Interactive comment on "Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment" by Zhiguang Xu et al.

Anonymous Referee #1

Received and published: 25 October 2016

The present manuscript provides interesting and useful information on the influence of future ocean acidification and eutrophication on a golden tide alga, Sargasssum muticum. The authors suggested that future ocean acidification and eutrophication may promote the growth of S. muticum and thus occurrence of gold tide events however, ocean acidification and eutrophication may not boost the gold tides events synergistically. The authors discussed their results reasonably within a physiological and ecological context. The experiments were reasonably performed and described. The data analysis was satisfactory and the results were clearly presented. The conclusions were sufficiently justified. The figures and tables were all adequate and essential. Therefore, in my opinion, this manuscript is suited for publication in BIOGEOSCIENCES.

Response: We really appreciate these comments.

Anonymous Referee #2

Received and published: 26 October 2016

This is an interesting paper describing the combined effects of elevated CO2 (and hence ocean acidification) and elevated P levels on growth and physiology of Sargassum muticum. The work is well designed and executed and the data presented and discussed thoroughly, although English expression is a little strange in places.

Response: We sincerely thank the anonymous referee for these comments. Thanks to Dr. Douglas A. Campbell, English expression has been improved.

I do though draw the authors attention to a couple of points:

Line 239: It is stated that projected ocean acidification increased pCO2 by 138.29% (LP) and 134.08% (HP) but surely it is the changes in pCO2 that cause OA?

Response: We totally agree with the reviewer. The text has been corrected to "elevated pCO_2 decreased pH by 0.31 unit at both LP and HP, CO_3^{2-} by 45% (LP) and 45% (HP), but increased DIC by 10% (LP) and 9% (HP), HCO_3^{-} by 14% (LP) and 14% (HP), and CO_2 by 139% (LP) and 134% (HP)." at lines 238-241.

Line 348-9: Here it is stated that "The evidence above indicates that the CO2 in seawater should be carbon limited for marine macroalgae". This is based on the high k0.5 CO2 for Rubisco and the diffusive resistance to CO2 on seawater - that the k0.5 CO2 values for intact thalli are very much lower than those for Rubisco is prima facie evidence that an active CCM is present. More could be made of this and the fact that it appears CCM activity is not down regulated by the high CO2 conditions. The explanation on lines 359-61 that this is "mainly because of increased CO2 availability for Rubisco and depressed photorespiration at the elevated ratio of CO2 to O2" would not apply to P vs DIC curves.

Response: We do agree that most algae have an active CCM, contributing to much lower $K_{0.5}$ values for intact thalli in comparison with those for Rubisco. Meanwhile, we think the CCM was down regulated by increased pCO_2 in the present study based on the increased $K_{0.5}$ that is deemed as a signal of down regulation of CCMs (Giordano et al., 2005, Gao and Campbell, 2014). The lines 359-61 was not used to explain the P vs DIC curves but the decrease of photosynthetic affinity for DIC did not lead to reduced photosynthesis in *S. muticum*. We have clarified it to "But this decrease of photosynthesis in *S. muticum* compared to that at the lower pCO_2 did not lead to reduced photosynthesis in *S. muticum* compared to that at the lower pCO_2 in the present study, mainly because of increased CO_2 availability for Rubisco and depressed photorespiration at the elevated ratio of CO_2 to O_2 , which has been confirmed in red seaweed *Lomentaria articulate* (K übler et al., 1999)." at lines 358-362.

- Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms to elevated CO₂ and decreased pH: a review, Funct. Plant Biol., 41, 449-459, 2014. Giordano, M., Beardall, J. and Raven, J. A.: CO₂ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol., 56: 99-131, 2005.
- Kübler, J. E., Johnston, A. M., and Raven, J. A.: The effects of reduced and elevated CO₂ and O₂ on the seaweed *Lomentaria articulata*, Plant Cell & Environment, 22, 1303-1310, 1999.

The authors suggest in several places (e.g. lines 388-91) that the HC conditions may have down-regulated CCMs in S. muticum, but there is no evidence for this in their

data (Fig 3, Table 2).

Response: In a review (Gao and Campbell, 2014), it states: "Downregulation of CCMs can include decreased CO_2 affinity resulting in an increased requirement for pCO_2 to support photosynthesis, inhibition of carbonic anhydrase activity, depressed HCO_3^- transport, and downregulation of PEPCase and PEPCKase (Reinfelder et al. 2000; Giordano et al. 2005; Roberts et al. 2007a, 2007b; Raven 2010; Reinfelder 2011)." Giordano et al. (2005) also thought that high CO_2 could down regulate the CCM by suppressing expression of a high-affinity DIC state. Therefore, we think the increased $K_{0.5}$ could be considered as a hint for the down regulated CCM. In our study, the higher pCO_2 increased $K_{0.5}$ (Table 2) although the increase at the higher P level was not statistically significant.

Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms to elevated CO₂ and decreased pH: a review, Funct. Plant Biol., 41, 449-459, 2014. Giordano, M., Beardall, J. and Raven, J. A.: CO₂ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol., 56: 99-131, 2005.

D. Campbell (Referee) dcampbell@mta.ca Received and published: 31 October 2016

The authors grew an invasive Sargassum species under an ecophysiologically reasonable matrix of pCO2 and [phosphate]. They analyzed the growth rate, photosynthetic rates, nitrate uptake and reduction rates and composition of the algae. They show interactive effects of pCO2 and [phosphate].

The study is well designed and potentially interesting. The current discussion spends words on entirely speculative interpretations that might well be true, but which are not directly supported by the data presented. On the other hand, intriguing ratios and discrepancies in the presented results are not discussed. For example, how can algal nitrate uptake rates exceed measured nitrate reduction rates? Does the tissue store NO3- differentially depending upon conditions? Are there variable rates of denitrification in the media?

Response: We appreciate these comments. We believe our manuscript has been

improved by answering the reviewer's queries. Please see the following response for details.

What happens to the environmental effects upon photosynthesis if it is normalized to chlorophyll rather than fresh weight?

Response: The reviewer raised a valuable point. We have normalized photosynthesis rate to chl a. The net photosynthetic rates under different treatments were 135.4 \pm 27.0 (LCLP), 142.2 \pm 6.5 (LCHP), 161.1 \pm 4.4 (HCLP), and 193.0 \pm 7.6 (HCHP) μ mol O₂ mg⁻¹ chl a h⁻¹ respectively. The higher pCO₂ increased the net photosynthetic rate by 35% at HP and the higher P increased it by 20% at HC.

I offer some suggestions below for the authors. best regards, Doug Campbell

Abstract: 'the development of golden tides...' (not 'evolvement')

Response: Corrected.

39.31% etc. over precision. It is not possible to report such values to 1 part per 10,000 but that is what is implied by 39.31%

Response: It has been changed to 39%.

Introduction: '...it originates from Japan..." (not 'it origins...')

Response: Corrected.

Materials & Methods line 155: units for total alkalinity?

Response: We presume the reviewer meant the unit for salinity here. The unit for salinity has been developing. The Practical Salinity Scale (PSS) was defined in 1978 and later promulgated by the UNESCO/ICES/SCOR/IAPSO Joint Panel on Oceanographic Tables and Standards in Sidney, BC, Canada, 1-5 September 1980. Because it makes no sense to say the salinity is, for example, 35 PSS, the term Practical Salinity Unit (PSU) was introduced. However, the use of PSU is discouraged because salinity is by definition a dimensionless parameter. For now, most oceanographers follow the recommendation of the Scientific Committee for Oceanic Research (SCOR) that salinity be represented by a unitless number, as it's a unitless ratio and its measurement is now based on conductivity instead of the long time gone

determination of evaporated mass.

Line 195: Decrease in NO3- in the media could result from microbial denitrification? A cross check would be whether nitrate reductase activity matched 1;1 with decrease in NO3-2 in the media?

Response: The reviewer raised a point worthy of discussion. We agree that nitrate reductase activity should match 1:1 with decrease in NO₃ in the media, in theory. However, the undoupling between them is not uncommon and could be found in both microalgae (Collos 1982; Blasco et al., 1984) and macroalgae (Gordillo et al., 2001; Zou, 2005). One possible cause that leads to the NO₃ uptake from the media exceeding NO₃ reductase activity in the present study may be the intercellular NO₃ storage (Collos 1982; Viaroli et al., 1996). It has been reported that the NO₃ reductase activity (NRA) peak was 11-fold less than the NO₃ uptake rate in *Ulva* sp., suggesting that the reduction of NO₃ reductase to nitrite NO₂ by nitrate reductase was the rate-limiting step in NO₃⁻ assimilation (Lartigue and Sherman, 2005). Another reason might be the underestimation of NRA as the NO₂ release may be limited not only by NRA, but also by the diffusion rates of NO₃ into the cells and NO₂ out of the cells in the assay used in the present study (Lartigue and Sherman, 2002). As for the microbial denitrification, we presume there is less possibility that the additional decrease of NO₃ was caused by it. As far as we know, denitrification only takes place in anoxic environments while our cultures were aerated by ambient or CO₂ enriched air. Apparently, we do not have evidence to support these specific interpretations. To minimize the content of speculation, we would like to add one sentence to the text "It is worth noting that the nitrate uptake rates were commonly higher than the corresponding reduction rates of NO₃⁻ to nitrite NO₂⁻ by nitrate reductase in the present study, which might be due to the intercellular nitrate storage (Collos, 1982; Lartigue and Sherman, 2005) and the underestimation of RNA measured by the in situ assay (Lartigue and Sherman, 2002)." at lines 416-420.

- Blasco, D., MacIsaac, J. J., Packard, T. T, and Dugdale, R. C.: Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region, Limnol. Oceanogr., 29, 275-286, 1984.
- Collos Y.: Transient situations in nitrate assimilation by marine diatoms. III. Short-term uncoupling of nitrate uptake and reduction, J. Exp. Mar. Bio. Ecol., 62, 285-295, 1982.
- Gordillo, F. J. L., Niell, F. X., and Figueroa, F. L.: Non-photosynthetic enhancement of growth by high CO₂ level in the nitrophilic seaweed *Ulva rigida* C. Agardh (Chlorophyta), Planta, 213, 64-70, 2001.

- Lartigue, J., and Sherman, T. D.: Field assays for measuring nitrate reductase activity in *Enteromorpha* sp. (Chlorophyceae), *Ulva* sp. (Chlorophyceae), and *Gelidium* sp. (Rhodophyceae), J. Phycol., 38, 971-982, 2002.
- Lartigue, J., and Sherman, T. D.: Response of *Enteromorpha* sp. (Chlorophyceae) to a nitrate pulse: nitrate uptake, inorganic nitrogen storage and nitrate reductase activity, Mar. Ecol. Prog. Ser., 292,147-157, 2005.
- Viaroli, P., Naldi, M., Bondavalli, C. and Bencivelli, S. Growth of the seaweed *Ulva rigida* C. Agardh in relation to biomass densities, internal nutrient pools and external nutrient supply in the Sacca di Goro lagoon (Northern Italy), Hydrobiologia, 329, 93–103, 1996.
- Zou, D.: Effects of elevated atmospheric CO₂ on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, *Hizikia fusiforme* (Sargassaceae, Phaeophyta), Aquaculture, 250, 726-735, 2005.
- Fig. 3: There is an inhibition response in HCLP that is not apparent in other treatments.

Response: It appears that the last two points are lower than the two points before them but there are no statistical differences between these four points.

Fig. 4: Would a renormalization of photosynthetic rates (fig. 2) to chlorophyll content (fig. 4) eliminate some of the differences among treatments? I think maybe yes. Then some of the photosynthetic data can be explained by nutrient effects on content of photosynthetic units.

Response: The reviewer raised a valuable point. We have normalized photosynthesis rate to chl a. The net photosynthetic rates under different treatments were 135.4 \pm 27.0 (LCLP), 142.2 \pm 6.5 (LCHP), 161.1 \pm 4.4 (HCLP) and 193.0 \pm 7.6 (HCHP) μ mol O₂ mg⁻¹ chl a h⁻¹ respectively. The higher pCO₂ increased the net photosynthetic rate by 35% at HP and the higher P increased it by 20% at HC. Compared to the results normalized to fresh weight, it does eliminate the differences at LC or LP. We would say this renormalization could partially explain the effects of pCO₂ and P on photosynthetic rate. Meanwhile, to the best of our knowledge, the photosynthesis rate of macroalgae in most studies is normalized to fresh weight/dry weight. We hope we can keep the current results to compare our study with others'.

Fig. 5, Fig 6 There is a discrepancy. NO3- uptake from the media cannot exceed NO3- reductase rates, unless the tissue is storing NO3-.

Response: Yes. We think it is mainly because of the intercellular nitrate storage as explained in the above response.

Fig 2 vs. Fig 8 dark respiration = $\frac{1}{2}$ of photosynthetic rates?

Response: We realize that this ratio may be a little higher, particularly compared to microalgae. However, it might not be surprising for macroalgae. For instance, the ratio of respiration to photosynthesis varies between 0.14 and 0.54 in *Gracilaria lemaneiformis* (Zou and Gao, 2013), around 0.2–0.7 in *Hizikia fusiform* (Zou et al., 2011) and it could even be close to 1 in *Gracilaria tikvahiae* (Lapointe and Tenore, 1984), depending on different culture conditions.

- Lapointe, B. E., Tenore, K. R.: Dawes C J. Interactions between light and temperature on the physiological ecology of *Gracilaria tikvahiae* (Gigartinales: Rhodophyta). Mar. Biol., 80, 161-170, 1984.
- Zou, D., Gao, K.: Thermal acclimation of respiration and photosynthesis in the marine macroalga *Gracilaria lemaneiformis* (Gracilariales, Rhodophyta), J. Phycol., 49, 61-68, 2013.
- Zou D, Gao K, Luo H: Short and long term effects of elevated CO₂ on photosynthesis and respiration in the marine macroalga *Hizikia fusiformis* (Sargassaceae, Phaeophyta) grown at low and high n supplies, J. Phycol., 47, 87-97, 2011.

Results Lines 237-241 Over precision in reporting of results to 1 part in 10,000. This is a problem throughout.

Response: It has been revised to 1 part in 100 throughout the text.

Discussion Lines 428 to 440 are entirely speculative. They might be true, but there is no evidence supporting these specific interpretations, in this paper.

Response: We agree with the reviewer. The length of speculation needs to be reduced, although it can supply a direction for future research. It has been shortened to seven lines and it reads now "The increased soluble protein and decreased NRA at the condition of higher pCO_2 and higher P suggest some H⁺ transport-related protein, such as plasma membrane H⁺-ATPase, might be synthesized to counteract the acid-base perturbation caused by increased pCO_2 and H⁺. The additional production of H⁺ transport-related protein like plasma membrane H⁺-ATPase could competitively decrease the synthesis of nitrate reductase. This hypothesis needs further experimental

evidence to stand even though it could explain the results in the present study." at lines 431-440.

- 1 Physiological response of a golden tide alga (Sargassum muticum) to the
- 2 interaction of ocean acidification and phosphorus enrichment

3

4 Zhiguang Xu^a, Guang Gao^{b,c*}, Juntian Xu^b, Hongyan Wu^d

5

6

- ^aMarine Biology Institute of Shandong Province, Qingdao 266104, China
- 8 bMarine Resources Development Institute of Jiangsu, Huaihai Institute of Technology,
- 9 Lianyungang, 222005, China
- 10 ^cSchool of Marine Science and Technology, Ridley Building, Newcastle University,
- 11 Newcastle upon Tyne, NE1 7RU, England, UK
- ^cHubei University of Technology, Wuhan, 430068, China

13

*Corresponding author, g.gao@ncl.ac.uk, Phone/Fax: +44(0)1912085048

Abstract

15

16

17

18

19

20

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

3738

39

40

41

42 43

44

The developmentevolvement of golden tides would be influenced by global change factors, such as ocean acidification and eutrophication, but the related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO₂ (400, 1000 µatm) and phosphate (0.5 µM, 40 µM) conditions to investigate the interactive effects of elevated pCO₂ and phosphate on physiological properties of the thalli. The higher pCO_2 level and phosphate (P) level alone increased the relative growth rate by 40.821% and 47.788%, net photosynthetic rate by 46.34% and 55.16%, soluble carbohydrates by 32.783% and 61.832% respectively whilst the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO₂ and P alone also enhanced the nitrate uptake rate by 68.27% and 35.896%, nitrate reductase activity by 89.08% and 39.31%, and soluble protein by 19.05% and 15.13% respectively. The nitrate uptake rate and soluble protein was further enhanced although the nitrate reductase activity was reduced when the higher levels of pCO_2 and P worked together. The higher pCO_2 level and higher P level alone did not affect the dark respiration rate of thalli but they together increased it by 32.30% compared to the condition of the lower pCO_2 and lower P. The mute effect of the higher level of pCO_2 and higher P on growth, soluble carbohydrates, combined with the promoting effect of it on soluble protein and dark respiration, suggests more energy was drawn from carbon assimilation to nitrogen assimilation at the condition of higher pCO_2 and higher P, probably to act against the higher pCO₂ caused acid-base perturbation via synthesizing H⁺ transport-related protein. Our results indicate ocean acidification and eutrophication may not boost the gold tides events synergistically although each of them alone has a promoting effect. Key words: carbohydrates, growth, photosynthesis, protein, respiration, Sargassum muticum

1. Introduction

Sargassum C. Agardh (1820) is the most species-rich genus in the Phaeophyta and has a global distribution (Mattio and Payri, 2011). The species of this genus constitutes an important part of the marine flora and is considered as a valuable and

2011). Some species of Sargassum are economically important, being used as animal 46 fodder, manure in agriculture, as well as alginates production (Ashok-Kumar et al., 47 2012; Fenoradosoa et al., 2010; Gonz ález-López et al., 2012). On the other hand, 48 Sargassum is an aggressive genus and it can rapidly spread and invade new areas 49 (Sfriso and Facca, 2013). The invasion of Sargassum would accordingly compete 50 with indigenous species for nutrients and light and lead to the alteration of macroalgal 51 community structure (Rueness, 1989; Stæhr et al., 2000). For instance, the increased 52 abundance of S. muticum in Limfjorden (Denmark) between 1990 and 1997 led to 53 decreased cover of several indigenous species belonging to the genera of Codium, 54 55 Fucus, and Laminaria, and thus reduced species richness and diversity of the macroalgal community (Stæhr et al., 2000). Recently, the species of Sargassum 56 inundate the coasts along Gulf of Mexico, West African, Caribbean, and Brazil in 57 unprecedented biomass, termed as golden tides (Schell et al., 2015; Smetacek and 58 Zingone, 2013). Apart from the negative effect on aesthetics and tourism, the 59 60 occurrence of golden tides could kill the fish within the algal mass, mainly due to 61 hypoxia or anoxia in the waters caused by decomposition of Sargassum thalli (Cruzrivera et al., 2015). In addition, the dense Sargassum accumulation could clog 62 fishing nets and impede the passage of boats, leading to food shortages for local 63 people who live on artisanal fisheries (Smetacek and Zingone, 2013). The occurrence 64 of golden tides has been linked to higher nutrient levels in the seawaters (Lapointe, 65 66 1995; Smetacek and Zingone, 2013). The distribution pattern and biomass of Sargassum spp. are environment (temperature, light, nutrients, etc.)-dependent (Ang, 67 68 2006; Sfriso and Facca, 2013). Due to burning fossil fuels and changes to land use, the atmospheric 69 concentrations of carbon dioxide have increased to the level of 401.72 ppm in July 70 2016 (http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html), 71 which is unprecedentedly high in at least the last 800,000 years (IPCC, 2013). When CO₂ 72 dissolves in seawater it forms carbonic acid and as more CO2 is taken up by the 73 74 ocean's surface, the pH decreases, moving towards a less alkaline and therefore more

unique habitat for a number of highly adapted marine animal species (Laffoley et al.,

75 acidic state, termed ocean acidification. The mean surface ocean pH has already decreased by 0.1 units since the beginning of the industrial era, corresponding to a 26% 76 increase in hydrogen ion concentration (IPCC, 2013). By 2100, concentrations of CO₂ 77 (aq) and HCO₃ are predicted to increase by 192% and 14%, respectively, and CO₃² 78 to decrease by 56%, with a concomitant decline in pH to 7.65 (Raven et al., 2005). 79 Increased CO₂ could exert positive, neutral, or negative on physiological properties of 80 macroalgae (Ji et al., 2016; Wu et al., 2008). In terms of Sargassum species, increased 81 CO₂ (800 ppm) enhanced photosynthetic rate (based on CO₂ uptake) in S. muticum 82 (Longphuirt et al., 2014). On the other side, the same level of increased CO₂ (750 83 ppm) did not affect growth, Rubisco's maximal activity, affinity for CO₂ or quantity 84 in S. vulgare (Alvaro and Mazal, 2002). Furthermore, increased CO₂ (750 ppm) 85 significantly decreased net photosynthetic rate and light saturation point of S. 86 henslowianum (Chen and Zou, 2014). 87 Apart from ocean acidification, eutrophication is another environmental challenge. 88 Eutrophication can occur naturally in lakes via transferring nutrients from the 89 sediment to water by living or decomposing macrophytes, resuspension, diffusion, 90 and bioturbation (Carpenter, 1981). However, anthropogenic activities have 91 accelerated the rate and extent of eutrophication (Carpenter et al., 1998). Inevitable 92 urbanization of a growing human population, increased use of coastal areas, and rising 93 fertilizer use for agricultural intensification has led to accelerated nutrient inputs from 94 land-water to coastal waters (Smith et al., 1999). These changes in nutrient 95 availability result in eutrophication, an increasing threat for coastal ecosystems 96 (Bricker et al., 2008). One consequence of eutrophication is that it can lead to algal 97 98 bloom, such as green tides and golden tides (Smetacek and Zingone, 2013). There are relatively intensive studies regarding the effect of nutrients on physiological 99

1995; Liu and Tan, 2014; Nakahara, 1990). Enrichment of nutrients usually can enhance the growth and photosynthetic parameters of *Sargassum*. For instance, the

properties of Sargassum species (Hwang et al., 2004; Incera et al., 2009; Lapointe,

100

101

102

103

104

growth rate of S. baccularia almost doubled when nutrients increased from 3 µM

ammonium plus 0.3 µM phosphate to 5 µM ammonium plus 0.5 µM phosphate

(Schaffelke and Klumpp, 1998) and the photosynthetic rates of S. fluitans and S. natans were also two-fold higher with 0.2 mM PO₃ enrichment compared to the control (Lapointe, 1986). Furthermore, some studies have demonstrated that macroalgae experience more phosphorus limit instead of nitrogen limit (Lapointe, 1986; Lapointe et al., 1987, 1992; Littler et al., 1991). For instance, nitrogen enrichment did not affect growth rates of S. fluitans or S. natans whilst phosphorus enrichment increased them from 0.03-0.04 (control) to 0.05-0.08 doublings d⁻¹ (Lapointe, 1986). Neither ocean acidification nor eutrophication is proceeding in isolation; rather they occur simultaneously, particularly in coastal areas. The interactive effects of two factors may be completely different, or be of greater magnitude, compared to effects of any single stressor. To the best of our knowledge, no studies have been reported in regard to the interactive effects of ocean acidification and eutrophication on Sargassum. In this study, we chose the species S. muticum to investigate its responses to interaction of ocean acidification and eutrophication. S. muticum is an invasive macroalga and commonly habitats on rocky shores (Karlsson and Loo, 1999). It originatesorigins from Japan and was introduced to the northern Pacific coast of the United States in the early 20th century (Scagel, 1956), and was also introduced to Europe along with the imported Japanese oyster in the late 1960s (Jones and Farnham., 1973). Nowadays, its distribution is worldwide due to the introduction and the subsequent rapid expansion (Cheang et al., 2010). Our study would supply insight into how ocean acidification and eutrophication affect the physiological properties of S. muticum and thus the evolvement of golden tides. 2. Materials and methods 2.1. Sample collection and experiment design S. muticum was collected from lower intertidal rocks on the coast of Lidao, Rongcheng, China (37 °15'N, 122 °35'E). The samples were transported to the laboratory in an insulated polystyrene cooler (4–6 °C) within 3 hours. Healthy thalli

105

106

107

108

109

110

111

112

113

114

115

116117

118119

120

121

122

123

124

125

126

127128

129

130

131

132

133

134

were selected and rinsed with sterile seawater to remove sediments, epiphytes and

small grazers. The thalli were maintained in an intelligent illumination incubator

- 135 (MGC-250P, Yiheng Technical Co. Ltd., Shanghai, China) for 24 hours before the
- experiment. The temperature in the incubator was set as 20°C with a 12h: 12h
- 137 (light/dark) photoperiod of 150 μ mol photons m⁻² s⁻¹ photosynthetically active
- radiation (PAR). After the maintenance, a two-way factorial experiment was set up to
- investigate the interactive effects of pCO_2 and phosphate on S. muticum. The thalli
- were placed in 3 L flasks with 2 L sterile seawater (one thallus per flask) and cultured
- at fully crossed two pCO₂ (400 µatm, LC; 1000 µatm, HC) and two phosphate (0.5
- 142 μM, LP; 40 μM, HP) levels with continuous aeration for 13 days. Phosphorus was
- selected as a nutrient variable since some findings have displayed that phosphorus,
- rather than nitrogen, is the primary limiting nutrient for macroalgae (Lapointe, 1986;
- Lapointe et al., 1987, 1992; Littler et al., 1991). The 400 μ atm pCO₂ and 0.5 μ M
- phosphate are the conditions of natural seawater. The 400 μ atm pCO_2 was achieved
- by bubbling ambient air and 1000 μ atm pCO_2 was obtained through a CO_2 plant
- chamber (HP1000 G-D, Wuhan Ruihua Instrument & Equipment Ltd, China) with the
- variation of CO₂ less than 5%. The higher P level (40 µM) was achieved by adding
- Na H_2PO_4 to natural seawater and the nitrate concentration was set as 200 μM for all
- treatments to avoid N limit. The media were refreshed every day.
- 152 2.2. Carbonate chemistry parameters
- The seawater pH was recorded with a pH meter (pH 700, Eutech Instruments,
- 154 Singapore) and total alkalinity (TA) was measured by titrations. The salinity of
- 155 seawater was 29. Other carbonate system parameters, which were not directly
- measured, were calculated via CO2SYS (Pierrot et al., 2006), using the equilibrium
- constants of K_1 and K_2 for carbonic acid dissociation (Roy et al., 1993).
- 158 2.3. Measurement of growth
- The growth of *S. muticum* was determined by weighing fresh thalli. The thalli of *S.*
- 160 muticum were blotted gently with tissue paper to remove water on the surface of the
- thalli before weighing. The relative growth rate (RGR) was estimated as follows:
- 162 RGR = $(\ln W_t \ln W_0) / t \times 100$, where W_0 is the initial fresh weight (FW) and W_t is
- the weight after t days culture.
- 164 2.4. Determination of photosynthesis and respiration

165 The net photosynthetic rate of thalli was measured by a Clark-type oxygen electrode (Chlorolab-3, Hansatech, Norfolk, UK) at the end of the experiment. 166 Approximately 0.1 g of fresh weight algae harvested from the culture flask was 167 transferred to the oxygen electrode cuvette with 8 ml sterilized media, and the media 168 were stirred during measurement. The irradiance and temperature conditions were set 169 as the same as that in the growth incubators. The increase of oxygen content in 170 seawater within five minutes was defined as net photosynthetic rate and the decrease 171 of oxygen content in seawater in darkness within ten minutes was defined as 172 respiration rate. Net photosynthetic rate (NPR) and respiration rate were presented as 173 μ mol O₂ g⁻¹ FW h⁻¹. 174 Photosynthetic rates at different dissolved inorganic carbon (DIC) levels were

- Photosynthetic rates at different dissolved inorganic carbon (DIC) levels were measured under saturating irradiance of 600 μ mol photons m⁻² s⁻¹ at the end of the
- experiment. The various DIC concentrations (0–13.2 mM) were obtained by adding
- different amounts of NaHCO₃ to the Tris buffered DIC-free seawater. DIC was
- 179 removed from the natural seawater by reducing pH to approximately 4.0 with the
- addition of 1.0 M HCl, and then sparging for 2 h with pure N_2 gas (99.999%). Finally,
- 181 Tris buffer (25mM) was added and the pH was adjusted to 8.1 with freshly prepared 1
- M NaOH and 1 M HCl. The parameters, maximum photosynthetic rate (V_{max}) and the
- half saturation constant ($K_{0.5}$, i.e., the DIC concentration required to give half of
- 184 Ci-saturated maximum rate of photosynthetic O₂ evolution), were calculated from the
- Michaelis-Menten kinetics equation (Caemmerer and Farquhar, 1981):
- 186 $V = V_{max} \times [S] / (K_{0.5} + [S])$, where [S] is the DIC concentration.
- 187 2.5. Assessment of photosynthetic pigments
- Approximately 100 mg of fresh weight thalli from each culture condition at the end
- of the experiment was ground thoroughly in 2 ml 80% acetone and placed in darkness
- 190 for 12 hours. Then the homogenate was centrifuged for 10 minutes at 5, 000 g and the
- supernatant was used to determine Chl a content spectrophotometrically according to
- the equation of Lichtenthaler (1987).
- 193 *2.6. Measurement of nitrate uptake rate*
- The nitrate uptake rate (NUR) of thalli was estimated from the decrease of NO₃

concentration in the culture medium over a given time interval (12 hours) during light period using the following equation: $NUR = (N_0 - N_t) \times V / W / 12$, where N_0 is the initial concentration of NO_3 , N_t is the concentration after 12 hours, V is the volume of the culture medium, and W is the fresh weight of the thalli in culture. NO_3 concentration in the seawater was measured according to Strickland and Parsons (1972).

2.7. Estimate of nitrate reductase activity

Nitrate reductase activity of thalli was assayed according to modified in situ method of Corzo and Niell (1991). The measurement was conducted during the local noon period (13:00) since the activity of nitrate reductase usually displays circadian periodicity a maximum during the light period and a minimum in darkness (Deng et al., 1991; Velasco and Whitaker, 1989). Approximately 0.3 g (FW) of thalli from each culture condition was incubated for 1 h at 20°C in darkness in the reaction solution (10 mL), which contained 0.1 M phosphate buffer, 0.1% propanol (v/v), 50 mM KNO₃, 0.01 mM glucose, and 0.5 mM EDTA, with a pH of 8.0. The mixture was flushed with pure N₂ gas (99.999%) for 2 minutes to obtain an anaerobic state before the incubation. The concentration of nitrite produced was determined colorimetrically at 540 nm (Zou, 2005). The NR activity was expressed as μmol NO₂-g-1 FW h-1.

2.8. Analysis of biochemical composition

About 0.2 g of FW thalli from each culture condition at the end of the experiment were ground in a mortar with distilled water and soluble carbohydrates were extracted in a water bath of 80° C for 30 min. After being centrifuged for 10 minutes at 5, 000 g, supernatant was volumed to 25 ml with distilled water, and soluble carbohydrates content was determined by phenol-sulfuric acid method (Kochert, 1978).

Approximately 0.2 g of FW thalli from each culture condition at the end of the experiment were ground in a mortar with extraction buffer (0.1 mol L⁻¹ phosphate buffer, pH 6.8) and then centrifuged for 10 minutes at 5, 000 g. Soluble protein was estimated from the supernatant using the Bradford (1976) assay with bovine serum albumin as a standard.

2.9. Data Analysis

Results were expressed as means of replicates \pm standard deviation. Data were analyzed using the software SPSS v.21. The data under every treatment conformed to a normal distribution (Shapiro-Wilk, P > 0.05) and the variances could be considered equal (Levene's test, P > 0.05). Two-way ANOVA was conducted to assess the effects of pCO_2 and P on carbonate parameters, relative growth rate, net photosynthesis rate, V_{max} , $K_{0.5}$, Chl a, nitrate uptake rate, nitrate reductase activity, soluble carbohydrates, soluble protein, and dark respiration rate. Tukey HSD was conducted for *post hoc* investigation. A confidence interval of 95% was set for all tests.

3. Results

The effects of ocean acidification and P enrichment on seawater carbonate parameters were detected first (Table 1). Two-way ANOVA analysis (P = 0.05) showed that pCO₂ had a main effect on all parameters except TA whilst P did not affect any parameter. *Post hoc* Tukey HSD comparison (P = 0.05) showed that projected ocean acidificationelevated pCO_2 decreased pH by 0.31 unit at both LP and HP, CO₃²⁻ by 45.24% (LP) and 454.70% (HP), but increased pCO_2 by 138.29% (LP) and 134.08% (HP), DIC by 9.5310% (LP) and 9.26% (HP), HCO₃⁻ by 14.11% (LP) and 13.794% (HP), and CO₂ by 138.889% (LP) and 134.20% (HP).

The growth of *S. muticum* cultured at different pCO_2 and P conditions was recorded (Fig. 1). pCO_2 and P had an interactive effect on the relative growth rate of *S. muticum* (ANOVA, F = 5.776, df = 1, 8, P = 0.043) and each factor had a main effect (ANOVA, F = 19.145, df = 1, 8, P = 0.002 for pCO_2 ; ANOVA, F = 30.592, df = 1, 8, P = 0.001 for P). *Post hoc* Tukey HSD comparison (P = 0.05) showed that the higher levels of pCO_2 and higher P alone increased the relative growth rate by 40.821% and 47.788% respectively, compared to the relative growth rate (3.05-1 ± 0.364%) at the condition of lower pCO_2 and lower P. The combination of the higher pCO_2 and higher P levels did not enhance the relative growth rate as much as the sum of the higher pCO_2 alone plus the higher P alone, with an increase of 59.66%. Although the higher P level increased the relative growth rate at the condition of lower pCO_2 , it did not affect the relative growth rate at the condition of higher pCO_2 .

```
254
           In terms of the net photosynthetic rate (Fig. 2), both pCO_2 (ANOVA, F = 26.556,
       df = 1, 8, P = 0.001) and P had main effects (ANOVA, F = 38.963, df = 1, 8, P <
255
       0.001) on it. Post hoc Tukey HSD comparison (P = 0.05) showed the higher pCO<sub>2</sub>
256
257
       level increased the net photosynthetic rate by 46.34% and 23.964% at the conditions
       of lower P and higher P respectively. The higher P level increased the net
258
       photosynthetic rate by 55.16% and 31.43% at the conditions of lower pCO<sub>2</sub> and higher
259
       pCO<sub>2</sub> respectively. The difference in the net photosynthetic rate between LCHP and
260
       HCLP was statistically insignificant.
261
262
           The carbon-saturating maximum photosynthetic rate (V_{max}) and the half saturation
       constant (K_{0.5}), obtained from the photosynthesis versus DIC curves (Fig. 3), are
263
264
       shown in Table 2. The pCO_2 and P had an interactive effect on V_{max} of S. muticum
       (ANOVA, F = 10.095, df = 1, 8, P = 0.013) and each factor had a main effect
265
       (ANOVA, F = 31.402, df = 1, 8, P = 0.001 for pCO_2; ANOVA, F = 105.116, df = 1, 8,
266
       P < 0.001 for P). Post hoc Tukey HSD comparison (P = 0.05) showed the higher
267
       pCO_2 level increased the V_{max} by 42.44% at the condition of lower P while the
268
       increase at the condition of higher P was statistically insignificant. The higher P level
269
270
       increased the V_{\text{max}} at the conditions of both lower p\text{CO}_2 (64.905%) and higher p\text{CO}_2
       (24.01\%), with the larger promoting effect at the condition of lower pCO_2.
271
272
          pCO_2 and P interacted on the K_{0.5} of S. muticum (ANOVA, F = 5.928, df = 1, 8, P
       = 0.041) and each factor had a main effect (ANOVA, F = 14.713, df = 1, 8, P = 0.005
273
       for pCO_2; ANOVA, F = 20.857, df = 1, 8, P = 0.002 for P). Post hoc Tukey HSD
274
275
       comparison (P = 0.05) showed the higher pCO_2 level increased the K_{0.5} by 97.858% at
       the condition of lower P but did not affect it at the condition of higher P. In contrast,
276
277
       the higher P level decreased the K_{0.5} by 55.22% at the condition of higher pCO<sub>2</sub> and
       the negative effect of the higher P level at the condition of lower pCO<sub>2</sub> was
278
       insignificant.
279
280
           The contents of photosynthetic pigment Chl a under various treatments were also
       estimated (Fig. 4). pCO<sub>2</sub> and P had an interactive effect on the Chl a content
281
       (ANOVA, F = 8.184, df = 1, 8, P = 0.021), P had a main effect (ANOVA, F = 22.828,
282
283
       df = 1, 8, P = 0.001), while pCO<sub>2</sub> did not affect it (ANOVA, F = 0.676, df = 1, 8, P =
```

0.435). Post hoc Tukey HSD comparison (P = 0.05) showed the higher P level 284 increased the Chl a content from 0.17 \pm 0.00 to 0.25 \pm 0.02 mg g⁻¹ FW at the 285 condition of lower pCO_2 whereas the difference in the Chl a content between HCLP 286 $(0.21 \pm 0.02 \text{ mg g}^{-1} \text{ FW})$ and HCHP $(0.23 \pm 0.02 \text{ mg g}^{-1} \text{ FW})$ was not statistically 287 significant. 288 To assess the effects of ocean acidification and P enrichment on the nitrogen 289 assimilation in S. muticum, nitrate uptake rate under various pCO₂ and P treatments 290 was investigated first (Fig. 5). Both pCO_2 (ANOVA, F = 139.916, df = 1, 8, P < 0.001) 291 and P (ANOVA, F = 43.923, df = 1, 8, P < 0.001) had main effects on the nitrate 292 uptake rate of S. muticum. The nitrate uptake rates at the conditions of lower pCO_2 293 were 0.18 ± 0.01 (LP) and 0.25 ± 0.03 µmol NO₃ g⁻¹ FW h⁻¹ (HP) respectively. Post 294 *hoc* Tukey HSD comparison (P = 0.05) showed the higher pCO_2 level increased the 295 nitrate uptake rate to $0.31 \pm 0.02 \mu mol NO_3^- g^{-1} FW h^{-1}$ at the condition of lower P and 296 to $0.39 \pm 0.01 \,\mu\text{mol NO}_3^{-2} \,\text{g}^{-1} \,\text{FW h}^{-1}$ at the condition of higher P, compared to those at 297 298 the conditions of lower pCO_2 . The higher P level also increased the nitrate uptake rate by 35.896% at the condition of lower pCO₂ and by 27.718% at the condition of higher 299 pCO_2 , compared to those at the conditions of lower P. 300 Apart from nitrate uptake, the nitrate reductase activity (NRA) of S. muticum 301 under various pCO2 and P treatments was also detected (Fig. 6). pCO2 and P 302 interacted on NRA of S. muticum (ANOVA, F = 28.435, df = 1, 8, P = 0.001) and 303 304

Apart from nitrate uptake, the nitrate reductase activity (NRA) of *S. muticum* under various pCO_2 and P treatments was also detected (Fig. 6). pCO_2 and P interacted on NRA of *S. muticum* (ANOVA, F = 28.435, df = 1, 8, P = 0.001) and pCO_2 had a main effect (ANOVA, F = 59.038, df = 1, 8, P < 0.001). The NRA at the conditions of lower pCO_2 were 0.10 ± 0.01 (LP) and 0.14 ± 0.02 µmol NO_2^- g⁻¹ FW h⁻¹ (HP) respectively, and the higher pCO_2 level increased it to 0.19 ± 0.00 µmol NO_2^- g⁻¹ FW h⁻¹ at the condition of lower P and to 0.15 ± 0.02 µmol NO_2^- g⁻¹ FW h⁻¹ at the condition of higher P. The higher P level increased the NRA by 39.31% at the condition of lower pCO_2 , however, it decreased NRA by 17.818% at the condition of higher pCO_2 .

305

306

307 308

309

310

311

312

313

The soluble carbohydrates (Fig. 7a) and protein (Fig. 7b) were estimated to understand the effects of ocean acidification and P enrichment on the products of carbon and nitrogen assimilation in *S. muticum.* pCO₂ and P had an interactive effect

on the soluble carbohydrates (ANOVA, F = 18.294, df = 1, 8, P = 0.003) and P had a main effect (ANOVA, F = 23.129, df = 1, 8, P = 0.001). The higher P level increased the soluble carbohydrates from 25.40 \pm 1.66 to 41.10 \pm 1.74 mg g⁻¹ FW at the condition of lower pCO_2 but did not alter it at the condition of higher pCO_2 . The higher pCO_2 level increased the soluble carbohydrates to 33.72 \pm 3.31 mg g⁻¹ FW at the condition of lower P while the decrease of soluble carbohydrates caused by the higher pCO_2 level was not statistically significant at the condition of higher P.

Both pCO_2 (ANOVA, F = 106.663, df = 1, 8, P < 0.001) and P (ANOVA, F = 75.003, df = 1, 8, P < 0.001) had main effects on the soluble protein of S. muticum and the interactive effect of the two factors was not detected (ANOVA, F = 4.961, df = 1, 8, P = 0.057). The soluble protein contents at the conditions of lower pCO_2 were 8.49 ± 0.49 (LP) and 9.77 ± 0.14 mg g⁻¹ FW (HP) respectively. The higher pCO₂ level increased it to 10.11 ± 0.16 mg g $^{\text{-1}}$ FW at the condition of lower P and to 12.28 ± 0.44 mg g⁻¹ FW at the condition of higher P. The higher P level also increased the soluble protein contents by 15.13% at the condition of lower pCO_2 and by 21.51% at condition of higher pCO_2 .

Finally, the effects of ocean acidification and P enrichment on the dark respiration rate of *S. muticum* were investigated (Fig. 8). pCO_2 and P had an interactive effect on the dark respiration rate (ANOVA, F = 19.584, df = 1, 8, P = 0.002) and each factor had a main effect (ANOVA, F = 6.428, df = 1, 8, P = 0.035 for pCO_2 ; ANOVA, F = 6.754, df = 1, 8, P = 0.032 for P). The higher pCO_2 level increased the dark respiration rate from 14.21 ± 1.94 to 21.24 ± 1.28 μ mol O_2 g⁻¹ FW h⁻¹ at the condition of higher P but did not affect it at the condition of lower P. Likewise, The higher P level increased the respiration rate from 14.15 ± 0.65 to 21.24 ± 1.28 μ mol O_2 g⁻¹ FW h⁻¹ at the condition of higher pCO_2 but did not change it at the condition of lower pCO_2 .

4. Discussion

341 4.1. Effects of p CO_2 and P on carbon assimilation

The higher pCO_2 level increased the net photosynthetic rate in S. muticum at the condition of lower P in the present study. Although the dissolved inorganic carbon in

seawater is around 2 mM, the dominant form is HCO₃, with CO₂ typically accounting for less than 1% (Dickson, 2010). In addition, CO₂ in seawater diffuses ~8, 000 times slower than in air (Gao and Campbell, 2014). Furthermore, the marine macroalgae have high $K_{0.5}$ values (40–70 μ M CO₂) for Rubisco, the carbon assimilating enzyme (Ji et al., 2016). The evidence above indicates that the CO₂ in seawater should be carbon limited for marine macroalgae. The promoting effect of elevated CO₂ on photosynthesis was also reported in other macroalgae species, such as green algae Ulva linza (Gao et al., 1999), red algae Pyropia haitanensis (Zou and Gao, 2002), and brown algae Petalonia binghamiae (Gao and Kunshan, 2010). Meanwhile, the higher pCO_2 level increased $K_{0.5}$ of S. muticum at the condition of lower P in the present study, which indicates the plant grown at the condition of higher pCO₂ reduced its photosynthetic affinity for DIC. This phenomenon is commonly found in both microalgae and macroalgae (Gao and Campbell, 2014; Ji et al., 2016; Wu et al., 2008) and is considered as a sign of down-regulated CCMs at high CO₂ conditions (Gao and Campbell, 2014). But this decrease of photosynthetic affinity for DIC did not lead to reduced photosynthesis in S. muticum compared to that at the lower pCO_2 in the present study, mainly because of increased CO2 availability for Rubisco and depressed photorespiration at the elevated ratio of CO2 to O2, which has been confirmed in red seaweed Lomentaria articulate (Kübler et al., 1999). The higher P level also increased the net photosynthetic rate of S. muticum in the present study, which can be partially explained by the decreased $K_{0.5}$ at the condition of higher P. The decreased $K_{0.5}$ is an indication of increased photosynthetic carbon-use capability. Phosphorus is a key macronutrient component for organisms and high levels of P availability is not only essential for chloroplast DNA and RNA synthesis (Vered and Shlomit, 2008), but is required for various chloroplast functions, referring to phosphorylation of photosynthetic proteins, synthesis of phospholipids and generation of ATP (Zer and Ohad, 2003). Therefore, High P levels could speed up the transport of Ci from media to the site of Rubisco by supplying necessary energy. In addition, P enrichment can increase both activity and amount of Rubisco (Lauer et al., 1989). Meanwhile, phosphorus, with low concentration in seawater, is generally

344

345

346

347

348349

350

351

352

353 354

355356

357 358

359

360

361362

363364

365

366

367

368369

370

371

372

considered to be limiting for marine primary producer (Elser et al., 2007; Howarth,
1988; Müller and Mitrovic, 2015). Therefore, adding extra phosphorus to natural
seawater can stimulate photosynthesis of algae. For instance, the midday (12:00)
photosynthetic rates increased from 1.3 to 2.3 mg C $\rm g^{-1}DWh^{-1}$ for S. natans, from 0.9
to 2.1 mg C $\rm g^{-1}$ DW $\rm h^{-1}$ for <i>S. fluitans</i> when 0.2 mM P was added (Lapointe, 1986). In
the present study, the addition of 40 µmol P also resulted in nearly two-fold increase
of the net photosynthetic rate and $V_{\rm max}$, which suggests the significant importance of P
in photosynthesis of this alga. In addition, the higher P level promoted the synthesis of
Chl a at the condition of lower pCO_2 , which may also contribute to the increased net
photosynthetic rate in S. muticum at the condition of higher P. Although P is not the
component constituting Chl a , higher P supply may stimulate the content of Chl a
synthesis-related enzymes and thus the production of Chl a. The positive effect of P
on Chl a was also reported in S. thunbergii (Nakahara, 1990). On the other hand, the
higher P level did not increase the Chl a content at the condition of higher pCO_2 in the
present study. The possible reason is that there is more ATP available at the condition
of higher pCO_2 due to the down-regulation of CCMs and thus there is no need to
synthesize more Chl a to capture more light for cells as excessive energy can lead to
the harm to photosynthesis and growth of algae (Gao et al., 2012; Xu and Gao , 2012).
4.2. Effect of pCO2 and P on nitrogen assimilation
The higher pCO_2 level noticeably enhanced the nitrate uptake rate in S. muticum
regardless of P concentration in the present study. This could be attributed to the
increased nitrate reductase activity (NRA) at the condition of higher pCO_2 . The
enhanced NRA at the conditions of high CO_2 was also reported in $U.\ rigida$ (Gordillo
et al., 2001), Hizikia fusiforme (Zou, 2005), P. haitanensis (Liu and Zou, 2015),
Corallina officinalis (Hofmann et al., 2013), as well as the higher plants Plantago
major (Fonseca et al., 1997), tomato (Yelle et al., 1987), etc. Taken together, these
findings indicate that the response of NRA in plants to elevated CO ₂ may be
homogeneous.
The higher P level also enhanced the nitrate uptake in S. muticum regardless of
pCO_2 level, which can be partially due to the increased NRA at the condition of
14

higher P. This is very evident at the condition of lower pCO_2 . However, the higher P level decreased the NRA at the condition of higher pCO₂, which did not lead to reduced nitrate uptake. This indicates there should be other mechanisms to account for the promoting effect of the higher P level on the nitrate uptake. One possible mechanism is that the higher P level can increase the availability of ATP that is required for the active uptake of nitrate across the plasma membrane. The phenomenon that ATP concentration increases with P level has been found in higher plants (Olivera et al., 2004; Rychter et al., 2006). Apart from S. muticum, the positive effect of higher P level on nitrate uptake was also reported in red macroalgae Gracilaria lemaneiformis (Xu et al., 2010) and higher plant Phaseolus vulgaris (Gniazdowska and Rychter, 2000). The increased nitrate uptake, NRA and soluble protein at the condition of higher P in the present study suggest that high P availability promoted nitrogen assimilation in S. muticum. It is worth noting that the nitrate uptake rates were commonly higher than the corresponding reduction rates of NO₃ to nitrite NO₂ by nitrate reductase in the present study, which might be due to the intercellular nitrate storage (Collos, 1982; Lartigue and Sherman, 2005) and the underestimation of RNA measured by the in situ assay (Lartigue and Sherman, 2002). The higher P level increased the nitrate uptake rate and soluble protein at the

404

405

406

407

408 409

410

411412

413

414

415416

417

418

419

420

421

422

423 424

425

426

427

428 429

430

431

432

433

The higher P level increased the nitrate uptake rate and soluble protein at the conditions of both lower pCO_2 and higher pCO_2 but it only increased the NRA in S. *muticum* at the condition of lower pCO_2 in the present study. Surprisingly, it decreased the NRA at the condition of higher pCO_2 . The reason for that may be not onefold but must be related to interaction of pCO_2 and P. High pCO_2 , on one hand, could enhance photosynthetic carbon fixation and thus growth by supplying sufficient CO_2 . On the other hand, it also results in the decrease of pH and increase of seawater acidity, which can disturb the acid-base balance on cell surface of algae (Flynn et al., 2012). Algae may accordingly allocate additional energy to act against the acid-base perturbation in some way. This hypothesis is supported by increased respiration at the condition of higher pCO_2 and higher P in the present study. The increased soluble protein and decreased NRA at the condition of higher pCO_2 and higher P suggest some H⁺ transport-related protein, such as plasma membrane H⁺-ATPase, might be

synthesized to counteract the acid–base perturbation caused by increased *p*CO₂ and H⁺. The plasma membrane H⁺-ATPase plays an essential role in maintaining an electrochemical proton gradient across the plasma membrane (Morth et al., 2011; Sondergaard et al., 2004). The additional production of H⁺ transport-related protein like plasma membrane H⁺-ATPase could competitively decrease the synthesis of nitrate reductase. This hypothesis needs further experimental evidence to stand even though it could explain the results in the present study. Meanwhile, the higher *p*CO₂-can also deliver the signal to induce the synthesis of H⁺ transport-related protein, but low P supply may limit the synthesis. Accordingly, the nitrate reductase activity didnot decrease at the condition of higher *p*CO₂ and lower P.

4.3. Connection between carbon and nitrogen assimilation

434

435

436

437

438 439

440

441

442

443 444

445

446

447 448

449

450

451 452

453 454

455

456

457

458

459

460

461

462

463

The increased net photosynthetic rate at the condition of higher pCO_2 and higher P did not result in higher soluble carbohydrates compared to the condition of higher pCO₂ and lower P. The additional ATP produced by photosynthetic electron transport at the condition of higher pCO_2 and higher P may be drawn to nitrogen assimilation as more soluble protein was synthesized at the condition of higher pCO_2 and higher P. The additional energy allocation to protein synthesis, possibly H⁺ transport-related protein to maintain the balance of acid-base, hindered the increase of growth, which may be the reason that the higher P increased the net photosynthetic rate but not the growth rate at the condition of higher pCO_2 . Although synthesized protein can also contribute to the increase of thalli weight, it is not as energy-effective as carbohydrates (Norici et al., 2011; Raven, 1982). It seems that S. muticum tends to maintain a steady state in vivo even if it can sacrifice growth to some extent, considering that regulation of intracellular acid-base balance is crucial for organismal homoeostasis (Flynn et al., 2012; Smith and Raven, 1979). The increased respiration at HC was also demonstrated in G. lemaneiformis (Xu et al., 2010) and U. prolifera (Xu and Gao, 2012). The respiration at the condition of higher pCO_2 and lower P did not increase compared to at the condition of lower pCO_2 and lower P in the present study, suggesting the action against acid-base perturbation did not commence. The acid-base perturbation at the condition of higher pCO2 and lower P may lead to the

464	decreased photosynthetic rate compared to that at the condition of lower pCO_2 and
465	lower P.
466	5. Conclusion
467	Our study, for the first time, demonstrates the combined effects of elevated pCO_2
468	and P enrichment on the physiological traits of a golden alga, S. muticum. It suggests
469	current ocean environment is both CO2 and P limited for the photosynthesis and grow
470	of S. muticum. Therefore, future ocean acidification and eutrophication may promote
471	the growth of S. muticum and thus occurrence of gold tide events. Meanwhile, S.
472	muticum tends to maintain homoeostasis taking advantage of phosphate enrichment,
473	at the cost of growth. Accordingly, the combination of ocean acidification and
474	eutrophication may not boost gold tides further compared to ocean acidification or
475	eutrophication alone.
476	Acknowledgements
477	This study was supported by the National Natural Science Foundation of China
478	(Nos. 41376129, 41476097 and 31270452), the Public Science and Technology
479	Research Funds Projects of Ocean (Nos. 201505022, 201405040 and 201305021), the
480	Earmarked Fund for Modern Agro-industry Technology Research System in
481	Shandong Province (SDAIT-26), and the Experimental Study Project on Ecological
482	Simulation in Coastal Waters of Shandong Peninsula.
483	References
484	Alvaro, I. and Mazal, H.: Growth, photosynthetic properties and Rubisco activities
485	and amounts of marine macroalgae grown under current and elevated seawater
486	CO ₂ concentrations, Glob. Chang. Biol., 30, 831-840, 2002.
487	Ang, P. O.: Phenology of Sargassum spp. in Tung Ping Chau Marine Park, Hong
488	Kong SAR, China, J. Appl. Phycol., 18, 403-410, 2006.
489	Ashok-Kumar, N., Vanlalzarzova, B., Sridhar, S., and Baluswami, M.: Effect of liquid
490	seaweed fertilizer of Sargassum wightii Grev. on the growth and biochemical
491	content of green gram (Vigna radiata (L.) R. Wilczek), Recent Res. Sci. Technol
492	4, 40-45, 2012.
493	Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram

494	quantities of protein utilizing the principle of protein-dye binding, Anal.
495	Biochem., 72, 248-254, 1976.
496	Bricker, S. B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C., and
497	Woerner, J.: Effects of nutrient enrichment in the nation's estuaries: a decade of
498	change, Harmful Algae, 8, 21-32, 2008.
499	Caemmerer, S. V. and Farquhar, G. D.: Some relationships between the biochemistry
500	of photosynthesis and the gas exchange of leaves, Planta, 153, 376-387, 1981.
501	Carpenter, S. R.: Submersed vegetation: an internal factor in lake ecosystem
502	succession, Am. Nat., 1981. 372-383, 1981.
503	Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and
504	Smith, V. H.: Nonpoint pollution of surface waters with phosphorus and nitrogen,
505	Ecol. Appl., 8, 559-568, 1998.
506	Cheang, C. C., Chu, K. H., Fujita, D., Yoshida, G., Hiraoka, M., Critchley, A., Choi, H.
507	G., Duan, D., Serisawa, Y., and Ang, P. O.: Low genetic variability of Sargassum
508	muticum (Phaeophyceae) revealed by a global analysis of native and introduced
509	populations, J. Phycol., 46, 1063-1074, 2010.
510	Chen, B. and Zou, D.: Growth and photosynthetic activity of Sargassum
511	henslowianum (Fucales, Phaeophyta) seedlings in responses to different light
512	intensities, temperatures and CO ₂ levels under laboratory conditions, Mar. Biol.
513	Res., 10, 1019-1026, 2014.
514	Collos Y.: Transient situations in nitrate assimilation by marine diatoms. III.
515	Short-term uncoupling of nitrate uptake and reduction, J. Exp. Mar. Bio. Ecol.,
516	<u>62, 285-295, 1982.</u>
517	Corzo, A. and Niell, F. X.: Determination of nitrate reductase activity in <i>Ulva rigida</i> C.
518	Agardh by the in situ method, J. Exp. Mar. Bio. Ecol., 146, 181-191, 1991.
519	Cruzrivera, E., Floresd áz, M., and Hawkins, A.: A fish kill coincident with dense
520	Sargassum accumulation in a tropical bay, Bull. Mar. Sci., 91, 455-456, 2015.
521	Deng, M. D., Moureaux, T., Cherel, I., Boutin, J. P., and Caboche, M.: Effects of
522	nitrogen metabolites on the regulation and circadian expression of tobacco nitrate
523	reductase, Plant Physiol. Biochem., 29, 239-247, 1991.

带格式的: 正文,定义网格后不调整右缩进,不调整西文与中文之间的空格,不调整中文和数字之间的空格

带格式的:字体颜色:蓝色

- 524 Dickson, A. G.: The carbon dioxide system in seawater: Equilibrium chemistry and
- measurements. In: Guide to best practices for ocean acidification research and
- data reporting, Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J. P. (Eds.),
- Publications Office of the European Union, Luxembourg, 2010.
- Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S.,
- Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E.:
- Global analysis of nitrogen and phosphorus limitation of primary producers in
- freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 1135-1142, 2007.
- Fenoradosoa, T. A., Ali, G., Delattre, C., Laroche, C., Petit, E., Wadouachi, A., and
- Michaud, P.: Extraction and characterization of an alginate from the brown
- seaweed Sargassum turbinarioides Grunow, J. Appl. Phycol., 22, 131-137, 2010.
- Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J.,
- Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the exterior
- surface of plankton with ocean acidification, Nat. Clim. Chang., 2, 510-513,
- 538 2012.
- Fonseca, F., Bowsher, C. G., and Stulen, I.: Impact of elevated atmospheric CO₂ on
- 540 nitrate reductase transcription and activity in leaves and roots of *Plantago major*,
- 541 Physiol. Plant., 100, 940-948, 1997.
- 542 Gao, D. Z. and Kunshan: Acquisition of inorganic carbon by Endarachne binghamiae
- (Scytosiphonales, Phaeophyceae), Eur. J. Phycol., 45, 117-126, 2010.
- Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms to
- elevated CO₂ and decreased pH: a review, Funct. Plant Biol., 41, 449-459, 2014.
- Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L., Zheng, Y., Jin,
- P., and Cai, X.: Rising CO₂ and increased light exposure synergistically reduce
- marine primary productivity, Nat. Clim. Change, 2, 519-523, 2012.
- 549 Gao, K., Yan, J., and Aruga, Y.: Relationship of CO₂ concentrations to photosynthesis
- of intertidal macroalgae during emersion, Hydrobiologia, 398/399, 355-359,
- 551 1999.
- 552 Gniazdowska, A. and Rychter, A. M.: Nitrate uptake by bean (*Phaseolus vulgaris* L.)
- roots under phosphate deficiency, Plant & Soil, 226, 79-85, 2000.

- 554 Gonz ález-López, N., Moure, A., and Dom ínguez, H.: Hydrothermal fractionation of
- 555 *Sargassum muticum* biomass, J. Appl. Phycol., 24, 1569-1578, 2012.
- 556 Gordillo, F. J. L., Niell, F. X., and Figueroa, F. L.: Non-photosynthetic enhancement
- of growth by high CO₂ level in the nitrophilic seaweed *Ulva rigida* C. Agardh
- 558 (Chlorophyta), Planta, 213, 64-70, 2001.
- Hofmann, L., Straub, S., and Bischof, K.: Elevated CO₂ levels affect the activity of
- 560 nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina
- officinalis, J. Exp. Bot., 64, 899–908, 2013.
- Howarth, R. W.: Nutrient limitation of net primary production in marine ecosystems,
- 563 Annu. Rev. Ecol. Syst., 1988. 89-110, 1988.
- Hwang, R. L., Tsai, C. C., and Lee, T. M.: Assessment of temperature and nutrient
- limitation on seasonal dynamics among species of sargassum from a coral reef in
- southern taiwan, J. Phycol., 40, 463-473, 2004.
- Incera, M., Olabarria, C., Troncoso, J. S., and López, J.: Response of the invader
- 568 Sargassum muticum to variability in nutrient supply, Mar. Ecol. Prog. Ser., 377,
- 569 91-101, 2009.
- 570 IPCC: Climate change 2013: The physical science basis. In: Working Group I
- 571 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
- Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
- 573 Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.), Cambridge
- Univ Press, New York, 2013.
- 575 Ji, Y., Xu, Z., Zou, D., and Gao, K.: Ecophysiological responses of marine macroalgae
- to climate change factors, J. Appl. Phycol., 2016. 1-15, 2016.
- Jones, G. and Farnham., W.: Japweed: new threat to British coasts, New Sci., 60,
- 578 394-395, 1973.
- 579 Kübler, J. E., Johnston, A. M., and Raven, J. A.: The effects of reduced and elevated
- 580 CO₂ and O₂ on the seaweed *Lomentaria articulata*, Plant Cell & Environment,
- 581 22, 1303-1310, 1999.
- Karlsson, J. and Loo, L. O.: On the distribution and continuous expansion of the
- Japanese seaweed Sargassum muticum in Sweden, Bot. Mar., 42, 285-294,

584	1999.
585	Kochert, G.: Carbohydrate determination by the phenol-sulfuric acid method. In:
586	Handbook of Phycological Methods: Physiological and Biochemical Methods,
587	Hellebust, J. A. and Graigie, J. S. (Eds.), Cambridge University Press,
588	Cambridge, 1978.
589	Laffoley, D. A., Roe, H. S. J., Angel, M. V., Ardron, J., Bates, N. R., Boyd, I. L.,
590	Brooke, S., Buck, K. N., Carlson, C. A., and Causey, B.: The protection and
591	management of the Sargasso Sea: The golden floating rainforest of the Atlantic
592	Ocean, 2011.
593	Lapointe, B. E.: A comparison of nutrient - limited productivity in Sargassum natans
594	from neritic vs. oceanic waters of the western North Atlantic Ocean, Limnol. &
595	Oceanogr., 40, 625-633, 1995.
596	Lapointe, B. E.: Phosphorus-limited photosynthesis and growth of Sargassum natans
597	and Sargassum fluitans (Phaeophyceae) in the western North Atlantic, Deep Sea
598	Res. Part A Oceanogr. Res. Pap., 33, 391-399, 1986.
599	Lapointe, B. E., Littler, M. M., and Littler, D. S.: A comparison of nutrient-limited
600	productivity in macroalgae from a Caribbean barrier reef and from a mangrove
601	ecosystem, Aquat. Bot., 28, 243-255, 1987.
602	Lapointe, B. E., Littler, M. M., and Littler, D. S.: Nutrient availability to marine
603	macroalgae in siliciclastic versus carbonate-rich coastal waters, Estuaries &
604	Coasts, 15, 75-82, 1992.
605	Lartigue, J., and Sherman, T. D.: Field assays for measuring nitrate reductase activity
606	in Enteromorpha sp. (Chlorophyceae), Ulva sp. (Chlorophyceae), and Gelidium
607	sp. (Rhodophyceae), J. Phycol., 38, 971-982, 2002.
608	Lartigue, J., and Sherman, T. D.: Response of Enteromorpha sp. (Chlorophyceae) to a
609	nitrate pulse: nitrate uptake, inorganic nitrogen storage and nitrate reductase
610	activity, Mar. Ecol. Prog. Ser., 292,147-157, 2005.
611	Lauer M. I. Pallardy S. G. Blevins D. G. and Randall D. D.: Whole leaf carbon

带格式的: 正文,定义网格后不调整右缩进,不调整西文与中文之间的空格,不调整中文和数字之间的空格

带格式的:字体颜色:蓝色

Physiol., 91, 848-854, 1989.

612

613

exchange characteristics of phosphate deficient soybeans (Glycine max L.), Plant

- 614 Lichtenthaler, H. K.: Chlorophylls and carotenoids: Pigments of photosynthetic
- biomembranes, Methods Enzymol., 148, 350-382, 1987.
- 616 Littler, M. M., Littler, D. S., and Titlyanov, E. A.: Comparisons of N- and P-limited
- productivity between high granitic islands versus low carbonate atolls in the
- Seychelles Archipelago: a test of the relative-dominance paradigm, Coral Reefs,
- 619 10, 199-209, 1991.
- 620 Liu, C. and Zou, D.: Effects of elevated CO₂ on the photosynthesis and nitrate
- reductase activity of *Pyropia haitanensis* (Bangiales, Rhodophyta) grown at
- different nutrient levels, Chin. J. Oceanol. Limnol., 33, 419-429, 2015.
- 623 Liu, Y. and Tan, H.: Changes of growth and nutrient-relating enzymatic activities of
- 624 Sargassum thunbergii when exposed to different nutrient conditions, Aquat. Sci.
- 625 Technol., 2, 1-13, 2014.
- 626 Longphuirt, S. N., Eschmann, C., Russell, C., and Stengel, D. B.: Seasonal and
- species specific response of five brown macroalgae to high atmospheric CO₂,
- 628 Mar. Ecol. Prog. Ser., 493, 91-102, 2014.
- 629 Müller, S. and Mitrovic, S. M.: Phytoplankton co-limitation by nitrogen and
- phosphorus in a shallow reservoir: progressing from the phosphorus limitation
- 631 paradigm, Hydrobiologia, 744, 255-269, 2015.
- 632 Mattio, L. and Payri, C. E.: 190 years of *Sargassum* taxonomy, facing the advent of
- 633 DNA phylogenies, Bot. Rev., 77, 31-70, 2011.
- Morth, J. P., Pedersen, B. P., Buch-Pedersen M. J., Andersen, J. P., Vilsen, B.,
- Palmgren, M.G. and Nissen, P. A: Structural overview of the plasma membrane
- 636 Na⁺, K⁺-ATPase and H⁺-ATPase ion pumps, Nat. Rev. Mol.Cell Biol., 12, 60-70,
- 637 2011.
- Nakahara, K. G. H.: Effects of nutrients on the photosynthesis of Sargassum
- 639 thunbergii, Bot. Mar., 33, 375-384, 1990.
- Norici, A., Bazzoni, A. M., Pugnetti, A., Raven, J. A., and Giordano, M.: Impact of
- irradiance on the C allocation in the coastal marine diatom *Skeletonema marinoi*
- Sarno and Zingone, Plant Cell Environ., 34, 1666–1677, 2011.
- Olivera, M., Tejera, N., Iribarne, C., Ocaña, A., and Lluch, C.: Growth, nitrogen

- fixation and ammonium assimilation in common bean (*Phaseolus vulgaris*):
- effect of phosphorus, Physiol. Plant., 121, 498–505, 2004.
- Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO₂
- system calculations, ORNL/CDIAC-105a. Carbon Dioxide Information Analysis
- 648 Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
- 649 Tennessee, 2006.
- Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U.,
- 651 Shepherd, J., Turley, C., and Watson, A.: Ocean acidification due to increasing
- atmospheric carbon dioxide, The Royal Society, London, 2005.
- Raven, J. A.: The energetics of freshwater algae; energy requirements for biosynthesis
- and volume regulation, New Phytol., 92, 1–20, 1982.
- Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E.,
- Millero, F. J., and Campbell, D. M.: The dissociation constants of carbonic acid
- in seawater at salinities 5 to 45 and temperatures 0 to 45°C, Mar. Chem., 44,
- 658 249-267, 1993.
- Rueness, J.: Sargassum muticum and other introduced Japanese macroalgae:
- Biological pollution of European coasts, Mar. Pollut. Bull., 20, 173-176, 1989.
- 661 Rychter, A. M., Chauveau, M., Bomsel, J. L., and Lance, C.: The effect of phosphate
- deficiency on mitochondrial activity and adenylate levels in bean roots, Physiol.
- 663 Plant., 84, 80-86, 2006.
- 664 Scagel, R. F.: Introduction of a Japanese alga, Sargassum muticum, into the northeast
- Pacific, Fisheries Research Papers, 1, 49-58, 1956.
- Schaffelke, B. and Klumpp, D. W.: Nutrient-limited growth of the coral reef
- macroalga Sargassum baccularia and experimental growth enhancement by
- nutrient addition in continuous flow culture, Mar. Ecol. Prog. Ser., 164, 199-211,
- 669 1998.
- 670 Schell, J. M., Goodwin, D. S., and Siuda, A. N. S.: Recent sargassum inundation
- events in the Caribbean, Oceanography, 28, 8-10, 2015.
- Sfriso, A. and Facca, C.: Annual growth and environmental relationships of the
- 673 invasive species Sargassum muticum and Undaria pinnatifida in the lagoon of

- Venice, Estuar. Coast. Shelf Sci., 129, 162-172, 2013.
- 675 Smetacek, V. and Zingone, A.: Green and golden seaweed tides on the rise, Nature,
- 504, 84-88, 2013.
- 677 Smith, F. A. and Raven, J. A.: Intracellular pH and its regulation, Annu. Rev. Plant
- 678 Physiol., 30, 289-311, 1979.
- 679 Smith, V. H., Tilman, G. D., and Nekola, J. C.: Eutrophication: impacts of excess
- nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ. Pollut.,
- 681 100, 179-196, 1999.
- 682 Sondergaard, T. E., Schulz, A. and Palmgren, M. G.: Energization of transport
- 683 processes in plants. Roles of the plasma membrane H⁺-ATPase, Plant Physiol.,
- 684 136, 2475-2482, 2004.
- Stæhr, P. A., Pedersen, M. F., Thomsen, M. S., Wernberg, T., and KrauseJensen, D.:
- Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible
- impact on the indigenous macroalgal community, Mar. Ecol. Prog. Ser., 207,
- 688 79-88, 2000.
- 689 Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater analysis, 2nd
- ed., Fisheries Research Board of Canada, Ottawa, 1972.
- 691 Velasco, P. J. and Whitaker, J. R.: Synthesis and degradation of nitrate reductase
- during the cell cycle of *Chlorella sorokiniana*, Plant Physiol., 89, 220-224, 1989.
- Vered, I. and Shlomit, Y. R.: Phosphate and sulfur limitation responses in the
- chloroplast of *Chlamydomonas reinhardtii*, FEMS Microbiol. Lett., 283, 1-8,
- 695 2008.
- 696 Wu, H. Y., Zou, D. H., and Gao, K. S.: Impacts of increased atmospheric CO₂
- concentration on photosynthesis and growth of micro- and macro-algae, Sci.
- 698 China Ser. C Life Sci., 51, 1144-1150, 2008.
- Ku, J. and Gao, K.: Future CO₂-induced ocean acidification mediates the
- physiological performance of a green tide alga, Plant Physiol., 160, 1762-1769,
- 701 2012.
- Xu, Z., Zou, D. H., and Gao, K.: Effects of elevated CO₂ and phosphorus supply on
- growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria

704	lemaneiformis (Rhodophyta), Bot. Mar., 53, 123-129, 2010.
705	Yelle, Gosselin, and Trudel: Effect of atmospheric CO ₂ concentration and root-zone
706	temperature on growth, mineral nutrition, and nitrate reductase activity of
707	greenhouse tomato, J. Am. Soc. Hort. Sci., 112, 1036-1040, 1987.
708	Zer, H. and Ohad, I.: Light, redox state, thylakoid-protein phosphorylation and
709	signaling gene expression, Trends Biochem. Sci., 28, 467-470, 2003.
710	Zou, D.: Effects of elevated atmospheric CO ₂ on growth, photosynthesis and nitrogen
711	metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae,
712	Phaeophyta), Aquaculture, 250, 726-735, 2005.
713	Zou, D. and Gao, K.: Effects of desiccation and CO ₂ concentrations on emersed
714	photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species
715	farmed in China, Eur. J. Phycol., 37, 587-592, 2002.
716	
717	
718	
719	

Table 1. Parameters of the seawater carbonate system at different CO_2 and phosphate conditions. Measurements and estimation of the parameters are described in Materials and Methods. Data are the means \pm SD (n = 3). LCLP, the low pCO_2 and low P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low P condition, HCHP, the high pCO_2 and P condition, DIC = dissolved inorganic carbon, TA = total alkalinity. Different superscript letters indicate significant differences in one parameter between treatments (P < 0.05).

			HCO ₃ -	CO ₃ ²⁻	CO ₂	DIC	TA
Treatment	рН	pCO ₂ (μatm)	(μmol kg ⁻¹)	(µmol kg ⁻¹)	(μmol kg ⁻¹)	(μmol kg ⁻¹)	(μmol kg ⁻¹)
LCLP	8.07±0.02 ^b	426.9±31.1ª	2000.2±51.7 ^a	200.9±5.8 ^b	14.2±1.0 ^a	2215.3±49.7 ^a	2475.2±44.2
LCHP	8.07±0.02 ^b	423.9±21.1 ^a	1987.6±10.9 ^a	199.8±11.4 ^b	14.1±0.7 ^a	2201.5±19.3 ^a	2504.7±33.8
HCLP	7.76±0.02 ^a	1017.2±83.2 ^b	2282.5±27.6 ^b	110.0±10.0ª	34.0±2.9 ^b	2426.5±32.5 ^b	2541.5±44.2
НСНР	7.76±0.02 ^a	992.2±44.9 ^b	2261.8±35.9 ^b	110.5±5.9ª	33.1±1.5 ^b	2405.4±39.4 ^b	2563.6±44.2

Table 2. The carbon-saturating maximum photosynthetic rate (V_{max} , μ mol O₂ g⁻¹ FW h⁻¹) and half saturation constant ($K_{0.5}$, mM) for *S. muticum* cultured under different pCO₂ and P conditions for 13 days. Different superscript letters indicate significant differences in one parameter between treatments (P < 0.05).

	LCLP	LCHP	HCLP	НСНР
V_{max}	57.00±2.88 ^a	93.99±0.98°	81.18±5.94 ^b	100.67±6.81°
$K_{0.5}$	0.21 ± 0.02^{a}	$0.14\pm\!0.05^{\mathrm{a}}$	0.42 ± 0.08^{b}	$0.19\pm\!0.05^{a}$

- Fig. 1. Relative growth rate (RGR) of S. muticum grown at different pCO_2 and P
- 730 conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low pCO₂ and low
- 731 P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO_2 and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).
- Fig. 2. Net photosynthetic rate (RGR) of S. muticum after being grown at different
- 735 pCO_2 and P conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low
- pCO_2 and low P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high
- pCO_2 and low P condition, HCHP, the high pCO_2 and high P condition. Different
- 738 letters above error bars indicate significant differences between treatments (P < 0.05).
- 739 **Fig. 3.** The photosynthesis versus DIC curves of *S. muticum* after being cultured
- under pCO_2 and P conditions for 13 days. Data are the means $\pm SD$ (n = 3). LCLP, the
- 141 low pCO₂ and low P condition, LCHP, the low pCO₂ and high P condition, HCLP, the
- high pCO_2 and low P condition, HCHP, the high pCO_2 and high P condition. DIC =
- 743 dissolved inorganic carbon.
- Fig. 4. Chl a content of S. muticum after being grown at different pCO₂ and P
- 745 conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low pCO₂ and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO₂ and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).
- 749 **Fig. 5.** Nitrate uptake rate of S. muticum after being grown at different pCO_2 and P
- 750 conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low pCO₂ and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- 752 P condition, HCHP, the high pCO₂ and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).
- 754 **Fig. 6.** Nitrate reductase activity (NRA) of *S. muticum* after being grown at different
- 755 pCO_2 and P conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low
- pCO_2 and low P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high
- pCO_2 and low P condition, HCHP, the high pCO_2 and high P condition. Different
- letters above error bars indicate significant differences between treatments (P < 0.05).
- 759 **Fig. 7.** The contents of soluble carbohydrates (a) and protein (b) of *S. muticum* after
- being grown at different pCO_2 and P conditions for 13 days. Data are the means $\pm SD$
- 761 (n = 3). LCLP, the low pCO_2 and low P condition, LCHP, the low pCO_2 and high P
- condition, HCLP, the high pCO_2 and low P condition, HCHP, the high pCO_2 and high

- P condition. Different letters above error bars indicate significant differences between
- 764 treatments (P < 0.05).
- Fig. 8. Dark respiration rate of S. muticum after being grown at different pCO₂ and P
- conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low pCO_2 and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO_2 and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).

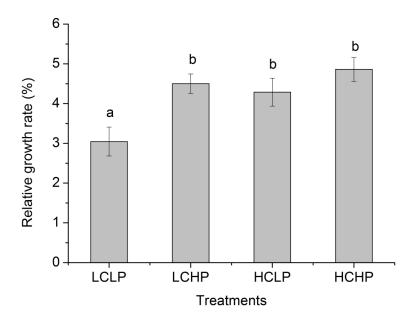


Fig. 1

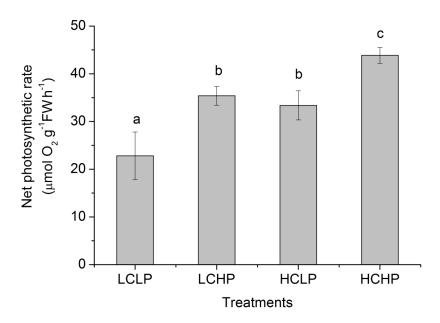


Fig. 2

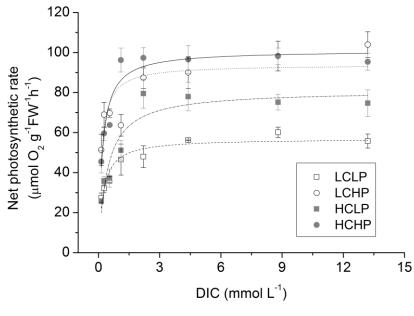


Fig. 3

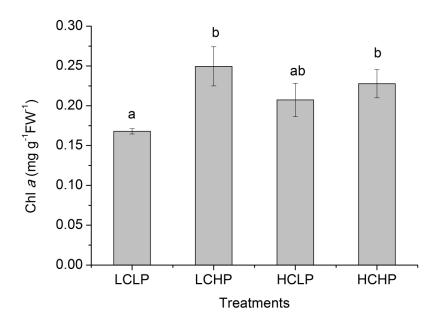


Fig. 4

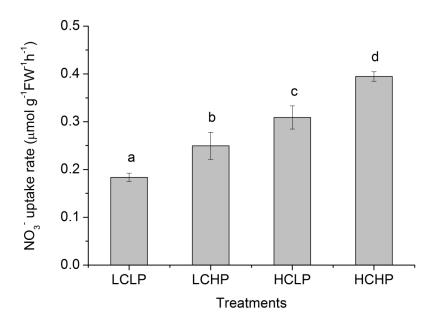


Fig. 5

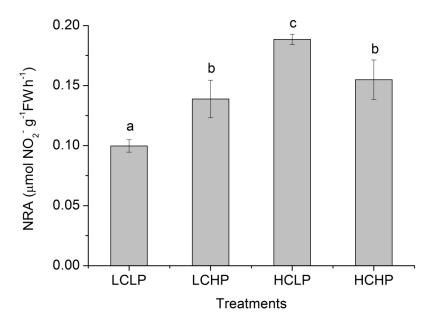
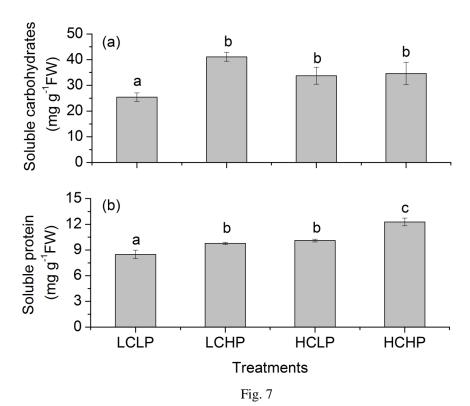



Fig. 6

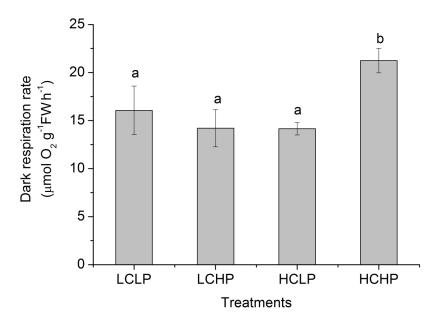


Fig. 8