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Abstract. It has been shown that vegetation growth in semi-arid regions is important for the variability of the global 20 

terrestrial CO2 sink, which indicates the strong need for improved understanding, and spatially explicit estimates of CO2 21 

uptake (gross primary production (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the 22 

MOD17A2H GPP (collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel; 2) to 23 

characterise relationships between spatial and temporal variability in EC based photosynthetic capacity (Fopt) and 24 

quantum efficiency (α) and earth observation (EO) based vegetation indices (normalized difference vegetation index 25 

(NDVI); renormalized difference vegetation index (RDVI); enhanced vegetation index (EVI); and shortwave infrared 26 

water stress index (SIWSI)); and  3) to study the applicability of EO up-scaled Fopt and α for GPP modelling purposes. 27 

MOD17A2H GPP (collection 6) underestimated GPP strongly, most likely because maximum light use efficiency is set 28 

too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt was closely related to SIWSI 29 

being sensitive to equivalent water thickness, whereas α was closely related to RDVI affected by chlorophyll 30 

abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. 31 

Modelled GPP based on Fopt and α up-scaled using EO based indices reproduced in situ GPP well for all except a 32 

cropped site that was strongly impacted by anthropogenic land use. Up-scaled GPP for Sahel 2001-2014 was 736±39 g 33 

C m-2 y-1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; 34 

incorporating EO-based Fopt and α in to dynamic global vegetation models could improve global estimates of vegetation 35 

production, ecosystem processes and biogeochemical and hydrological cycles. 36 

 37 
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1 Introduction 40 

Vegetation growth in semi-arid regions is an important sink for fossil fuel emissions. Mean carbon dioxide (CO2) 41 

uptake by terrestrial ecosystems is dominated by highly productive lands, mainly tropical forests, whereas semi-arid 42 

regions are the main biome driving its inter-annual variability (Ahlström et al., 2015; Poulter et al., 2014). Semi-arid 43 

regions even contribute to 60% of the long term trend in the global terrestrial C sink (Ahlström et al., 2015). It is thus 44 

important to understand long-term variability of vegetation growth in semi-arid areas and their response to 45 

environmental conditions to better quantify and forecast effects of climate change. 46 

   Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna in the 47 

South. The region has experienced numerous severe droughts during the last decades that resulted in region-wide 48 

famines in 1972-1973 and 1984–1985 and localized food shortages across the region in 1990, 2002, 2004, 2011 and 49 

2012 (Abdi et al., 2014; United Nations, 2013). Vegetation production is thereby an important ecosystem service for 50 

livelihood in Sahel, but it is under threat. The region experiences a strong population growth, increasing the demand on 51 

ecosystem services due to cropland expansion, increased pasture stocking rates and fuelwood extraction (Abdi et al., 52 

2014).  53 

   At the same time as we have reports of declining vegetation production, we have contradicting reports of greening of 54 

the Sahel based on earth observation (EO) data (Dardel et al., 2014; Fensholt et al., 2013). The greening of Sahel has 55 

mainly been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s 56 

(Hickler et al., 2005). Climate is thus another important factor regulating vegetation production. Semi-arid regions, such 57 

as Sahel, are particularly vulnerable to climate fluctuations due to their dependency to moisture conditions. 58 

   Estimation of gross primary production (GPP), i.e. uptake of atmospheric CO2 by vegetation, is still a major challenge 59 

within remote sensing of ecosystem services. Gross primary production is a main driver of ecosystem services such as 60 

climate regulation, carbon (C) sequestration, C storage, food production, or livestock grassland production. Within EO, 61 

spatial quantification of GPP generally involves light use efficiency (LUE), defined as the conversion efficiency of 62 

absorbed solar light into CO2 uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space and time due 63 

to factors such as plant functional type, drought and temperature, nutrient levels and physiological limitations of 64 

photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has been applied 65 

using various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994), or by modifying a 66 

maximum LUE using meteorological variables (Running et al., 2004).  67 

   An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging 68 

Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation 69 

(PAR) is estimated as a product of the fraction of PAR absorbed by green vegetation (FPAR from MOD15A2) 70 

multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A 71 

set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table 72 

(BPLUT). Then maximum LUE is modified depending on air temperature (Tair) and vapor pressure deficit (VPD) 73 

(Running et al., 2004). Sjöström et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa, and showed 74 
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that it underestimated GPP for semi-arid savannas in Sahel. Explanations for this underestimation were that the assigned 75 

maximum LUE from BPLUT was set too low and uncertainties in the FPAR (MOD15A2) product. Recently, a new 76 

collection of MOD17A2 at 500 m spatial resolution was released (MOD17A2H; collection 6) with an updated BPLUT, 77 

updated GMAO meteorological data,  improved quality control and gap filling of the FPAR data from MOD15A2 78 

(Running and Zhao, 2015).  79 

   It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et 80 

al., 2005). Additionally, the linearity assumed by the LUE model is usually not found  as the response of GPP to 81 

incoming light follows more of an asymptotic curve (Cannell and Thornley, 1998). Investigating other methods for 82 

remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of 83 

LUE we focus on the light response function of GPP at canopy scale, and spatial and temporal variation of its two main 84 

parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; Fopt), and the initial slope of 85 

the light response function (canopy-scale quantum efficiency; α) (Falge et al., 2001; Tagesson et al., 2015a). 86 

Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO2 during photosynthesis 87 

(µmol CO2 m
-2 s-1) whereas α is the amount of CO2 fixed per incoming PAR (µmol CO2 µmol PAR-1). Just to clarify the 88 

difference in LUE and α in this study; LUE (µmol CO2 µmol APAR-1) is the slope of a linear fit between CO2 uptake 89 

and absorbed PAR, whereas α (µmol CO2 µmol PAR-1) is the initial slope of an asymptotic curve against incoming 90 

PAR. 91 

   It has been proven that Fopt and α are closely related to chlorophyll abundance due to their coupling with the electron 92 

transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems water availability is generally considered to be 93 

the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al., 94 

2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed 95 

vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and 96 

Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study we will analyse if EO vegetation indices can be 97 

used for up-scaling Fopt and α and investigate if this could offer a promising way to map GPP in semi-arid areas. This 98 

potential will be analysed by the use of detailed ground observations from six eddy covariance (EC) flux tower sites 99 

across Sahel.  100 

The three aims of this study are: 101 

1) To investigate if the recently released MOD17A2H GPP (collection 6) product is better at capturing GPP for 102 

Sahel than collection 5.1. We hypothesise that MOD17A2H GPP (collection 6) product will estimate GPP well 103 

for the six Sahelian EC sites, because of  major changes done in comparison to collection 5.1  (Running and 104 

Zhao, 2015).  105 

2) To characterize the relationships between spatial and temporal variability in Fopt and α and remotely sensed 106 

vegetation indices. We hypothesise that EO vegetation indices that are closely related to chlorophyll 107 

abundance will be most strongly coupled with spatial and inter-annual dynamics in Fopt and α, whereas 108 

vegetation indices closely related to equivalent water thickness will be most strongly coupled with intra-annual 109 

dynamics in Fopt and α across Sahel. 110 

3) To evaluate the applicability of a GPP model based on the light response function using EO vegetation indices 111 

and incoming PAR as input data. 112 

 113 



4 
 

2 Materials and Methods 114 

2.1 Site description  115 

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards Sahara 116 

and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohyets, respectively 117 

(Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by species of 118 

Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses such as Schoenefeldia gracilis, 119 

Dactyloctenium aegypticum, Aristida mutabilis, and Cenchrus biflorus dominate the herbaceous layer, but perennial 120 

grasses such as Andropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de Ridder et 121 

al., 1982). From the FLUXNET database (Baldocchi et al., 2001) we selected the six available measurement sites with 122 

EC based CO2 flux data from Sahel (Table 1; Fig. 1). The sites represent a variety of ecosystems present in the region, 123 

from dry fallow bush savanna to seasonally inundated acacia forest. For a full description of the measurement sites, we 124 

refer to Tagesson et al. (2016a) and references in Table 1.  125 

<Table 1> 126 

<Figure 1> 127 

 128 

2.2 Data collection 129 

2.2.1 Eddy covariance and hydrometeorological in situ data 130 

Eddy covariance and hydrometeorological data originating from the years between 2005 and 2013 were collected from 131 

the principal investigators of the measurement sites (Tagesson et al., 2016a). The EC sensor set-up consisted of open-132 

path CO2/H2O infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate and statistics 133 

were calculated for 30-min periods. For a full description of sensor set up and post processing of EC data, see 134 

references in Table 1. Final fluxes were filtered according to quality flags provided by FLUXNET and outliers were 135 

filtered according to Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any 136 

gap-filling or partitioning of NEE to GPP and ecosystem respiration. The collected hydrometeorological data were: air 137 

temperature (Tair; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 m depth (SWC; % volumetric 138 

water content), incoming global radiation (Rg; W m-2), incoming photosynthetically active radiation (PAR; µmol m-2 s-139 
1), VPD (hPa), peak dry weight biomass (g dry weight m-2), C3/C4 species ratio, and soil conditions (nitrogen and C 140 

concentration; %). For a full description of collected data and sensor set-up, see Tagesson et al. (2016a).  141 

 142 

2.2.2 Earth Observation data and gridded ancillary data 143 

Composite products from MODIS/Terra covering Sahel were acquired at Reverb ECHO (NASA, 2016).  Collected 144 

products were GPP (MOD17A2H; collection 6), nadir bidirectional reflectance distribution function adjusted 145 

reflectance (NBAR) (8-day composites; MCD43A4; collection 5.1) at 500*500 m2 spatial resolution, the normalized 146 

difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (16-day composites; MOD13Q1; 147 

collection 6) at 250*250 m2 spatial resolution. The NBAR product was preferred over the reflectance product 148 

(MOD09A1), in order to avoid variability caused by varying sun and sensor viewing geometry (Huber et al., 2014; 149 

Tagesson et al., 2015c). We extracted the median of 3x3 pixels centred at the location of each EC tower. Time series of 150 

EO products were filtered according to MODIS quality control data; MOD17A2H is a gap-filled and filtered product, 151 
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QC data from MCD43A2 were used for filtering of MCD43A4; and bit 2-5 (highest –decreasing quality) was used for 152 

MOD13Q1. Finally, data were gap-filled to daily values using linear interpolation. 153 

   We downloaded ERA Interim reanalysis PAR at the ground surface (W m-2) with a spatial resolution of 0.25°×0.25° 154 

accumulated for each 3-hour period 2000-2015 from the European Centre for Medium-Range Weather Forecasts 155 

(ECMWF) (Dee et al., 2011; ECMWF, 2016a).  156 

 157 

2.3 Data handling 158 

2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 159 

 To estimate daily values of EC based Fopt and α, the asymptotic Mitscherlich light-response function was fitted between 160 

daytime NEE and incoming PAR using a 7-day moving window with a 1-day time step: 161 

d
F

PARα

opt R)e(1)(FNEE opt +−×−=












 ×−

         (1)
 

162 

where Fopt is CO2 uptake at light saturation (photosynthetic capacity; µmol CO2 m
-2 s-1), Rd is dark respiration 163 

(µmol CO2 m
-2 s-1), and α is the initial slope of the light response curve (quantum efficiency; µmol CO2 µmol PAR-1) 164 

(Falge et al., 2001). By subtracting Rd from Eq. 1, the function was forced through zero and GPP was thereby estimated. 165 

To assure high quality of fitted parameters, parameters were excluded from the analysis when fitting was insignificant 166 

(p-value>0.05), and when they were out of range (Fopt and α >peak value of the rainy season times 1.2). Additionally, 167 

outliers were filtered following the method by Papale et al. (2006) using a 30-day moving window with a 1-day time 168 

step.  169 

 170 

2.3.2 Vegetation indices 171 

The maximum absorption in red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a 172 

and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to chlorophyll 173 

abundance. By far the most common vegetation index is NDVI (Rouse et al., 1974):  174 

( )
( )redNIR

redNIR

ρρ

ρρ
NDVI

+
−=

          (2) 
175 

where ρNIR is the reflectance factor in near infrared (NIR) band (band 2) and ρred is the reflectance factor in the red band 176 

(band 1). Near infrared radiance is reflected by leaf cells since absorption of these wavelengths would result in 177 

overheating of the plant whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al., 1965). 178 

Normalization is done to reduce effects of atmospheric errors, solar zenith angles, and sensor viewing geometry, as well 179 

as increasing the vegetation signal (Qi et al., 1994; Inoue et al., 2008).  180 

   A well-known deficiency of NDVI is problems of index saturation at high biomass because absorption of red light at 181 

~670 nm peaks at higher biomass loads whereas NIR reflectance continues to increase due to multiple scattering effects 182 

(Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing atmospheric and soil background influences, EVI 183 

is designed to increases the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al., 184 

2002).  185 

( )
( )LρCρCρ

ρρ
GEVI

blue2red1NIR

redNIR

+−+
−

=         
(3) 

186 
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where ρblue is the reflectance factor in the blue band (band 3). The coefficients C1=6 and C2=7.5 correct for atmospheric 187 

influences, while L=1 adjust for the canopy background. The factor G=2.5 is a gain factor. 188 

   Another attempt to overcome problems of NDVI saturation was proposed by Roujean and Breon (1995) who 189 

suggested the renormalized difference vegetation index (RDVI) that combines advantages of DVI (NIR-red) and NDVI 190 

for low and high vegetation cover, respectively:  191 

( )
( )redNIR

redNIR

ρρ

ρρ
RDVI

+
−

=           (4)
 

192 

As a non-linear index, RDVI is not only less sensitive to variations in geometrical and optical properties of unknown 193 

foliage but also less affected by solar and viewing geometry (Broge and Leblanc, 2001). RDVI was calculated based on 194 

NBAR bands 1 and 2. 195 

   The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly 196 

sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave 197 

infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid 198 

environments:  199 

( )
( )12SWIRNIR

12SWIRNIR
12

ρρ

ρρ
SIWSI

+
−

=          (5) 200 

( )
( )16SWIRNIR

16SWIRNIR
16

ρρ

ρρ
SIWSI

+
−

=          (6) 201 

where ρswir12 is NBAR band 5 (1230-1250 nm) and ρswir16 is NBAR band 6 (1628-1652 nm). As the vegetation water 202 

content increases, reflectance in SWIR decreases indicating that low and high SIWSI values point to sufficient water 203 

conditions and drought stress, respectively. 204 

 205 

2.3.3 Incoming PAR across Sahel 206 

A modified version of the ERA Interim reanalysis PAR was used in the current study as an error in the code producing 207 

these PAR estimates was identified by the data distributor causing PAR values to be too low (ECMWF, 2016b). 208 

Accordingly, incoming PAR at the ground surface from ERA Interim was systematically underestimated even though it 209 

followed the pattern of PAR measured at the six Sahelian EC sites (Fig. S1 in supplementary material). In order to 210 

correct for this error, we fitted and applied an ordinary least square linear regression between in situ PAR and ERA 211 

Interim PAR (Fig. S1). The produced PAR from this relationship is at the same level as in situ PAR and should be at a 212 

correct level even though the original ERA Interim PAR is actually produced from the red and near infrared part of the 213 

spectrum.   214 

 215 

2.4 Data analysis 216 

2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with 217 

explanatory variables 218 

The coupling between intra-annual dynamics in Fopt and α and the vegetation indices for the different measurement sites 219 

were studied using Pearson correlation analysis. As part of the correlation analysis, we used bootstrap simulations with 220 

200 iterations from which mean and standard deviation of the correlation coefficients were calculated (Richter et al., 221 
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2012). Relationships between intra-annual dynamics in Fopt and α and the vegetation indices for all sites combined were 222 

also analysed. In the analysis for all sites, data were normalised in order to avoid influence of spatial and inter-annual 223 

variability. Time series of ratios of Fopt and α (Fopt_frac and αfrac) against the annual peak values (Fopt_peak and αpeak; see 224 

below for calculation of annual peak values) were estimated for all sites: 225 

opt_peak

opt
opt_frac F

F
F =           (7) 226 

peak
frac

α

α
α =            (8) 227 

The same standardisation procedure was used for all vegetation indices (VIfrac): 228 

peak
frac VI

VI
VI =            (9) 229 

where VIpeak is the annual peak values of the vegetation indices (14 days running mean with highest annual value). The 230 

coupling between αfrac and Fopt_frac and the different VIfrac were examined using Pearson correlation analysis for all sites. 231 

   Regression trees were used to fill gaps in the daily estimates of Fopt and α. One hundred tree sizes were chosen based 232 

on 100 cross validation runs, and these trees were then used for estimating Fopt and α following the method in De'ath 233 

and Fabricius (2000). We used SWC, VPD, Tair, PAR, and the vegetation index with strongest correlation with intra-234 

annual dynamics as explanatory variables in the analysis. In the analysis for all sites, the same standardisation procedure 235 

as done for Fopt, α, and the vegetation indices was done for the hydrometeorological variables. The 100 Fopt and α output 236 

subsets from the regression trees were averaged and used for filling gaps in the times series of Fopt and α. From these 237 

time-series we estimated annual peak values of Fopt and α (Fopt_peak and αpeak) as the 14-day running mean with highest 238 

annual value. To investigate spatial and inter-annual variability in Fopt and α across the measurement sites of the Sahel, 239 

Fopt_peak and αpeak were correlated with the annual sum of P, yearly means of Tair, SWC, RH, VPD, Rg, annual peak 240 

values of biomass, soil nitrogen and C concentrations, C3/C4 ratio, and VIpeak using Pearson linear correlations. 241 

 242 

2.4.2 Parameterisation and evaluation of the GPP model and evaluation of the MODIS GPP  243 

Based on Eq. 1 and outcome of the statistical analysis previously described under subsection 2.4.1 (for results see 244 

subsect. 3.2), a model for estimating GPP across Sahel was created: 245 

)e(1FGPP optF

PARα

opt













 ×−

−×−=           (10)
 

246 

Firstly, Fopt_peak and αpeak were estimated spatially and inter-annually using linear regression functions fitted against the 247 

vegetation indices with strongest relationships to spatial and inter-annual variability in Fopt_peak and αpeak for all sites. 248 

Secondly, exponential regression functions were established for Fopt_frac and αfrac with the vegetation index with the 249 

strongest relationships to intra-annual variability of Fopt_frac and αfrac for all sites. By combining these relationships, Fopt 250 

and α can be calculated for any day of year and for any point in space across Sahel:  251 

( ) ( )( )fracFopt RDVIl
FoptFoptpeakFoptopt_fracopt_peakopt enmNDVIkFFF

××+×=×=      (11) 252 

( ) ( )( )fracα RDVIl
ααpeakαfracpeak enmRDVIkααα

××+×=×=        (12) 253 
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where kFopt and kα are slopes and mFopt and mα are intercepts of the linear regressions giving Fopt_peak and αpeak, 254 

respectively; lFopt and lα are coefficients and nFopt and nα are intercepts of the exponential regressions giving Fopt_frac and 255 

αfrac, respectively. Equation 11 and 12 were inserted into Eq. 10 and GPP were thereby estimated as: 256 

( )
( )

( ) ( )( )( )
( ) ( )( )

( )( )
)e1

enmNDVIke(1FFGPP

FoptfracFoptFoptpeakFopt

fracRDVIαl
ααpeakα

fracFoptopt_fracopt_peak

fracpeak

nRDVIlmNDVIk

PARenmRDVIk

RDVIl
FoptFoptpeakFopt

FF

PARαα

opt_fracopt_peak



















−×

×+×−=−××−=















+×+×
××+×−

×













×
××−

×
  (13) 257 

    A bootstrap simulation methodology with 200 iterations was used when fitting the least-square regression functions 258 

for parameterisation of the GPP model (Richter et al., 2012). For each of the iterations, some of the EC sites were 259 

included and some were left-out. The bootstrap simulations generated 200 sets of kFopt, kα, mFopt, mα, lFopt, lα, nFopt, nα, 260 

and coefficient of determination (R2), from which the medians and the standard deviations were estimated. Possible 261 

errors (e.g. random sampling errors, aerosols, electrical sensor noise, filtering and gap-filling errors, clouds, and satellite 262 

sensor degradation) can be present in both the predictor and the response variables. Hence, we selected reduced major 263 

axis regressions to account for errors in both predictor and response variables when fitting the regression functions. The 264 

regression models were validated against the left-out sites within the bootstrap simulation methodology by calculating 265 

the root-mean-square-error (RMSE), and by fitting an ordinary least squares linear regression between modelled and 266 

independent variables. 267 

   Similarly, the MODIS GPP product (MOD17A2H, collection 6) was evaluated against independent GPP from the EC 268 

sites by calculating RMSE, and by fitting an ordinary least squares linear regression. 269 

 270 

3 Results 271 

3.1 Evaluation of the MODIS GPP product 272 

There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and independent 273 

GPP (slope=0.17; intercept=0.11 g C m-2 d-1; R2=0.69; n=598). However, MOD17A2H strongly underestimated 274 

independent GPP (Fig. 2) resulting in high RMSE (2.69 g C m-2 d-1). It can be seen that some points for the Kelma site 275 

were quite low for MOD17A2H, whereas they were relatively high for the independent GPP (Fig. 2). Kelma is an 276 

inundated Acacia forest located in a clay soil depression. These differentiated values were found in the beginning of the 277 

dry season, when the depression was still inundated, whereas the larger area was turning dry.  278 

<Figure 2> 279 

 280 

3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 281 

Intra-annual dynamics in Fopt and α differed in amplitude, but were otherwise similar across the measurement sites in 282 

Sahel (Fig. 3). There was no green ground vegetation during the dry season, and the low photosynthetic activity was 283 

due to few evergreen trees. This resulted in low values for both Fopt and α during the dry season. The vegetation 284 

responded strongly to rainfall, and both Fopt and α increased during the early phase of the rainy season. Generally, Fopt 285 

peaked slightly earlier than α (average± 1 standard deviation: 7±10 days) (Fig. 3).  286 

<Figure 3>  287 
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   All vegetation indices described well intra-annual dynamics in Fopt for all sites (Table 2). SIWSI12 had the highest 288 

correlation for all sites except Wankama Millet, where it was RDVI. When all sites were combined, all indices 289 

described well seasonality in Fopt, but RDVI had the strongest correlation (Table 2).  290 

      Intra-annual dynamics in α were also closely coupled to intra-annual dynamics in the vegetation indices for all sites 291 

(Table 2). For α, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow where it 292 

was EVI. When all sites were combined all indices described well intra-annual dynamics in α, but RDVI was still the 293 

index with strongest relationship (Table 2).  294 

<Table 2>   295 

   The regression trees used for gap-filling explained well the intra-annual dynamics in Fopt and α for all sites (Table 3; 296 

Fig. S2 in Supplementary material). The regression trees explained intra-annual dynamics in Fopt better than in α, and 297 

multi-year sites were better predicted than single year sites (Fig. S2). The main explanatory variables coupled to intra-298 

annual dynamics in Fopt for all sites across Sahel were in the order of RDVI, SWC, VPD, Tair, and PAR; and for α they 299 

were RDVI, SWC, VPD and Tair (Table 3). The strong relationship to SWC and VPD indicates drought stress during 300 

periods of low rainfall. For all sites across Sahel, incorporating hydrometeorological variables increased the ability to 301 

determine intra-annual dynamics in Fopt and α compared to the ordinary least squares linear regressions against 302 

vegetation indices (Table 2, data given as r; Table 3; Fig. 3 and Fig. S2). For all sites, incorporation of these variables 303 

increased R2 from 0.81 to 0.87 and from 0.74 to 0.84, for Fopt and α respectively.  304 

<Table 3>  305 

 306 

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency 307 

Large spatial and inter-annual variability in Fopt_peak and αpeak were found across the six measurement sites in Sahel; 308 

Fopt_peak ranged between 10.1 µmol CO2 m
-2 s-1 (Wankama Millet 2005) and 50.0 µmol CO2 m

-2 s-1 (Dahra 2010), and 309 

αpeak ranged between 0.020 µmol CO2 µmol PAR-1 (Demokeya 2007) and 0.064 µmol CO2 µmol PAR-1 (Dahra 2010) 310 

(Table 4). The average two week running mean peak values of Fopt and α for all sites were 26.4 µmol CO2 m
-2 s-1 and 311 

0.040 µmol CO2 µmol PAR-1, respectively. All vegetation indices determined well spatial and inter-annual dynamics in 312 

Fopt_peak and αpeak (Table 5). NDVIpeak was most closely coupled with Fopt_peak whereas RDVIpeak was closest coupled with 313 

αpeak (Fig. 4). Fopt_peak also correlated well with peak dry weight biomass, C content in the soil, and RH, whereas αpeak 314 

also correlated well with peak dry weight biomass, and C content in the soil (Table 5).  315 

<Table 4> 316 

<Table 5> 317 

<Figure 4>  318 

 319 

3.4 Spatially extrapolated photosynthetic capacity, quantum efficiency, and gross primary production across 320 

Sahel and evaluation of the GPP model 321 

The spatially extrapolated Fopt, α and GPP averaged over Sahel for 2001-2014 were 22.5±1.7 µmol CO2 m
-2 s-1, 322 

0.030±0.002 µmol CO2 µmol PAR-1, and 736±39 g C m-2 y-1, respectively. At regional scale it can be seen that Fopt, α, 323 

and GPP decreased substantially with latitude (Fig. 5). Highest values were found in south-eastern Senegal, western 324 

Mali, in parts of southern Sudan and on the border between Sudan and South Sudan. Lowest values were found along 325 

the northernmost parts of Sahel on the border to Sahara in Mauritania, in northern Mali, and in northern Niger.  326 
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   Modelled GPP was similar to independent GPP on average, and there was a strong linear relationship between 327 

modelled GPP and independent GPP for all sites (Fig. 6; Table 6). However, when separating the evaluation between 328 

measurement sites, it can be seen that the model reproduced some sites better than others (Fig. 7; Table 6). Wankama 329 

Millet was generally overestimated whereas the model worked well on average for Demokeya but underestimated high 330 

values (Fig. 7; Table 6). Variability of independent GPP at the other sites was well reproduced by the model (Fig. 7; 331 

Table 6). The final parameters of the GPP model (Eq. 13) are given in Table 7. 332 

<Figure 5> 333 

<Figure 6> 334 

<Figure 7> 335 

< Table 6> 336 

< Table 7> 337 

 338 

4 Discussions 339 

Our hypothesis that vegetation indices closely related to equivalent water thickness (SIWSI) would be most strongly 340 

coupled with intra-annual dynamics in Fopt and α was not rejected for Fopt, since this was the case for all sites except for 341 

Wankama Millet (Table 2). However, our hypothesis was rejected for α, since it was more closely related to vegetation 342 

indices related to chlorophyll abundance (RDVI and EVI). In Sahel, soil moisture conditions in the early rainy season 343 

are important for vegetation growth and during this phase vegetation is especially vulnerable to drought conditions 344 

(Rockström and de Rouw, 1997; Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic capacity (Fopt) peaked 345 

earlier in the rainy season than α did (Fig. 3), thereby explaining the close relationship of Fopt to SIWSI. Leaf area index 346 

increased over the growing season and leaf area index is closely coupled with vegetation indices related to chlorophyll 347 

abundance (Tagesson et al., 2009). The increase in leaf area index increased canopy level quantum efficiency (α), which 348 

thereby explains the closer relationship of α to RDVI.  349 

   Our hypothesis that vegetation indices closely related to chlorophyll abundance would be most strongly coupled with 350 

spatial and inter-annual dynamics in Fopt and α was not rejected for either Fopt or α; NDVI, EVI, and RDVI all had close 351 

correlation with spatial and inter-annual dynamics in Fopt and α (Table 5). However, it was surprising that NDVIpeak had 352 

the strongest correlation with spatial and inter-annual variability for Fopt (Table 5). Both EVI and RDVI should be less 353 

sensitive to saturation effects than NDVI (Huete et al., 2002; Roujean and Breon, 1995), and based on this it can be 354 

assumed that peak values of these indices should have stronger relationships to peak values of Fopt and α. However, 355 

vegetation indices with a high sensitivity to changes in green biomass at high biomass loads, gets less sensitive to green 356 

biomass changes at low biomass loads (Huete et al., 2002). Peak leaf area index for ecosystems across Sahel is 357 

generally ~2 or less, whereas the saturation issue of NDVI generally starts at an leaf area index of about 2-5 358 

(Haboudane et al., 2004). 359 

   The Fopt_peak estimates from Agoufou, Demokeya, and the Wankama sites were similar whereas Dahra and Kelma 360 

values were high in relation to previously reported canopy-scale Fopt_peak from Sahel (~-8 to -23 µmol m-2 sec-1) (Hanan 361 

et al., 1998; Merbold et al., 2009; Moncrieff et al., 1997; Boulain et al., 2009; Levy et al., 1997; Monteny et al., 1997). 362 

These previous studies reported much lower Fopt at canopy scale than at leaf scale (e.g. Levy et al. (1997): 10 vs. 44 µmol 363 

m-2 sec-1; Boulain et al. (2009): 8 vs. 50 µmol m-2 sec-1). Leaf area index at Dahra and Kelma peaked at 2.1 and 2.7, 364 

respectively (Timouk et al., 2009; Tagesson et al., 2015a), and it was substantially higher than at the above-mentioned 365 
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sites. A possible explanation to high Fopt estimates at Dahra and Kelma could thereby be the higher leaf area index. 366 

Tagesson et al. (2016b) performed a quality check of the EC data due to the high net CO2 exchange measured at the 367 

Dahra field site and explained the high values by a combination of moderately dense herbaceous C4 ground vegetation, 368 

high soil nutrient availability, and a grazing pressure resulting in compensatory growth and fertilization effects. Another 369 

possible explanation could be that the West African Monsoon bring a humid layer of surface air from the Atlantic, 370 

possibly increasing vegetation production for the most western part of Sahel (Tagesson et al., 2016a).  371 

   Our model substantially overestimated GPP for Wankama Millet (Fig. 7f). Being a crop field, this site differed from 372 

the other studied sites by its species composition, ecosystem structure, as well as land and vegetation management. 373 

Crop fields in southwestern Niger are generally characterized by a rather low production resulting from decreased 374 

fertility and soil loss caused by intensive land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site 375 

may cause the model parameterised with observations from the other study sites without this strong anthropogenic 376 

influence to overestimate GPP at this site. Similar results were found by Boulain et al. (2009) when applying an up-377 

scaling model using leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow 378 

whereas it was less conclusive for Wankama Millet. The main explanation was low leaf area index in millet fields 379 

because of a low density of millet stands due to agricultural practice. There is extensive savanna clearing for food 380 

production in Sahel (Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further understand impacts 381 

of this land cover change on vegetation production and land atmosphere exchange processes, it is of urgent need for 382 

more study sites covering cropped areas in this region. 383 

   In Demokeya, GPP was slightly underestimated for the year 2008 (Fig. 7c) because modelled Fopt was much lower 384 

than the actual measured value in 2008 (the thick black line in Fig. 4). An improvement of the model could be to 385 

incorporate some parameters that constrain or enhance Fopt depending on environmental stress. Indeed, the regression 386 

tree analysis indicated that incorporating hydrometeorological variables increased the ability to predict both Fopt and α. 387 

On the other hand, for spatial upscaling purposes, it has been shown that including modelled hydrometeorological 388 

constraints on LUE decreases the ability to predict vegetation production due to the incorporated uncertainty in these 389 

modelled variables (Fensholt et al., 2006; Ma et al., 2014). For spatial upscaling to regional scales it is therefore better 390 

to simply use relationships to EO data. This is particularly the case for Sahel, one of the largest dryland areas in the 391 

world that includes only a few sites of hydrometeorological observations. 392 

   The pattern seen in the spatially explicit GPP budgets (Fig. 5c) may be influenced by a range of biophysical and 393 

anthropogenic factors. The clear North-South gradient is expected given the strong North-South rainfall gradient in 394 

Sahel. The West African Monsoon mentioned above could also be an explanation to high GPP values in the western 395 

part of Sahel, where values were relatively high in relation to GPP at similar latitudes in the central and eastern Sahel 396 

(Fig. 5c). The areas with highest GPP are sparsely populated woodlands or shrubby savanna with a relatively dense tree 397 

cover (Brandt et al., 2016). However, the produced maps should be used with caution as they are based on up-scaling of 398 

the only six available EC sites that exist in the region; especially given the issues related to the cropped fields discussed 399 

above. Still, the average GPP budget for the entire Sahel 2001-2014 was close to an average annual GPP budget as 400 

estimated for these six sites (692±89 g C m-2 y-1) (Tagesson et al., 2016a). The range of GPP budgets in Fig. 5c is also 401 

similar to previous annual GPP budgets reported from other savanna areas across the world (Veenendaal et al., 2004; 402 

Chen et al., 2003; Kanniah et al., 2010; Chen et al., 2016).  403 
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   Although MOD17A2 GPP has previously been shown to relatively well capture GPP in several different ecosystems 404 

(Turner et al., 2006; Turner et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown 405 

to be underestimated for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjöström et al., 2013). GPP of 406 

Sahelian drylands have not been well captured by MOD17A2 (Sjöström et al., 2013; Fensholt et al., 2006), and as we 407 

have shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product (Fig. 2). The main 408 

reason for this pronounced underestimation is that maximum LUE is set to 0.84 g C MJ-1 (open shrubland; Demokeya) 409 

and 0.86 g C MJ-1 (grassland; Agoufou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLUT, i.e. 410 

much lower than maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 g C MJ-1; 411 

range: 1.58-3.50 g C MJ-1) (Sjöström et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C MJ-1 412 

(Garbulsky et al., 2010), and a savanna site in Australia (1.26 g C MJ-1) (Kanniah et al., 2009). 413 

   Several dynamic global vegetation models have been used for decades to quantify GPP at different spatial and 414 

temporal scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the photosynthesis model 415 

by Farquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity (Zhang et al., 2014). 416 

This and several previous studies have shown that both photosynthetic capacity and efficiency (both α and LUE) can 417 

vary considerably between seasons as well as spatially, and both within and between vegetation types (Eamus et al., 418 

2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using 419 

broad values based on land cover classes, yet most models apply a constant value which can cause substantial 420 

inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that 421 

comprises several plant functional types (C3 and C4 species, and a large variability in tree/herbaceous vegetation 422 

fractions) (Scholes and Archer, 1997). This study indicates the strong applicability of EO as a tool for parameterising 423 

spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially 424 

explicit estimates of GPP at a high temporal and spatial resolution are essential for environmental change studies in 425 

Sahel and make a major asset for the analysis of changes in GPP, its relationship to climatic change and anthropogenic 426 

forcing, and estimations of ecosystem processes and biochemical and hydrological cycles.   427 
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Tables  719 

Table 1. Description of the six measurement sites including location, soil type, ecosystem type and dominant species. 720 
Measurement site Coordinates Soil type Ecosystem Dominant species 

Agoufoua 

(ML-AgG, Mali) 
15.34°N, 
1.48°W 

Sandy ferruginous 
Arenosol 

Open woody 
savannah (4% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca, 

Combretum glutinosum 
Herbs: Zornia glochidiata, 
Cenchrus biflorus, Aristida 

mutabilis, Tragus berteronianus 
Dahrab 

(SN-Dah, Senegal) 
15.40°N, 
15.43°W 

Sandy luvic 
arenosol 

Grassland/shrubland 
Savanna (3% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca 

Herbs: Zornia latifolia, Aristida 
adscensionis, Cenchrus biflorus 

Demokeyac 

(SD-Dem, Sudan) 
13.28°N, 
30.48°E 

Cambic Arenosol Sparse acacia 
savannah (7% tree 

cover) 

Trees: Acacia spp.,  
Herbs: Aristida pallida, 

Eragrostis tremula, Cenchrus 
biflorus 

Kelmaa 

(ML-Kem, Mali) 
15.22°N, 
1.57°W 

Clay soil depression Open acacia forest 
(90% tree cover) 

Trees: Acacia seyal, Acacia 
nilotica, Balanites aegyptiaca 
Herbs: Sporobolus hevolvus, 

Echinochloa colona, 
Aeschinomene sensitive 

Wankama Fallowd 

(NE-WaF, Niger) 
13.65°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Fallow bush Guiera senegalensis 

Wankama Millete 

(NE-WaM, Niger) 
13.64°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Millet crop Pennisetum glaucum 

a(Timouk et al., 2009) 721 
b(Tagesson et al., 2015b) 722 
c(Sjöström et al., 2009) 723 
d(Velluet et al., 2014) 724 
e(Boulain et al., 2009)725 
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Table 2. Correlation between intra-annual dynamics in photosynthetic capacity (Fopt; Fopt_frac for all sites), quantum efficiency (α; α_frac for all sites), and the different 

vegetation indices for the six measurement sites (Fig. 1). Values are averages±1 standard deviation from 200 bootstraping runs. The bold values are the indices with the 

strongest correlation. EVI is the enhanced vegetation index, NDVI is the normalized difference vegetation index, RDVI is the renormalized difference vegetation 

index, SIWSI is the shortwave infrared water stress index. SIWSI12 is based on the MODIS Bidirectional Reflectance Distribution Functions (NBAR) band 2 and band 

5, whereas SIWSI16 is based on MODIS NBAR band 2 and band 6.  

Measurement site Fopt α 
  EVI NDVI RDVI SIWSI12 SIWSI16 EVI NDVI RDVI SIWSI12 SIWSI16 

ML-AgG 0.89±0.02 0.87±0.02 0.95±0.01 -0.95±0.01 -0.93±0.02 0.92±0.02 0.91±0.01 0.96±0.01 -0.94±0.01 -0.88±0.02 
SN-Dah 0.92±0.005 0.91±0.01 0.96±0.003 -0.96±0.004 -0.93±0.01 0.89±0.01 0.90±0.01 0.93±0.01 -0.92±0.01 -0.87±0.01 
SD-Dem 0.81±0.01 0.78±0.01 0.91±0.01 -0.93±0.01 -0.90±0.01 0.76±0.02 0.73±0.02 0.86±0.01 -0.82±0.02 -0.79±0.02 
MA-Kem 0.77±0.02 0.83±0.02 0.95±0.01 -0.95±0.01 -0.90±0.02 0.69±0.05 0.73±0.04 0.80±0.03 -0.77±0.03 -0.76±0.03 
NE-WaF 0.87±0.02 0.81±0.02 0.78±0.02 -0.90±0.01 -0.80±0.02 0.89±0.01 0.84±0.01 0.85±0.01 -0.88±0.01 -0.79±0.01 
NE-WaM 0.41±0.05 0.50±0.04 0.72±0.03 -0.55±0.04 -0.43±0.05 0.72±0.02 0.76±0.02 0.81±0.01 -0.75±0.01 -0.72±0.01 

All sites  0.86±0.0 0.79±0.0 0.90±0.0 0.75±0.0 0.70±0.0 0.83±0.01 0.80±0.01 0.86±0.01 0.62±0.01 0.54±0.01 
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Table 3. Statistics for the regression tree analysis. The regression tree analysis was used for studying relationships 

between intra-annual dynamics in the the photosynthetic capacity (Fopt; Fopt_frac for all sites) and quantum efficiency (α; 

α_frac for all sites) and the explanatory variables for the six measurement sites (Fig. 1). The pruning level is the number 

of splits of the regression tree and an indication of complexity of the system. 

Measurement site 
Explanatory 
variables:     

Pruning 
level 

R2 

Fopt 1 2 3 4 5 
  

ML-AgG SIWSI12 Tair PAR SWC  16 0.98 

SN-Dah SIWSI12 SWC VPD Tair PAR 84 0.98 

SD-Dem SIWSI12 VPD SWC Tair PAR 33 0.97 

ML-Kem SIWSI12 PAR Tair VPD  22 0.98 

NE-WaF SIWSI12 SWC VPD Tair  14 0.92 

NE-WaM RDVI SWC VPD Tair  18 0.75 

All sites  RDVI SWC Tair VPD  16 0.87 

α 
       

ML-AgG RDVI  
   

3 0.95 

SN-Dah RDVI VPD SWC Tair PAR 21 0.93 

SD-Dem RDVI SWC PAR Tair  16 0.93 

ML-Kem RDVI Tair    4 0.75 

NE-WaF EVI SWC VPD   10 0.90 

NE-WaM RDVI SWC VPD Tair  15 0.86 

All sites RDVI SWC VPD Tair  16 0.84 
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Table 4. Annual peak values of quantum efficiency (αpeak; µmol CO2 µmol PAR-1) and photosynthetic capacity 

(Fopt_peak; µmol CO2 m
-2 s-1) for the six measurement sites (Fig. 1). The peak values are the 2 week running mean with 

highest annual value.  

Measurement site Year αpeak Fopt_peak 

ML-AgG 2007 0.0396 24.5 
SN-Dah 2010 0.0638 50.0 

2011 0.0507 42.3 
2012 0.0480 39.2 
2013 0.0549 40.0 

SD-Dem 2007 0.0257 16.5 
2008 0.0327 21.0 
2009 0.0368 16.5 

ML-Kem 2007 0.0526 33.5 
NE-WaF 2005 0.0273 18.2 

2006 0.0413 21.0 
NE-WaM 2005 0.0252 10.6 
  2006 0.0200 10.1 

Average   0.0399 26.4 
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Table 5. Correlation matrix between annual peak values of photosynthetic capacity (Fopt_peak) and quantum efficiency 

(αpeak) and measured environmental variables. P is annual rainfall; Tair is yearly averaged air temperature at 2 m height; 

SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth; Rh is yearly 

averaged relative humidity; VPD is yearly averaged vapour pressure deficit; Rg is yearly averaged incoming global 

radiation; N and C cont. are soil nitrogen and carbon contents; NDVIpeak is annual peak normalized difference 

vegetation index (NDVI); EVIpeak is annual peak enhanced vegetation index (EVI); RDVI peak is annual peak 

renormalized difference vegetation index (RDVI); SIWSI12peak is annual peak short wave infrared water stress index 

based on MODIS NBAR band 2 and band 5; and SIWSI16peak is annual peak short wave infrared water stress index 

based on MODIS NBAR band 2 and band 6. Sample size was 13 for all except the marked explanatory variables. 

 Explanatory variable Fopt_peak αpeak 

Meteorological data    
P (mm) 0.24±0.26 0.13±0.27 
Tair (°C) -0.07±0.25 -0.01±0.25 

SWC (%)a 0.33±0.25 0.16±0.27 

Rh (%) 0.73±0.16* 0.60±0.19 

VPD (hPa) 0.20±0.26 0.15±0.30 

Rg (W m-2) -0.48±0.21 -0.41±0.24 

Biomass and edaphic 
data 

  

Biomass (g DW m-2)a 0.77±0.15* 0.74±0.14* 
C3/C4 ratio -0.05±0.26 0.06±0.30 
N cont. (%)b 0.22±0.11 0.35±0.14 
C cont. (%)b 0.89±0.06**  0.87±0.07**  
Earth observation data   
NDVI peak 0.94±0.05**  0.87±0.07** 
EVIpeak 0.93±0.04**  0.87±0.07**  
RDVIpeak 0.93±0.04**  0.89±0.07**  
SIWSI12peak 0.85±0.08**  0.84±0.08**  
SIWSI16peak 0.67±0.12* 0.65±0.15* 

Photosynthetic 
variables 

  

Fopt - 0.94±0.03**  
asample size equals 11. 
bsample size equals 9. 
* significant at 0.05 level. 
** significant at 0.01 level 
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Table 6. Statistics regarding the evaluation of the gross primary production (GPP) model for the six measurement sites (Fig. 1). In situ and modelled GPP are averages 

± 1 standard deviation. RMSE is the root-mean-squares-error, and slope, intercept and R2 is from the fitted ordinary least squares linear regression. 

Measurement 
site 

In situ GPP 
(µmol CO2 m

-2 s-1) 
Modelled GPP 

(µmol CO2 m
-2 s-1) 

RMSE 
(µmol CO2 m

-2 s-1) slope 
Intercept 

(µmol CO2 m
-2 s-1) R2 

ML-AgG 5.35±6.38 5.97±5.80 2.48±0.10 0.84±0.003 1.46±0.01 0.86±0.002 
SN-Dah 9.39±10.17 8.87±9.67 3.99±1.34 0.88±0.002 0.62±0.01 0.85±0.001 
SD-Dem 4.26±4.55 3.98±3.90 3.15±1.06 0.63±0.003 1.31±0.007 0.54±0.02 
ML-Kem 11.16±8.02 10.52±9.22 4.35±1.23 1.02±0.003 -0.82±0.03 0.78±0.002 
NE-WaF 5.77±4.17 6.63±3.53 2.47±1.05 0.70±0.005 2.58±0.02 0.69±0.003 
NE-WaM 3.04±1.93 6.35±3.47 4.12±0.99 1.31±0.004 2.37±0.02 0.53±0.003 

Average 6.73±7.72 7.02±7.39 3.68±0.55 0.83±0.07 1.34±0.82 0.84±0.07 
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Table 7. The parameters for Eq. 13 that was used in the final gross primary production (GPP) model. RMSE is the root mean 

square error, and R2 is the coefficient of determination for the regression models predicting the different variables. 

Parameter Value RMSE R2 

kFopt  79.6±6.3 
5.1±1.3 0.89±0.05 

mFopt 
-7.3±3.2 

lFopt  3.51±0.19 
0.15±0.02 0.88±0.06 

nFopt 0.03±0.006 

α  0.16±0.02 
0.0069±0.0021 0.81±0.10 

m α 
-0.014±0.007 

l  α 3.75±0.27 
0.20±0.02 0.80±0.10 

n α 0.02±0.007 
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Figures 

 

 

Figure 1. Land cover classes for the Sahel and the location of the six measurement sites included in the study. The land 5 

cover classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG), 

Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Wankama Fallow (NE-WaF), and Wankama Millet (NE-WaM). 

The thick black line is the borders of the Sahel based on the isohytes 150 and 700 mm of annual precipitation (Prince et al., 

1995). 

 10 



27 
 
 

 

Figure 2. Evaluation of the MODIS based GPP product MOD17A2H collection 6 against eddy covariance based GPP from 

the six measurement sites (Fig. 1) across the Sahel. The thick black line shows the one-to-one ratio, and the grey dotted line 

is the fitted ordinary least square linear regression.  
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Figure 3. Dynamics in photosynthetic capacity (Fopt) and quantum efficiency (α) for the six measurement sites. Included is 

also dynamics in the vegetation indices with highest correlation to the intra-annual dynamics in Fopt (VI Fopt) and to quantum 

efficiency (VIα) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma 

(ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 
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Figure 4. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of a) photosynthetic capacity (Fopt_peak) 

and b) quantum efficiency (αpeak) against peak values of normalized difference vegetation index (NDVIpeak) and renormalized 5 

difference vegetation index (RDVIpeak), respectively. The annual peak values were estimated by taking the annual maximum 

of a two week running mean.  
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Figure 5. Maps of a) peak values of photosynthetic capacity (Fopt_peak) averaged for 2001-2014, b) peak values of quantum 

efficiency (αpeak) averaged for 2001-2014, and c) annual budgets of GPP averaged for 2001-2014.  
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Figure 6. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP from all six measurement 

sites across the Sahel. The thick grey line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary 

least square linear regression.  
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Figure 7. Evaluation of the modelled gross primary production (GPP) (Eq. 13) against in situ GPP for the six sites across 

Sahel (Fig. 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least 
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square linear regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma (ML-

Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 


