

1 **Modelling spatial and temporal dynamics of GPP in the Sahel from**
2 **earth observation based photosynthetic capacity and quantum**
3 **efficiency**

4

5 Torben Tagesson¹, Jonas Ardö², Bernard Cappelaere³, Laurent Kergoat⁴, Abdulhakim Abdi²,
6 Stéphanie Horion¹, Rasmus Fensholt¹

7

8 ¹Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-
9 1350 Copenhagen, Denmark; E-Mails: torben.tagesson@ign.ku.dk, stephanie.horion@ign.ku.dk, rf@ign.ku.dk

10
11 ²Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE- 223 62 Lund,
12 Sweden, E-Mails: jonas.ardo@nateko.lu.se, hakim.abdi@gmail.com

13
14 ³HydroSciences Montpellier, IRD, CNRS, Univ. Montpellier, Montpellier, France, E-Mail: bernard.cappelaere@um2.fr

15
16 ⁴Geoscience Environnement Toulouse, (CNRS/UPS/IRD), 14 av E Belin, 31400 Toulouse, France, E-
17 Mail: laurent.kergoat@get.obs-mip.fr

18

19 *Correspondence to:* Torben Tagesson (torben.tagesson@ign.ku.dk)

20 **Abstract.** It has been shown that vegetation growth in semi-arid regions is important for the variability of the global
21 terrestrial CO₂ sink, which indicates the strong need for improved understanding, and spatially explicit estimates of CO₂
22 uptake (gross primary production (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the
23 MOD17A2H GPP (collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel; 2) to
24 characterise relationships between spatial and temporal variability in EC based photosynthetic capacity (F_{opt}) and
25 quantum efficiency (α) and earth observation (EO) based vegetation indices (normalized difference vegetation index
26 (NDVI); renormalized difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared
27 water stress index (SIWSI)); and 3) to study the applicability of EO up-scaled F_{opt} and α for GPP modelling purposes.
28 MOD17A2H GPP (collection 6) underestimated GPP strongly, most likely because maximum light use efficiency is set
29 too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in F_{opt} was closely related to SIWSI
30 being sensitive to equivalent water thickness, whereas α was closely related to RDVI affected by chlorophyll
31 abundance. Spatial and inter-annual dynamics in F_{opt} and α were closely coupled to NDVI and RDVI, respectively.
32 Modelled GPP based on F_{opt} and α up-scaled using EO based indices reproduced in situ GPP well for all except a
33 cropped site that was strongly impacted by anthropogenic land use. Up-scaled GPP for Sahel 2001-2014 was 736±39 g
34 C m⁻² y⁻¹. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, F_{opt} and α ;
35 incorporating EO-based F_{opt} and α in to dynamic global vegetation models could improve global estimates of vegetation
36 production, ecosystem processes and biogeochemical and hydrological cycles.

37

38 **Keywords:** Remote sensing, Gross Primary Productivity, MOD17A2H, light use efficiency, photosynthetic capacity,
39 quantum efficiency

40 **1 Introduction**

41 Vegetation growth in semi-arid regions is an important sink for fossil fuel emissions. Mean carbon dioxide (CO₂)
42 uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-arid
43 regions are the main biome driving its inter-annual variability (Ahlström et al., 2015; Poulter et al., 2014). Semi-arid
44 regions even contribute to 60% of the long term trend in the global terrestrial C sink (Ahlström et al., 2015). It is thus
45 important to understand long-term variability of vegetation growth in semi-arid areas and their response to
46 environmental conditions to better quantify and forecast effects of climate change.

47 Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna in the
48 South. The region has experienced numerous severe droughts during the last decades that resulted in region-wide
49 famines in 1972-1973 and 1984–1985 and localized food shortages across the region in 1990, 2002, 2004, 2011 and
50 2012 (Abdi et al., 2014; United Nations, 2013). Vegetation production is thereby an important ecosystem service for
51 livelihood in Sahel, but it is under threat. The region experiences a strong population growth, increasing the demand on
52 ecosystem services due to cropland expansion, increased pasture stocking rates and fuelwood extraction (Abdi et al.,
53 2014).

54 At the same time as we have reports of declining vegetation production, we have contradicting reports of greening of
55 the Sahel based on earth observation (EO) data (Dardel et al., 2014; Fensholt et al., 2013). The greening of Sahel has
56 mainly been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s
57 (Hickler et al., 2005). Climate is thus another important factor regulating vegetation production. Semi-arid regions, such
58 as Sahel, are particularly vulnerable to climate fluctuations due to their dependency to moisture conditions.

59 Estimation of gross primary production (GPP), i.e. uptake of atmospheric CO₂ by vegetation, is still a major challenge
60 within remote sensing of ecosystem services. Gross primary production is a main driver of ecosystem services such as
61 climate regulation, carbon (C) sequestration, C storage, food production, or livestock grassland production. Within EO,
62 spatial quantification of GPP generally involves light use efficiency (LUE), defined as the conversion efficiency of
63 absorbed solar light into CO₂ uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space and time due
64 to factors such as plant functional type, drought and temperature, nutrient levels and physiological limitations of
65 photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has been applied
66 using various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994), or by modifying a
67 maximum LUE using meteorological variables (Running et al., 2004).

68 An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging
69 Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation
70 (PAR) is estimated as a product of the fraction of PAR absorbed by green vegetation (FPAR from MOD15A2)
71 multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A
72 set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table
73 (BPLUT). Then maximum LUE is modified depending on air temperature (T_{air}) and vapor pressure deficit (VPD)
74 (Running et al., 2004). Sjöström et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa, and showed

75 that it underestimated GPP for semi-arid savannas in Sahel. Explanations for this underestimation were that the assigned
76 maximum LUE from BPLUT was set too low and uncertainties in the FPAR (MOD15A2) product. Recently, a new
77 collection of MOD17A2 at 500 m spatial resolution was released (MOD17A2H; collection 6) with an updated BPLUT,
78 updated GMAO meteorological data, improved quality control and gap filling of the FPAR data from MOD15A2
79 (Running and Zhao, 2015).

80 It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et
81 al., 2005). Additionally, the linearity assumed by the LUE model is usually not found as the response of GPP to
82 incoming light follows more of an asymptotic curve (Cannell and Thornley, 1998). Investigating other methods for
83 remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of
84 LUE we focus on the light response function of GPP at canopy scale, and spatial and temporal variation of its two main
85 parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; F_{opt}), and the initial slope of
86 the light response function (canopy-scale quantum efficiency; α) (Falge et al., 2001; Tagesson et al., 2015a).
87 Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO_2 during photosynthesis
88 ($\mu\text{mol } CO_2 \text{ m}^{-2} \text{ s}^{-1}$) whereas α is the amount of CO_2 fixed per incoming PAR ($\mu\text{mol } CO_2 \mu\text{mol PAR}^{-1}$). Just to clarify the
89 difference in LUE and α in this study; LUE ($\mu\text{mol } CO_2 \mu\text{mol APAR}^{-1}$) is the slope of a linear fit between CO_2 uptake
90 and absorbed PAR, whereas α ($\mu\text{mol } CO_2 \mu\text{mol PAR}^{-1}$) is the initial slope of an asymptotic curve against incoming
91 PAR.

92 It has been proven that F_{opt} and α are closely related to chlorophyll abundance due to their coupling with the electron
93 transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems water availability is generally considered to be
94 the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al.,
95 2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed
96 vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and
97 Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study we will analyse if EO vegetation indices can be
98 used for up-scaling F_{opt} and α and investigate if this could offer a promising way to map GPP in semi-arid areas. This
99 potential will be analysed by the use of detailed ground observations from six eddy covariance (EC) flux tower sites
100 across Sahel.

101 The three aims of this study are:

- 102 1) To investigate if the recently released MOD17A2H GPP (collection 6) product is better at capturing GPP for
103 Sahel than collection 5.1. We hypothesise that MOD17A2H GPP (collection 6) product will estimate GPP well
104 for the six Sahelian EC sites, because of major changes done in comparison to collection 5.1 (Running and
105 Zhao, 2015).
- 106 2) To characterize the relationships between spatial and temporal variability in F_{opt} and α and remotely sensed
107 vegetation indices. We hypothesise that EO vegetation indices that are closely related to chlorophyll
108 abundance will be most strongly coupled with spatial and inter-annual dynamics in F_{opt} and α , whereas
109 vegetation indices closely related to equivalent water thickness will be most strongly coupled with intra-annual
110 dynamics in F_{opt} and α across Sahel.
- 111 3) To evaluate the applicability of a GPP model based on the light response function using EO vegetation indices
112 and incoming PAR as input data.

114 **2 Materials and Methods**

115 **2.1 Site description**

116 The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards Sahara
117 and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohyets, respectively
118 (Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by species of
119 *Balanites*, *Acacia*, *Boscia* and *Combretaceae* (Rietkerk et al., 1996). Annual grasses such as *Schoenfeldia gracilis*,
120 *Dactyloctenium aegypticum*, *Aristida mutabilis*, and *Cenchrus biflorus* dominate the herbaceous layer, but perennial
121 grasses such as *Andropogon gayanus*, *Cymbopogon schoenanthus* can also be found (Rietkerk et al., 1996; de Ridder et
122 al., 1982). From the FLUXNET database (Balocchi et al., 2001) we selected the six available measurement sites with
123 EC based CO₂ flux data from Sahel (Table 1; Fig. 1). The sites represent a variety of ecosystems present in the region,
124 from dry fallow bush savanna to seasonally inundated acacia forest. For a full description of the measurement sites, we
125 refer to Tagesson et al. (2016a) and references in Table 1.

126 <Table 1>

127 <Figure 1>

128

129 **2.2 Data collection**

130 **2.2.1 Eddy covariance and hydrometeorological in situ data**

131 Eddy covariance and hydrometeorological data originating from the years between 2005 and 2013 were collected from
132 the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor set-up consisted of open-
133 path CO₂/H₂O infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate and statistics
134 were calculated for 30-min periods. For a full description of sensor set up and post processing of EC data, see
135 references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers were
136 filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any
137 gap-filling or partitioning of NEE to GPP and ecosystem respiration. The collected hydrometeorological data were: air
138 temperature (T_{air}; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 m depth (SWC; % volumetric
139 water content), incoming global radiation (R_g; W m⁻²), incoming photosynthetically active radiation (PAR; μmol m⁻² s⁻¹),
140 VPD (hPa), peak dry weight biomass (g dry weight m⁻²), C3/C4 species ratio, and soil conditions (nitrogen and C
141 concentration; %). For a full description of collected data and sensor set-up, see Tagesson et al. (2016a).

142

143 **2.2.2 Earth Observation data and gridded ancillary data**

144 Composite products from MODIS/Terra covering Sahel were acquired at Reverb ECHO (NASA, 2016). Collected
145 products were GPP (MOD17A2H; collection 6), nadir bidirectional reflectance distribution function adjusted
146 reflectance (NBAR) (8-day composites; MCD43A4; collection 5.1) at 500*500 m² spatial resolution, the normalized
147 difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (16-day composites; MOD13Q1;
148 collection 6) at 250*250 m² spatial resolution. The NBAR product was preferred over the reflectance product
149 (MOD09A1), in order to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 2014;
150 Tagesson et al., 2015c). We extracted the median of 3x3 pixels centred at the location of each EC tower. Time series of
151 EO products were filtered according to MODIS quality control data; MOD17A2H is a gap-filled and filtered product,

152 QC data from MCD43A2 were used for filtering of MCD43A4; and bit 2-5 (highest –decreasing quality) was used for
153 MOD13Q1. Finally, data were gap-filled to daily values using linear interpolation.

154 We downloaded ERA Interim reanalysis PAR at the ground surface (W m^{-2}) with a spatial resolution of $0.25^\circ \times 0.25^\circ$
155 accumulated for each 3-hour period 2000-2015 from the European Centre for Medium-Range Weather Forecasts
156 (ECMWF) (Dee et al., 2011; ECMWF, 2016a).

157 2.3 Data handling

158 2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency

160 To estimate daily values of EC based F_{opt} and α , the asymptotic Mitscherlich light-response function was fitted between
161 daytime NEE and incoming PAR using a 7-day moving window with a 1-day time step:

$$162 \text{NEE} = -(F_{\text{opt}}) \times (1 - e^{\left(\frac{-\alpha \times \text{PAR}}{F_{\text{opt}}} \right)}) + R_d \quad (1)$$

163 where F_{opt} is CO_2 uptake at light saturation (photosynthetic capacity; $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), R_d is dark respiration
164 ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), and α is the initial slope of the light response curve (quantum efficiency; $\mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$)
165 (Falge et al., 2001). By subtracting R_d from Eq. 1, the function was forced through zero and GPP was thereby estimated.
166 To assure high quality of fitted parameters, parameters were excluded from the analysis when fitting was insignificant
167 ($p\text{-value} > 0.05$), and when they were out of range (F_{opt} and $\alpha >$ peak value of the rainy season times 1.2). Additionally,
168 outliers were filtered following the method by Papale et al. (2006) using a 30-day moving window with a 1-day time
169 step.

170 2.3.2 Vegetation indices

172 The maximum absorption in red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a
173 and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to chlorophyll
174 abundance. By far the most common vegetation index is NDVI (Rouse et al., 1974):

$$175 \text{NDVI} = \frac{(\rho_{\text{NIR}} - \rho_{\text{red}})}{(\rho_{\text{NIR}} + \rho_{\text{red}})} \quad (2)$$

176 where ρ_{NIR} is the reflectance factor in near infrared (NIR) band (band 2) and ρ_{red} is the reflectance factor in the red band
177 (band 1). Near infrared radiance is reflected by leaf cells since absorption of these wavelengths would result in
178 overheating of the plant whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al., 1965).
179 Normalization is done to reduce effects of atmospheric errors, solar zenith angles, and sensor viewing geometry, as well
180 as increasing the vegetation signal (Qi et al., 1994; Inoue et al., 2008).

181 A well-known deficiency of NDVI is problems of index saturation at high biomass because absorption of red light at
182 ~ 670 nm peaks at higher biomass loads whereas NIR reflectance continues to increase due to multiple scattering effects
183 (Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing atmospheric and soil background influences, EVI
184 is designed to increases the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al.,
185 2002).

$$186 \text{EVI} = G \frac{(\rho_{\text{NIR}} - \rho_{\text{red}})}{(\rho_{\text{NIR}} + C_1 \rho_{\text{red}} - C_2 \rho_{\text{blue}} + L)} \quad (3)$$

187 where ρ_{blue} is the reflectance factor in the blue band (band 3). The coefficients $C_1=6$ and $C_2=7.5$ correct for atmospheric
188 influences, while $L=1$ adjust for the canopy background. The factor $G=2.5$ is a gain factor.

189 Another attempt to overcome problems of NDVI saturation was proposed by Roujean and Breon (1995) who
190 suggested the renormalized difference vegetation index (RDVI) that combines advantages of DVI (NIR-red) and NDVI
191 for low and high vegetation cover, respectively:

$$192 \quad RDVI = \frac{(\rho_{NIR} - \rho_{red})}{\sqrt{(\rho_{NIR} + \rho_{red})}} \quad (4)$$

193 As a non-linear index, RDVI is not only less sensitive to variations in geometrical and optical properties of unknown
194 foliage but also less affected by solar and viewing geometry (Broge and Leblanc, 2001). RDVI was calculated based on
195 NBAR bands 1 and 2.

196 The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly
197 sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave
198 infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid
199 environments:

$$200 \quad SIWSI_{12} = \frac{(\rho_{NIR} - \rho_{SWIR12})}{(\rho_{NIR} + \rho_{SWIR12})} \quad (5)$$

$$201 \quad SIWSI_{16} = \frac{(\rho_{NIR} - \rho_{SWIR16})}{(\rho_{NIR} + \rho_{SWIR16})} \quad (6)$$

202 where ρ_{swir12} is NBAR band 5 (1230-1250 nm) and ρ_{swir16} is NBAR band 6 (1628-1652 nm). As the vegetation water
203 content increases, reflectance in SWIR decreases indicating that low and high SIWSI values point to sufficient water
204 conditions and drought stress, respectively.

205

206 2.3.3 Incoming PAR across Sahel

207 A modified version of the ERA Interim reanalysis PAR was used in the current study as an error in the code producing
208 these PAR estimates was identified by the data distributor causing PAR values to be too low (ECMWF, 2016b).
209 Accordingly, incoming PAR at the ground surface from ERA Interim was systematically underestimated even though it
210 followed the pattern of PAR measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to
211 correct for this error, we fitted and applied an ordinary least square linear regression between in situ PAR and ERA
212 Interim PAR (Fig. S1). The produced PAR from this relationship is at the same level as in situ PAR and should be at a
213 correct level even though the original ERA Interim PAR is actually produced from the red and near infrared part of the
214 spectrum.

215

216 2.4 Data analysis

217 2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with 218 explanatory variables

219 The coupling between intra-annual dynamics in F_{opt} and α and the vegetation indices for the different measurement sites
220 were studied using Pearson correlation analysis. As part of the correlation analysis, we used bootstrap simulations with
221 200 iterations from which mean and standard deviation of the correlation coefficients were calculated (Richter et al.,

222 2012). Relationships between intra-annual dynamics in F_{opt} and α and the vegetation indices for all sites combined were
 223 also analysed. In the analysis for all sites, data were normalised in order to avoid influence of spatial and inter-annual
 224 variability. Time series of ratios of F_{opt} and α (F_{opt_frac} and α_{frac}) against the annual peak values (F_{opt_peak} and α_{peak} ; see
 225 below for calculation of annual peak values) were estimated for all sites:

$$226 \quad F_{opt_frac} = \frac{F_{opt}}{F_{opt_peak}} \quad (7)$$

$$227 \quad \alpha_{frac} = \frac{\alpha}{\alpha_{peak}} \quad (8)$$

228 The same standardisation procedure was used for all vegetation indices (VI_{frac}):

$$229 \quad VI_{frac} = \frac{VI}{VI_{peak}} \quad (9)$$

230 where VI_{peak} is the annual peak values of the vegetation indices (14 days running mean with highest annual value). The
 231 coupling between α_{frac} and F_{opt_frac} and the different VI_{frac} were examined using Pearson correlation analysis for all sites.

232 Regression trees were used to fill gaps in the daily estimates of F_{opt} and α . One hundred tree sizes were chosen based
 233 on 100 cross validation runs, and these trees were then used for estimating F_{opt} and α following the method in De'ath
 234 and Fabricius (2000). We used SWC, VPD, T_{air} , PAR, and the vegetation index with strongest correlation with intra-
 235 annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same standardisation procedure
 236 as done for F_{opt} , α , and the vegetation indices was done for the hydrometeorological variables. The 100 F_{opt} and α output
 237 subsets from the regression trees were averaged and used for filling gaps in the times series of F_{opt} and α . From these
 238 time-series we estimated annual peak values of F_{opt} and α (F_{opt_peak} and α_{peak}) as the 14-day running mean with highest
 239 annual value. To investigate spatial and inter-annual variability in F_{opt} and α across the measurement sites of the Sahel,
 240 F_{opt_peak} and α_{peak} were correlated with the annual sum of P, yearly means of T_{air} , SWC, RH, VPD, R_g , annual peak
 241 values of biomass, soil nitrogen and C concentrations, C3/C4 ratio, and VI_{peak} using Pearson linear correlations.

242

243 2.4.2 Parameterisation and evaluation of the GPP model and evaluation of the MODIS GPP

244 Based on Eq. 1 and outcome of the statistical analysis previously described under subsection 2.4.1 (for results see
 245 subsect. 3.2), a model for estimating GPP across Sahel was created:

$$246 \quad GPP = -F_{opt} \times (1 - e^{\left(\frac{-\alpha \times PAR}{F_{opt}} \right)}) \quad (10)$$

247 Firstly, F_{opt_peak} and α_{peak} were estimated spatially and inter-annually using linear regression functions fitted against the
 248 vegetation indices with strongest relationships to spatial and inter-annual variability in F_{opt_peak} and α_{peak} for all sites.
 249 Secondly, exponential regression functions were established for F_{opt_frac} and α_{frac} with the vegetation index with the
 250 strongest relationships to intra-annual variability of F_{opt_frac} and α_{frac} for all sites. By combining these relationships, F_{opt}
 251 and α can be calculated for any day of year and for any point in space across Sahel:

$$252 \quad F_{opt} = F_{opt_peak} \times F_{opt_frac} = (k_{Fopt} \times NDVI_{peak} + m_{Fopt}) \left(n_{Fopt} \times e^{(l_{Fopt} \times RDVI_{frac})} \right) \quad (11)$$

$$253 \quad \alpha = \alpha_{peak} \times \alpha_{frac} = (k_{\alpha} \times RDVI_{peak} + m_{\alpha}) \left(n_{\alpha} \times e^{(l_{\alpha} \times RDVI_{frac})} \right) \quad (12)$$

254 where $k_{F_{opt}}$ and k_α are slopes and $m_{F_{opt}}$ and m_α are intercepts of the linear regressions giving F_{opt_peak} and α_{peak} ,
 255 respectively; $l_{F_{opt}}$ and l_α are coefficients and $n_{F_{opt}}$ and n_α are intercepts of the exponential regressions giving F_{opt_frac} and
 256 α_{frac} , respectively. Equation 11 and 12 were inserted into Eq. 10 and GPP were thereby estimated as:

$$257 \quad GPP = -\left(F_{opt_peak} \times F_{opt_frac}\right) \times \left(1 - e^{\left(\frac{-(\alpha_{peak} \times \alpha_{frac}) \times PAR}{F_{opt_peak} \times F_{opt_frac}}\right)}\right) = -\left(\left(k_{F_{opt}} \times NDVI_{peak} + m_{F_{opt}}\right) \left(n_{F_{opt}} \times e^{(l_{F_{opt}} \times RDVI_{frac})}\right)\right) \\ \times \left(1 - e^{\left(\frac{-(k_\alpha \times RDVI_{peak} + m_\alpha) \left(n_\alpha \times e^{(l_\alpha \times RDVI_{frac})}\right) \times PAR}{(k_{F_{opt}} \times NDVI_{peak} + m_{F_{opt}}) \left(l_{F_{opt}} \times RDVI_{frac} + n_{F_{opt}}\right)}\right)}\right) \quad (13)$$

258 A bootstrap simulation methodology with 200 iterations was used when fitting the least-square regression functions
 259 for parameterisation of the GPP model (Richter et al., 2012). For each of the iterations, some of the EC sites were
 260 included and some were left-out. The bootstrap simulations generated 200 sets of $k_{F_{opt}}$, k_α , $m_{F_{opt}}$, m_α , $l_{F_{opt}}$, l_α , $n_{F_{opt}}$, n_α ,
 261 and coefficient of determination (R^2), from which the medians and the standard deviations were estimated. Possible
 262 errors (e.g. random sampling errors, aerosols, electrical sensor noise, filtering and gap-filling errors, clouds, and satellite
 263 sensor degradation) can be present in both the predictor and the response variables. Hence, we selected reduced major
 264 axis regressions to account for errors in both predictor and response variables when fitting the regression functions. The
 265 regression models were validated against the left-out sites within the bootstrap simulation methodology by calculating
 266 the root-mean-square-error (RMSE), and by fitting an ordinary least squares linear regression between modelled and
 267 independent variables.

268 Similarly, the MODIS GPP product (MOD17A2H, collection 6) was evaluated against independent GPP from the EC
 269 sites by calculating RMSE, and by fitting an ordinary least squares linear regression.

270

271 3 Results

272 3.1 Evaluation of the MODIS GPP product

273 There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and independent
 274 GPP (slope=0.17; intercept=0.11 g C m⁻² d⁻¹; R²=0.69; n=598). However, MOD17A2H strongly underestimated
 275 independent GPP (Fig. 2) resulting in high RMSE (2.69 g C m⁻² d⁻¹). It can be seen that some points for the Kelma site
 276 were quite low for MOD17A2H, whereas they were relatively high for the independent GPP (Fig. 2). Kelma is an
 277 inundated Acacia forest located in a clay soil depression. These differentiated values were found in the beginning of the
 278 dry season, when the depression was still inundated, whereas the larger area was turning dry.

279 <Figure 2>

280

281 3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency

282 Intra-annual dynamics in F_{opt} and α differed in amplitude, but were otherwise similar across the measurement sites in
 283 Sahel (Fig. 3). There was no green ground vegetation during the dry season, and the low photosynthetic activity was
 284 due to few evergreen trees. This resulted in low values for both F_{opt} and α during the dry season. The vegetation
 285 responded strongly to rainfall, and both F_{opt} and α increased during the early phase of the rainy season. Generally, F_{opt}
 286 peaked slightly earlier than α (average± 1 standard deviation: 7±10 days) (Fig. 3).

287 <Figure 3>

288 All vegetation indices described well intra-annual dynamics in F_{opt} for all sites (Table 2). SIWSI₁₂ had the highest
289 correlation for all sites except Wankama Millet, where it was RDVI. When all sites were combined, all indices
290 described well seasonality in F_{opt} , but RDVI had the strongest correlation (Table 2).

291 Intra-annual dynamics in α were also closely coupled to intra-annual dynamics in the vegetation indices for all sites
292 (Table 2). For α , RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow where it
293 was EVI. When all sites were combined all indices described well intra-annual dynamics in α , but RDVI was still the
294 index with strongest relationship (Table 2).

295 <Table 2>

296 The regression trees used for gap-filling explained well the intra-annual dynamics in F_{opt} and α for all sites (Table 3;
297 Fig. S2 in Supplementary material). The regression trees explained intra-annual dynamics in F_{opt} better than in α , and
298 multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to intra-
299 annual dynamics in F_{opt} for all sites across Sahel were in the order of RDVI, SWC, VPD, T_{air} , and PAR; and for α they
300 were RDVI, SWC, VPD and T_{air} (Table 3). The strong relationship to SWC and VPD indicates drought stress during
301 periods of low rainfall. For all sites across Sahel, incorporating hydrometeorological variables increased the ability to
302 determine intra-annual dynamics in F_{opt} and α compared to the ordinary least squares linear regressions against
303 vegetation indices (Table 2, data given as r ; Table 3; Fig. 3 and Fig. S2). For all sites, incorporation of these variables
304 increased R^2 from 0.81 to 0.87 and from 0.74 to 0.84, for F_{opt} and α respectively.

305 <Table 3>

306

307 **3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency**

308 Large spatial and inter-annual variability in F_{opt_peak} and α_{peak} were found across the six measurement sites in Sahel;
309 F_{opt_peak} ranged between 10.1 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ (Wankama Millet 2005) and 50.0 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ (Dahra 2010), and
310 α_{peak} ranged between 0.020 $\mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$ (Demockeya 2007) and 0.064 $\mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$ (Dahra 2010)
311 (Table 4). The average two week running mean peak values of F_{opt} and α for all sites were 26.4 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ and
312 0.040 $\mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$, respectively. All vegetation indices determined well spatial and inter-annual dynamics in
313 F_{opt_peak} and α_{peak} (Table 5). NDVI_{peak} was most closely coupled with F_{opt_peak} whereas RDVI_{peak} was closest coupled with
314 α_{peak} (Fig. 4). F_{opt_peak} also correlated well with peak dry weight biomass, C content in the soil, and RH, whereas α_{peak}
315 also correlated well with peak dry weight biomass, and C content in the soil (Table 5).

316 <Table 4>

317 <Table 5>

318 <Figure 4>

319

320 **3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency, and gross primary production across 321 Sahel and evaluation of the GPP model**

322 The spatially extrapolated F_{opt} , α and GPP averaged over Sahel for 2001-2014 were $22.5 \pm 1.7 \mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$,
323 $0.030 \pm 0.002 \mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$, and $736 \pm 39 \text{ g C m}^{-2} \text{ y}^{-1}$, respectively. At regional scale it can be seen that F_{opt} , α ,
324 and GPP decreased substantially with latitude (Fig. 5). Highest values were found in south-eastern Senegal, western
325 Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. Lowest values were found along
326 the northernmost parts of Sahel on the border to Sahara in Mauritania, in northern Mali, and in northern Niger.

327 Modelled GPP was similar to independent GPP on average, and there was a strong linear relationship between
328 modelled GPP and independent GPP for all sites (Fig. 6; Table 6). However, when separating the evaluation between
329 measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). Wankama
330 Millet was generally overestimated whereas the model worked well on average for Demokeya but underestimated high
331 values (Fig. 7; Table 6). Variability of independent GPP at the other sites was well reproduced by the model (Fig. 7;
332 Table 6). The final parameters of the GPP model (Eq. 13) are given in Table 7.

333 <Figure 5>

334 <Figure 6>

335 <Figure 7>

336 < Table 6>

337 < Table 7>

338

339 **4 Discussions**

340 Our hypothesis that vegetation indices closely related to equivalent water thickness (SIWSI) would be most strongly
341 coupled with intra-annual dynamics in F_{opt} and α was not rejected for F_{opt} , since this was the case for all sites except for
342 Wankama Millet (Table 2). However, our hypothesis was rejected for α , since it was more closely related to vegetation
343 indices related to chlorophyll abundance (NDVI and EVI). In Sahel, soil moisture conditions in the early rainy season
344 are important for vegetation growth and during this phase vegetation is especially vulnerable to drought conditions
345 (Rockström and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity (F_{opt}) peaked
346 earlier in the rainy season than α did (Fig. 3), thereby explaining the close relationship of F_{opt} to SIWSI. Leaf area index
347 increased over the growing season and leaf area index is closely coupled with vegetation indices related to chlorophyll
348 abundance (Tagesson et al., 2009). The increase in leaf area index increased canopy level quantum efficiency (α), which
349 thereby explains the closer relationship of α to NDVI.

350 Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with
351 spatial and inter-annual dynamics in F_{opt} and α was not rejected for either F_{opt} or α ; NDVI, EVI, and RDVI all had close
352 correlation with spatial and inter-annual dynamics in F_{opt} and α (Table 5). However, it was surprising that $NDVI_{peak}$ had
353 the strongest correlation with spatial and inter-annual variability for F_{opt} (Table 5). Both EVI and RDVI should be less
354 sensitive to saturation effects than NDVI (Huete et al., 2002; Roujean and Breon, 1995), and based on this it can be
355 assumed that peak values of these indices should have stronger relationships to peak values of F_{opt} and α . However,
356 vegetation indices with a high sensitivity to changes in green biomass at high biomass loads, gets less sensitive to green
357 biomass changes at low biomass loads (Huete et al., 2002). Peak leaf area index for ecosystems across Sahel is
358 generally ~2 or less, whereas the saturation issue of NDVI generally starts at an leaf area index of about 2-5
359 (Haboudane et al., 2004).

360 The F_{opt_peak} estimates from Agoufou, Demokeya, and the Wankama sites were similar whereas Dahra and Kelma
361 values were high in relation to previously reported canopy-scale F_{opt_peak} from Sahel (~8 to -23 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$) (Hanafi
362 et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 2009; Levy et al., 1997; Monteny et al., 1997).
363 These previous studies reported much lower F_{opt} at canopy scale than at leaf scale (e.g. Levy et al. (1997): 10 vs. 44 μmol
364 $\text{m}^{-2} \text{ sec}^{-1}$; Boulain et al. (2009): 8 vs. 50 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$). Leaf area index at Dahra and Kelma peaked at 2.1 and 2.7,
365 respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-mentioned

366 sites. A possible explanation to high F_{opt} estimates at Dahra and Kelma could thereby be the higher leaf area index.
367 Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO₂ exchange measured at the
368 Dahra field site and explained the high values by a combination of moderately dense herbaceous C4 ground vegetation,
369 high soil nutrient availability, and a grazing pressure resulting in compensatory growth and fertilization effects. Another
370 possible explanation could be that the West African Monsoon bring a humid layer of surface air from the Atlantic,
371 possibly increasing vegetation production for the most western part of Sahel (Tagesson et al., 2016a).

372 Our model substantially overestimated GPP for Wankama Millet (Fig. 7f). Being a crop field, this site differed from
373 the other studied sites by its species composition, ecosystem structure, as well as land and vegetation management.
374 Crop fields in southwestern Niger are generally characterized by a rather low production resulting from decreased
375 fertility and soil loss caused by intensive land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site
376 may cause the model parameterised with observations from the other study sites without this strong anthropogenic
377 influence to overestimate GPP at this site. Similar results were found by Boulain et al. (2009) when applying an up-
378 scaling model using leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow
379 whereas it was less conclusive for Wankama Millet. The main explanation was low leaf area index in millet fields
380 because of a low density of millet stands due to agricultural practice. There is extensive savanna clearing for food
381 production in Sahel (Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further understand impacts
382 of this land cover change on vegetation production and land atmosphere exchange processes, it is of urgent need for
383 more study sites covering cropped areas in this region.

384 In Demokeya, GPP was slightly underestimated for the year 2008 (Fig. 7c) because modelled F_{opt} was much lower
385 than the actual measured value in 2008 (the thick black line in Fig. 4). An improvement of the model could be to
386 incorporate some parameters that constrain or enhance F_{opt} depending on environmental stress. Indeed, the regression
387 tree analysis indicated that incorporating hydrometeorological variables increased the ability to predict both F_{opt} and α .
388 On the other hand, for spatial upscaling purposes, it has been shown that including modelled hydrometeorological
389 constraints on LUE decreases the ability to predict vegetation production due to the incorporated uncertainty in these
390 modelled variables (Fensholt et al., 2006; Ma et al., 2014). For spatial upscaling to regional scales it is therefore better
391 to simply use relationships to EO data. This is particularly the case for Sahel, one of the largest dryland areas in the
392 world that includes only a few sites of hydrometeorological observations.

393 The pattern seen in the spatially explicit GPP budgets (Fig. 5c) may be influenced by a range of biophysical and
394 anthropogenic factors. The clear North-South gradient is expected given the strong North-South rainfall gradient in
395 Sahel. The West African Monsoon mentioned above could also be an explanation to high GPP values in the western
396 part of Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern Sahel
397 (Fig. 5c). The areas with highest GPP are sparsely populated woodlands or shrubby savanna with a relatively dense tree
398 cover (Brandt et al., 2016). However, the produced maps should be used with caution as they are based on up-scaling of
399 the only six available EC sites that exist in the region; especially given the issues related to the cropped fields discussed
400 above. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual GPP budget as
401 estimated for these six sites ($692 \pm 89 \text{ g C m}^{-2} \text{ y}^{-1}$) (Tagesson et al., 2016a). The range of GPP budgets in Fig. 5c is also
402 similar to previous annual GPP budgets reported from other savanna areas across the world (Veenendaal et al., 2004;
403 Chen et al., 2003; Kanniah et al., 2010; Chen et al., 2016).

404 Although MOD17A2 GPP has previously been shown to relatively well capture GPP in several different ecosystems
405 (Turner et al., 2006; Turner et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown
406 to be underestimated for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjöström et al., 2013). GPP of
407 Sahelian drylands have not been well captured by MOD17A2 (Sjöström et al., 2013; Fensholt et al., 2006), and as we
408 have shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product (Fig. 2). The main
409 reason for this pronounced underestimation is that maximum LUE is set to 0.84 g C MJ⁻¹ (open shrubland; Demokeya)
410 and 0.86 g C MJ⁻¹ (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLUT, i.e.
411 much lower than maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 g C MJ⁻¹;
412 range: 1.58-3.50 g C MJ⁻¹) (Sjöström et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C MJ⁻¹
413 (Garbulsky et al., 2010), and a savanna site in Australia (1.26 g C MJ⁻¹) (Kanniah et al., 2009).

414 Several dynamic global vegetation models have been used for decades to quantify GPP at different spatial and
415 temporal scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the photosynthesis model
416 by Farquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity (Zhang et al., 2014).
417 This and several previous studies have shown that both photosynthetic capacity and efficiency (both α and LUE) can
418 vary considerably between seasons as well as spatially, and both within and between vegetation types (Eamus et al.,
419 2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using
420 broad values based on land cover classes, yet most models apply a constant value which can cause substantial
421 inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that
422 comprises several plant functional types (C3 and C4 species, and a large variability in tree/herbaceous vegetation
423 fractions) (Scholes and Archer, 1997). This study indicates the strong applicability of EO as a tool for parameterising
424 spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially
425 explicit estimates of GPP at a high temporal and spatial resolution are essential for environmental change studies in
426 Sahel and make a major asset for the analysis of changes in GPP, its relationship to climatic change and anthropogenic
427 forcing, and estimations of ecosystem processes and biochemical and hydrological cycles.

428

429 **Acknowledgements** Data is available from Fluxnet (<http://fluxnet.ornl.gov>) and CarboAfrica
430 (http://www.carboafica.net/index_en.asp). Data for the Mali and Niger sites were made available by the AMMA-
431 CATCH regional observatory (www.amma-catch.org), which is funded by the French Institut de Recherche pour le
432 Développement (IRD) and Institut National des Sciences de l'Univers (INSU). The project was funded by the Danish
433 Council for Independent Research (DFF) Sapere Aude programme. Faculty of Science, Lund University supported the
434 Dahra and Demokeya measurements with an infrastructure grant. Ardö received support from the Swedish National
435 Space Board.

436

437 **References**

438 Abdi, A., Seaquist, J., Tenenbaum, D., Eklundh, L., and Ardö, J.: The supply and demand of net
439 primary production in the Sahel, *Environ. Res. Lett.*, 9, 094003, doi:10.1088/1748-9326/9/9/094003,
440 2014.

441 Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M.,
442 Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy,
443 N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid ecosystems

444 in the trend and variability of the land CO₂ sink, *Science*, 348, 895-899, 10.1126/science.aaa1668,
445 2015.

446 Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C.,
447 Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T.,
448 Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,
449 T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial
450 Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, *Bull.*
451 *Am. Meteorol. Soc.*, 82, 2415-2434, 10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2, 2001.

452 Boulain, N., Cappelaere, B., Ramier, D., Issoufou, H. B. A., Halilou, O., Seghieri, J., Guillemin, F.,
453 Oï, M., Gignoux, J., and Timouk, F.: Towards an understanding of coupled physical and biological
454 processes in the cultivated Sahel – 2. Vegetation and carbon dynamics, *J. Hydrol.*, 375, 190-203,
455 10.1016/j.jhydrol.2008.11.045, 2009.

456 Brandt, M., Hiernaux, P., Rasmussen, K., Mbow, C., Kergoat, L., Tagesson, T., Ibrahim, Y. Z.,
457 Wélé, A., Tucker, C. J., and Fensholt, R.: Assessing woody vegetation trends in Sahelian drylands
458 using MODIS based seasonal metrics, *Remote Sens. Environ.*, 183, 215-225,
459 <http://dx.doi.org/10.1016/j.rse.2016.05.027>, 2016.

460 Broge, N. H., and Leblanc, E.: Comparing prediction power and stability of broadband and
461 hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll
462 density, *Remote Sens. Environ.*, 76, 156-172, [http://dx.doi.org/10.1016/S0034-4257\(00\)00197-8](http://dx.doi.org/10.1016/S0034-4257(00)00197-8),
463 2001.

464 Cannell, M., and Thornley, J.: Temperature and CO₂ Responses of Leaf and Canopy Photosynthesis:
465 a Clarification using the Non-rectangular Hyperbola Model of Photosynthesis, *Ann. Bot.*, 82, 883-
466 892, 1998.

467 Cappelaere, B., Descroix, L., Lebel, T., Boulain, N., Ramier, D., Laurent, J. P., Favreau, G.,
468 Boubkraoui, S., Boucher, M., Bouzou Moussa, I., Chaffard, V., Hiernaux, P., Issoufou, H. B. A., Le
469 Breton, E., Mamadou, I., Nazoumou, Y., Oi, M., Ottlé, C., and Quantin, G.: The AMMA-CATCH
470 experiment in the cultivated Sahelian area of south-west Niger – Investigating water cycle response
471 to a fluctuating climate and changing environment, *J. Hydrol.*, 375, 34-51,
472 10.1016/j.jhydrol.2009.06.021, 2009.

473 Chen, C., Cleverly, J., and Zhang, L.: Modelling Seasonal and Inter-annual Variations in Carbon
474 and Water Fluxes in an Arid-Zone Acacia Savanna Woodland, 1981–2012, *Ecosystems*, 19, 625-
475 644, 2016.

476 Chen, X., Hutley, L., and Eamus, D.: Carbon balance of a tropical savanna of northern Australia.,
477 *Oecologia*, 137, 405-416, 2003.

478 Coops, N. C., Black, T. A., Jassal, R. S., Trofymow, J. A., and Morgenstern, K.: Comparison of
479 MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP)
480 in a Douglas-fir forest stand, *Remote Sens. Environ.*, 107, 385-401,
481 <http://dx.doi.org/10.1016/j.rse.2006.09.010>, 2007.

482 Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M., and Tucker, C. J.: Re-greening Sahel:
483 30 years of remote sensing data and field observations (Mali, Niger), *Remote Sens. Environ.*, 140,
484 350-364, <http://dx.doi.org/10.1016/j.rse.2013.09.011>, 2014.

485 De'ath, G., and Fabricius, K. E.: Classification and regression trees: A powerful yet simple
486 technique for ecological data analysis, *Ecology*, 81, 3178-3192, 10.2307/177409, 2000.

487 de Ridder, N., Stroosnijder, L., and Cisse, A. M.: Productivity of Sahelian rangelands : a study of
488 the soils, the vegetations and the exploitation of that natural resource, PPS course book. Primary
489 Production in the Sahel, Agricultural University, Wageningen, 1982.

490 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
491 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot,

492 J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
 493 Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P.,
 494 Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut,
 495 J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data
 496 assimilation system, *Q. J. Roy. Meteor. Soc.*, 137, 553-597, 10.1002/qj.828, 2011.
 497 Dickinson, R. E.: Land Surface Processes and Climate—Surface Albedos and Energy Balance, in:
 498 Advances in Geophysics, edited by: Barry, S., Elsevier, 305-353, 1983.
 499 Eamus, D., Cleverly, J., Boulain, N., Grant, N., Faux, R., and Villalobos-Vega, R.: Carbon and
 500 water fluxes in an arid-zone Acacia savanna woodland: An analyses of seasonal patterns and
 501 responses to rainfall events, *Agric. For. Meteorol.*, 182–183, 225-238,
 502 <http://dx.doi.org/10.1016/j.agrformet.2013.04.020>, 2013.
 503 ECMWF: ERA Interim Daily: <http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/>,
 504 access: 04-04-2016, 2016a.
 505 ECMWF: ERA-Interim: surface photosynthetically active radiation (surface PAR) values are too
 506 low <https://software.ecmwf.int/wiki/display/CKB/ERA-Interim%3A+surface+photosynthetically+active+radiation+%28surface+PAR%29+values+are+too+low>, access: 7 November, 2016b.
 507 Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans,
 508 R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O.,
 509 Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J. B., Moors, E.,
 510 Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma,
 511 S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net
 512 ecosystem exchange, *Agric. For. Meteorol.*, 107, 43-69, 2001.
 513 Farquhar, G. D., Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO₂
 514 assimilation in leaves of C3 plants, *Planta*, 149, 78-90, 1980.
 515 Fensholt, R., and Sandholt, I.: Derivation of a shortwave infrared water stress index from MODIS
 516 near- and shortwave infrared data in a semiarid environment, *Remote Sens. Environ.*, 87, 111-121,
 517 <http://dx.doi.org/10.1016/j.rse.2003.07.002>, 2003.
 518 Fensholt, R., Sandholt, I., Rasmussen, M. S., Stisen, S., and Diouf, A.: Evaluation of satellite based
 519 primary production modelling in the semi-arid Sahel, *Remote Sens. Environ.*, 105, 173-188,
 520 10.1016/j.rse.2006.06.011, 2006.
 521 Fensholt, R., Rasmussen, K., Kaspersen, P., Huber, S., Horion, S., and Swinnen, E.: Assessing Land
 522 Degradation/Recovery in the African Sahel from Long-Term Earth Observation Based Primary
 523 Productivity and Precipitation Relationships, *Remote Sensing*, 5, 664-686, 2013.
 524 Garbulsky, M. F., Peñuelas, J., Papale, D., Ardö, J., Goulden, M. L., Kiely, G., Richardson, A. D.,
 525 Rotenberg, E., Veenendaal, E. M., and Filella, I.: Patterns and controls of the variability of radiation
 526 use efficiency and primary productivity across terrestrial ecosystems, *Global Ecol. Biogeogr.*, 19,
 527 253-267, 10.1111/j.1466-8238.2009.00504.x, 2010.
 528 Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidner, V. R.: Spectral Properties of Plants, *Appl.*
 529 *Optics*, 4, 11-20, 1965.
 530 Gebremichael, M., and Barros, A. P.: Evaluation of MODIS Gross Primary Productivity (GPP) in
 531 tropical monsoon regions, *Remote Sens. Environ.*, 100, 150-166,
 532 <http://dx.doi.org/10.1016/j.rse.2005.10.009>, 2006.
 533 Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and Strachan, I. B.: Hyperspectral
 534 vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and
 535 validation in the context of precision agriculture, *Remote Sens. Environ.*, 90, 337-352,
 536 <http://dx.doi.org/10.1016/j.rse.2003.12.013>, 2004.

539 Hanan, N., Kabat, P., Dolman, J., and Elbers, J. A. N.: Photosynthesis and carbon balance of a
540 Sahelian fallow savanna, *Global Change Biol.*, 4, 523-538, 1998.

541 Heinsch, F. A., Maosheng, Z., Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J., Bolstad,
542 P. V., Cook, B. D., Desai, A. R., Ricciuto, D. M., Law, B. E., Oechel, W. C., Hyojung, K., Hongyan,
543 L., Wofsy, S. C., Dunn, A. L., Munger, J. W., Baldocchi, D. D., Liukang, X., Hollinger, D. Y.,
544 Richardson, A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S. P., and Flanagan, L. B.:
545 Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy
546 flux network observations, *IEEE T. Geosci. Remote*, 44, 1908-1925, 10.1109/TGRS.2005.853936,
547 2006.

548 Hickler, T., Eklundh, L., Seaquist, J. W., Smith, B., Ardö, J., Olsson, L., Sykes, M. T., and
549 Sjöström, M.: Precipitation controls Sahel greening trend, *Geophys. Res. Lett.*, 32, L21415,
550 doi:10.1029/2005GL024370, 2005.

551 Huber, S., Tagesson, T., and Fensholt, R.: An automated field spectrometer system for studying
552 VIS, NIR and SWIR anisotropy for semi-arid savanna, *Remote Sens. Environ.*, 152, 547-556, 2014.

553 Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the
554 radiometric and biophysical performance of the MODIS vegetation indices, *Remote Sens. Environ.*,
555 83, 195-213, 2002.

556 Ide, R., Nakaji, T., and Oguma, H.: Assessment of canopy photosynthetic capacity and estimation
557 of GPP by using spectral vegetation indices and the light-response function in a larch forest, *Agric.
558 For. Meteorol.*, 150, 389-398, 2010.

559 Inoue, Y., Penuelas, J., Miyata, A., and Mano, M.: Normalized difference spectral indices for
560 estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and
561 CO₂ flux measurements in rice, *Remote Sens. Environ.*, 112, 156-172, 2008.

562 Jin, H., and Eklundh, L.: A physically based vegetation index for improved monitoring of plant
563 phenology, *Remote Sens. Environ.*, 152, 512-525, <http://dx.doi.org/10.1016/j.rse.2014.07.010>, 2014.

564 Kanniah, K. D., Beringer, J., Hutley, L. B., Tapper, N. J., and Zhu, X.: Evaluation of Collections 4
565 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical
566 savanna site in northern Australia, *Remote Sens. Environ.*, 113, 1808-1822,
567 <http://dx.doi.org/10.1016/j.rse.2009.04.013>, 2009.

568 Kanniah, K. D., Beringer, J., and Hutley, L. B.: The comparative role of key environmental factors
569 in determining savanna productivity and carbon fluxes: A review, with special reference to
570 Northern Australia, *Progress in Physical Geography*, 34, 459-490, 2010.

571 Kergoat, L., Lafont, S., Arneth, A., Le Dantec, V., and Saugier, B.: Nitrogen controls plant canopy
572 light-use efficiency in temperate and boreal ecosystems, *J. Geophys. Res.*, 113, 1-19,
573 10.1029/2007JG000676, 2008.

574 Leblanc, M. J., Favreau, G., Massuel, S., Tweed, S. O., Loireau, M., and Cappelaere, B.: Land
575 clearance and hydrological change in the Sahel: SW Niger, *Global Planet. Change*, 61, 135-150,
576 <http://dx.doi.org/10.1016/j.gloplacha.2007.08.011>, 2008.

577 Levy, P. E., Moncrieff, J. B., Massheder, J. M., Jarvis, P. G., Scott, S. L., and Brouwer, J.: CO₂
578 fluxes at leaf and canopy scale in millet, fallow and tiger bush vegetation at the HAPEX-Sahel
579 southern super-site, *J. Hydrol.*, 188, 612-632, [http://dx.doi.org/10.1016/S0022-1694\(96\)03195-2](http://dx.doi.org/10.1016/S0022-1694(96)03195-2),
580 1997.

581 Ma, X., Huete, A., Yu, Q., Restrepo-Coupe, N., Beringer, J., Hutley, L. B., Kanniah, K. D.,
582 Cleverly, J., and Eamus, D.: Parameterization of an ecosystem light-use-efficiency model for
583 predicting savanna GPP using MODIS EVI, *Remote Sens. Environ.*, 154, 253-271,
584 <http://dx.doi.org/10.1016/j.rse.2014.08.025>, 2014.

585 Mayaux, P., Bartholomé, E., Massart, M., Cutsem, C. V., Cabral, A., Nonguierma, A., Diallo, O.,
586 Pretorius, C., Thompson, M., Cherlet, M., Pekel, J.-F., Defourny, P., Vasconcelos, M., Gregorio, A.

587 D., S.Fritz, Grandi, G. D., C..Elvidge, P.Vogt, and Belward, A.: EUR 20665 EN –A Land-cover
588 map of Africa, edited by: Centre', E. C. J. R., European Commissions Joint Research Centre,
589 Luxembourg, 38 pp., 2003.

590 Mbow, C., Fensholt, R., Rasmussen, K., and Diop, D.: Can vegetation productivity be derived from
591 greenness in a semi-arid environment? Evidence from ground-based measurements, *J. Arid
592 Environ.*, 97, 56-65, <http://dx.doi.org/10.1016/j.jaridenv.2013.05.011>, 2013.

593 Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S.,
594 Bonnefond, J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-
595 Khidir, H. A. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Le Dantec, V., Mougin, E.,
596 Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and
597 Kutsch, W. L.: Precipitation as driver of carbon fluxes in 11 African ecosystems, *Biogeosciences*, 6,
598 1027-1041, 10.5194/bg-6-1027-2009, 2009.

599 Moncrieff, J. B., Monteny, B., Verhoef, A., Friberg, T., Elbers, J., Kabat, P., de Bruin, H., Soegaard,
600 H., Jarvis, P. G., and Taupin, J. D.: Spatial and temporal variations in net carbon flux during
601 HAPEX-Sahel, *J. Hydrol.*, 188–189, 563-588, 10.1016/s0022-1694(96)03193-9, 1997.

602 Monteith, J. L.: Solar radiation and productivity in tropical ecosystems, *J. Appl. Ecol.*, 9, 747-766,
603 1972.

604 Monteith, J. L.: Climate and the efficiency of crop production in Britain, *Philos. Trans. Roy. Soc. B.*,
605 281, 277-294, 1977.

606 Monteny, B. A., Lhomme, J. P., Chehbouni, A., Troufleau, D., Amadou, M., Sicot, M., Verhoef, A.,
607 Galle, S., Said, F., and Lloyd, C. R.: The role of the Sahelian biosphere on the water and the CO₂
608 cycle during the HAPEX-Sahel experiment, *J. Hydrol.*, 188, 516-535,
609 [http://dx.doi.org/10.1016/S0022-1694\(96\)03191-5](http://dx.doi.org/10.1016/S0022-1694(96)03191-5), 1997.

610 Mutanga, O., and Skidmore, A. K.: Narrow band vegetation indices overcome the saturation
611 problem in biomass estimation, *Int. J. Remote Sens.*, 25, 3999-4014,
612 10.1080/01431160310001654923, 2004.

613 NASA: Reverb ECHO: <http://reverb.echo.nasa.gov/reverb/>, access: June 2016, 2016.

614 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B.,
615 Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net
616 Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty
617 estimation, *Biogeosciences*, 3, 571-583, 10.5194/bg-3-571-2006, 2006.

618 Paruelo, J. M., Garbulsky, M. F., Guerschman, J. P., and Jobbág, E. G.: Two decades of
619 Normalized Difference Vegetation Index changes in South America: identifying the imprint of
620 global change, *Int. J. Remote Sens.*, 25, 2793-2806, 10.1080/01431160310001619526, 2004.

621 Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G.,
622 Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution of semi-
623 arid ecosystems to interannual variability of the global carbon cycle, *Nature*, 509, 600-603,
624 10.1038/nature13376, 2014.

625 Prince, S. D., Kerr, Y. H., Goutorbe, J. P., Lebel, T., Tinga, A., Bessemoulin, P., Brouwer, J.,
626 Dolman, A. J., Engman, E. T., Gash, J. H. C., Hoepffner, M., Kabat, P., Monteny, B., Said, F.,
627 Sellers, P., and Wallace, J.: Geographical, biological and remote sensing aspects of the hydrologic
628 atmospheric pilot experiment in the sahel (HAPEX-Sahel), *Remote Sens. Environ.*, 51, 215-234,
629 [http://dx.doi.org/10.1016/0034-4257\(94\)00076-Y](http://dx.doi.org/10.1016/0034-4257(94)00076-Y), 1995.

630 Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S.: A modified soil adjusted
631 vegetation index, *Remote Sens. Environ.*, 48, 119-126, 1994.

632 Richter, K., Atzberger, C., Hank, T. B., and Mauser, W.: Derivation of biophysical variables from
633 Earth observation data: validation and statistical measures, *J. Appl. Remote Sens.*, 6, 063557,
634 10.1111/1.JRS.6.063557, 2012.

635 Rietkerk, M., Ketner, P., Stroosnijder, L., and Prins, H. H. T.: Sahelian rangeland development; a
636 catastrophe?, *J. Range Manage.*, 49, 512-519, 1996.

637 Rockström, J., and de Rouw, A.: Water, nutrients and slope position in on-farm pearl millet
638 cultivation in the Sahel, *Plant Soil*, 195, 311-327, 10.1023/A:1004233303066, 1997.

639 Roujean, J.-L., and Breon, F.-M.: Estimating PAR absorbed by vegetation from bidirectional
640 reflectance measurements, *Remote Sens. Environ.*, 51, 375-384, [http://dx.doi.org/10.1016/0034-4257\(94\)00114-3](http://dx.doi.org/10.1016/0034-4257(94)00114-3), 1995.

641 Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., and Harlan, J. C.: Monitoring the Vernal
642 Advancement of Retrogradation of Natural Vegetation, Type III, Final Report, Greenbelt, MD,
643 1974.

644 Ruimy, A., Saugier, B., and Dedieu, G.: Methodology for the estimation of terrestrial net primary
645 production from remotely sensed data., *J. Geophys. Res.*, 99, 5263-5283., 1994.

646 Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.: A
647 Continuous Satellite-Derived Measure of Global Terrestrial Primary Production, *BioScience*, 54,
648 547-560, 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.

649 Running, S. W., and Zhao, M.: User's Guide. Daily GPP and Annual NPP (MOD17A2/A3)
650 Products NASA Earth Observing System MODIS Land Algorithm. Version 3.0 For Collection 6.,
651 University of Montana, USA, NASA, 2015.

652 Scholes, R. J., and Archer, S. R.: Tree-grass interactions in savannas, *Annual Review of Ecology*
653 and Systematics

654, 28, 517-544, 1997.

655 Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J.,
656 Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A.:
657 Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere,
658 *Science*, 275, 502-509, 10.1126/science.275.5299.502, 1997.

659 Sims, D. A., Rahman, A. F., Cordova, V. D., El-Masri, B. Z., Baldocchi, D. D., Flanagan, L. B.,
660 Goldstein, A. H., Hollinger, D. Y., Misson, L., Monson, R. K., Oechel, W. C., Schmid, H. P.,
661 Wofsy, S. C., and Xu, L.: On the use of MODIS EVI to assess gross primary productivity of North
662 American ecosystems, *J. Geophys. Res.*, 111, G04015, 10.1029/2006JG000162, 2006.

663 Sjöström, M., Ardö, J., Eklundh, L., El-Tahir, B. A., El-Khidir, H. A. M., Hellström, M., Pilesjö, P.,
664 and Seaquist, J.: Evaluation of satellite based indices for gross primary production estimates in a
665 sparse savanna in the Sudan, *Biogeosciences*, 6, 129-138, 2009.

666 Sjöström, M., Zhao, M., Archibald, S., Arneth, A., Cappelaere, B., Falk, U., de Grandcourt, A.,
667 Hanan, N., Kergoat, L., Kutsch, W., Merbold, L., Mougin, E., Nickless, A., Nouvellon, Y., Scholes,
668 R. J., Veenendaal, E. M., and Ardö, J.: Evaluation of MODIS gross primary productivity for Africa
669 using eddy covariance data, *Remote Sens. Environ.*, 131, 275-286,
670 <http://dx.doi.org/10.1016/j.rse.2012.12.023>, 2013.

671 Tagesson, T., Eklundh, L., and Lindroth, A.: Applicability of leaf area index products for boreal
672 regions of Sweden, *Int. J. Remote Sens.*, 30, 5619–5632, 2009.

673 Tagesson, T., Fensholt, R., Cropley, F., Guiro, I., Horion, S., Ehammar, A., and Ardö, J.: Dynamics
674 in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa, *Agr. Ecosyst.*
675 *Environ.*, 205, 15-24, <http://dx.doi.org/10.1016/j.agee.2015.02.017>, 2015a.

676 Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion,
677 S., Sandholt, I., Rasmussen, B. H., Götsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammar,
678 A., Madsen, M., Olesen, F. S., and Ardö, J.: Ecosystem properties of semi-arid savanna grassland in
679 West Africa and its relationship to environmental variability, *Global Change Biol.*, 21, 250-264, doi:
680 10.1111/gcb.12734, 2015b.

681 Tagesson, T., Fensholt, R., Huber, S., Horion, S., Guiro, I., Ehammer, A., and Ardö, J.: Deriving
682 seasonal dynamics in ecosystem properties of semi-arid savannas using in situ based hyperspectral
683 reflectance, *Biogeosciences*, 12, 4621-4635, doi:10.5194/bg-12-4621-2015, 2015c.

684 Tagesson, T., Fensholt, R., Cappelaere, B., E., M., Horion, S., L., K., Nieto, H., Ehammer, A.,
685 Demarty, J., and Ardö, J.: Spatiotemporal variability in carbon exchange fluxes across the Sahel
686 Agric. For. Meteorol., 226–227, 108-118, 2016a.

687 Tagesson, T., Fensholt, R., Guiro, I., Cropley, F., Horion, S., Ehammer, A., and Ardö, J.: Very high
688 carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa, *Danish Journal of
689 Geography*, 116, 93-109, <http://dx.doi.org/10.1080/00167223.2016.1178072> 2016b.

690 Timouk, F., Kergoat, L., Mougin, E., Lloyd, C. R., Ceschia, E., Cohard, J. M., Rosnay, P. d.,
691 Hiernaux, P., Demarez, V., and Taylor, C. M.: Response of surface energy balance to water regime
692 and vegetation development in a Sahelian landscape, *J. Hydrol.*, 375, 12-12,
693 10.1016/j.jhydrol.2009.04.022, 2009.

694 Turner, D. P., Ritts, W. D., Cohen, W. B., Maeirsperger, T. K., Gower, S. T., Kirschbaum, A. A.,
695 Running, S. W., Zhao, M., Wofsy, S. C., Dunn, A. L., Law, B. E., Campbell, J. L., Oechel, W. C.,
696 Kwon, H. J., Meyers, T. P., Small, E. E., Kurc, S. A., and Gamon, J. A.: Site-level evaluation of
697 satellite-based global terrestrial gross primary production and net primary production monitoring,
698 *Global Change Biol.*, 11, 666-684, 2005.

699 Turner, D. P., Ritts, W. D., and Cohen, W. B.: Evaluation of MODIS NPP and GPP products across
700 multiple biomes, *Remote Sens. Environ.*, 102, 282-293, 2006.

701 United Nations: Sahel Regional Strategy Mid-Year Review 2013 New York, 1-59, 2013.

702 Veenendaal, E. M., Kolle, O., and Lloyd, J.: Seasonal variation in energy fluxes and carbon dioxide
703 exchange for a broadleaved semi-arid savanna (Mopane woodland) in Southern Africa, *Global
704 Change Biol.*, 10, 318-328, 2004.

705 Velluet, C., Demarty, J., Cappelaere, B., Braud, I., Issoufou, H. B. A., Boulain, N., Ramier, D.,
706 Mainassara, I., Charvet, G., Boucher, M., Chazarin, J. P., Oï, M., Yahou, H., Maidaji, B., Arpin-
707 Pont, F., Benarrosh, N., Mahamane, A., Nazoumou, Y., Favreau, G., and Seghieri, J.: Building a
708 field- and model-based climatology of local water and energy cycles in the cultivated Sahel; annual
709 budgets and seasonality, *Hydrol. Earth Syst. Sci.*, 18, 5001-5024, 10.5194/hess-18-5001-2014, 2014.

710 Yoder, B. J., and Pettigrew-Crosby, R. E.: Predicting nitrogen and chlorophyll content and
711 concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales, *Remote Sens.
712 Environ.*, 53, 199-211, [http://dx.doi.org/10.1016/0034-4257\(95\)00135-N](http://dx.doi.org/10.1016/0034-4257(95)00135-N), 1995.

713 Zhang, Y., Guanter, L., Berry, J. A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., Voigt, M.,
714 and Köhler, P.: Estimation of vegetation photosynthetic capacity from space-based measurements
715 of chlorophyll fluorescence for terrestrial biosphere models, *Global Change Biol.*, 20, 3727-3742,
716 10.1111/gcb.12664, 2014.

719

Tables

720

Table 1. Description of the six measurement sites including location, soil type, ecosystem type and dominant species.

Measurement site	Coordinates	Soil type	Ecosystem	Dominant species
Agoufou ^a (ML-AgG, Mali)	15.34°N, 1.48°W	Sandy ferruginous Arenosol	Open woody savannah (4% tree cover)	Trees: <i>Acacia spp.</i> , <i>Balanites aegyptiaca</i> , <i>Combretum glutinosum</i> Herbs: <i>Zornia glochidiata</i> , <i>Cenchrus biflorus</i> , <i>Aristida mutabilis</i> , <i>Tragus berteronianus</i>
Dahra ^b (SN-Dah, Senegal)	15.40°N, 15.43°W	Sandy luvic arenosol	Grassland/shrubland Savanna (3% tree cover)	Trees: <i>Acacia spp.</i> , <i>Balanites aegyptiaca</i> Herbs: <i>Zornia latifolia</i> , <i>Aristida adscensionis</i> , <i>Cenchrus biflorus</i>
Demokeya ^c (SD-Dem, Sudan)	13.28°N, 30.48°E	Cambic Arenosol	Sparse acacia savannah (7% tree cover)	Trees: <i>Acacia spp.</i> , Herbs: <i>Aristida pallida</i> , <i>Eragrostis tremula</i> , <i>Cenchrus biflorus</i>
Kelma ^a (ML-Kem, Mali)	15.22°N, 1.57°W	Clay soil depression	Open acacia forest (90% tree cover)	Trees: <i>Acacia seyal</i> , <i>Acacia nilotica</i> , <i>Balanites aegyptiaca</i> Herbs: <i>Sporobolus hevolvus</i> , <i>Echinochloa colona</i> , <i>Aeschinomene sensitiva</i> <i>Guiera senegalensis</i>
Wankama Fallow ^d (NE-WaF, Niger)	13.65°N, 2.63°E	Sandy ferruginous Arenosol	Fallow bush	
Wankama Millet ^e (NE-WaM, Niger)	13.64°N, 2.63°E	Sandy ferruginous Arenosol	Millet crop	<i>Pennisetum glaucum</i>

721

^a(Timouk et al., 2009)

722

^b(Tagesson et al., 2015b)

723

^c(Sjöström et al., 2009)

724

^d(Velluet et al., 2014)

725

^e(Boulain et al., 2009)

Table 2. Correlation between intra-annual dynamics in photosynthetic capacity (F_{opt} ; $F_{\text{opt_frac}}$ for all sites), quantum efficiency (α ; α_{frac} for all sites), and the different vegetation indices for the six measurement sites (Fig. 1). Values are averages ± 1 standard deviation from 200 bootstrapping runs. The bold values are the indices with the strongest correlation. EVI is the enhanced vegetation index, NDVI is the normalized difference vegetation index, RDVI is the renormalized difference vegetation index, SIWSI is the shortwave infrared water stress index. SIWSI₁₂ is based on the MODIS Bidirectional Reflectance Distribution Functions (NBAR) band 2 and band 5, whereas SIWSI₁₆ is based on MODIS NBAR band 2 and band 6.

Measurement site	F_{opt}					α				
	EVI	NDVI	RDVI	SIWSI ₁₂	SIWSI ₁₆	EVI	NDVI	RDVI	SIWSI ₁₂	SIWSI ₁₆
ML-AgG	0.89 \pm 0.02	0.87 \pm 0.02	0.95 \pm 0.01	-0.95\pm0.01	-0.93 \pm 0.02	0.92 \pm 0.02	0.91 \pm 0.01	0.96\pm0.01	-0.94 \pm 0.01	-0.88 \pm 0.02
SN-Dah	0.92 \pm 0.005	0.91 \pm 0.01	0.96 \pm 0.003	-0.96\pm0.004	-0.93 \pm 0.01	0.89 \pm 0.01	0.90 \pm 0.01	0.93\pm0.01	-0.92 \pm 0.01	-0.87 \pm 0.01
SD-Dem	0.81 \pm 0.01	0.78 \pm 0.01	0.91 \pm 0.01	-0.93\pm0.01	-0.90 \pm 0.01	0.76 \pm 0.02	0.73 \pm 0.02	0.86\pm0.01	-0.82 \pm 0.02	-0.79 \pm 0.02
MA-Kem	0.77 \pm 0.02	0.83 \pm 0.02	0.95 \pm 0.01	-0.95\pm0.01	-0.90 \pm 0.02	0.69 \pm 0.05	0.73 \pm 0.04	0.80\pm0.03	-0.77 \pm 0.03	-0.76 \pm 0.03
NE-WaF	0.87 \pm 0.02	0.81 \pm 0.02	0.78 \pm 0.02	-0.90\pm0.01	-0.80 \pm 0.02	0.89\pm0.01	0.84 \pm 0.01	0.85 \pm 0.01	-0.88 \pm 0.01	-0.79 \pm 0.01
NE-WaM	0.41 \pm 0.05	0.50 \pm 0.04	0.72\pm0.03	-0.55 \pm 0.04	-0.43 \pm 0.05	0.72 \pm 0.02	0.76 \pm 0.02	0.81\pm0.01	-0.75 \pm 0.01	-0.72 \pm 0.01
All sites	0.86 \pm 0.0	0.79 \pm 0.0	0.90\pm0.0	0.75 \pm 0.0	0.70 \pm 0.0	0.83 \pm 0.01	0.80 \pm 0.01	0.86\pm0.01	0.62 \pm 0.01	0.54 \pm 0.01

Table 3. Statistics for the regression tree analysis. The regression tree analysis was used for studying relationships between intra-annual dynamics in the the photosynthetic capacity (F_{opt} ; F_{opt_frac} for all sites) and quantum efficiency (α ; α_{frac} for all sites) and the explanatory variables for the six measurement sites (Fig. 1). The pruning level is the number of splits of the regression tree and an indication of complexity of the system.

Measurement site	Explanatory variables:					Pruning level	R^2
	1	2	3	4	5		
F_{opt}							
ML-AgG	SIWSI ₁₂	Tair	PAR	SWC		16	0.98
SN-Dah	SIWSI ₁₂	SWC	VPD	Tair	PAR	84	0.98
SD-Dem	SIWSI ₁₂	VPD	SWC	Tair	PAR	33	0.97
ML-Kem	SIWSI ₁₂	PAR	Tair	VPD		22	0.98
NE-WaF	SIWSI ₁₂	SWC	VPD	Tair		14	0.92
NE-WaM	RDVI	SWC	VPD	Tair		18	0.75
All sites	RDVI	SWC	Tair	VPD		16	0.87
α							
ML-AgG	RDVI					3	0.95
SN-Dah	RDVI	VPD	SWC	Tair	PAR	21	0.93
SD-Dem	RDVI	SWC	PAR	Tair		16	0.93
ML-Kem	RDVI	Tair				4	0.75
NE-WaF	EVI	SWC	VPD			10	0.90
NE-WaM	RDVI	SWC	VPD	Tair		15	0.86
All sites	RDVI	SWC	VPD	Tair		16	0.84

Table 4. Annual peak values of quantum efficiency (α_{peak} ; $\mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$) and photosynthetic capacity ($F_{\text{opt_peak}}$; $\mu\text{mol CO}_2 \text{m}^{-2} \text{s}^{-1}$) for the six measurement sites (Fig. 1). The peak values are the 2 week running mean with highest annual value.

Measurement site	Year	α_{peak}	$F_{\text{opt_peak}}$
ML-AgG	2007	0.0396	24.5
SN-Dah	2010	0.0638	50.0
	2011	0.0507	42.3
	2012	0.0480	39.2
	2013	0.0549	40.0
SD-Dem	2007	0.0257	16.5
	2008	0.0327	21.0
	2009	0.0368	16.5
ML-Kem	2007	0.0526	33.5
NE-WaF	2005	0.0273	18.2
	2006	0.0413	21.0
NE-WaM	2005	0.0252	10.6
	2006	0.0200	10.1
Average		0.0399	26.4

Table 5. Correlation matrix between annual peak values of photosynthetic capacity ($F_{\text{opt_peak}}$) and quantum efficiency (α_{peak}) and measured environmental variables. P is annual rainfall; T_{air} is yearly averaged air temperature at 2 m height; SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth; Rh is yearly averaged relative humidity; VPD is yearly averaged vapour pressure deficit; R_g is yearly averaged incoming global radiation; N and C cont. are soil nitrogen and carbon contents; $\text{NDVI}_{\text{peak}}$ is annual peak normalized difference vegetation index (NDVI); EVI_{peak} is annual peak enhanced vegetation index (EVI); $\text{RDVI}_{\text{peak}}$ is annual peak renormalized difference vegetation index (RDVI); $\text{SIWSI}_{12\text{peak}}$ is annual peak short wave infrared water stress index based on MODIS NBAR band 2 and band 5; and $\text{SIWSI}_{16\text{peak}}$ is annual peak short wave infrared water stress index based on MODIS NBAR band 2 and band 6. Sample size was 13 for all except the marked explanatory variables.

Explanatory variable	$F_{\text{opt_peak}}$	α_{peak}
Meteorological data		
P (mm)	0.24±0.26	0.13±0.27
T_{air} (°C)	-0.07±0.25	-0.01±0.25
SWC (%) ^a	0.33±0.25	0.16±0.27
Rh (%)	0.73±0.16*	0.60±0.19
VPD (hPa)	0.20±0.26	0.15±0.30
R_g (W m ⁻²)	-0.48±0.21	-0.41±0.24
Biomass and edaphic data		
Biomass (g DW m ⁻²) ^a	0.77±0.15*	0.74±0.14*
C3/C4 ratio	-0.05±0.26	0.06±0.30
N cont. (%) ^b	0.22±0.11	0.35±0.14
C cont. (%) ^b	0.89±0.06**	0.87±0.07**
Earth observation data		
$\text{NDVI}_{\text{peak}}$	0.94±0.05**	0.87±0.07*
EVI_{peak}	0.93±0.04**	0.87±0.07**
$\text{RDVI}_{\text{peak}}$	0.93±0.04**	0.89±0.07**
$\text{SIWSI}_{12\text{peak}}$	0.85±0.08**	0.84±0.08**
$\text{SIWSI}_{16\text{peak}}$	0.67±0.12*	0.65±0.15*
Photosynthetic variables		
F_{opt}	-	0.94±0.03**

^asample size equals 11.

^bsample size equals 9.

* significant at 0.05 level.

** significant at 0.01 level

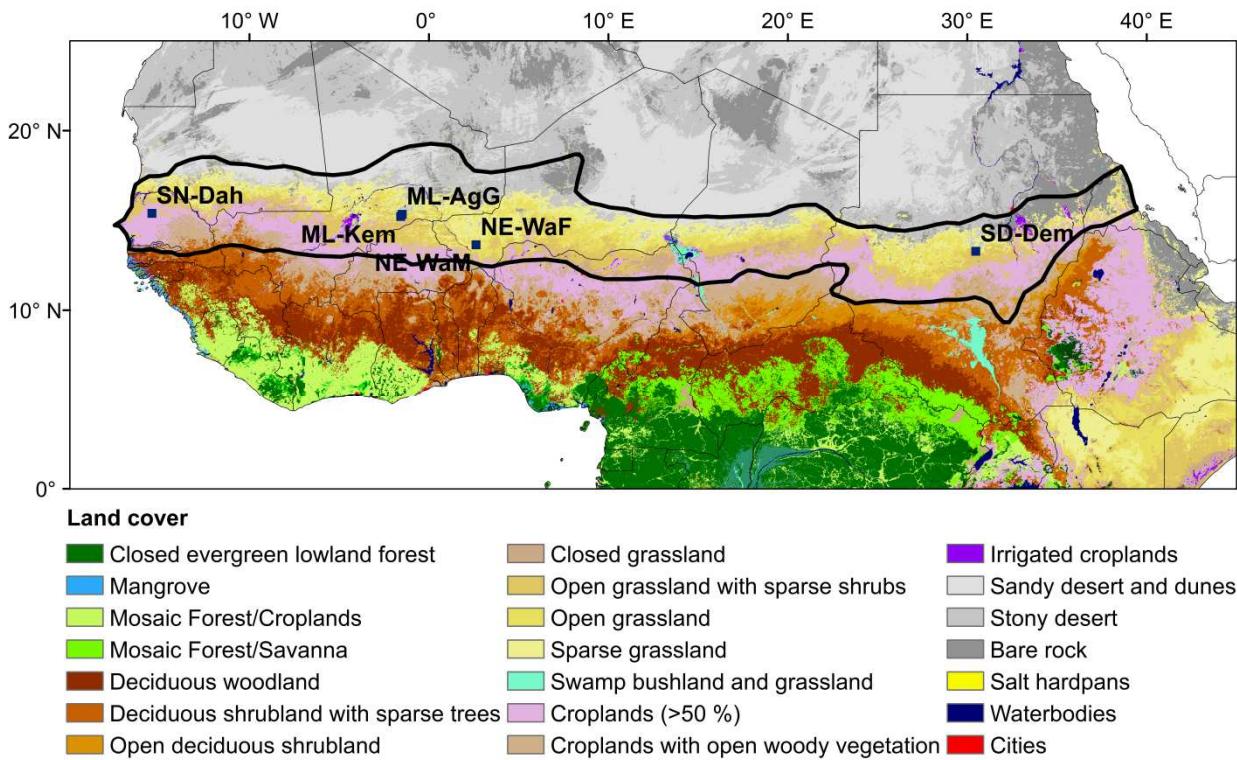
Table 6. Statistics regarding the evaluation of the gross primary production (GPP) model for the six measurement sites (Fig. 1). In situ and modelled GPP are averages ± 1 standard deviation. RMSE is the root-mean-squares-error, and slope, intercept and R^2 is from the fitted ordinary least squares linear regression.

Measurement site	In situ GPP ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	Modelled GPP ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	RMSE ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	slope	Intercept ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	R^2
ML-AgG	5.35 \pm 6.38	5.97 \pm 5.80	2.48 \pm 0.10	0.84 \pm 0.003	1.46 \pm 0.01	0.86 \pm 0.002
SN-Dah	9.39 \pm 10.17	8.87 \pm 9.67	3.99 \pm 1.34	0.88 \pm 0.002	0.62 \pm 0.01	0.85 \pm 0.001
SD-Dem	4.26 \pm 4.55	3.98 \pm 3.90	3.15 \pm 1.06	0.63 \pm 0.003	1.31 \pm 0.007	0.54 \pm 0.02
ML-Kem	11.16 \pm 8.02	10.52 \pm 9.22	4.35 \pm 1.23	1.02 \pm 0.003	-0.82 \pm 0.03	0.78 \pm 0.002
NE-WaF	5.77 \pm 4.17	6.63 \pm 3.53	2.47 \pm 1.05	0.70 \pm 0.005	2.58 \pm 0.02	0.69 \pm 0.003
NE-WaM	3.04 \pm 1.93	6.35 \pm 3.47	4.12 \pm 0.99	1.31 \pm 0.004	2.37 \pm 0.02	0.53 \pm 0.003
Average	6.73 \pm 7.72	7.02 \pm 7.39	3.68 \pm 0.55	0.83 \pm 0.07	1.34 \pm 0.82	0.84 \pm 0.07

Table 7. The parameters for Eq. 13 that was used in the final gross primary production (GPP) model. RMSE is the root mean square error, and R^2 is the coefficient of determination for the regression models predicting the different variables.

Parameter	Value	RMSE	R^2
k_{Fopt}	79.6 ± 6.3		
m_{Fopt}	-7.3 ± 3.2	5.1 ± 1.3	0.89 ± 0.05
l_{Fopt}	3.51 ± 0.19		
n_{Fopt}	0.03 ± 0.006	0.15 ± 0.02	0.88 ± 0.06
α	0.16 ± 0.02		
m_α	-0.014 ± 0.007	0.0069 ± 0.0021	0.81 ± 0.10
l_α	3.75 ± 0.27		
n_α	0.02 ± 0.007	0.20 ± 0.02	0.80 ± 0.10

Figures



5 **Figure 1.** Land cover classes for the Sahel and the location of the six measurement sites included in the study. The land cover classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG), Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Wankama Fallow (NE-WaF), and Wankama Millet (NE-WaM). The thick black line is the borders of the Sahel based on the isohytes 150 and 700 mm of annual precipitation (Prince et al., 1995).

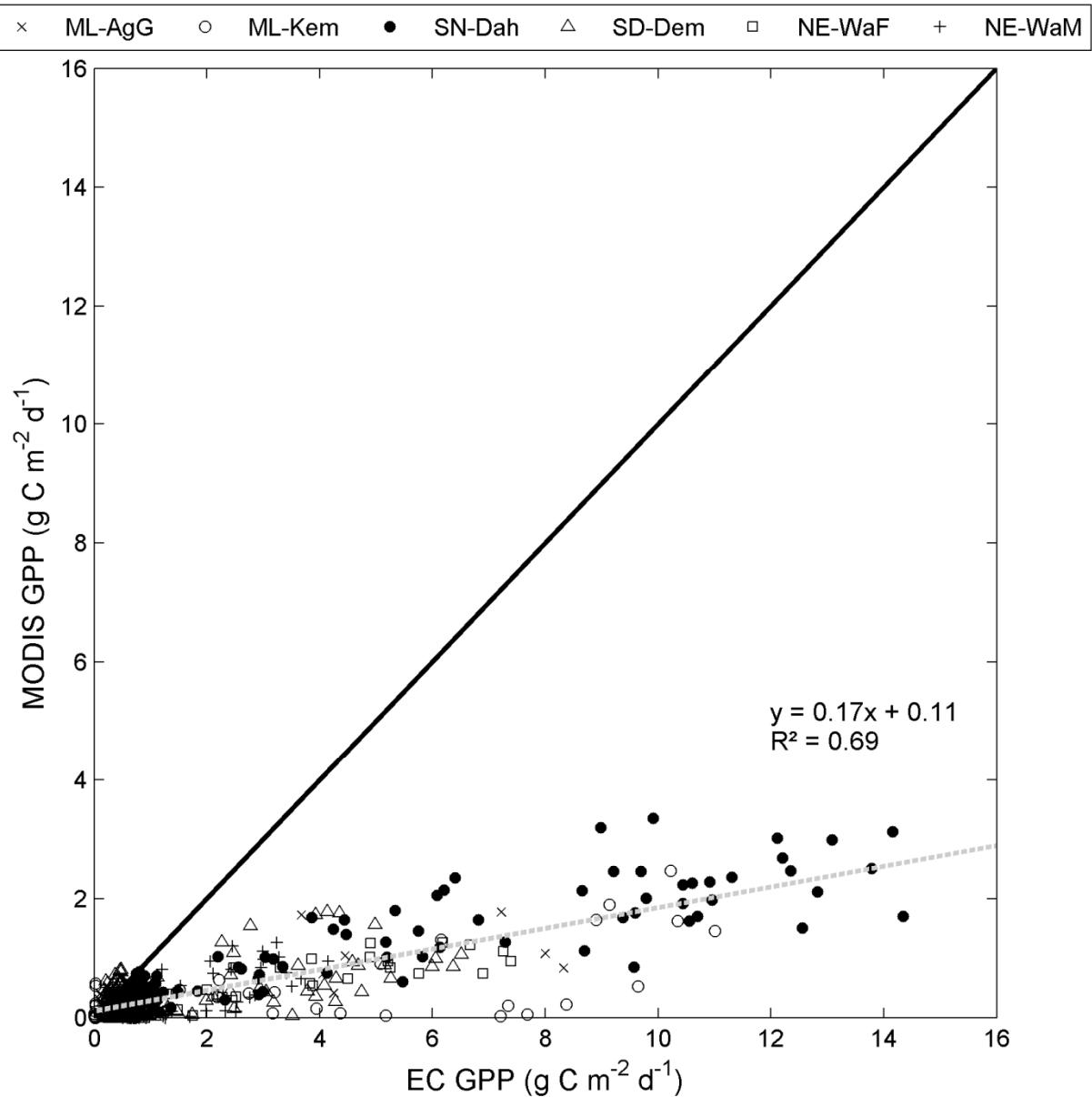


Figure 2. Evaluation of the MODIS based GPP product MOD17A2H collection 6 against eddy covariance based GPP from the six measurement sites (Fig. 1) across the Sahel. The thick black line shows the one-to-one ratio, and the grey dotted line is the fitted ordinary least square linear regression.

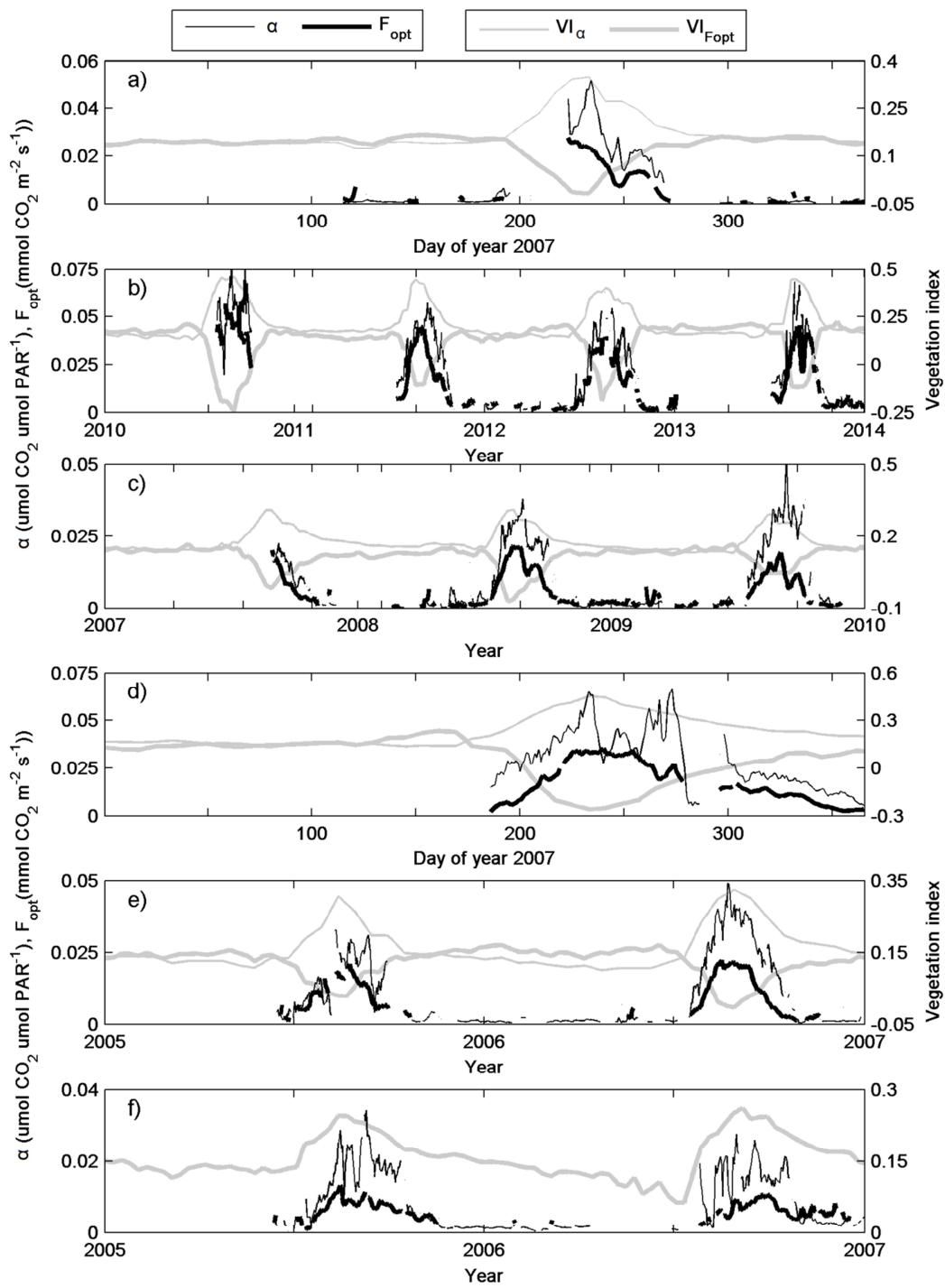


Figure 3. Dynamics in photosynthetic capacity (F_{opt}) and quantum efficiency (α) for the six measurement sites. Included is also dynamics in the vegetation indices with highest correlation to the intra-annual dynamics in F_{opt} (VI_{Fopt}) and to quantum efficiency (VI_{α}) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM).

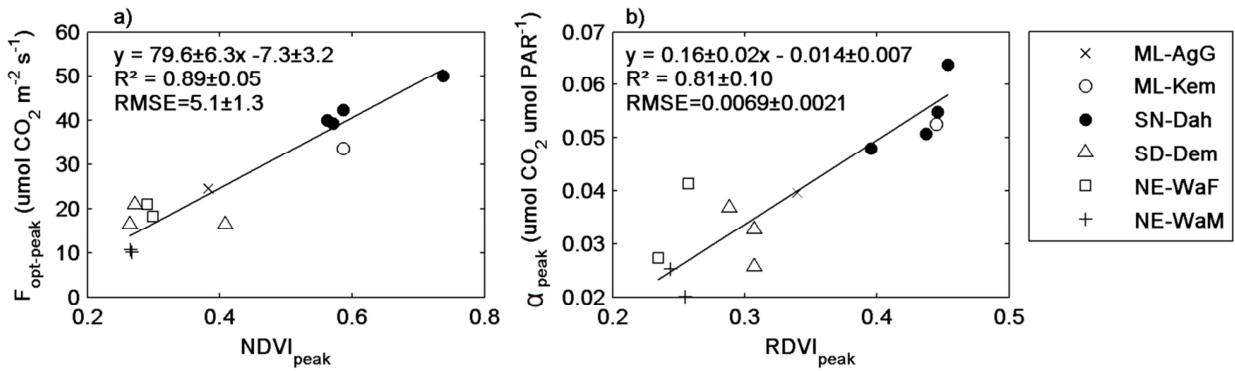


Figure 4. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of a) photosynthetic capacity ($F_{\text{opt_peak}}$) and b) quantum efficiency (α_{peak}) against peak values of normalized difference vegetation index ($\text{NDVI}_{\text{peak}}$) and renormalized difference vegetation index ($\text{RDVI}_{\text{peak}}$), respectively. The annual peak values were estimated by taking the annual maximum of a two week running mean.

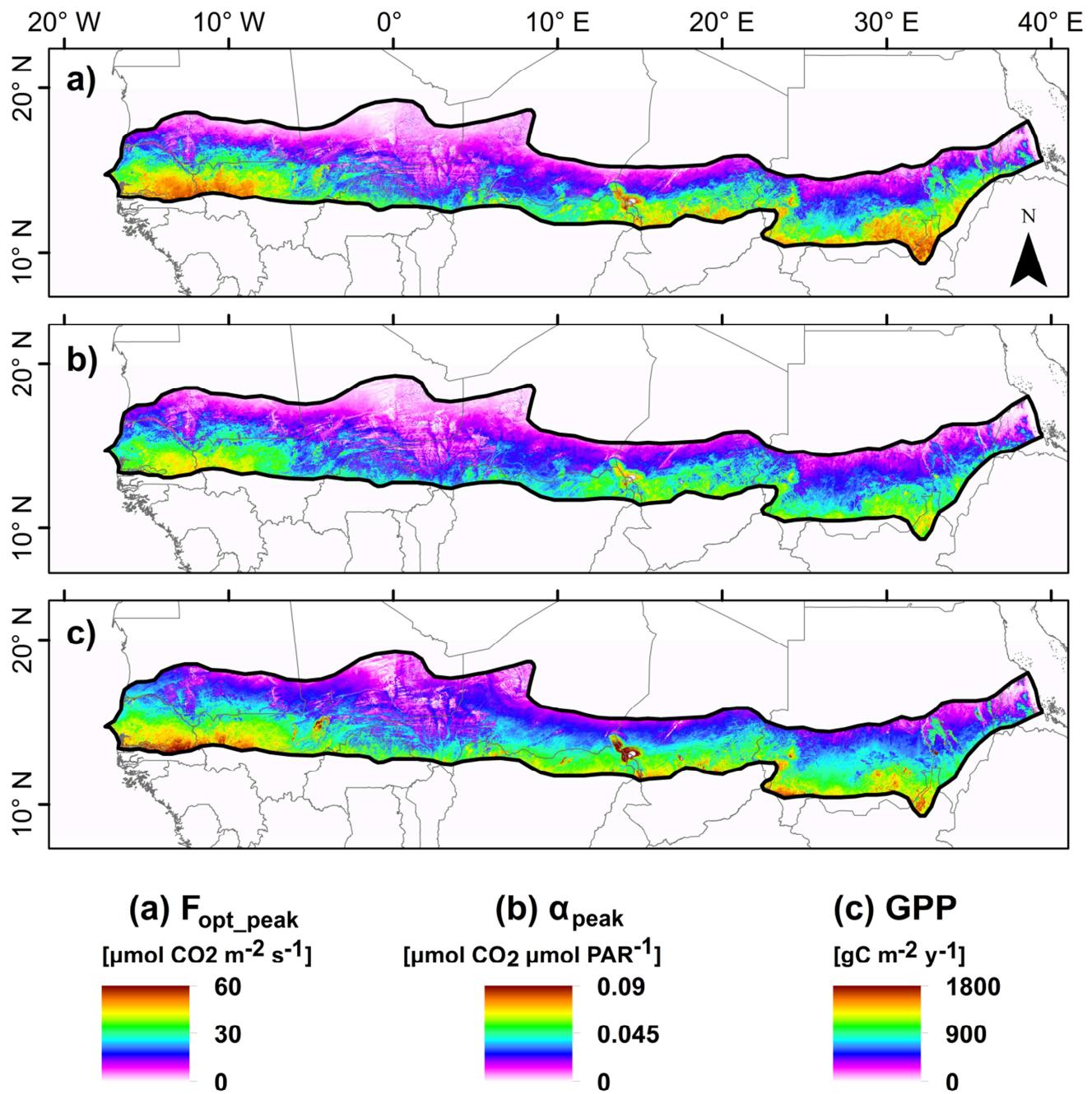


Figure 5. Maps of a) peak values of photosynthetic capacity (F_{opt_peak}) averaged for 2001-2014, b) peak values of quantum efficiency (α_{peak}) averaged for 2001-2014, and c) annual budgets of GPP averaged for 2001-2014.

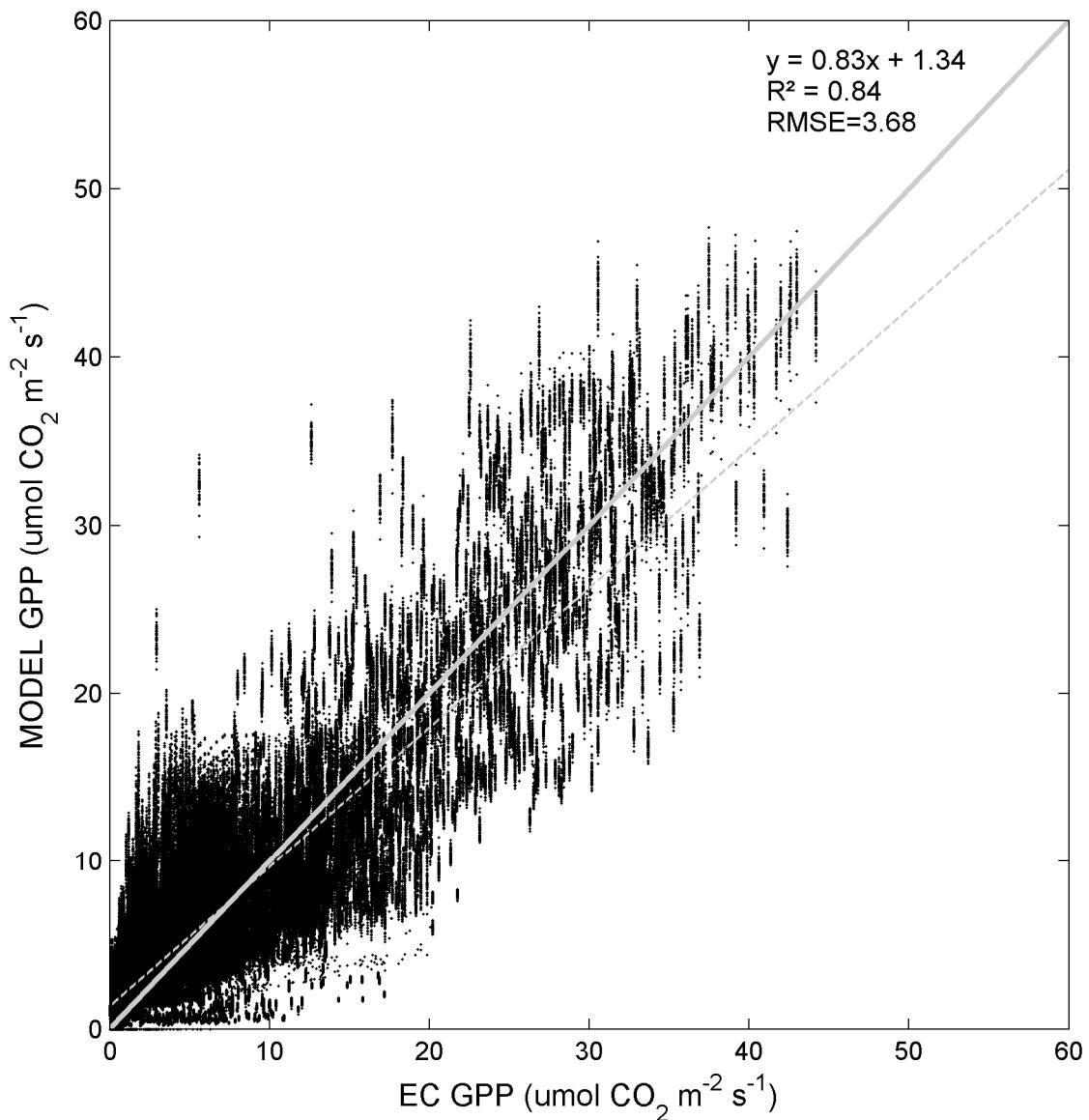


Figure 6. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP from all six measurement sites across the Sahel. The thick grey line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least square linear regression.

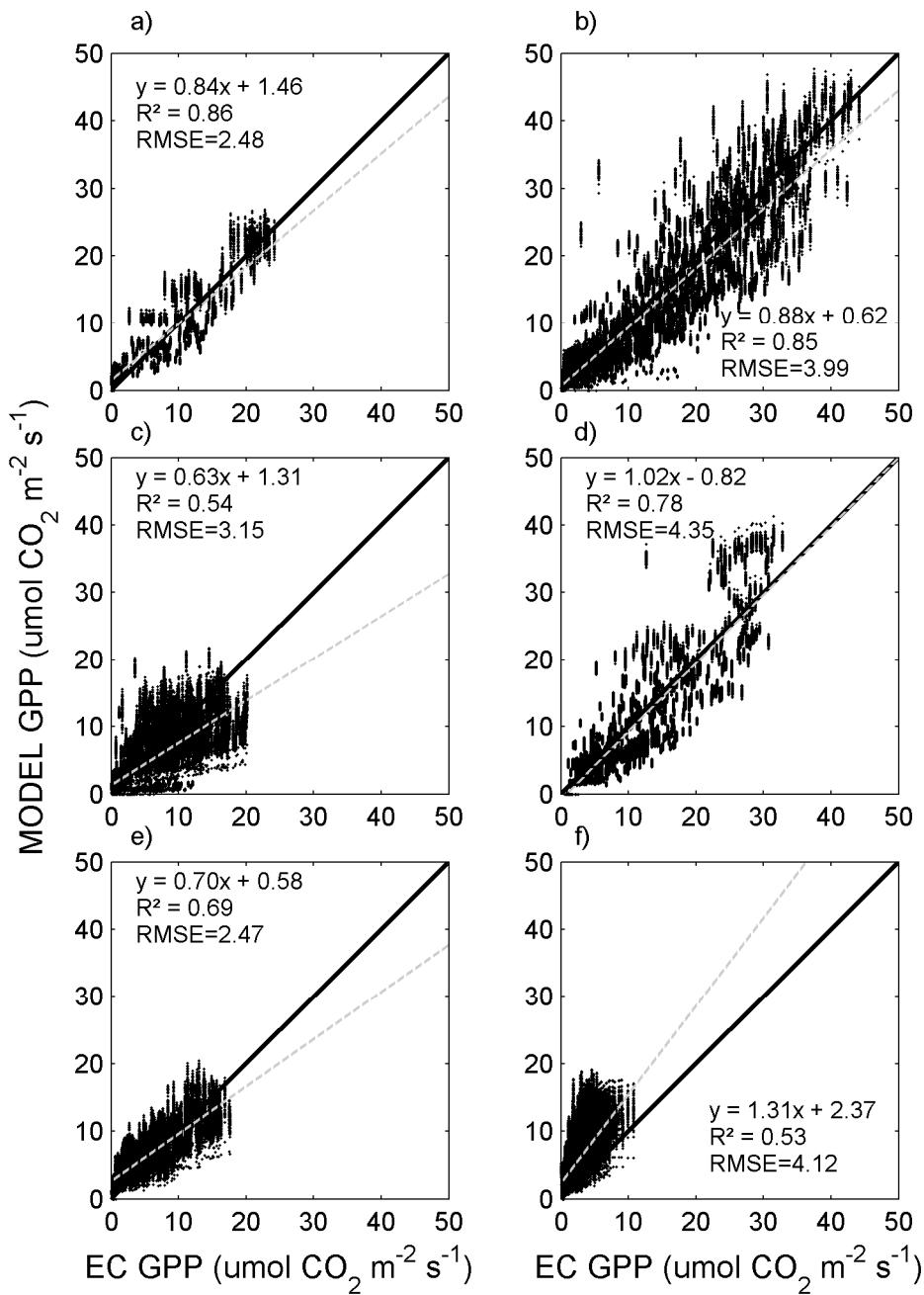


Figure 7. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP for the six sites across Sahel (Fig. 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least

square linear regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM).