

- 1 Physiological response of a golden tide alga (Sargassum muticum) to the
- 2 interaction of ocean acidification and phosphorus enrichment
- 3
- 4 Zhiguang Xu^a, Guang Gao^{b,c*}, Juntian Xu^b, Hongyan Wu^d
- 5 6
- ⁷ ^aMarine Biology Institute of Shandong Province, Qingdao 266104, China
- 8 ^bMarine Resources Development Institute of Jiangsu, Huaihai Institute of Technology,
- 9 Lianyungang, 222005, China
- 10 ^cSchool of Marine Science and Technology, Ridley Building, Newcastle University,
- 11 Newcastle upon Tyne, NE1 7RU, England, UK
- ^cHubei University of Technology, Wuhan, 430068, China
- 13
- 14 *Corresponding author, g.gao@ncl.ac.uk, Phone/Fax: +44(0)1912085048

15 Abstract

The evolvement of golden tides would be influenced by global change factors, 16 such as ocean acidification and eutrophication, but the related studies are very scarce. 17 18 In this study, we cultured a golden tide alga, Sargassum muticum, at two levels of pCO_2 (400, 1000 µatm) and phosphate (0.5 µM, 40 µM) conditions to investigate the 19 interactive effects of elevated pCO_2 and phosphate on physiological properties of the 20 thalli. The higher pCO_2 level and phosphate (P) level alone increased the relative 21 growth rate by 40.82% and 47.78%, net photosynthetic rate by 46.34% and 55.16%, 22 soluble carbohydrates by 32.78% and 61.83% respectively whilst the combination of 23 these two levels did not promote growth or soluble carbohydrates further. The higher 24 levels of pCO₂ and P alone also enhanced the nitrate uptake rate by 68.27% and 25 35.89%, nitrate reductase activity by 89.08% and 39.31%, and soluble protein by 26 19.05% and 15.13% respectively. The nitrate uptake rate and soluble protein was 27 28 further enhanced although the nitrate reductase activity was reduced when the higher levels of pCO_2 and P worked together. The higher pCO_2 level and higher P level alone 29 did not affect the dark respiration rate of thalli but they together increased it by 32.30% 30 31 compared to the condition of the lower pCO_2 and lower P. The mute effect of the higher level of pCO_2 and higher P on growth, soluble carbohydrates, combined with 32 33 the promoting effect of it on soluble protein and dark respiration, suggests more energy was drawn from carbon assimilation to nitrogen assimilation at the condition 34 of higher pCO_2 and higher P, probably to act against the higher pCO_2 caused 35 acid-base perturbation via synthesizing H⁺ transport-related protein. Our results 36 37 indicate ocean acidification and eutrophication may not boost the gold tides events synergistically although each of them alone has a promoting effect. 38

Key words: carbohydrates, growth, photosynthesis, protein, respiration, *Sargassum muticum*

41 **1. Introduction**

42 Sargassum C. Agardh (1820) is the most species-rich genus in the Phaeophyta

43 and has a global distribution (Mattio and Payri, 2011). The species of this genus

44 constitutes an important part of the marine flora and is considered as a valuable and

45	unique habitat for a number of highly adapted marine animal species (Laffoley et al.,
46	2011). Some species of Sargassum are economically important, being used as animal
47	fodder, manure in agriculture, as well as alginates production (Ashok-Kumar et al.,
48	2012; Fenoradosoa et al., 2010; Gonz dez-López et al., 2012). On the other hand,
49	Sargassum is an aggressive genus and it can rapidly spread and invade new areas
50	(Sfriso and Facca, 2013). The invasion of Sargassum would accordingly compete
51	with indigenous species for nutrients and light and lead to the alteration of macroalgal
52	community structure (Rueness, 1989; Stæhr et al., 2000). For instance, the increased
53	abundance of S. muticum in Limfjorden (Denmark) between 1990 and 1997 led to
54	decreased cover of several indigenous species belonging to the genera of Codium,
55	Fucus, and Laminaria, and thus reduced species richness and diversity of the
56	macroalgal community (Stæhr et al., 2000). Recently, the species of Sargassum
57	inundate the coasts along Gulf of Mexico, West African, Caribbean, and Brazil in
58	unprecedented biomass, termed as golden tides (Schell et al., 2015; Smetacek and
59	Zingone, 2013). Apart from the negative effect on aesthetics and tourism, the
60	occurrence of golden tides could kill the fish within the algal mass, mainly due to
61	hypoxia or anoxia in the waters caused by decomposition of Sargassum thalli
62	(Cruzrivera et al., 2015). In addition, the dense Sargassum accumulation could clog
63	fishing nets and impede the passage of boats, leading to food shortages for local
64	people who live on artisanal fisheries (Smetacek and Zingone, 2013). The occurrence
65	of golden tides has been linked to higher nutrient levels in the seawaters (Lapointe,
66	1995; Smetacek and Zingone, 2013). The distribution pattern and biomass of
67	Sargassum spp. are environment (temperature, light, nutrients, etc.)-dependent (Ang,
68	2006; Sfriso and Facca, 2013).
69	Due to burning fossil fuels and changes to land use, the atmospheric
70	concentrations of carbon dioxide have increased to the level of 401.72 ppm in July
71	2016 (http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html), which is
72	unprecedentedly high in at least the last 800,000 years (IPCC, 2013). When CO_2
73	dissolves in seawater it forms carbonic acid and as more CO_2 is taken up by the
74	ocean's surface, the pH decreases, moving towards a less alkaline and therefore more $\frac{3}{3}$

75 acidic state, termed ocean acidification. The mean surface ocean pH has already 76 decreased by 0.1 units since the beginning of the industrial era, corresponding to a 26% increase in hydrogen ion concentration (IPCC, 2013). By 2100, concentrations of CO2 77 (aq) and HCO₃⁻ are predicted to increase by 192% and 14%, respectively, and CO_3^{2-} 78 to decrease by 56%, with a concomitant decline in pH to 7.65 (Raven et al., 2005). 79 Increased CO₂ could exert positive, neutral, or negative on physiological properties of 80 macroalgae (Ji et al., 2016; Wu et al., 2008). In terms of Sargassum species, increased 81 CO₂ (800 ppm) enhanced photosynthetic rate (based on CO₂ uptake) in S. muticum 82 (Longphuirt et al., 2014). On the other side, the same level of increased CO_2 (750 83 ppm) did not affect growth, Rubisco's maximal activity, affinity for CO₂ or quantity 84 in S. vulgare (Alvaro and Mazal, 2002). Furthermore, increased CO₂ (750 ppm) 85 significantly decreased net photosynthetic rate and light saturation point of S. 86 henslowianum (Chen and Zou, 2014). 87

88 Apart from ocean acidification, eutrophication is another environmental challenge. 89 Eutrophication can occur naturally in lakes via transferring nutrients from the sediment to water by living or decomposing macrophytes, resuspension, diffusion, 90 and bioturbation (Carpenter, 1981). However, anthropogenic activities have 91 92 accelerated the rate and extent of eutrophication (Carpenter et al., 1998). Inevitable 93 urbanization of a growing human population, increased use of coastal areas, and rising fertilizer use for agricultural intensification has led to accelerated nutrient inputs from 94 land-water to coastal waters (Smith et al., 1999). These changes in nutrient 95 availability result in eutrophication, an increasing threat for coastal ecosystems 96 97 (Bricker et al., 2008). One consequence of eutrophication is that it can lead to algal bloom, such as green tides and golden tides (Smetacek and Zingone, 2013). There are 98 relatively intensive studies regarding the effect of nutrients on physiological 99 properties of Sargassum species (Hwang et al., 2004; Incera et al., 2009; Lapointe, 100 1995; Liu and Tan, 2014; Nakahara, 1990). Enrichment of nutrients usually can 101 enhance the growth and photosynthetic parameters of Sargassum. For instance, the 102 growth rate of S. baccularia almost doubled when nutrients increased from 3 µM 103 ammonium plus 0.3 µM phosphate to 5 µM ammonium plus 0.5 µM phosphate 104

105 (Schaffelke and Klumpp, 1998) and the photosynthetic rates of S. fluitans and S. *natans* were also two-fold higher with 0.2 mM PO_3^- enrichment compared to the 106 control (Lapointe, 1986). Furthermore, some studies have demonstrated that 107 108 macroalgae experience more phosphorus limit instead of nitrogen limit (Lapointe, 1986; Lapointe et al., 1987, 1992; Littler et al., 1991). For instance, nitrogen 109 enrichment did not affect growth rates of S. fluitans or S. natans whilst phosphorus 110 enrichment increased them from 0.03-0.04 (control) to 0.05-0.08 doublings d⁻¹ 111 (Lapointe, 1986). 112

113 Neither ocean acidification nor eutrophication is proceeding in isolation; rather they occur simultaneously, particularly in coastal areas. The interactive effects of two 114 factors may be completely different, or be of greater magnitude, compared to effects 115 116 of any single stressor. To the best of our knowledge, no studies have been reported in regard to the interactive effects of ocean acidification and eutrophication on 117 118 Sargassum. In this study, we chose the species S. muticum to investigate its responses 119 to interaction of ocean acidification and eutrophication. S. muticum is an invasive 120 macroalga and commonly habitats on rocky shores (Karlsson and Loo, 1999). It 121 origins from Japan and was introduced to the northern Pacific coast of the United States in the early 20th century (Scagel, 1956), and was also introduced to Europe 122

along with the imported Japanese oyster in the late 1960s (Jones and Farnham., 1973).

124 Nowadays, its distribution is worldwide due to the introduction and the subsequent

rapid expansion (Cheang et al., 2010). Our study would supply insight into how ocean

acidification and eutrophication affect the physiological properties of *S. muticum* and

127 thus the evolvement of golden tides.

128 2. Materials and methods

129 2.1. Sample collection and experiment design

130 *S. muticum* was collected from lower intertidal rocks on the coast of Lidao,

- 131 Rongcheng, China (37 °15'N, 122 °35'E). The samples were transported to the
- laboratory in an insulated polystyrene cooler $(4-6 \ \mathbb{C})$ within 3 hours. Healthy thalli
- 133 were selected and rinsed with sterile seawater to remove sediments, epiphytes and
- small grazers. The thalli were maintained in an intelligent illumination incubator

135	(MGC-250P.	. Yiheng Technical	Co. Ltd., Shanghai,	China) for 24 hours before the

- 136 experiment. The temperature in the incubator was set as 20° C with a 12h: 12h
- 137 (light/dark) photoperiod of 150 μ mol photons m⁻² s⁻¹ photosynthetically active
- 138 radiation (PAR). After the maintenance, a two-way factorial experiment was set up to
- investigate the interactive effects of pCO_2 and phosphate on *S. muticum*. The thalli
- 140 were placed in 3 L flasks with 2 L sterile seawater (one thallus per flask) and cultured
- 141 at fully crossed two pCO_2 (400 µatm, LC; 1000 µatm, HC) and two phosphate (0.5
- 142 μ M, LP; 40 μ M, HP) levels with continuous aeration for 13 days. Phosphorus was
- selected as a nutrient variable since some findings have displayed that phosphorus,
- rather than nitrogen, is the primary limiting nutrient for macroalgae (Lapointe, 1986;
- Lapointe et al., 1987, 1992; Littler et al., 1991). The 400 μ atm pCO₂ and 0.5 μ M
- 146 phosphate are the conditions of natural seawater. The 400 μ atm *p*CO₂ was achieved
- 147 by bubbling ambient air and 1000 μ atm *p*CO₂ was obtained through a CO₂ plant
- 148 chamber (HP1000 G-D, Wuhan Ruihua Instrument & Equipment Ltd, China) with the
- 149 variation of CO₂ less than 5%. The higher P level (40 μ M) was achieved by adding
- 150 NaH₂PO₄ to natural seawater and the nitrate concentration was set as 200 μ M for all
- 151 treatments to avoid N limit. The media were refreshed every day.
- 152 2.2. Carbonate chemistry parameters

The seawater pH was recorded with a pH meter (pH 700, Eutech Instruments, Singapore) and total alkalinity (TA) was measured by titrations. The salinity of seawater was 29. Other carbonate system parameters, which were not directly measured, were calculated via CO2SYS (Pierrot et al., 2006), using the equilibrium constants of K_1 and K_2 for carbonic acid dissociation (Roy et al., 1993).

158 2.3. Measurement of growth

The growth of *S. muticum* was determined by weighing fresh thalli. The thalli of *S. muticum* were blotted gently with tissue paper to remove water on the surface of the thalli before weighing. The relative growth rate (RGR) was estimated as follows: RGR = $(\ln W_t - \ln W_0) / t \times 100$, where W_0 is the initial fresh weight (FW) and W_t is the weight after t days culture.

164 *2.4. Determination of photosynthesis and respiration*

165 The net photosynthetic rate of thalli was measured by a Clark-type oxygen electrode (Chlorolab-3, Hansatech, Norfolk, UK) at the end of the experiment. 166 Approximately 0.1 g of fresh weight algae harvested from the culture flask was 167 168 transferred to the oxygen electrode cuvette with 8 ml sterilized media, and the media were stirred during measurement. The irradiance and temperature conditions were set 169 as the same as that in the growth incubators. The increase of oxygen content in 170 seawater within five minutes was defined as net photosynthetic rate and the decrease 171 of oxygen content in seawater in darkness within ten minutes was defined as 172 respiration rate. Net photosynthetic rate (NPR) and respiration rate were presented as 173 μ mol O₂ g⁻¹ FW h⁻¹. 174

175 Photosynthetic rates at different dissolved inorganic carbon (DIC) levels were

measured under saturating irradiance of 600 μ mol photons m⁻² s⁻¹ at the end of the

177 experiment. The various DIC concentrations (0–13.2 mM) were obtained by adding

178 different amounts of NaHCO₃ to the Tris buffered DIC-free seawater. DIC was

removed from the natural seawater by reducing pH to approximately 4.0 with the

addition of 1.0 M HCl, and then sparging for 2 h with pure N_2 gas (99.999%). Finally,

181 Tris buffer (25mM) was added and the pH was adjusted to 8.1 with freshly prepared 1

182 M NaOH and 1 M HCl. The parameters, maximum photosynthetic rate (V_{max}) and the

half saturation constant ($K_{0.5}$, i.e., the DIC concentration required to give half of

184 Ci-saturated maximum rate of photosynthetic O₂ evolution), were calculated from the

```
185 Michaelis-Menten kinetics equation (Caemmerer and Farquhar, 1981):
```

 $V = V_{max} \times [S] / (K_{0.5} + [S])$, where [S] is the DIC concentration.

186

187 2.5. Assessment of photosynthetic pigments

Approximately 100 mg of fresh weight thalli from each culture condition at the end of the experiment was ground thoroughly in 2 ml 80% acetone and placed in darkness for 12 hours. Then the homogenate was centrifuged for 10 minutes at 5, 000 g and the supernatant was used to determine Chl a content spectrophotometrically according to the equation of Lichtenthaler (1987).

193 *2.6. Measurement of nitrate uptake rate*

194 The nitrate uptake rate (NUR) of thalli was estimated from the decrease of NO_3^-

concentration in the culture medium over a given time interval (12 hours) during light period using the following equation: NUR = $(N_0 - N_t) \times V / W / 12$, where N_0 is the initial concentration of NO₃⁻, N_t is the concentration after 12 hours, V is the volume of the culture medium, and W is the fresh weight of the thalli in culture. NO₃⁻ concentration in the seawater was measured according to Strickland and Parsons (1972).

201 2.7. Estimate of nitrate reductase activity

Nitrate reductase activity of thalli was assayed according to modified method of 202 Corzo and Niell (1991). The measurement was conducted during the local noon 203 period (13:00) since the activity of nitrate reductase usually displays circadian 204 periodicity a maximum during the light period and a minimum in darkness (Deng et 205 al., 1991; Velasco and Whitaker, 1989). Approximately 0.3 g (FW) of thalli from each 206 culture condition was incubated for 1 h at 20°C in darkness in the reaction solution 207 208 (10 mL), which contained 0.1 M phosphate buffer, 0.1% propanol (v/v), 50 mM 209 KNO₃, 0.01 mM glucose, and 0.5 mM EDTA, with a pH of 8.0. The mixture was flushed with pure N2 gas (99.999%) for 2 minutes to obtain an anaerobic state before 210 211 the incubation. The concentration of nitrite produced was determined colorimetrically at 540 nm (Zou, 2005). The NR activity was expressed as µmol NO2 g-1 FW h-1. 212

213 2.8. Analysis of biochemical composition

About 0.2 g of FW thalli from each culture condition at the end of the experiment were ground in a mortar with distilled water and soluble carbohydrates were extracted in a water bath of 80°C for 30 min. After being centrifuged for 10 minutes at 5, 000 g, supernatant was volumed to 25 ml with distilled water, and soluble carbohydrates content was determined by phenol-sulfuric acid method (Kochert, 1978).

Approximately 0.2 g of FW thalli from each culture condition at the end of the experiment were ground in a mortar with extraction buffer (0.1 mol L^{-1} phosphate buffer, pH 6.8) and then centrifuged for 10 minutes at 5, 000 g. Soluble protein was estimated from the supernatant using the Bradford (1976) assay with bovine serum albumin as a standard.

224 2.9. Data Analysis

225 Results were expressed as means of replicates \pm standard deviation. Data were analyzed using the software SPSS v.21. The data under every treatment conformed to 226 a normal distribution (Shapiro-Wilk, P > 0.05) and the variances could be considered 227 equal (Levene's test, P > 0.05). Two-way ANOVA was conducted to assess the effects 228 of pCO_2 and P on carbonate parameters, relative growth rate, net photosynthesis rate, 229 V_{max} , $K_{0.5}$, Chl a, nitrate uptake rate, nitrate reductase activity, soluble carbohydrates, 230 soluble protein, and dark respiration rate. Tukey HSD was conducted for post hoc 231 investigation. A confidence interval of 95% was set for all tests. 232

233 **3. Results**

234 The effects of ocean acidification and P enrichment on seawater carbonate 235 parameters were detected first (Table 1). Two-way ANOVA analysis (P = 0.05) showed that pCO₂ had a main effect on all parameters except TA whilst P did not 236 affect any parameter. Post hoc Tukey HSD comparison (P = 0.05) showed projected 237 ocean acidification decreased pH by 0.31 unit at both LP and HP, CO₃²⁻ by 45.24% 238 (LP) and 44.70% (HP), but increased pCO₂ by 138.29% (LP) and 134.08% (HP), DIC 239 by 9.53% (LP) and 9.26% (HP), HCO₃⁻ by 14.11% (LP) and 13.79% (HP), and CO₂ 240 by 138.88% (LP) and 134.20% (HP). 241

The growth of S. muticum cultured at different pCO_2 and P conditions was 242 recorded (Fig. 1). pCO_2 and P had an interactive effect on the relative growth rate of S. 243 muticum (ANOVA, F = 5.776, df = 1, 8, P = 0.043) and each factor had a main effect 244 (ANOVA, F = 19.145, df = 1, 8, P = 0.002 for pCO₂; ANOVA, F = 30.592, df = 1, 8, 245 P = 0.001 for P). Post hoc Tukey HSD comparison (P = 0.05) showed that the higher 246 247 levels of pCO_2 and higher P alone increased the relative growth rate by 40.82% and 248 47.78% respectively, compared to the relative growth rate (3.05 \pm 0.36%) at the condition of lower pCO_2 and lower P. The combination of the higher pCO_2 and higher 249 250 P levels did not enhance the relative growth rate as much as the sum of the higher pCO₂ alone plus the higher P alone, with an increase of 59.66%. Although the higher 251 P level increased the relative growth rate at the condition of lower pCO_2 , it did not 252 253 affect the relative growth rate at the condition of higher pCO_2 .

- In terms of the net photosynthetic rate (Fig. 2), both pCO_2 (ANOVA, F = 26.556,
- 255 df = 1, 8, P = 0.001) and P had main effects (ANOVA, F = 38.963, df = 1, 8, P < 0.001)
- 256 0.001) on it. Post hoc Tukey HSD comparison (P = 0.05) showed the higher pCO₂
- 257 level increased the net photosynthetic rate by 46.34% and 23.96% at the conditions of
- 258 lower P and higher P respectively. The higher P level increased the net photosynthetic
- rate by 55.16% and 31.43% at the conditions of lower pCO_2 and higher pCO_2
- 260 respectively. The difference in the net photosynthetic rate between LCHP and HCLP
- 261 was statistically insignificant.

The carbon-saturating maximum photosynthetic rate (V_{max}) and the half saturation 262 constant ($K_{0.5}$), obtained from the photosynthesis versus DIC curves (Fig. 3), are 263 shown in Table 2. The pCO_2 and P had an interactive effect on V_{max} of S. muticum 264 (ANOVA, F = 10.095, df = 1, 8, P = 0.013) and each factor had a main effect 265 (ANOVA, F = 31.402, df = 1, 8, P = 0.001 for pCO₂; ANOVA, F = 105.116, df = 1, 8, 266 267 P < 0.001 for P). Post hoc Tukey HSD comparison (P = 0.05) showed the higher 268 pCO_2 level increased the V_{max} by 42.44% at the condition of lower P while the increase at the condition of higher P was statistically insignificant. The higher P level 269 270 increased the V_{max} at the conditions of both lower pCO₂ (64.90%) and higher pCO₂ (24.01%), with the larger promoting effect at the condition of lower pCO_2 . 271

272 pCO_2 and P interacted on the $K_{0.5}$ of S. muticum (ANOVA, F = 5.928, df = 1, 8, P 273 = 0.041) and each factor had a main effect (ANOVA, F = 14.713, df = 1, 8, P = 0.005for pCO_2 ; ANOVA, F = 20.857, df = 1, 8, P = 0.002 for P). Post hoc Tukey HSD 274 comparison (P = 0.05) showed the higher pCO₂ level increased the $K_{0.5}$ by 97.85% at 275 276 the condition of lower P but did not affect it at the condition of higher P. In contrast, the higher P level decreased the $K_{0.5}$ by 55.22% at the condition of higher pCO₂ and 277 the negative effect of the higher P level at the condition of lower pCO_2 was 278 279 insignificant.

The contents of photosynthetic pigment Chl *a* under various treatments were also estimated (Fig. 4). pCO_2 and P had an interactive effect on the Chl *a* content (ANOVA, F = 8.184, df = 1, 8, P = 0.021), P had a main effect (ANOVA, F = 22.828, df = 1, 8, P = 0.001), while pCO_2 did not affect it (ANOVA, F = 0.676, df = 1, 8, P =

284 0.435). *Post hoc* Tukey HSD comparison (P = 0.05) showed the higher P level 285 increased the Chl *a* content from 0.17 ± 0.00 to 0.25 ± 0.02 mg g⁻¹ FW at the 286 condition of lower *p*CO₂ whereas the difference in the Chl *a* content between HCLP 287 (0.21 ± 0.02 mg g⁻¹ FW) and HCHP (0.23 ± 0.02 mg g⁻¹ FW) was not statistically 288 significant.

To assess the effects of ocean acidification and P enrichment on the nitrogen 289 assimilation in S. muticum, nitrate uptake rate under various pCO₂ and P treatments 290 was investigated first (Fig. 5). Both pCO_2 (ANOVA, F = 139.916, df = 1, 8, P < 0.001) 291 and P (ANOVA, F = 43.923, df = 1, 8, P < 0.001) had main effects on the nitrate 292 uptake rate of S. muticum. The nitrate uptake rates at the conditions of lower pCO_2 293 were 0.18 \pm 0.01(LP) and 0.25 \pm 0.03 μ mol NO₃⁻ g⁻¹ FW h⁻¹ (HP) respectively. *Post* 294 *hoc* Tukey HSD comparison (P = 0.05) showed the higher pCO₂ level increased the 295 nitrate uptake rate to 0.31 \pm 0.02 µmol NO₃⁻ g⁻¹ FW h⁻¹ at the condition of lower P and 296 to 0.39 \pm 0.01 µmol NO₃⁻ g⁻¹ FW h⁻¹ at the condition of higher P, compared to those at 297 the conditions of lower pCO_2 . The higher P level also increased the nitrate uptake rate 298 by 35.89% at the condition of lower pCO_2 and by 27.71% at the condition of higher 299 300 pCO_2 , compared to those at the conditions of lower P.

301 Apart from nitrate uptake, the nitrate reductase activity (NRA) of S. muticum 302 under various pCO₂ and P treatments was also detected (Fig. 6). pCO₂ and P 303 interacted on NRA of S. muticum (ANOVA, F = 28.435, df = 1, 8, P = 0.001) and pCO_2 had a main effect (ANOVA, F = 59.038, df = 1, 8, P < 0.001). The NRA at the 304 conditions of lower pCO_2 were 0.10 \pm 0.01 (LP) and 0.14 \pm 0.02 μ mol NO₂ \overline{g}^{-1} FW 305 h^{-1} (HP) respectively, and the higher pCO₂ level increased it to 0.19 ±0.00 µmol NO₂⁻¹ 306 g^{-1} FW h⁻¹ at the condition of lower P and to 0.15 ± 0.02 µmol NO₂ g^{-1} FW h⁻¹ at the 307 condition of higher P. The higher P level increased the NRA by 39.31% at the 308 condition of lower pCO₂, however, it decreased NRA by 17.81% at the condition of 309 higher pCO_2 . 310

The soluble carbohydrates (Fig. 7a) and protein (Fig. 7b) were estimated to understand the effects of ocean acidification and P enrichment on the products of carbon and nitrogen assimilation in *S. muticum.* pCO_2 and P had an interactive effect

on the soluble carbohydrates (ANOVA, F = 18.294, df = 1, 8, P = 0.003) and P had a main effect (ANOVA, F = 23.129, df = 1, 8, P = 0.001). The higher P level increased the soluble carbohydrates from 25.40 ± 1.66 to 41.10 ± 1.74 mg g⁻¹ FW at the condition of lower pCO_2 but did not alter it at the condition of higher pCO_2 . The higher pCO_2 level increased the soluble carbohydrates to 33.72 ± 3.31 mg g⁻¹ FW at the condition of lower P while the decrease of soluble carbohydrates caused by the higher pCO_2 level was not statistically significant at the condition of higher P.

Both pCO_2 (ANOVA, F = 106.663, df = 1, 8, P < 0.001) and P (ANOVA, F = 321 75.003, df = 1, 8, P < 0.001) had main effects on the soluble protein of S. muticum 322 and the interactive effect of the two factors was not detected (ANOVA, F = 4.961, df 323 = 1, 8, P = 0.057). The soluble protein contents at the conditions of lower pCO₂ were 324 8.49 \pm 0.49 (LP) and 9.77 \pm 0.14 mg g⁻¹ FW (HP) respectively. The higher pCO₂ level 325 increased it to 10.11 ± 0.16 mg g $^{-1}$ FW at the condition of lower P and to 12.28 ± 0.44 326 mg g⁻¹ FW at the condition of higher P. The higher P level also increased the soluble 327 protein contents by 15.13% at the condition of lower pCO₂ and by 21.51% at 328 condition of higher pCO_2 . 329

330 Finally, the effects of ocean acidification and P enrichment on the dark respiration rate of S. muticum were investigated (Fig. 8). pCO₂ and P had an interactive effect on 331 332 the dark respiration rate (ANOVA, F = 19.584, df = 1, 8, P = 0.002) and each factor had a main effect (ANOVA, F = 6.428, df = 1, 8, P = 0.035 for pCO_2 ; ANOVA, F =333 6.754, df = 1, 8, P = 0.032 for P). The higher pCO₂ level increased the dark 334 respiration rate from 14.21 \pm 1.94 to 21.24 \pm 1.28 µmol O₂ g⁻¹ FW h⁻¹ at the condition 335 336 of higher P but did not affect it at the condition of lower P. Likewise, The higher P level increased the respiration rate from 14.15 ± 0.65 to 21.24 ± 1.28 µmol O₂ g⁻¹ FW 337 h^{-1} at the condition of higher pCO₂ but did not change it at the condition of lower 338 pCO_2 . 339

340 4. Discussion

341 4.1. Effects of pCO₂ and P on carbon assimilation

342 The higher pCO_2 level increased the net photosynthetic rate in *S. muticum* at the

343 condition of lower P in the present study. Although the dissolved inorganic carbon in

344	seawater is around 2 mM, the dominant form is HCO3 ⁻ , with CO2 typically accounting
345	for less than 1% (Dickson, 2010). In addition, CO_2 in seawater diffuses ~8, 000 times
346	slower than in air (Gao and Campbell, 2014). Furthermore, the marine macroalgae
347	have high $K_{0.5}$ values (40–70 μ M CO ₂) for Rubisco, the carbon assimilating enzyme
348	(Ji et al., 2016). The evidence above indicates that the CO_2 in seawater should be
349	carbon limited for marine macroalgae. The promoting effect of elevated CO ₂ on
350	photosynthesis was also reported in other macroalgae species, such as green algae
351	Ulva linza (Gao et al., 1999), red algae Pyropia haitanensis (Zou and Gao, 2002), and
352	brown algae Petalonia binghamiae (Gao and Kunshan, 2010). Meanwhile, the higher
353	p CO ₂ level increased $K_{0.5}$ of S. muticum at the condition of lower P in the present
354	study, which indicates the plant grown at the condition of higher pCO_2 reduced its
355	photosynthetic affinity for DIC. This phenomenon is commonly found in both
356	microalgae and macroalgae (Gao and Campbell, 2014; Ji et al., 2016; Wu et al., 2008)
357	and is considered as a sign of down-regulated CCMs at high CO_2 conditions (Gao and
358	Campbell, 2014). But this decrease of photosynthetic affinity for DIC did not lead to
359	reduced photosynthesis in S. muticum in the present study, mainly because of
360	increased CO_2 availability for Rubisco and depressed photorespiration at the elevated
361	ratio of CO_2 to O_2 , which has been confirmed in red seaweed <i>Lomentaria articulate</i>
362	(K übler et al., 1999).
363	The higher P level also increased the net photosynthetic rate of S. muticum in the
364	present study, which can be partially explained by the decreased $K_{0.5}$ at the condition
365	of higher P. The decreased $K_{0.5}$ is an indication of increased photosynthetic carbon-use
366	capability. Phosphorus is a key macronutrient component for organisms and high
367	levels of P availability is not only essential for chloroplast DNA and RNA synthesis
368	(Vered and Shlomit, 2008), but is required for various chloroplast functions, referring
369	to phosphorylation of photosynthetic proteins, synthesis of phospholipids and
370	generation of ATP (Zer and Ohad, 2003). Therefore, High P levels could speed up the
371	transport of Ci from media to the site of Rubisco by supplying necessary energy. In
372	addition, P enrichment can increase both activity and amount of Rubisco (Lauer et al.,
373	1989). Meanwhile, phosphorus, with low concentration in seawater, is generally 13

374	considered to be limiting for marine primary producer (Elser et al., 2007; Howarth,
375	1988; Müller and Mitrovic, 2015). Therefore, adding extra phosphorus to natural
376	seawater can stimulate photosynthesis of algae. For instance, the midday (12:00)
377	photosynthetic rates increased from 1.3 to 2.3 mg C g^{-1} DW h^{-1} for <i>S. natans</i> , from 0.9
378	to 2.1 mg C g ⁻¹ DW h ⁻¹ for <i>S. fluitans</i> when 0.2 mM P was added (Lapointe, 1986). In
379	the present study, the addition of 40 μ mol P also resulted in nearly two-fold increase
380	of the net photosynthetic rate and V_{max} , which suggests the significant importance of P
381	in photosynthesis of this alga. In addition, the higher P level promoted the synthesis of
382	Chl a at the condition of lower pCO_2 , which may also contribute to the increased net
383	photosynthetic rate in S. muticum at the condition of higher P. Although P is not the
384	component constituting Chl a, higher P supply may stimulate the content of Chl a
385	synthesis-related enzymes and thus the production of Chl a. The positive effect of P
386	on Chl a was also reported in S. thunbergii (Nakahara, 1990). On the other hand, the
387	higher P level did not increase the Chl a content at the condition of higher p CO ₂ in the
388	present study. The possible reason is that there is more ATP available at the condition
389	of higher pCO_2 due to the down-regulation of CCMs and thus there is no need to
390	synthesize more Chl a to capture more light for cells as excessive energy can lead to
391	the harm to photosynthesis and growth of algae (Gao et al., 2012; Xu and Gao, 2012).
392	4.2. Effect of pCO_2 and P on nitrogen assimilation
393	The higher pCO_2 level noticeably enhanced the nitrate uptake rate in S. muticum
394	regardless of P concentration in the present study. This could be attributed to the
395	increased nitrate reductase activity (NRA) at the condition of higher pCO_2 . The
396	enhanced NRA at the conditions of high CO ₂ was also reported in U. rigida (Gordillo
397	et al., 2001), Hizikia fusiforme (Zou, 2005), P. haitanensis (Liu and Zou, 2015),
398	Corallina officinalis (Hofmann et al., 2013), as well as the higher plants Plantago
399	major (Fonseca et al., 1997), tomato (Yelle et al., 1987), etc. Taken together, these
400	findings indicate that the response of NRA in plants to elevated CO_2 may be
401	homogeneous.
402	The higher P level also enhanced the nitrate uptake in S. muticum regardless of
403	pCO ₂ level, which can be partially due to the increased NRA at the condition of ¹⁴

404	higher P. This is very evident at the condition of lower pCO_2 . However, the higher P
405	level decreased the NRA at the condition of higher pCO_2 , which did not lead to
406	reduced nitrate uptake. This indicates there should be other mechanisms to account
407	for the promoting effect of the higher P level on the nitrate uptake. One possible
408	mechanism is that the higher P level can increase the availability of ATP that is
409	required for the active uptake of nitrate across the plasma membrane. The
410	phenomenon that ATP concentration increases with P level has been found in higher
411	plants (Olivera et al., 2004; Rychter et al., 2006). Apart from S. muticum, the positive
412	effect of higher P level on nitrate uptake was also reported in red macroalgae
413	Gracilaria lemaneiformis (Xu et al., 2010) and higher plant Phaseolus vulgaris
414	(Gniazdowska and Rychter, 2000). The increased nitrate uptake, NRA and soluble
415	protein at the condition of higher P in the present study suggest that high P
416	availability promoted nitrogen assimilation in S. muticum.
417	The higher P level increased the nitrate uptake rate and soluble protein at the
418	conditions of both lower pCO_2 and higher pCO_2 but it only increased the NRA in S.
419	<i>muticum</i> at the condition of lower pCO_2 in the present study. Surprisingly, it
420	decreased the NRA at the condition of higher pCO_2 . The reason for that may be not
421	one fold but must be related to interaction of pCO_2 and P. High pCO_2 , on one hand,
422	could enhance photosynthetic carbon fixation and thus growth by supplying sufficient
423	CO_2 . On the other hand, it also results in the decrease of pH and increase of seawater
424	acidity, which can disturb the acid-base balance on cell surface of algae (Flynn et al.,
425	2012). Algae may accordingly allocate additional energy to act against the acid-base
426	perturbation in some way. This hypothesis is supported by increased respiration at the
427	condition of higher pCO_2 and higher P in the present study. The increased soluble
428	protein and decreased NRA at the condition of higher pCO_2 and higher P suggest
429	some H^+ transport-related protein, such as plasma membrane H^+ -ATPase, might be
430	synthesized to counteract the acid–base perturbation caused by increased pCO_2 and
431	H^+ . The plasma membrane H^+ -ATPase plays an essential role in maintaining an
432	electrochemical proton gradient across the plasma membrane (Morth et al., 2011;
433	Sondergaard et al., 2004). The additional production of H^+ transport-related protein

434	like plasma membrane H^+ -ATPase could competitively decrease the synthesis of
435	nitrate reductase. This hypothesis needs further experimental evidence to stand even
436	though it could explain the results in the present study. Meanwhile, the higher pCO_2
437	can also deliver the signal to induce the synthesis of $\boldsymbol{H}^{\!\!+}$ transport-related protein, but
438	low P supply may limit the synthesis. Accordingly, the nitrate reductase activity did
439	not decrease at the condition of higher pCO_2 and lower P.
440	4.3. Connection between carbon and nitrogen assimilation
441	The increased net photosynthetic rate at the condition of higher pCO_2 and higher
442	P did not result in higher soluble carbohydrates compared to the condition of higher
443	pCO ₂ and lower P. The additional ATP produced by photosynthetic electron transport
444	at the condition of higher pCO_2 and higher P may be drawn to nitrogen assimilation as
445	more soluble protein was synthesized at the condition of higher pCO_2 and higher P.
446	The additional energy allocation to protein synthesis, possibly $\boldsymbol{H}^{\!\!+}$ transport-related
447	protein to maintain the balance of acid-base, hindered the increase of growth, which
448	may be the reason that the higher P increased the net photosynthetic rate but not the
449	growth rate at the condition of higher p CO ₂ . Although synthesized protein can also
450	contribute to the increase of thalli weight, it is not as energy-effective as
451	carbohydrates (Norici et al., 2011; Raven, 1982). It seems that S. muticum tends to
452	maintain a steady state in vivo even if it can sacrifice growth to some extent,
453	considering that regulation of intracellular acid-base balance is crucial for organismal
454	homoeostasis (Flynn et al., 2012; Smith and Raven, 1979). The increased respiration
455	at HC was also demonstrated in G. lemaneiformis (Xu et al., 2010) and U. prolifera
456	(Xu and Gao, 2012). The respiration at the condition of higher pCO_2 and lower P did
457	not increase compared to at the condition of lower pCO_2 and lower P in the present
458	study, suggesting the action against acid-base perturbation did not commence. The
459	acid-base perturbation at the condition of higher pCO_2 and lower P may lead to the
460	decreased photosynthetic rate compared to that at the condition of lower pCO_2 and
461	lower P.
462	5. Conclusion

463 Our study, for the first time, demonstrates the combined effects of elevated pCO_2

- 464 and P enrichment on the physiological traits of a golden alga, S. muticum. It suggests
- 465 current ocean environment is both CO₂ and P limited for the photosynthesis and grow
- 466 of S. muticum. Therefore, future ocean acidification and eutrophication may promote
- 467 the growth of *S. muticum* and thus occurrence of gold tide events. Meanwhile, *S.*
- 468 *muticum* tends to maintain homoeostasis taking advantage of phosphate enrichment,
- 469 at the cost of growth. Accordingly, the combination of ocean acidification and
- 470 eutrophication may not boost gold tides further compared to ocean acidification or
- 471 eutrophication alone.

472 Acknowledgements

- 473 This study was supported by the National Natural Science Foundation of China
- 474 (Nos. 41376129, 41476097 and 31270452), the Public Science and Technology
- 475 Research Funds Projects of Ocean (Nos. 201505022, 201405040 and 201305021), the
- 476 Earmarked Fund for Modern Agro-industry Technology Research System in
- 477 Shandong Province (SDAIT-26), and the Experimental Study Project on Ecological
- 478 Simulation in Coastal Waters of Shandong Peninsula.

479 **References**

- 480 Alvaro, I. and Mazal, H.: Growth, photosynthetic properties and Rubisco activities
- 481 and amounts of marine macroalgae grown under current and elevated seawater
- 482 CO₂ concentrations, Glob. Chang. Biol., 30, 831-840, 2002.
- 483 Ang, P. O.: Phenology of Sargassum spp. in Tung Ping Chau Marine Park, Hong
- 484 Kong SAR, China, J. Appl. Phycol., 18, 403-410, 2006.
- 485 Ashok-Kumar, N., Vanlalzarzova, B., Sridhar, S., and Baluswami, M.: Effect of liquid
- 486 seaweed fertilizer of *Sargassum wightii* Grev. on the growth and biochemical
- 487 content of green gram (*Vigna radiata* (L.) R. Wilczek), Recent Res. Sci. Technol.,
 488 4, 40-45, 2012.
- 489 Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram
- 490 quantities of protein utilizing the principle of protein-dye binding, Anal.
- 491 Biochem., 72, 248-254, 1976.
- 492 Bricker, S. B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C., and
- 493 Woerner, J.: Effects of nutrient enrichment in the nation's estuaries: a decade of

494	change, Harmful Algae, 8, 21-32, 2008.
495	Caemmerer, S. V. and Farquhar, G. D.: Some relationships between the biochemistry
496	of photosynthesis and the gas exchange of leaves, Planta, 153, 376-387, 1981.
497	Carpenter, S. R.: Submersed vegetation: an internal factor in lake ecosystem
498	succession, Am. Nat., 1981. 372-383, 1981.
499	Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and
500	Smith, V. H.: Nonpoint pollution of surface waters with phosphorus and nitrogen,
501	Ecol. Appl., 8, 559-568, 1998.
502	Cheang, C. C., Chu, K. H., Fujita, D., Yoshida, G., Hiraoka, M., Critchley, A., Choi, H.
503	G., Duan, D., Serisawa, Y., and Ang, P. O.: Low genetic variability of Sargassum
504	muticum (Phaeophyceae) revealed by a global analysis of native and introduced
505	populations, J. Phycol., 46, 1063-1074, 2010.
506	Chen, B. and Zou, D.: Growth and photosynthetic activity of Sargassum
507	henslowianum (Fucales, Phaeophyta) seedlings in responses to different light
508	intensities, temperatures and CO ₂ levels under laboratory conditions, Mar. Biol.
509	Res., 10, 1019-1026, 2014.
510	Corzo, A. and Niell, F. X.: Determination of nitrate reductase activity in Ulva rigida C.
511	Agardh by the in situ method, J. Exp. Mar. Bio. Ecol., 146, 181-191, 1991.
512	Cruzrivera, E., Floresd áz, M., and Hawkins, A.: A fish kill coincident with dense
513	Sargassum accumulation in a tropical bay, Bull. Mar. Sci., 91, 455-456, 2015.
514	Deng, M. D., Moureaux, T., Cherel, I., Boutin, J. P., and Caboche, M.: Effects of
515	nitrogen metabolites on the regulation and circadian expression of tobacco nitrate
516	reductase, Plant Physiol. Biochem., 29, 239-247, 1991.
517	Dickson, A. G.: The carbon dioxide system in seawater: Equilibrium chemistry and
518	measurements. In: Guide to best practices for ocean acidification research and
519	data reporting, Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J. P. (Eds.),
520	Publications Office of the European Union, Luxembourg, 2010.
521	Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S.,
522	Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E.:
523	Global analysis of nitrogen and phosphorus limitation of primary producers in

524	freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 1135-1142, 2007.
525	Fenoradosoa, T. A., Ali, G., Delattre, C., Laroche, C., Petit, E., Wadouachi, A., and
526	Michaud, P.: Extraction and characterization of an alginate from the brown
527	seaweed Sargassum turbinarioides Grunow, J. Appl. Phycol., 22, 131-137, 2010.
528	Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J.,
529	Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the exterior
530	surface of plankton with ocean acidification, Nat. Clim. Chang., 2, 510-513,
531	2012.
532	Fonseca, F., Bowsher, C. G., and Stulen, I.: Impact of elevated atmospheric CO ₂ on
533	nitrate reductase transcription and activity in leaves and roots of Plantago major,
534	Physiol. Plant., 100, 940-948, 1997.
535	Gao, D. Z. and Kunshan: Acquisition of inorganic carbon by Endarachne binghamiae
536	(Scytosiphonales, Phaeophyceae), Eur. J. Phycol., 45, 117-126, 2010.
537	Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms to
538	elevated CO ₂ and decreased pH: a review, Funct. Plant Biol., 41, 449-459, 2014.
539	Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L., Zheng, Y., Jin,
540	P., and Cai, X.: Rising CO ₂ and increased light exposure synergistically reduce
541	marine primary productivity, Nat. Clim. Change, 2, 519-523, 2012.
542	Gao, K., Yan, J., and Aruga, Y.: Relationship of CO ₂ concentrations to photosynthesis
543	of intertidal macroalgae during emersion, Hydrobiologia, 398/399, 355-359,
544	1999.
545	Gniazdowska, A. and Rychter, A. M.: Nitrate uptake by bean (Phaseolus vulgaris L.)
546	roots under phosphate deficiency, Plant & Soil, 226, 79-85, 2000.
547	Gonz ález-L ópez, N., Moure, A., and Dom nguez, H.: Hydrothermal fractionation of
548	Sargassum muticum biomass, J. Appl. Phycol., 24, 1569-1578, 2012.
549	Gordillo, F. J. L., Niell, F. X., and Figueroa, F. L.: Non-photosynthetic enhancement
550	of growth by high CO ₂ level in the nitrophilic seaweed Ulva rigida C. Agardh
551	(Chlorophyta), Planta, 213, 64-70, 2001.
552	Hofmann, L., Straub, S., and Bischof, K.: Elevated CO ₂ levels affect the activity of
553	nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina

554	officinalis, J. Exp. Bot., 64, 899–908, 2013.
555	Howarth, R. W.: Nutrient limitation of net primary production in marine ecosystems,
556	Annu. Rev. Ecol. Syst., 1988. 89-110, 1988.
557	Hwang, R. L., Tsai, C. C., and Lee, T. M.: Assessment of temperature and nutrient
558	limitation on seasonal dynamics among species of sargassum from a coral reef in
559	southern taiwan, J. Phycol., 40, 463-473, 2004.
560	Incera, M., Olabarria, C., Troncoso, J. S., and López, J.: Response of the invader
561	Sargassum muticum to variability in nutrient supply, Mar. Ecol. Prog. Ser., 377,
562	91-101, 2009.
563	IPCC: Climate change 2013: The physical science basis. In: Working Group I
564	Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
565	Climate Change, Stocker, T. F., Qin, D., Plattner, GK., Tignor, M., Allen, S. K.,
566	Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.), Cambridge
567	Univ Press, New York, 2013.
568	Ji, Y., Xu, Z., Zou, D., and Gao, K.: Ecophysiological responses of marine macroalgae
569	to climate change factors, J. Appl. Phycol., 2016. 1-15, 2016.
570	Jones, G. and Farnham., W.: Japweed: new threat to British coasts, New Sci., 60,
571	394-395, 1973.
572	K übler, J. E., Johnston, A. M., and Raven, J. A.: The effects of reduced and elevated
573	CO ₂ and O ₂ on the seaweed Lomentaria articulata, Plant Cell & Environment,
574	22, 1303-1310, 1999.
575	Karlsson, J. and Loo, L. O.: On the distribution and continuous expansion of the
576	Japanese seaweed - Sargassum muticum - in Sweden, Bot. Mar., 42, 285-294,
577	1999.
578	Kochert, G.: Carbohydrate determination by the phenol-sulfuric acid method. In:
579	Handbook of Phycological Methods: Physiological and Biochemical Methods,
580	Hellebust, J. A. and Graigie, J. S. (Eds.), Cambridge University Press,
581	Cambridge, 1978.
582	Laffoley, D. A., Roe, H. S. J., Angel, M. V., Ardron, J., Bates, N. R., Boyd, I. L.,

583 Brooke, S., Buck, K. N., Carlson, C. A., and Causey, B.: The protection and

584	management of the Sargasso Sea: The golden floating rainforest of the Atlantic
585	Ocean, 2011.
586	Lapointe, B. E.: A comparison of nutrient - limited productivity in Sargassum natans
587	from neritic vs. oceanic waters of the western North Atlantic Ocean, Limnol. &
588	Oceanogr., 40, 625-633, 1995.
589	Lapointe, B. E.: Phosphorus-limited photosynthesis and growth of Sargassum natans
590	and Sargassum fluitans (Phaeophyceae) in the western North Atlantic, Deep Sea
591	Res. Part A Oceanogr. Res. Pap., 33, 391-399, 1986.
592	Lapointe, B. E., Littler, M. M., and Littler, D. S.: A comparison of nutrient-limited
593	productivity in macroalgae from a Caribbean barrier reef and from a mangrove
594	ecosystem, Aquat. Bot., 28, 243-255, 1987.
595	Lapointe, B. E., Littler, M. M., and Littler, D. S.: Nutrient availability to marine
596	macroalgae in siliciclastic versus carbonate-rich coastal waters, Estuaries &
597	Coasts, 15, 75-82, 1992.
598	Lauer, M. J., Pallardy, S. G., Blevins, D. G., and Randall, D. D.: Whole leaf carbon
599	exchange characteristics of phosphate deficient soybeans (Glycine max L.), Plant
600	Physiol., 91, 848-854, 1989.
601	Lichtenthaler, H. K.: Chlorophylls and carotenoids: Pigments of photosynthetic
602	biomembranes, Methods Enzymol., 148, 350-382, 1987.
603	Littler, M. M., Littler, D. S., and Titlyanov, E. A.: Comparisons of N- and P-limited
604	productivity between high granitic islands versus low carbonate atolls in the
605	Seychelles Archipelago: a test of the relative-dominance paradigm, Coral Reefs,
606	10, 199-209, 1991.
607	Liu, C. and Zou, D.: Effects of elevated CO ₂ on the photosynthesis and nitrate
608	reductase activity of Pyropia haitanensis (Bangiales, Rhodophyta) grown at
609	different nutrient levels, Chin. J. Oceanol. Limnol., 33, 419-429, 2015.
610	Liu, Y. and Tan, H.: Changes of growth and nutrient-relating enzymatic activities of
611	Sargassum thunbergii when exposed to different nutrient conditions, Aquat. Sci.
612	Technol., 2, 1-13, 2014.
613	Longphuirt, S. N., Eschmann, C., Russell, C., and Stengel, D. B.: Seasonal and

614 615

015	Mai. Leoi. 1105. 501., 475, 71 102, 2014.
616	Müller, S. and Mitrovic, S. M.: Phytoplankton co-limitation by nitrogen and
617	phosphorus in a shallow reservoir: progressing from the phosphorus limitation
618	paradigm, Hydrobiologia, 744, 255-269, 2015.
619	Mattio, L. and Payri, C. E.: 190 years of Sargassum taxonomy, facing the advent of
620	DNA phylogenies, Bot. Rev., 77, 31-70, 2011.
621	Morth, J. P., Pedersen, B. P., Buch-Pedersen M. J., Andersen, J. P., Vilsen, B.,
622	Palmgren, M.G. and Nissen, P.A: Structural overview of the plasma membrane
623	Na ⁺ , K ⁺ -ATPase and H ⁺ -ATPase ion pumps, Nat. Rev. Mol.Cell Biol., 12, 60-70,
624	2011.
625	Nakahara, K. G. H.: Effects of nutrients on the photosynthesis of Sargassum
626	thunbergii, Bot. Mar., 33, 375-384, 1990.
627	Norici, A., Bazzoni, A. M., Pugnetti, A., Raven, J. A., and Giordano, M.: Impact of
628	irradiance on the C allocation in the coastal marine diatom Skeletonema marinoi
629	Sarno and Zingone, Plant Cell Environ., 34, 1666–1677, 2011.
630	Olivera, M., Tejera, N., Iribarne, C., Ocaña, A., and Lluch, C.: Growth, nitrogen
631	fixation and ammonium assimilation in common bean (Phaseolus vulgaris):
632	effect of phosphorus, Physiol. Plant., 121, 498-505, 2004.
633	Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO_2
634	system calculations, ORNL/CDIAC-105a. Carbon Dioxide Information Analysis
635	Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
636	Tennessee, 2006.
637	Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U.,
638	Shepherd, J., Turley, C., and Watson, A.: Ocean acidification due to increasing
639	atmospheric carbon dioxide, The Royal Society, London, 2005.
640	Raven, J. A.: The energetics of freshwater algae; energy requirements for biosynthesis
641	and volume regulation, New Phytol., 92, 1–20, 1982.
642	Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E.,
643	Millero, F. J., and Campbell, D. M.: The dissociation constants of carbonic acid 22

species specific response of five brown macroalgae to high atmospheric CO₂,

Mar. Ecol. Prog. Ser., 493, 91-102, 2014.

in seawater at salinities 5 to 45 and temperatures 0 to 45° C, Mar. Chem., 44,

249-267,	1993.
	249-267,

- 646 Rueness, J.: Sargassum muticum and other introduced Japanese macroalgae:
- Biological pollution of European coasts, Mar. Pollut. Bull., 20, 173-176, 1989.
- 648 Rychter, A. M., Chauveau, M., Bomsel, J. L., and Lance, C.: The effect of phosphate
- 649 deficiency on mitochondrial activity and adenylate levels in bean roots, Physiol.
- 650 Plant., 84, 80-86, 2006.
- 651 Scagel, R. F.: Introduction of a Japanese alga, Sargassum muticum, into the northeast
- 652 Pacific, Fisheries Research Papers, 1, 49-58, 1956.
- 653 Schaffelke, B. and Klumpp, D. W.: Nutrient-limited growth of the coral reef
- 654 macroalga Sargassum baccularia and experimental growth enhancement by
- nutrient addition in continuous flow culture, Mar. Ecol. Prog. Ser., 164, 199-211,1998.
- 657 Schell, J. M., Goodwin, D. S., and Siuda, A. N. S.: Recent sargassum inundation
- events in the Caribbean, Oceanography, 28, 8-10, 2015.
- 659 Sfriso, A. and Facca, C.: Annual growth and environmental relationships of the
- 660 invasive species *Sargassum muticum* and *Undaria pinnatifida* in the lagoon of
- 661 Venice, Estuar. Coast. Shelf Sci., 129, 162-172, 2013.
- Smetacek, V. and Zingone, A.: Green and golden seaweed tides on the rise, Nature,
 504, 84-88, 2013.
- Smith, F. A. and Raven, J. A.: Intracellular pH and its regulation, Annu. Rev. Plant
 Physiol., 30, 289-311, 1979.
- 666 Smith, V. H., Tilman, G. D., and Nekola, J. C.: Eutrophication: impacts of excess
- nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ. Pollut.,100, 179-196, 1999.
- 669 Sondergaard, T. E., Schulz, A. and Palmgren, M. G.: Energization of transport
- 670 processes in plants. Roles of the plasma membrane H^+ -ATPase, Plant Physiol.,
- 671 136, 2475-2482, 2004.
- 672 Stæhr, P. A., Pedersen, M. F., Thomsen, M. S., Wernberg, T., and KrauseJensen, D.:
- 673 Invasion of *Sargassum muticum* in Limfjorden (Denmark) and its possible

674	impact on the indigenous macroalgal community, Mar. Ecol. Prog. Ser., 207,
675	79-88, 2000.
676	Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater analysis, 2nd
677	ed., Fisheries Research Board of Canada, Ottawa, 1972.
678	Velasco, P. J. and Whitaker, J. R.: Synthesis and degradation of nitrate reductase
679	during the cell cycle of Chlorella sorokiniana, Plant Physiol., 89, 220-224, 1989.
680	Vered, I. and Shlomit, Y. R.: Phosphate and sulfur limitation responses in the
681	chloroplast of Chlamydomonas reinhardtii, FEMS Microbiol. Lett., 283, 1-8,
682	2008.
683	Wu, H. Y., Zou, D. H., and Gao, K. S.: Impacts of increased atmospheric CO_2
684	concentration on photosynthesis and growth of micro- and macro-algae, Sci.
685	China Ser. C Life Sci., 51, 1144-1150, 2008.
686	Xu, J. and Gao, K.: Future CO2-induced ocean acidification mediates the
687	physiological performance of a green tide alga, Plant Physiol., 160, 1762-1769,
688	2012.
689	Xu, Z., Zou, D. H., and Gao, K.: Effects of elevated CO_2 and phosphorus supply on
690	growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria
691	lemaneiformis (Rhodophyta), Bot. Mar., 53, 123-129, 2010.
692	Yelle, Gosselin, and Trudel: Effect of atmospheric CO ₂ concentration and root-zone
693	temperature on growth, mineral nutrition, and nitrate reductase activity of
694	greenhouse tomato, J. Am. Soc. Hort. Sci., 112, 1036-1040, 1987.
695	Zer, H. and Ohad, I.: Light, redox state, thylakoid-protein phosphorylation and
696	signaling gene expression, Trends Biochem. Sci., 28, 467-470, 2003.
697	Zou, D.: Effects of elevated atmospheric CO_2 on growth, photosynthesis and nitrogen
698	metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae,
699	Phaeophyta), Aquaculture, 250, 726-735, 2005.
700	Zou, D. and Gao, K.: Effects of desiccation and CO ₂ concentrations on emersed
701	photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species
702	farmed in China, Eur. J. Phycol., 37, 587-592, 2002.

Table 1. Parameters of the seawater carbonate system at different CO₂ and phosphate conditions. Measurements and estimation of the

707

708

709 710

711

prent superscript letters indicate significant differences in $HCO_3^ HCO_3^ PCO_2$ (µatm) $HCO_3^ pCO_2$ (µatm) $(\mu mol kg^{-1})$ $q26.9\pm 31.1^a$ 2000.2 ± 51.7^a 200.9 ± 5.8^b 426.9 ± 31.1^a 2000.2 ± 51.7^a 423.9 ± 21.1^a 1987.6 ± 10.9^a 199.8 ± 11.4^b 1017.2 ± 83.2^b 2282.5 ± 27.6^b 110.0 ± 10.0^a	parameter between treatme	ints ($P < 0.05$).
HCO ₃ CO ₃ ²⁻ pCO ₂ (µatm) (µmol kg ⁻¹) (µmol kg ⁻¹) 426.9±31.1 ^a 2000.2±51.7 ^a 200.9±5.8 ^b 423.9±21.1 ^a 1987.6±10.9 ^a 199.8±11.4 ^b 1017.2±83.2 ^b 2282.5±27.6 ^b 110.0±10.0 ^a		
pCO2 (µatm) (µmol kg ⁻¹) (µmol kg ⁻¹) 426.9±31.1 ^a 2000.2±51.7 ^a 200.9±5.8 ^b 423.9±21.1 ^a 1987.6±10.9 ^a 199.8±11.4 ^b 1017.2±83.2 ^b 2282.5±27.6 ^b 110.0±10.0 ^a	CO2 DIC	ТА
426.9±31.1 ^a 2000.2±51.7 ^a 200.9±5.8 ^b 423.9±21.1 ^a 1987.6±10.9 ^a 199.8±11.4 ^b 1017.2±83.2 ^b 2282.5±27.6 ^b 110.0±10.0 ^a	(µmol kg ⁻¹) (µmol kg ⁻¹)	(µmol kg ⁻¹)
426.9±31.1 ^a 2000.2±51.7 ^a 200.9±5.8 ^b 423.9±21.1 ^a 1987.6±10.9 ^a 199.8±11.4 ^b 1017.2±83.2 ^b 2282.5±27.6 ^b 110.0±10.0 ^a		
423.9±21.1 ^a 1987.6±10.9 ^a 199.8±11.4 ^b 1017.2±83.2 ^b 2282.5±27.6 ^b 110.0±10.0 ^a	14.2±1.0 ^a 2215.3±49.7 ^a	2475.2±44.2
1017.2±83.2 ^b 2282.5±27.6 ^b 110.0±10.0 ^a	14.1±0.7 ^a 2201.5±19.3 ^a	2504.7±33.8
	34.0±2.9 ^b 2426.5±32.5 ^b	2541.5±44.2
7.76±0.02 ^a 992.2±44.9 ^b 2261.8±35.9 ^b 110.5±5.9 ^a 3:	33.1±1.5 ^b 2405.4±39.4 ^b	2563.6±44.2

- **Table 2.** The carbon-saturating maximum photosynthetic rate (V_{max} , μ mol O₂ g⁻¹ FW
- 713 h^{-1}) and half saturation constant ($K_{0.5}$, mM) for *S. muticum* cultured under different
- pCO_2 and P conditions for 13 days. Different superscript letters indicate significant
- differences in one parameter between treatments (P < 0.05).

	LCLP	LCHP	HCLP	НСНР
V_{max}	57.00±2.88 ^a	$93.99 \pm 0.98^{\circ}$	81.18±5.94 ^b	100.67±6.81°
<i>K</i> _{0.5}	0.21 ± 0.02^{a}	0.14 ± 0.05^{a}	0.42 ± 0.08^{b}	0.19 ± 0.05^{a}

- Fig. 1. Relative growth rate (RGR) of S. muticum grown at different pCO_2 and P
- conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low *p*CO₂ and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO₂ and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).
- Fig. 2. Net photosynthetic rate (RGR) of S. muticum after being grown at different
- pCO₂ and P conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low
- pCO_2 and low P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high
- pCO_2 and low P condition, HCHP, the high pCO_2 and high P condition. Different
- letters above error bars indicate significant differences between treatments (P < 0.05).
- 726 Fig. 3. The photosynthesis versus DIC curves of S. muticum after being cultured
- under pCO_2 and P conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the
- low pCO_2 and low P condition, LCHP, the low pCO_2 and high P condition, HCLP, the
- high pCO_2 and low P condition, HCHP, the high pCO_2 and high P condition. DIC =
- 730 dissolved inorganic carbon.
- **Fig. 4.** Chl *a* content of *S*. *muticum* after being grown at different pCO_2 and P
- conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low pCO₂ and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO_2 and high P condition. Different letters above error

bars indicate significant differences between treatments (P < 0.05).

- **Fig. 5.** Nitrate uptake rate of *S. muticum* after being grown at different pCO_2 and P
- conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low pCO₂ and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO_2 and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).
- 741 Fig. 6. Nitrate reductase activity (NRA) of S. muticum after being grown at different
- 742 pCO_2 and P conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low
- pCO_2 and low P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high
- pCO_2 and low P condition, HCHP, the high pCO_2 and high P condition. Different
- letters above error bars indicate significant differences between treatments (P < 0.05).
- **Fig. 7.** The contents of soluble carbohydrates (a) and protein (b) of *S. muticum* after
- being grown at different pCO_2 and P conditions for 13 days. Data are the means \pm SD
- (n = 3). LCLP, the low pCO_2 and low P condition, LCHP, the low pCO_2 and high P
- condition, HCLP, the high pCO_2 and low P condition, HCHP, the high pCO_2 and high

- 750 P condition. Different letters above error bars indicate significant differences between
- 751 treatments (P < 0.05).
- **Fig. 8.** Dark respiration rate of *S. muticum* after being grown at different pCO_2 and P
- conditions for 13 days. Data are the means \pm SD (n = 3). LCLP, the low *p*CO₂ and low
- P condition, LCHP, the low pCO_2 and high P condition, HCLP, the high pCO_2 and low
- P condition, HCHP, the high pCO_2 and high P condition. Different letters above error
- bars indicate significant differences between treatments (P < 0.05).

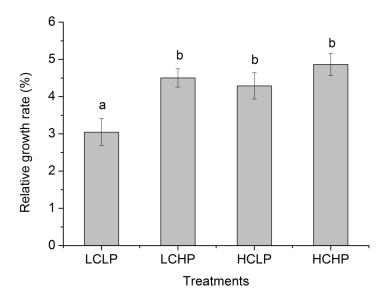


Fig. 1

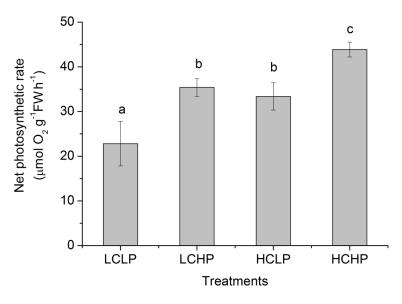


Fig. 2

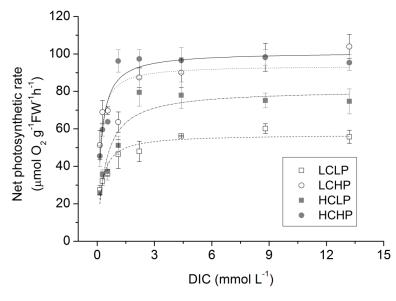


Fig. 3

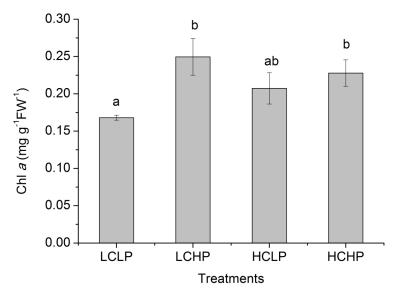


Fig. 4

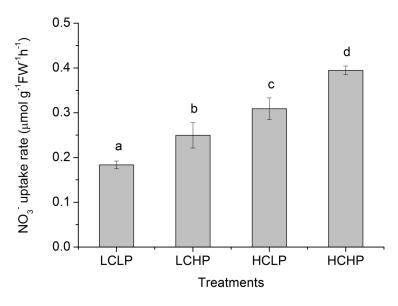


Fig. 5

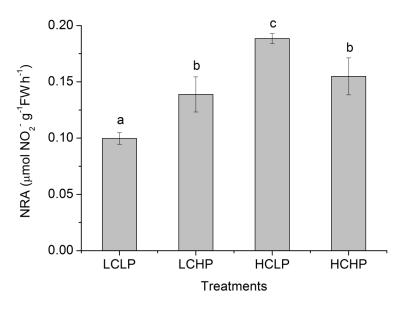
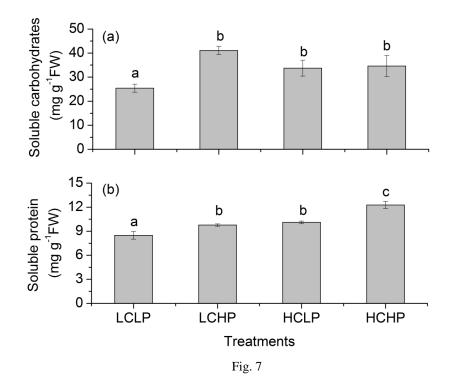



Fig. 6

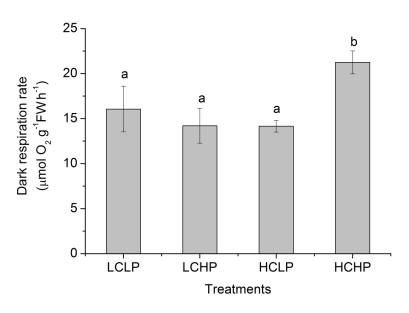


Fig. 8