationships, F opt

and a can be calculated for any day of year and for any point in space across the Sahel:

‘ o XKDV, )
anl = Pc)pu:cukx anl_l‘ruu = (kl-’(:ptx N DVIpcuk L anfopl x B(I ’ ’ ) (11)
O =0 X Oy = (ko:x RDleeak * maInux e(IGxRDW]m )) (12)
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where kg and kg are slopes and mp,, and m, are intercepts of the linear regressions giving Fop peak and o,
respectively; Irop and lg are coefficients and ng,, and n, are intercepts of the exponential regressions giving Foy fac and
Qfac- Tespectively. Equations 11 and 12 were inserted into Eq. 10, and GPP was thereby estimated as:

—(umk xm,-m}tl’;\]{

[ T . } (Ipe*RDVI o )
. _ opt_peak *Fopt frac ) _ Fopt X MUV L grae
GPP = (F(\pl_pcuk X F‘_amjrac )X( I-e - ((k Fopt > NDVI peak +m Fopt Iﬂ Fopt Xe

1 XRDVI frac
Ak XRDVI gy +m i eela R0V Ikpar (13)
l e {kl-‘n|xthDV[nc:sk+mloplXII-'uplxRDV]ch"'"I-'np(J )

Jb¢ bpotstrap simulation methodology was used when fitting the least squares regression functions for
p l'amA erization of the GPP model (Richter et al., 2012). For each of the iterations, some of the EC sites were included
and some were omitted. The bootstrap simulations generated 200 sets of Kpopi Koo Mpgpt, Mas lfopes las NFopts Ne and
coefficient of determination (R?). Possible errors (e.g. random sampling errors, aerosols, electrical sensor noise, filtering
and gap-filling errors. clouds and satellite sensor degradation) can be present in both the predictor and the response
variables. Hence, we selected reduced major axis regressions to account for errors in both predictor and response
variables when fitting the regression functions. The regression models were validated against the omitted sites within
the bootstrap simulation methodology by calculating the root mean square error (RMSE), and by fitting an ordinary
least squares linear regression between modelled and independent variables.

Similarly, the MODIS GPP product (MOD17A2H: collection 6) was evaluated against independent GPP from the EC

sites by calculating the RMSE and by fitting an ordinary least squares linear regression.

3 Results

3.1 Evaluation of the MODIS GPP product

There was a strong linear relationship between the MODIS GPP product (MOD17A2H:; collection 6) and independent
GPP (slope=0.17; intercept=0.11 g C m? d': R*=0.69; n=598). However, MOD17A2H strongly underestimated
independent GPP (Fig. 2), resulting in a high RMSE (2.69 g C m” d™"). It can be seen that some points for the Kelma
site were quite low for MOD17A2H, whereas they were relatively high for the independent GPP (Fig. 2). Kelma is an
inundated Acacia forest located in a clay soil depression. These differentiated values were found in the beginning of the
dry season, when the depression was still inundated, whereas the larger area was turning dry.

<Figure 2>

3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency
Intra-annual dynamics in F,, and a differed in amplitude, but were otherwise similar across the measurement sites in
the Sahel (Fig. 3). There was no green ground vegetation during the dry season, and the low photosynthetic activity was
due to few evergreen trees. This resulted in low values for both F,, and a during the dry season. The vegetation
responded strongly to rainfall, and both F,, and a increased during the early phase of the rainy season. Generally, F,
peaked slightly earlier than a (average+ 1 standard deviation: 710 days) (Fig. 3).

<Figure 3>



All vegetation indices described intra-annual dynamics in F . reasonably well at all sites (Table 2). The vegetation
index SIWSI |, had the highest correlation for all sites except Wankama Millet, where it was RDVI. When all sites were
combined, all indices described well seasonality in F,,, but RDVI had the strongest correlation (Table 2).

Intra-annual dynamics in o were also closely coupled to intra-annual dynamics in the vegetation indices for all sites

(Table 2). For a, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow, where it

was EVI Bﬁhen all sites were combined, all indices described Wnt:a -annual dynamics in a, but RDVI was still the —
index w nh/s‘.uongest relationship (Table 2). Vi — A

<Table 2>

The regression trees used for gap-filling explained the intra-annual dynamics in F opt and a well for all sites (Table 3;
Fig. S2 in Supplementary material). The regression trees explained intra-annual dynamics in Fop better than in a, and
multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to intra-—
annual dynamics in F,, for all sites across the Sahel were in the order of RDVI, SWC, VPD. T,., and PAR; and fo ay |7 p¥e
they were RDVI, SWC, VPD and T, (Table 3). The strong relationship to SWC and VPD indicates drought str
during periods of low rainfall. For all sites across the Sahel, incorporating hydrometeorological variables increased the
ability to determine intra-annual dynamics in F,, and a compared to the ordinary least squares linear regressions against
vegetation indices (Table 2, data given as r; Table 3: Fig. 3 and Fig. S2). For all sites, incorporation of these variables
increased R” from 0.81 to 0.87 and from 0.74 to 0.84 for Fopand a, respectively.
<Table 3>

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency

Large spatial and inter-annual variability in F e and o, were found across the six measurement sites in the Sahel:
Fopi_peax ranged between 10.1 pmol CO, m™ s (Wankama Millet 2005) and 50.0 pmol CO> m™ s (Dahra 2010). and
Opea Tanged between 0.020 pmol CO,» pmol PAR™ (Demokeya 2007) and 0.064 pmol CO, pmol PAR™ (Dahra 2010)
(Table 4). The average 2-week running mean peak values of Fop and a for all sites were 26.4 pmol CO, m~s” and

0.040 pmol CO- pmol PAR™, respectively. All vegetation indices determined spatial and inter-annual dynamics well in

both Fop pear and apm (Table 5); Foy peax was most closely coupled with NDVI o, whereas oeq was coupled more 7(
@l)/u/nh RDVI o (Fig. 4). Fop_pear also correlated well with peak dm and

RH, whereas ..k éit% correlated a&H with peak dry weight biomass and C content in the soil (Table 3).

<Table 4>

<Table 5>

<Figure 4>

3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency and gross primary production across the
Sahel and evaluation of the GPP model

The spatially extrapolated F,,, a and GPP averaged over the Sahel for 2001-2014 were 22.5+1.7 pmol CO, m™ s’
0.030:+0.002 pmol CO, pmol PAR™ and 736439 ¢ C m? y™', respectively. At a regional scale, it can be seen that Fop[,
and GPP decreased substantially with latitude (Fig. 5). The highest values were found in south-eastern Senegal, western
Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. Lowest values were found along

the northernmost parts of the Sahel on the border to the Sahara in Mauritania. in northern Mali and in northern Niger.



Modelled GPP was similar to independent GPP on average, and there was a strong linear relationship between
modelled GPP and independent GPP for all sites (Fig. 6; Table 6). However, when separating the evaluation between
measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). Wankama
Millet was generally overestimated, whereas the model worked well bfﬂzﬂ_@f&gg for Demokeya but underestima\t}ed high
values (Fig. 7; Table 6). Variability of independent GPP at the other sites was Wt reproduced by the mode r(I*rI_g
Table 6). The final parameters of the GPP model (Eq. 13) are shown in Table 7.
<Figure 5>
<Figure 6>
<Figure 7>
< Table 6>
< Table 7>

4 Discussion
Our hypothesis that vegetation indices closely related to equivalent water thickness (SIWSI) would be most strongly
coupled with intra-annual dynamics in F, and a was not rejected for F ., since this was the case for all sites except for
Wankama Millet (Table 2). However, our hypothesis was rejected for a, since it was more closely related to vegetation
indices of chlorophyll abundance (RDVI and EVI). In the Sahel, soil moisture conditions in the early rainy season are
important for vegetation growth and during this phase vegetation is especially vulnerable to drought conditions
(Rockstrdm and de Rouw, 1997 Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity (F,,) peaked
earlier in the rainy season than a did (Fig. 3). thereby explaining the close relationship of F, to SIWSI. Leaf area index
increased over the growing season and leaf area index is closely coupled with vegetation indices related to chlorophyll
abundance (Tagesson et al., 2009). The increase in leaf area index increased canopy level quantum efficiency (a),
thereby explaining the closer relationship of a to RDVI

Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with

spatial and inter-annual dynamics in F,, and o was not rejected for either F,, or a; NDVI. EVI and RDVI all correlated

with spatial and inter-annual dynamics in Fg, and « (Tabl¢ 5). Ho\vever, it was surprising that NDVI ., had the

strongest correlation with spatial and inter-annual variabili é‘nFGpl Table 5). Both EVI and RDVI should be less
sensitive to saturation effects than NDVI (Huete et al., 2002 Ré\uje and Breon, 1995), and based on this it can be
assumed that peak values of these indices should have stronger relationships to peak values of F,, and a. However,
vegetation indices with a high sensitivity to changes in green biomass at high biomass loads become less sensitive to
green biomass changes at low biomass loads (Huete et al., 2002). The peak leaf area index for ecosystems across the
Sahel is generally ~2 m* m™” or less, whereas the saturation issue of NDVI generally starts at a leaf area index of about
2-5 m* m? (Haboudane et al., 2004).

The Fop pear estimates from Agoufou, Demokeya and the Wankama sites were similar, whereas Dahra and Kelma
values were high in relation to previously reported canopy-scale Foy peax from the Sahel (~-8 to -23 pmol m” sec’
') (Hanan et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997: Boulain et al., 2009: Levy et al., 1997: Monteny et
al., 1997). These previous studies reported much lower F,, at canopy scale than at leaf scale (¢.g. Levy et al. (1997): 10 vs.
44 pmol m? sec”’: Boulain et al. (2009): 8 vs. 50 pmol m” sec’). The leaf area index at Dahra and Kelma peaked at 2.1

and 2.7, respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-




mentioned sites. A possible explanation for high F opt €Stimates at Dahra and Kelma could therefore be the higher leaf
area index. Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO, exchange
measured at the Dahra field site and explained the high values by a combination of moderately dense herbaceous C4
ground vegetation, high soil nutrient availability, and a grazing pressure resulting in compensatory growth and
fertilization effects. Another possible explanation could be that the West African Monsoon brings a humid layer of
surface air from the Atlantic, possibly increasing vegetation production for the most western part of the Sahel (Tagesson
et al., 2016a).

Our model substantially overestimated GPP for Wankama Millet (Fig. 7f). Being a crop field, this site differed from
the other sites in its species composition and ecosystem structure. as well as land and vegetation management. Crop
fields in southwestern Niger are generally characterized by rather low production, resulting from decreased fertility and
soil loss caused by intensive land use (Cappelaere et al.. 2009). These specifics of the Wankama Millet site may cause
the model, parameterized with observations from the other study sites without this strong anthropogenic influence, to
overestimate GPP at this site. Similar results were found by Boulain et al. (2009) when applying an upscaling model
using leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow. whereas it was
less conclusive for Wankama Millet. The main explanation for this difference was low leaf area index in millet fields
because of a low density of millet stands due to agricultural practice. There is extensive savanna clearing for food
production in the Sahel (Leblanc et al., 2008; Boulain et al.. 2009; Cappelaere et al.. 2009). To further understand
impacts of this land cover change on vegetation production and land-atmosphere exchange processes, there is an urgent
need for more study sites covering cropped areas in this region.

In Demokeya. GPP was slightly underestimated for @)&M{ 2008 (Fig. 7¢) because modelled F,, was much lower
than the actual measured value in 2008 (the thick black line in Fig. 4). An improvement of the model could be to
incorporate some parameters that constrain or enhance F,, depending on environmental stress. Indeed, the regression
tree analysis indicated that incorporating hydrometeorological variables increased the ability to predict both F o and a.
On the other hand, for spatial upscaling purposes, it has been shown that including modelled hydrometeorological
constraints on LUE decreases the ability to predict vegetation production due to the incorporated uncertainty in these
modelled variables (Fensholt et al., 2006: Ma et al., 2014). For spatial upscaling to regional scales, it is therefore better
to simply use relationships to EO data. This is particularly the case for the Sahel, one of the largest dryland areas in the
world. which includes only a few sites of hydrometeorological observations.

The pattern seen in the spatially explicit GPP budgets (Fig. 5¢) may be influenced by a range of biophysical and
anthropogenic factors. The clear North-South gradient is expected given the strong North-South rainfall gradient in the
Sahel. The West African Monsoon mentioned above could also be an explanation of high GPP values in the western
part of the Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern
Sahel (Fig. 5c). The areas with highest GPP are sparsely populateﬂ e?godlands or shrubby savanna with a relatively
dense tree cover (Brandt et al., 2016). However, the maps producedvshould be used with caution as they are based on
upscaling of MY, six W&M EC sites AN the :’);gio?; especially given the issues related to the cropped
fields discussed earlier. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual
GPP budget # estimated git these six sites (692+89 ¢ C m™ y™') (Tagesson et al., 2401621). The range of GPP budgets in
Fig. 5¢ is also simili r to previous annual GPP budgets reported from other savanna Wéb& across the world (Veenendaal

etal.. 2004: Chen et al., 2003; Kanniah et al.. 2010; Chen et al.. 2016).
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Although MOD17A2,GPP has previously been shown to capture GPP in several ecosystems types well (Turner et al.,

2006: Turner et al/ 2005:; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown to

underestimate jabes others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjostrom et al., 2013). GPP of Sahelian ——'—?C

drylands have not been captured well by MODI17A2 (Sjostrom et al., 2013; Fensholt et al., 2006), and as we have
shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product (Fig. 2). The main reason for

this pronounced underestimation is that maximum LUE is set to 0.84 ¢ C MJ™ (open shrubland; Demokgya) and 0.86 g

C MJ' (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLU uch lower
than maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 ¢ C MI'; range: 1.58-3.50
gC MI™") (Sjostrom et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C MI™" (Garbulsky et al., 2010) and
a savanna site in Australia (1.26 g C MJ™'") (Kanniah et al.. 2009).

Several dynamic global vegetation models have been used for decades to quantify GPP at different spatial and
temporal scales (Dickinson, 1983: Sellers et al., 1997). These models are generally based on the photosynthesis model
of Farquhar et al. (1980). a model particularly sensitive to uncertainty in photosynthetic capacity (Zhang et al., 2014).
This and several previous studies have shown that both photosynthetic capacity and efficiency (both a and LUE) can
vary considerably between seasons as well as spatially, and both within and between vegetation types (Eamus et al.,
2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using
broad values based on land cover classes, yet most models apply a constant value, which can cause substantial
inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that
consists of several plant functional types (C3 and C4 species. and a large variability in tree/herbaceous vegetation
fractions) (Scholes and Archer, 1997). This study indicates the stese applicability of EO as a tool for parameterizing
spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially
explicit estimates of GPP at a high temporal and spatial resolution are essential for environmental change studies in the
Sahel and can contribute t(.)c; jil:rjisediokp‘r:owledge regarding changes in GPP. its {‘?lationship to climatic change and
anthropogenic forcing, and estimetions of ecosystem processes and.bieehemieatand-hydrologiea
hjc\(i’—.— bio Ch&unlca
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719  Tables
M-

720 Table 1. Description of fj#fe six measurement si;e/s‘ ingluding location, soil type, ecosystem tvpe and dominant species.

Measurement site Coordinates NSl type Ecosystem Dominant species
Agoufou® 15.34°N,  Sandy ferruginous Open woody Trees: Acacia spp., Balanites
(ML-AgG, Mali) 1.48°W Arenosol savannah (4% tree aegyptiaca,

cover) Combretum glutinosum

Herbs: Zornia glochidiata,
Cenchrus biflorus, Aristida
mutabilis, Tragus berteronianus

Dahra” 15.40°N, Sandy luvic Grassland/shrubland ~ Trees: Acacia spp., Balanites
(SN-Dah, Senegal) 15.43°W arenosol Savanna (3% tree aegyptiaca
cover) Herbs: Zornia latifolia, Aristida
adscensionis, Cenchrus biflorus
Demokeya“ 13.28°N, Cambic Arenosol Sparse acacia Trees: Acacia spp.,
(SD-Dem, Sudan) 30.48°E savannah (7% tree Herbs: Aristida pallida,
cover) Eragrostis tremula, Cenchrus
biflorus
Kelma" 15.22°N,  Clay soil depression  Open acacia forest Trees: Acacia seval, Acacia
(ML-Kem, Mali) 1.57°W (90% tree cover) nilotica, Balanites aegyptiaca

Herbs: Sporobolus hevolvus,
Echinochloa colona,
Aeschinomene sensitive

Wankama Fallow" 13.65°N, Sandy ferruginous Fallow bush Guiera senegalensis
(NE-WaF, Niger) 2.63°E Arenosol
Wankama Millet* 13.64°N,  Sandy ferruginous Millet crop Pennisetum glaucum
(NE-WaM, Niger) 2.63°E Arenosol

721 *(Timouk et al., 2009)
722 "(Tagesson et al., 2015b)
723 (Sjostrom et al., 2009)
724 “(Velluet et al., 2014)
725 “(Boulain ¢t al., 2009)
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Table 3. Statistics for the regression tree analysis. ’fﬁgﬁegression tree analysis was used to study relationships between
intra-annual dynamics in i}{g photosynthetic capacity (Fou: Fop e for all sites) and quantum efficiency (o a e for all
sites) and e explanatory variables fﬁﬁhﬁmnmm%gﬁ) The pruning level is the number of splits of = X

the regression tree and an indication of complexity of the system.

Measurement site E:::;ﬁgfy sz:;?g R
Fou 1 2 3 4 5

ML-AgG SIWSI,» Tair PAR SWC 16 0.98
SN-Dah SIWSI,» SWC VPD Tair PAR 84 0.98
SD-Dem SIWSI;, VPD SWC Tair PAR 33 0.97
ML-Kem SIWSI,, PAR Tair VPD 22 0.98
NE-WaF SIWSI SwWC VPD Tair 14 0.92
NE-WaM RDVI SWC VPD  Tair 18 0.75
All sites RDVI SWC Tair  VPD 16 0.87
o

ML-AgG RDVI 3 0.95
SN-Dah RDVI VPD SWC  Tair PAR 21 0.93
SD-Dem RDVI SWC PAR  Tair 16 0.93
ML-Kem RDVI Tair 4 0.75
NE-WaF EVI SWC VPD 10 0.90
NE-WaM RDVI SWC VPD  Tair 15 0.86
All sites RDVI SWC VPD  Tair 16 0.84
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Table 4. Annual peak values of quantum efficiency (oc.; pmol CO;, pmol PAR™") and photosynthetic capacity
(Fopt_peaks pmol CO, m~ s} for the six measurement sites (Fig. 1). The peak values are the 2-week running mean with

highest annual value.

Measurement site Year o  —
ML-AgG 2007  0.0396 24.5
SN-Dah 2010 0.0638 50.0

2011 0.0507 423
2012 0.0480 39.2
2013 0.0549 40.0
SD-Dem 2007 0.0257 16.5
2008 0.0327 21.0
2009  0.0368 16.5

ML-Kem 2007 0.0526 33.5
NE-WaF 2005 0.0273 18.2
2006 0.0413 21.0
NE-WaM 2005 0.0252 10.6
2006 0.0200 10.1
Average 0.0399 26.4
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Table 5. Correlation matrix between annual peak values of photosynthetic capacity (Foy year) and quammw/efﬁciency
(Qpear) and measured environmental variables. P is annual rainfall; T, is vearly averaged air temperature at'éwm height;
ar TS
SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth: Rh is vyearly
eely averaged
averaged relative humidity; VPD is yearly averaged vapour pressure deficit; R, is )eari_\ averaged incoming global
,_4-——"—""__'_-'_—_"
radiation. N and C cont. are soil nitrogen and carbon contents; NDVI., is annual peak normalized difference
vegetation index (NDVI); EVI, is annual peak enhanced vegetation index (EVI); RDVI . is annual nual peak
renormalized difference vegetation index (RDVI); SIWSI 5, is dllﬂlldl peak short-wave infrared water stress index
YRR B S

based on MODIS NBAR bangd 2 and E{ﬁnﬁ 5: and SIWSI gpeax is annual peak short-wave infrared water stress index
based on MODIS NBAR band 2 and Wé‘ Sample size was 13 for all except the marked explanatory vm

Explanatory variable - Bt | \(@ é
Meteorological data %
P (mm) 0.24+0.26  0.13+0.27 ;

T, (°C) 0.07+0.25  -0.0120.25 1 -

swé: (%)* 0.33£0.25  0.16£0.27 /[Lé (ot
Rh (%) 0.7320.16"  0.60+0.19 Aﬁv‘ﬂ
VPD (hPa) 0.20+£0.26  0.15+0.30

R, (W m™) -0.48+0.21 -0.41+0.24 )/0
Biomass and edaphic Z ‘QT
data

iomass (g 2y 0.77£0.157  0.74+0.14
Biomass (g DW m™) 7 \)ﬁu(-( &\0 ‘Qg

C3/C4 ratio -0.05£0.26  0.06+0.30

N cont. (%) 0.22+0.11  0.35+0.14 i %
C cont. (%) 0.89+0.06" 0.87+0.07" )fl"k Q
Earth observation data

NDVI e 0.94+0.05" 0.87+0.07* ﬂ(’z
EVIpeq 0.93+0.04" 0.87+0.07"

RDVI, . 0.93£0.04" 0.89+0.07"

SIWSI 3peak 0.85£0.08"  0.84+0.08"

SIWSI e 0.67+0.12"  0.65+0.15"

Photosynthetic

variables

P - 0.94=0.03"

“sample size equals 11.
*sample size equals 9.

* significant at 0.05 level.
** gignificant at 0.01 level
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Table 7. The parameters for Eq. 13 that were used in the final gross primary production (GPP) model. RMSE is the root

2. oo - ~ - - . - - . .
mean square error, and R is the coefficient of determination for the regression models predicting the different variables.

Parameter Value RMSE R’
Kron s 5.1£13 0.89+0.05
- 7.332 wEAL ey
lion 33 1£0.19 0.15£0.02  0.88+0.06
Nyon 0.03+0.006 S GO

" 0.16+0.02

. 0.01440.007  0-0069£0.0021 0.81=0.10
la o 0.20+0.02  0.80+0.10
iy 0.02+0.007 eV OV
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Figure 1. Land cover classes for the Sahel and the location of the six measurement sites inetuded-in-the- study. The land

cover
Dahra
The th
1995).

classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG).
(SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Xankam? Fallow (NE-WaF) and Wankama Millet (NE-WaM). 7(

ick black line arethe borders of the Sahel based on the mhytes 150and 700-mm @ Prince et al..
/\
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Figure 3. m(?b U photosynthetic capacity (F,,) and quantum efficiency (o) for the six measurement sites. Also

included are vegetation indices with highest correlation Mmm&f-&zmmsﬁ Fop (Vlpoy) and ki _-X

quantum efficiency (YI,) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah). ¢) Demokeva (SD-Dem), d)

Kelma (ML-Kem). e}y Wankama Fallow (NE-WaF) and f) Wankama Millet (NE-WaM).
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Figure 4. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of a) photosynthetic capacity (F

=
i (umol CO,, umol PAR™)

b
0.07 ) . -
y = 0.16+0.02x - 0.014+0.007 . x ML-AgG
006+ R*=0.8120.10 O  ML-Kem
RMSE=0.0069+0.0021
biiis ® SN-Dah
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0.0 .
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and b) quantum efficiency (o) against peak values of normalized difference vegetation index (NDVI o) and

renormalized difference vegetation index (RDVI ). respectively. The annual peak values were estimated by taking the

annual maximum of a 2-week running mean.
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Figure 5. Maps of a) peak values of photosynthetic capacity (F, ) averaged for 2001-2014. b) peak values of quantum

efficiency (.. ) averaged for 2001-2014, and ¢) annual budgets of GPP averaged for 2001-2014.
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Figure 6. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP from all six measurement

sites across the Sahel. The thick grev line shows the one-to-one ratio, whereas the thin dotted grey line is the fitted ordinary

least squares<éfberegression.
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Figure 7. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP for the six sites aesess

<] (Fig. 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least
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squares Itmé® regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), ¢) Demokeya (SD-Dem), d) Kelma
(ML-Kem). e) Wankama Fallow (NE-WaF) and f) Wankama Millet (NE-WaM).
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