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Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics 

relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal 10 

patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and 

reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, 

inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide 

range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 and 2010, to identify the state of 

today’s observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, 15 

continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, 

loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 

fluxes are obtained through geostatistical and/or remote sensing-based upscaling; thereby minimizing biophysical or 

biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the 

surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of 20 

this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in-

situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE 

estimates agree well with independent estimates from other sources such as process-based models and atmospheric 

inversions. This holds for Europe (mean±1 SD: 0.8±0.1 PgC/yr, positive numbers are sources to the atmosphere), Russia 

(0.1±0.4 PgC/yr), East Asia (1.6±0.3 PgC/yr), South Asia (0.3±0.1 PgC/yr), Australia (0.2±0.3 PgC/yr) and most of the 25 

Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo and 

Indonesia. Overall, and because of the over-estimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a 

net sink of -5.4±2.0 PgC/yr. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001-2010 

indicates that the true value of NCE is a net CO2 source of 4.3±0.1 PgC/yr. This mismatch of nearly 10 PgC/yr highlights 

observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty 30 

assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the 

priority list are tropical land regions, which suffer from a lack of in-situ observations. Second, extensive pCO2 data are 

missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary and inland 
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water-atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multi-

criteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without 

over- or under- stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at 

national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change and forestry 

sector, upon which future emission reductions are proposed.  5 

 

1 Introduction 

The global carbon (C) cycle is crucial for sustaining life on Earth (Vernadsky, 1926). Humans have largely modified the C 

cycle over centuries if not millennia (Ruddiman, 2003; Pongratz et al., 2009). In the Industrial Era, the human-caused 

perturbation of the C cycle is largely driven by emissions of CO2 from burning fossil fuel C previously in geological 10 

deposits, and changes in land use, which transfer CO2 from C stocks in the land biosphere to the atmosphere, but can also 

result into CO2 removal and increase of land stocks. As those anthropogenic C emissions are partly taken up by oceans and 

terrestrial ecosystems not affected by land-use change, the different reservoirs of the global C cycle and the fluxes between 

them change over time (Houghton, 2007). A precise knowledge of the various stocks and fluxes in the C cycle is a 

prerequisite to monitor these changes and make well-informed predictions under future climate change. 15 

The Global Carbon Project (GCP) has made major efforts in this direction and its annual updates of the global C budget have 

become a key source of information for the scientific community and policy makers (Le Quéré et al., 2015). The GCP annual 

C budget quantifies the partitioning of anthropogenic C emissions among the atmosphere, land, and ocean components of the 

global C cycle, and separates the net land flux into land use change emissions and a so called ‘residual land C sink’ obtained 

by difference with other terms of the budget and thus corresponding to the net land-atmosphere CO2 flux over non land-use 20 

affected ecosystems. The budget of the GCP focuses on annual values integrated at the global scale. An important point is 

that the GCP budget quantifies solely the anthropogenic perturbation of CO2 fluxes, i.e., it provides information about the 

fate of anthropogenic CO2 emissions in natural reservoirs (Ciais et al., 2013). According to the GCP, about 44% of the 

anthropogenic CO2 emissions each year stay in the atmosphere, the rest being taken up by the oceans (26%) and land (30%) 

(Le Quéré et al., 2015).  25 

Recently, a case has been made for a globally policy-relevant integrated C observation and analysis system (Ciais et al., 

2014). This system would go beyond the update of global budgets, for which the CO2 growth rate accurately measured at a 

single station (e.g. Mauna Loa) is sufficient to constrain the global annual time-space integral of all CO2 sources and sinks. It 

proposes to quantify regional CO2 fluxes with sufficient spatial details to monitor the effectiveness of CO2 mitigation and to 

detect and monitor trends of CO2 losses and gains by land and terrestrial systems. This is partly relevant for monitoring 30 

country-level Intended Nationally Determined Contributions (INDCs) to incept a CO2 emission trajectory consistent with 

global warming below 2 degrees Celsius (UNFCCC, 2015). In such a policy-relevant C observing system, an uncertainty 

assessment for each data stream and CO2 fluxes at different spatial and temporal scales is important to, for instance, identify 

significant regional emission hotspots and trends in emissions and sinks (Ciais et al., 2014).  
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The steadily increasing number of Earth observations, in particular since the start of the satellite era, has improved our 

knowledge of the Earth system (Berger et al., 2012; Tatem et al., 2008). Especially C cycle science has benefited from 

globally available satellite observations and community efforts to unify in-situ observational networks such as FLUXNET on 

land (Baldocchi, 2014), the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2014) and more recently CO2 outgasing from 

lakes and rivers (Raymond et al., 2013).  Combining these available point measurements of either CO2 fluxes (e.g., from 5 

eddy-covariance towers on land), or variables that can be directly related to CO2 fluxes (e.g., pCO2 over aquatic surfaces) 

with climate fields and remotely sensed variables (e.g., vegetation greenness), provides a basis to robustly upscale surface-

atmosphere CO2 exchange to larger areas using statistical models (Jung et al., 2011; Rödenbeck et al., 2015).  

In this study we aim at characterizing the ability of current C cycle observations on ground for quantifying a 

spatiotemporally explicit picture of the net CO2 exchange between the Earth’s surface (terrestrial and aquatic) and the 10 

atmosphere (NCE). Unlike the GCP global budget of anthropogenic CO2, we consider here the full contemporary exchange 

of surface-atmosphere CO2 fluxes. We focus our analysis on fluxes that can be directly derived from observations. That is, 

we use data-driven empirical models instead of process-based models that are only indirectly constrained by observations. 

Further, we only consider ‘bottom-up’ estimates derived from measurements at the Earth's surface or from satellites. 

Inversions, which largely rely on atmospheric measurements in combination with a transport model, are not directly included 15 

but used for comparison. The goal of this analysis is to test the up-scaling of local flux-related observations to regional and 

global budgets, and point out the limitations of the current observational networks and data-driven models used to interpolate 

point-scale CO2 fluxes across larger scales, for quantifying the most important CO2 fluxes exchanged between the Earth’s 

surface and the atmosphere.  

One of the major innovations of this study is combining data-driven estimates of oceanic, inland waters and terrestrial 20 

ecosystems CO2 exchange and providing spatially explicit maps of the CO2 exchange between the surface and the 

atmosphere at a monthly scale for the decade 2001-2010. At the same time, by adding emissions from fossil fuels and 

cement production and comparing with the annual growth rate of CO2, we identify the limits of a C budget purely driven by 

surface data. We characterize regions in which surface-atmosphere CO2 fluxes are most uncertain based on the currently 

available data and the models used for upscaling, and thus point out regions where either more observations or a better 25 

understanding of the processes are necessary. It is not the primary goal of this study to provide the best global CO2 flux 

inventory, but rather to identify the key uncertainties and observational shortcomings that need to be prioritized in the 

expansion of in-situ observatories.  

The paper is structured as follows. In Sect. 2 we introduce the different data streams used in the analysis, including spatially 

explicit estimates of aquatic and terrestrial CO2 exchange. In Sect. 3 we present the resulting combined synthesis as global 30 

maps, regionally aggregated fluxes, absolute and relative uncertainties, latitudinal averages and seasonal cycles. Sect. 4 

addresses the benefits and limits of the current observational system for constraining global net CO2 fluxes. Sect. 5 provides 

an outlook on future requirements to achieve better observation-based net CO2 flux estimates and discusses the necessity for 

more consistent uncertainty estimates. 
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2 Data and Methods 

We collected ensembles of data-driven estimates of the net CO2 exchange between the Earth’s surface and the atmosphere 

(NCE) for the major subsystems of the Earth from 2001-2010 (Table 1). Each dataset was aggregated to 1 x 1 degree spatial 

resolution. All datasets have an original spatial resolution of at least 1 x 1 degree such that no information was lost through 5 

re-gridding. The temporal resolution is monthly. For datasets that were only available at yearly time scale or once over the 

complete time period (Table 1), we distributed fluxes evenly across all months. In this synthesis, we include net CO2 

exchange from open oceans, continental shelves, estuaries, rivers, lakes, and terrestrial ecosystems, which we combine with 

estimates of fossil fuel and cement emissions (FF). The terrestrial ecosystem component accounts for fire emissions (Fire), 

loss of tropical above-ground biomass assumed to be released as CO2 to the atmosphere (ELUC), emissions of the CO2 10 

contained in harvested wood (Wood) and crops (Crops), and Net Ecosystem Productivity (NEP). We combine fluxes from 

oceans, shelves, and estuaries into a homogeneous marine flux product in order to account for overlapping or missing 

regions from the different aquatic products (Marine, Sect. 2.2.6). We further compare the net CO2 exchange derived from the 

combination of all the above products with the growth rate of atmospheric CO2 (CGR). Data scarcity precludes including all 

known vertical CO2 fluxes in this study. Missing fluxes include geological CO2 fluxes, erosion related fluxes, non-CO2 15 

fluxes, wood product pools decay, and biofuel burning. Combining all fluxes, the overall net CO2 exchange (NCE) between 

the Earth’s surface and the atmosphere is given as: 

NCE = Marine + Lakes + Rivers -NEP + Crops + Wood + ELUC + Fire + FF.  (1) 

All units were transformed into fluxes of C per unit time. If all CO2 fluxes were included, NCE would translate into the 

CGR. By convention negative fluxes indicate an uptake by the Earth surface.  20 

2.1 Uncertainty estimation and propagation 

To estimate NCE including spatiotemporally explicit uncertainties, we combine randomly drawn ensemble members from all 

of the 9 datasets contributing to NCE (Eq. 1).  With the available realizations, we could in principle create 

10x10x50x8x10x2 = 800000 spatiotemporal explicit estimates of NCE (see Table 2 for the available number of realizations 

per dataset). From these 800000 possible NCE estimates we randomly select 200 to construct the NCE ensemble, which is 25 

used in the rest of the paper. This resampling approach is illustrated in Figure 1 and ensures a consistent propagation of 

spatiotemporally correlated uncertainties.  For instance, by aggregating each member of NCE to the desired region and 

estimating uncertainty through the 200 members, we can compute regional uncertainties. In addition, we computed mean 

fluxes, uncertainty (defined as one standard deviation (SD) of the annual mean across all realizations), interannual variability 

(IAV, defined here as one SD of annual means across all available years) and the coefficient of variation (CV = IAV/mean) 30 

for each of the 9 flux terms in Eq. 1. 
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2.2 Aquatic fluxes 

2.2.1 Oceans 

For the global open ocean flux estimate we used two complementary data-driven estimates (Table 1). Both approaches 

computed maps of the sea surface partial pressure of CO2 (pCO2). They relied on the surface ocean CO2 observations from 

the SOCATv2 database (Bakker et al., 2014) and filled data gaps by either establishing relationships between auxiliary 5 

driver data and observations, which can then be applied to extrapolate pCO2 in regions without data coverage (SOM-FFN, 

Landschützer et al., 2014), or by assimilating the available observations in a mass-balance model of the mixed layer and 

directly interpolating data gaps (Jena CarboScope mixed-layer scheme oc_v1.2, Rödenbeck et al., 2014). To test the 

established predictor-target relationship, the SOM-FFN method holds back a certain fraction of the observations proportional 

to the methods degrees of freedom for internal validation. Repeating this relationship building process and withholding 10 

different sets of validation data has created the 5 ensemble members used for this study. For the Jena CarboScope mixed-

layer scheme, we used the 5 sensitivity cases with changes in correlation length etc. as described in Rödenbeck et al (2014). 

The pCO2 fields of both methods have been validated against independent observations (Landschützer et al., 2014; 

Landschützer et al., 2015; Rödenbeck et al., 2014) and were compared with other complementary data based interpolation 

methods (Rödenbeck et al., 2015), illustrating their good performance in reconstructing interannual variation. 15 

Both methods calculate the air-sea flux using a bulk formulation of the air-sea CO2 transfer, driven by the air-sea pCO2 

difference (∆pCO2) (Jähne et al., 1987) and a quadratic dependence of the wind speed at a height of 10 meters (Wanninkhof, 

1992) updating the gas transfer coefficient to fit a mean transfer velocity of 16 cm per hour following Wanninkhof (2013). 

High-resolution wind speeds at 10 meters are calculated from the u and v wind components of the ERA-interim wind speed 

analysis (Dee et al., 2011) and atmospheric pCO2 fields, required to calculate the ∆pCO2, are calculated are estimated from 20 

the GLOBALVIEW-CO2, 2012 Marine Boundary Layer CO2 product.  

2.2.2 Shelves 

For continental shelf seas we derived the ∆pCO2 from 3x106 surface pCO2 measurements extracted from the SOCATv2 

database (Bakker et al., 2014) and observational atmospheric pCO2 data (GLOBALVIEW-CO2, 2012). The local CO2 air-

sea flux values were then obtained using a wind-dependent quadratic formulation parameterized as in Wanninkhof et al. 25 

(2013) and wind speeds extracted from a cross-calibrated multiplatform (CCMP) high-resolution data product for ocean 

surface winds (Atlas et al., 2011). The resulting local fluxes were then integrated spatially over 150 coastal regions 

(COSCATs - COastal Segmentation and related CATchments; Laruelle et al. (2013); Meybeck et al. (2006)) using distinct 

integration methods depending on the data density (Laruelle et al., 2014). In addition, a temporal integration was also 

performed at the monthly, seasonal or yearly time scale depending on the data coverage. These temporally and regionally 30 

averaged air-sea CO2 fluxes were then disaggregated using a 1-degree resolution map excluding land areas and open ocean 

waters using the shelf break as outer limit (Laruelle et al., 2014). 
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2.2.3 Estuaries 

The CO2 emissions from estuaries were derived from 161 annually averaged local CO2 air-water exchange rates reported in 

the literature (Laruelle et al., 2013). The data were allocated to one of the 45 coastal MARCATS regions (MARgins and 

CATchments Segmentation) defined in Laruelle et al. (2013) and further categorized among the 4 dominant estuarine types 

(i.e., small deltas, tidal systems, lagoons, fjords, see (Dürr et al., 2011)) to calculate regionally-averaged, type specific CO2 5 

emission rates. In MARCATS regions devoid of estuarine data, the global average type-dependent air-water CO2 flux was 

used from Laruelle et al. (2013). These flux densities were then multiplied by the estuarine surface areas for each type, 

estimated at 1-degree resolution from the length of the coastline and a type-specific length to estuarine surface ratio (Dürr et 

al., 2011). 

2.2.4 Marine 10 

We combined open oceans, shelves, and estuaries to a consistent marine product. For pixels with observations from multiple 

products (e.g., estuaries and oceans) we follow a “priority rule” whereby the shelves, estuaries, or oceans observation value 

only (in that order) is retained. Empty pixels are gap-filled with 3 x 3 mean window. This same filter is also applied to the 

rest of the merged dataset to smooth out hard borders between the different estimates. This application does not significantly 

change the overall flux estimates, but arguably results in a more realistic interface. Note that in the merged Marine product, 15 

uncertainty and IAV could only be assessed for the ocean flux. 

2.2.5 Rivers 

Estimates of CO2 evasion from streams and rivers were derived from a spatially explicit, empirical model of river water 

pCO2 and global maps of stream surface areas and gas exchange velocities at a resolution of 0.5 degree (Lauerwald et al., 

2015). The empirical pCO2 model was trained on 1182 river catchments from the GLORICH database (Hartmann et al., 20 

2014) for which averages of pCO2 could be calculated. Steepness of terrain, terrestrial net primary production, average air 

temperature as well as population density were identified as predictors (R2=0.47). The global maps of stream surface area 

and gas exchange velocities were obtained by a GIS-based application of published empirical scaling laws (Raymond et al., 

2013; Raymond et al., 2012) using topography (Lehner et al., 2008) and runoff (Fekete et al., 2002).  The CO2 evasion was 

calculated as product of water-air pCO2 gradient (assuming an atmospheric pCO2 of 390 µatm), river surface areas, and gas 25 

exchange velocities. A Monte-Carlo simulation based on standard errors of the predictors in the pCO2 model and uncertainty 

ranges for estimates of stream surface area and gas exchange velocity was run to produce 50 CO2 evasion estimates.  

2.2.6 Lakes 

Estimates of CO2 evasion from lakes and reservoirs were taken from Raymond et al. (2013), which reports average lake 

pCO2, total lake/reservoir surface area, and total CO2 evasion for 231 COSCAT regions (including endorheic regions). For 30 

the total lake/reservoirs surface area, data from the Global Lakes and Wetland Data base (GLWD, Lehner and Döll, 2004) 

were combined with an estimate for small lakes and reservoirs not represented in the GLWD using a scaling law. Here, we 
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used the GLWD data to downscale the estimates of Raymond et al. (2013) to a continuous 1-degree resolution. For this 

purpose, we combined a uniform air-water CO2 flux (per unit surface area) within each COSCAT region with a spatially 

explicit estimate of the lakes/reservoirs surface at this resolution. The small lakes/reservoirs not represented in the GLWD 

were assumed evenly distributed over the COSCAT area. 

2.3 Terrestrial fluxes 5 

2.3.1 NEP 

We used empirical, machine learning based products from FLUXCOM (www.fluxcom.org) for net ecosystem productivity 

(NEP), derived from more than 200 FLUXNET sites and exclusively remote-sensing based predictor variables (“FLUCOM-

RS”, see Tramontana et al., 2016). The eight machine learning methods used here include artificial neural networks, four 

variants of model or regression tree ensembles, kernel methods (support vector machines, kernel ridge regression), and 10 

multivariate adaptive regression splines (Tramontana et al., 2016). All methods were trained on 8-daily tower based NEP 

estimates. 

2.3.2 Crops 

About 42% of global crop biomass is harvested, transported, and respired off site (Wolf et al., 2015a). The impact of this 

lateral C transport on fluxes can be seen at the country scale in the form of import and exports, but even more so at sub-15 

regional scales where the movement of crop biomass to feed livestock and humans is evident (Hayes et al., 2012; West et al., 

2011).  To capture the spatial distribution of CO2 fluxes from agricultural harvest, we used livestock and human CO2 

emissions estimates (Wolf et al., 2015b) that are available from 2005-2011 at 0.05 degree spatial resolution. CO2 that has 

previously been taken up from the atmosphere by the harvested biomass of crops is included in the NEP estimates from 

FLUXCOM. We aggregated best estimates of the data to 1 degree, added all uncertainty estimates within one 1 degree pixel 20 

and used them as estimates for one standard deviation on the new 1 degree grid. Assuming Gaussian distributed errors we 

sampled 1000 values at each pixel and used 10 maps of the 5th, 15th,…, 95th quantiles as different ensemble members. Data 

was then linearly extrapolated back to 2001-2004. In a final step, and because it is not known in which months the emissions 

occur, we further distributed the annual estimates equally across all 12 months.  

2.3.3 Wood 25 

We used globally gridded forest harvesting data around year 2000 as described in the Supplementary Information S1. These 

data include fuelwood and roundwood harvested volumes in m3. We translated wood volumes into units of C using a value 

of 0.275 MgC/m3 from FAO (http://www.fao.org/docrep/w4095e/w4095e06.htm), assuming wood density of 0.55 t/m3. To 

avoid double counting wood harvest with aboveground biomass loss in tropical areas exposed to land use change, we use 

wood harvesting data only in locations where the amount of harvested wood (in C) exceeds ELUC (Sect. 2.3.4). We assume 30 

that 100% of the harvested wood is respired back to the atmosphere within a year, thus assuming no change in C stock of 

wood products and constant harvesting rates across years. However, C contained in harvested wood is usually emitted at a 
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different location than where the harvest took place. We thus incorporated lateral shifts of harvested wood by redistributing 

wood harvest according to the consumption of wood as explained in the Supplementary Information S1 (see also Fig. S2). 

2.3.4  ELUC 

We used two estimates for CO2 fluxes due to tropical deforestation and degradation. It is assumed here that 100% of biomass 

loss is converted to a CO2 flux being released instantly (within a year) to the atmosphere. In reality, a fraction of lost tropical 5 

biomass decays in ecosystems (belowground biomass and slash) and a fraction is used in wood products of various lifetime. 

However, slash is decomposed fast and biomass from deforested areas is transformed on average to short-lived products (≈ 5 

years after Earles et al. (2012)). 

1) Gross tropical deforestation emissions were taken from Harris et al. (2012). They represent total (above- and 

belowground) C loss from gross forest cover loss in the tropical regions due to human or natural causes (e.g. disturbances 10 

without forest recovery) for the period of 2000-2005.  

2) More recent estimates of aboveground C loss in the tropics from stand-replacement disturbance of forest cover due to 

human or natural causes were provided by Tyukavina et al. (2015). Sample-based estimates of mean 2000-2012 

aboveground C loss for each 30-m resolution forest C stratum were attributed to all pixels of the corresponding stratum and 

averaged to the 1x1 degree resolution. 15 

We used ELUC only in those pixels where the average of 1) and 2) exceeds wood harvesting (Sect. 2.3.3).  

2.3.5 Fire 

We used fire emissions from the Global Fire Emissions Database version 4 with small fires (GFED4s, 

http://www.globalfiredata.org) based on burned area from Giglio et al. (2013) and Randerson et al. (2012) and an updated 

version of the biogeochemical modelling framework of van der Werf et al. (2010) to convert burned area to C emissions. We 20 

included all fire types except tropical deforestation and degradation fires, which are included in ELUC and should thus not be 

counted twice (Sect. 2.3.4). For an earlier version of fire emissions (GFED3) a Monte Carlo simulations indicated an 

uncertainty of about 20% (1σ) for continental-scale estimates but these estimates turned out to be not very reliable (van der 

Werf et al., 2017). For example, the inclusion of small fire burned led to an increase in burned area exceeding the previously 

assumed uncertainty and the current version therefore has no uncertainty assessment at pixel level. Note that GFED fire 25 

emissions depend on estimates of net primary production, and combustion factors as computed by the CASA model. 

2.3.6 FF 

We use the IER-EDGARv4.2 product for fossil fuel and cement  emissions, which was derived within the CARBONES 

project by the Institute für Energiewirtschaft und Rationelle Energieanwendung (IER). It is based on the Edgar v4.2 fossil 

fuel spatial distribution (with the highest spatial resolution of 0.1 x 0.1 degree) and uses national consumption and global 30 

production statistics. Based on the sectorial distinguished EDGARv4.2 emissions, sector-specific and country specific 

temporal profiles were included. A detailed description of the construction of the product is given at 

http://www.carbones.eu/wcmqs/project/ccdas/#Fossil%20Fuel. It is important to note that FF emissions here are not 
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observation based as the IER-EDGARv4.2 product is partly based on national estimates from official inventories reported by 

countries to the UNFCCC. 

2.4 Atmospheric growth rate 

We used the atmospheric rate of change of CO2, which is equal to the space and time integral of all emissions and sinks at 

the surface, using the calculations made by the GCP (Le Quéré et al., 2015). These calculations and are based on the global 5 

growth rate of atmospheric CO2 (CGR) provided by the US National Oceanic and Atmospheric Administration Earth System 

Research Laboratory (NOAA/ESRL) and were derived from multiple stations selected from the marine boundary layer sites 

with well mixed background air (Ballantyne et al., 2012; Masarie and Tans, 1995). They applied conversion from 

concentrations to carbon mass is 1 ppm = 2.12 PgC (Prather et al., 2012). 

2.5 Inversions 10 

For a comparison of yearly variability, spatial patterns and latitudinal bands, we used annual means of 10 inversions 

collected in Peylin et al. (2013), available at the same spatial and temporal resolution. The mean and uncertainty for each 

year is taken over all available inversions for that year, as not all inversions were available until 2010. Atmospheric CO2 

inversions estimate surface CO2 fluxes such that they best fit observed atmospheric constraints. They usually rely on prior 

information provided by terrestrial and oceanic biogeochemical models but are mostly independent from the bottom-up 15 

datasets included in the present synthesis. They further use FF as an input and then provide the surface-atmosphere flux 

excluding FF. 

 

3 Results 

3.1 Global net carbon exchange 20 

Mean fluxes, their uncertainties, interannual variability (IAV), and CV (the mean-normalized IAV) for all individual fluxes 

contributing to NCE are presented in Table 2. Mean fluxes are also summarized graphically in Figure 2 (mean over 2001-

2010). Our best surface-data driven bottom-up global estimate of NCE is -5.4±2.0 PgC / year. That means, that the 

observation-based datasets suggests a large net sink, even if FF and ELUC are included in NCE. By contrast, the accurately 

measured CO2 growth rate constrains NCE being a net CO2 source to the atmosphere 4.3±0.1 PgC / year (2001-2010, Le 25 

Quéré et al., 2015). Thus, there is a large mismatch with our NCE, which over-estimates the CO2 sink at the surface by 

9.7±2.0 PgC / year. This highlights that our observation-based NCE is biased towards a too large sink. Potential reasons for 

this mismatch are discussed in Sect. 4. For most fluxes, uncertainty estimates strongly exceed IAV (Table 2). Interestingly, 

process-based models, which are only indirectly constrained by observations, provide an NCE that matches roughly the CO2 

growth rate (Le Quéré et al., 2015). Developers of process-based models have access to CO2 growth rate data and may be in 30 

the position to tune their models so that they give realistic NCE values, whereas in our bottom-up approach, we conducted a 

blind up-scaling of ground measurements without trying to match the CO2 growth rate. 
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3.2 Spatial patterns of net carbon exchange 

The 200-member NCE ensemble and the uncertainty distribution of each flux component enables us to provide a best 

estimate for a gridded average surface-atmosphere CO2 flux map for the time period 2001-2010 (Figure 3a). According to 

these estimates, tropical land areas are a larger CO2 sink than the mid-latitudes despite the visible forest bands in North 

America and Russia that function as sinks.  In contrast, the high latitudes indicate a relatively small source. In the ocean, 5 

these patterns are reversed, with sources in the tropics and a sink in the mid-latitudes. Clearly, there is a strong land-sea 

contrast and land NCE is much higher in magnitude compared to ocean NCE. In areas with high human population densities 

and active industry (Europe, Eastern China, US, South Africa), emissions from fossil fuels and cement production clearly 

dominate over land CO2 fluxes. 

Absolute uncertainty of NCE generally scales with the mean flux and is highest in the most productive areas over land 10 

(Amazon basin, Congo basin, Indonesia; Figure 3b). Due to the small contribution of the oceans, absolute uncertainties are 

barely discernible there. Although gross air-sea exchange fluxes have typical uncertainties of more than 20%, their 

differences are determined from independent measurements with a much higher accuracy (Ciais et al., 2013). 

Relative uncertainties however show very distinct patterns (Figure 3c). These are high on land in semi-arid and arid, and in 

mountainous regions (i.e., rather unproductive areas with near-zero mean) such as Australia, the Middle East, the Midwest 15 

US, the Sahel, South Africa, the Andes, and around the Tibetan Plateau. Marine-atmosphere CO2 exchange is most uncertain 

in relative terms in the Bay of Bengal and in the Southern Ocean, which is known to be under-sampled, and where the two 

data-driven NCE fluxes show substantial regional patterns (Landschützer et al., 2014; Rödenbeck et al., 2014). In addition, 

linear features with high relative uncertainty are visible, especially in the Southern Hemisphere. These are related to the 

borders of the clusters used for deriving homogenous regions of sea-air exchange in one of the ocean-exchange products, 20 

which result in this product in strong spatial gradients in the sea surface pCO2 (Landschützer et al., 2014). Relative 

uncertainties are mostly below 100% for the median across latitudinal bands (Figure 3c). Only in the Southern Ocean the 

relative uncertainty is substantially higher, reflecting difficulties in reconstructing seasonal to interannual variabilities with 

sparse observational constraints (Landschützer et al., 2014; Rödenbeck et al., 2014). Nevertheless, Landschützer et al. (2015) 

have shown that there is a better agreement between the estimates of Landschützer et al. (2014) and Rödenbeck et al. (2014) 25 

when low frequency variability, such as decadal variability, is analysed. 

Averaged over latitudinal bands, the tropics are clearly a CO2 sink (Figure 4a), a feature of the FLUXCOM models used for 

NEP, whereas mid-latitudes form a net CO2 source, mostly due to fossil fuel and cement emissions surpassing natural CO2 

sinks. This latitudinal pattern is strongly driven by the terrestrial fluxes (Figure 4b). Marine and land aquatic CO2 exchange 

in turn is about 4 times smaller in magnitude and shows CO2 sources in the tropics and CO2 sinks in the extratropics (Figure 30 

4c). The aquatic CO2 source in the tropics is not only the result of the ocean air-sea exchange, but also of the very intense 

river outgassing in low latitude regions (Lauerwald et al., 2015). NCE in the mid-latitudes is dominated by fossil fuel 
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emissions (blue line in Figure 4d shows NCE-FF). FF have little contribution in the tropics and the high-latitudes but offset 

land and ocean CO2 sinks in the northern mid-latitudes so that the net CO2 balance of this latitude band is a net CO2 source.    

We use the land cover map of FLUXCOM to identify tropical forests (all pixels where broadleaved evergreen trees 

dominate). Tropical forest, which covers about 3.5% of the Earth’s surface, are allocated a CO2 sink of -5.0±0.6 PgC / year, 

which is unrealistic, if compared to e.g. forest biomass inventories (Pan et al., 2011). Without this large sink, global NCE 5 

would be of -0.4±1.8 PgC / year. This corrected estimate (assuming neutral C exchange in tropical forests) is still a sink 

more than 4 PgC / year larger than the global NCE accurately constrained by CO2 growth rate observations (4.3±0.1 PgC / 

year). Including missing fluxes (e.g. biogenic fluxes and emissions from wetlands, see Sect. 4.2) for which we do not have 

spatially explicit estimates (see Sect. 4.4) could close this gap. These considerations suggest that the CO2 sink of tropical 

forests from FLUXCOM is probably strongly overestimated and responsible for at least half of the global mismatch with the 10 

observed CO2 growth rate (see Sect. 4.1). 

3.3 Net carbon exchange over the RECCAP regions 

3.3.1 RECCAP over land 

Here we compare our NCE estimates over land with largely independent estimates of net ecosystem exchange (NEE) over 

continental-scale regions collected in RECCAP (REgional Carbon Cycle Assessment and Processes). The RECCAP budgets 15 

were based on inventories, and in some instances on process models results. NCE components between RECCAP and this 

study that are not independent from each other are fire emissions, and FF emissions. For ELUC, RECCAP publications used 

regional datasets or bookkeeping models, that are independent from estimates gathered in Secti. 2.3.4. These regions include 

North America (NA, King et al., 2015), South America (SA, Gloor et al., 2012), Europe (EU, Luyssaert et al., 2012), Africa 

(AF, Valentini et al., 2014), Russia (RU, Dolman et al., 2012), East Asia (EA, Piao et al., 2012), South Asia (SAs, Patra et 20 

al., 2013), and Australia (AU, Haverd et al., 2013). No regional study is yet available for Southeast Asia (SEA). Greenland, 

Middle East, Ukraine, Kazakhstan and New Zealand are omitted in regional RECCAP studies because of the difficulty to 

obtain local ground-based observations. Ciais et al. (in revision) collected the regional estimates and combined them with 

estimates of lateral transport to estimate C budgets for each region. NEE in Ciais et al. (in revision) minus C export by rivers 

should in principal be equal to our NCE estimates without FF over the same regions (Figure 5). In regions without tropical 25 

forest except NA (that is, EU, RU, EA, SAs, and AU) the estimates by Ciais et al (in revision) are within the interquartile 

range of our assessment. For NA and regions containing the tropics, our approach shows a much stronger C sink. 

Using our methodology, the annual NCE-FF for all RECCAP regions amounts to -11.0±1.9 PgC / yr in contrast to -1.3±0.6 

PgC / yr in Ciais et al. (in revision). If we exclude SA, AF and SEA, the numbers are -2.8±1.0 PgC / yr and -1.5±0.4 PgC / 

yr, respectively, bringing both estimates in each other’s uncertainty range. For SA, AF and SEA, the two estimates even 30 

differ in sign. While our estimates indicate strong C sinks of -4.3±0.5, -2.7±0.9, and -1.2±0.3 PgC / yr, respectively, Ciais et 

al. (in revision) report 0.1±0.3, 0.1±0.3, and 0.0±0.2 PgC / yr. 
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Given that Ciais et al. (revision) rely on an independent method, this demonstrates that a relatively good understanding and 

observational coverage of net C fluxes exists for EU, RU, AU, and EA to some extent.  It is somewhat surprising that both 

approaches largely differ over North America, where good observational coverage for instance through eddy-covariance 

towers exist. The comparison also reveals the high uncertainties and biases in bottom-up estimates of NCE over tropical 

forests (see Sect. 3.2, but also Gloor et al. (2012) and Valentini et al. (2014)) and underlines the importance of long-term 5 

ground based measurement campaigns (e.g. RAINFOR, http://www.rainfor.org/, Malhi et al. (2002), and ATTO, Andreae et 

al. (2015), Zhou et al. (2014)). 

3.3.2 RECCAP over ocean 

We compare our estimates of mean annual C exchange over the ocean with estimates from the RECCAP initiative. The 

Pacific Ocean is divided into North Pacific extratropics (NP), Tropical Pacific (TP) and South Pacific extratropics (SP) (Ishii 10 

et al., 2014). The Atlantic Ocean is divided into Arctic Ocean (AR), Northern Subtropics (NS), Equatorial (EQ) and 

Southern Subtropics (SS) (Schuster et al., 2013). Further, there are estimates for the Northern (NI) and Southern Indian 

Ocean (SI) (Sarma et al., 2013) as well as for the Southern Ocean (SO) (Lenton et al., 2013). The RECCAP estimates of 

NCE over oceans are independent from the two estimates that we use in this study (Sect. 2.2.1). Overall, the estimates from 

both sources agree very well (Fig. 6) and show ocean net C release in tropical regions (TP, EQ and NI) and net C uptake in 15 

all other regions. In SO our estimates predict a smaller sink compared to the RECCAP estimates, a difference probably 

owing to the weak observational constraint (Landschützer et al., 2014; Rödenbeck et al., 2014). Our estimates generally have 

smaller uncertainty ranges, which is  because i) the RECCAP studies include many more approaches (including process-

based models, atmospheric and ocean inversions) in their estimates and ii) in our analysis we include the uncertainty from 

the ocean pCO2 products and their realizations but do not account for the uncertainty in the kinetic gas transfer. 20 

3.4 Comparison with inversions 

We compare NCE without FF (NCE-FF) with annual values from 10 inversions estimating the surface-atmosphere CO2 flux 

without FF (Peylin et al., 2013). While both estimates agree well in the mid-latitudes, they show opposite patterns in the 

tropics and northern high latitudes (Figure 4d). The estimates of NEP in our NCE-FF probably have a substantial bias 

towards too much uptake over tropical land (Sect. 4.1). The comparison suggests that C fluxes are comparably well 25 

constrained in the mid-latitudes where bottom-up and top-down approaches agree. Similar results have been obtained in a 

comparison of a bottom-up upscaling approach with a more recent inversion based on CO2 concentration data from the 

Greenhouse gases Observing SATellite (GOSAT, Kondo et al., 2015). The temporal evolution between both estimates show 

little agreement except the trend towards more net C uptake by the Earth’s surface (Figure 7). The comparison suggests that 

NCE-FF estimated from this study has lower interannual variability compared to inversion estimates. Uncertainties are very 30 

high for our NCE-FF. In addition, the mean annual C uptake in our estimates is nearly 10 PgC/yr higher than for inversions.  
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3.5 Monthly variability and mean seasonal cycle 

NCE in the Northern hemisphere (NH) exhibits a much stronger mean seasonal cycle compared to the Southern hemisphere 

(SH), ranging from a net C uptake of nearly 2 PgC (per month) in July to a net C release of about 0.9 PgC in December and 

January (Figure 8). The SH is always a net C sink, ranging between slightly under 0.8 PgC uptake in January to roughly 0.1 

PgC in August and September. This illustrates the ‘breathing of the Earth’, that is, vegetation activity largely follows the 5 

annual cycle of the sun. NH NCE is strongly offset by fossil fuel emissions. The uncertainties for the SH seasonal cycle are 

generally much lower than for the NH fluxes due to the larger contribution of the latter to the overall flux pattern, which is 

related to the distribution of land areas. If compared to inversions, we find that both estimates only match in the summer of 

the NH. In all other months and in the SH, our NCE estimates show a consistently much larger surface C sink. In addition, 

the NCE estimates from this synthesis show a smaller amplitude of the mean seasonal cycle compared to the inversions. The 10 

difference in amplitude of the mean seasonal cycle is on average 0.7 PgC for the NH and 0.4 PgC for the SH.  

 

4 Current limitations of a bottom-up spatiotemporal assessment of net carbon exchange 

Our study shows that today’s spatiotemporally explicit and independent bottom-up observation-driven estimates of surface-

atmosphere CO2 exchange suffer from large bias, such that they do not match the global NCE well constrained from the CO2 15 

growth rate. This statement is not downgrading the advances in the area, but rather a systematic reflection of the state of 

current research and monitoring. In fact, at the regional scale, those estimates are often well constrained and may be used for 

model-data integration studies and validation purposes. The regions where observation-driven CO2 exchange is constrained 

the best include Europe, Russia, South Asia, East Asia, Australia and all oceanic regions except the Southern Ocean. The 

most likely candidate for inducing the mismatch between data-driven estimates and the atmospheric CO2 growth rate is 20 

terrestrial NEP. In particular, tropical NEP estimates suggest a too large tropical sink. In the following sections, we discuss 

(i) the possible reasons for the large bias in NEP (Sect. 4.1), (ii) which fluxes are missing in our synthesis (Sect. 4.2), (iii) 

how this synthesis dataset could be used for model-data fusion (Sect. 4.3), (iv) uncertainties in fire emissions (Sect. 4.4), and 

(v) the impact of missing seasonal cycles in some of the datasets (Sect. 4.5). 

4.1 Difficulties in estimating NEP over land 25 

Correctly predicting NEP from remote sensing requires establishing universal relationships between those predictors and 

respiratory processes (Jägermeyr et al., 2014; Tramontana et al., 2016). However, predicting such processes still poses major 

challenges to researchers (Trumbore, 2006). The CO2 flux related to heterotrophic decomposition processes, for instance, 

relates to factors controlling biological activity via temperature, moisture availability, and the decomposable substrate 

material. The question how soil respiration or total ecosystem respiration depends on these variables is not yet entirely 30 

understood. Advancing our knowledge on these processes is challenging due to both a lack of theory of respiration and the 

difficulty of obtaining relevant data to test models (Trumbore, 2006).  
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In addition to a good theory for respiration, information on disturbance history (e.g., time since last fire) and forest age 

would improve the upscaling of NEP from sites to regions (Ciais et al., 2014). Disturbances that cause physical damage to 

vegetation properties tend to temporarily increase respiration and reduce photosynthesis and thus alter the balance between 

gross C uptake and release. Disturbed ecosystems are thus initially assumed to be strong C sources until plant production 

recovers. However, how these regrowth processes compensate a given disturbance regime cannot yet be quantified at global 5 

scales, as the area covered by disturbed ecosystems is variable and unknown (Ciais et al., 2014). For example, regrowth of 

vegetation after fires and other disturbances is not well sampled neither in the FLUXNET stations nor in the set of predictors 

used by the FLUXCOM models and is assumed to be implicit in our NEP estimate. Furthermore, management can have 

strong effects on annual NEP of croplands, which form large parts of the land surface (Jung et al., 2011). However, not all of 

the relevant predictors (i.e. disturbance maps, management practices, soil moisture) are currently available to be included in 10 

empirical upscaling exercises (Tramontana et al., 2016). 

In addition to the above difficulties, some regions are undersampled by eddy-covariance towers and thus NEP is not well 

constrained. This is the case for tropical forests and the northern high latitudes. In the tropics, undersampling leads to a large 

overestimation of net CO2 uptake in comparison to inversion and forest inventories (Peylin et al., 2013; Pan et al., 2011) 

whereas in the high latitudes it leads to a comparably large CO2 release (Figure 4).  15 

Given the difference between NCE and inversions in the tropics (Figure 4), we can assume that a bias of FLUXCOM NEP 

towards a too high CO2 sink is the main reason why the C budget is not closed in our approach. This raises the question why 

upscaled NEP has such a strong systematic bias towards a sink, particularly in the tropics (see also Jung et al., 2011). We 

suspect that the eddy-covariance towers collected in FLUXNET, which provide the empirical basis for the global data driven 

estimates (see Sect. 2.3.1) do not represent the different age classes of forests very well. For instance, young and regrowing 20 

forests with a generally higher-than average NEP are possibly overrepresented in FLUXNET. However, such an age-

dependency (Amiro et al., 2010; Coursolle et al., 2012; Hyvönen et al., 2007; Magnani et al., 2007) has not yet been 

included in global upscaling of NEP. This hypothesis should be tested in future upscaling exercises. 

4.2 Missing fluxes 

Due to a focus on spatially explicit maps, not all known fluxes between land surface and atmosphere are considered in our 25 

analysis. We assume that including the following fluxes may have an influence on the regional and global flux estimates 

(estimates of the flux magnitude are given in brackets if known): 

• Emissions from biogenic volatile organic compounds (VOCs) amount to approximately 0.76PgC / year globally 

(Sindelarova et al., 2014)  

• CO2 emissions from wetlands, estimated globally at around 2.1 PgC /year (Aufdenkampe et al., 2011) 30 

• CH4 emissions from biogenic sources and animals 

• Crop residues burning in households 

• Biofuel burning 
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• Changes in land management, e.g. shifts in agriculture, soil tillage, grassland ploughing and grazing 

• Geological fluxes 

• Raymond et al. (2013) estimate a much higher river evasion (1.8 PgC / year instead of 0.65 PgC / year used in this 

study).  

All known missing fluxes add up to an additional C release of about 4 PgC / yr. Although substantial, they do not cover the 5 

mismatch of more than 9 PgC / yr by far (Sect. 3.1). However, they would suffice to close the budget if tropical forests are 

assumed to be C neutral (tropical forests are responsible for a net C sink of about 5 PgC / year, Sect. 3.2). This significant 

amount of missing fluxes prohibits constraining FLUXCOM runs with all the remaining fluxes. In other words, we cannot be 

certain of the bias in upscaled NEP as long as the major fluxes are not quantified in a spatially explicit manner. Emissions 

from VOCs and wetlands should thus receive particular attention if a consistent spatiotemporal picture of vertical CO2 10 

exchange is to be obtained.  

4.3 Uncertainty estimates and model-data fusion 

Our uncertainty estimates of ocean and land C exchange likely underestimate the true uncertainty. In particular, 

Landschützer et al. (2014) estimated that the choice of sea-air gas transfer formulation (also including other relationships 

than quadratic) and the pCO2 mapping mismatch lead to an uncertainty of 37% for the global average over sea-air exchange 15 

between 1998-2011, with the majority of this uncertainty stemming from the gas transfer formulation. Furthermore, the 

uncertainty of NEP is likely underestimated because all upscaling methods in FLUXCOM use the same set of predictors 

(Tramontana et al., 2016). Hence, the uncertainty estimates only cover the uncertainty related to the upscaling method but do 

not contain uncertainties related to the selection of predictors or observational uncertainty of the predictors themselves. 

A comprehensive spatiotemporally explicit bottom-up estimate of NCE can be a powerful ingredient for model-data 20 

integration exercises (Rayner et al., 2005). Yet, model-data integration requires uncertainty characteristics of all used data 

streams (Raupach et al., 2005). Furthermore, it is important that uncertainties can be described in terms of random errors 

(Ciais et al., 2014). Error estimates at the local or regional level are difficult to use if no spatial error covariance matrix is 

available. The uncertainty analysis presented in this study obtained through Monte Carlo sampling aims to be of use for 

modal-data-integration studies. Errors are automatically propagated through different spatial resolutions by aggregating the 25 

individual ensembles of NCE. Naturally, efforts should be made to obtain error estimates for all integrated datasets (i.e., 

Wood, Fires, Shelves, Estuaries, and Lakes). Nevertheless, this first integrated NCE estimate offers new possibilities for 

approaches such as the Carbon Cycle Data Assimilation System (CCDAS, Rayner et al., 2005), by not only providing a full 

spatiotemporal grid of fluxes, but also a transparent and consistent error propagation scheme. This can have also practical 

applications, for instance for designing new measurement campaigns in regions with high uncertainties to reduce knowledge 30 

gaps in the global CO2 fluxes. 
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4.4 Uncertainties in fire emissions 

Fire emission estimates combine satellite-based fire data with ecosystems models. Uncertainties in global fire emission 

estimates are substantial and different fire products vary largely by location, vegetation type and fire weather (Ciais et al., 

2014; French et al., 2011). 

While GFED4 burned area estimates come with regional uncertainty estimates (Giglio et al., 2013), the actual uncertainty of 5 

C emissions from fires are probably much larger, on the order of 50% (van der Werf et al., 2017). The uncertainties of fire 

emission estimates depend regionally and temporally on the various input data sets such as burned area, small fire burned 

area, biomass loadings, and combustion completeness. Better quantifying this uncertainty requires an assessment of the 

burned area estimates as well as new field data on fuel consumption and emission factors. In this study we cannot propagate 

this uncertainty into the NCE estimates as this would require spatiotemporal error covariance matrices. 10 

4.5 Seasonality for coastal and inland waters, wood and crop harvest emissions 

Recently, major steps have been undertaken to resolve the spatial variability of coastal and inland water CO2 fluxes (Laruelle 

et al., 2013; Laruelle et al., 2014; Lauerwald et al., 2015; Raymond et al., 2013). Estimates of the seasonal variation in these 

fluxes are necessary to better constrain seasonal variations in NCE. For inland waters, seasonality has so far only been 

investigated at regional scale (Laruelle et al., 2015; Richey et al., 2002). For shelves some seasonal estimates are currently 15 

available in temperate and high latitudes, indicating that net C uptake is highest in spring whereas C release is highest in 

summer (Laruelle et al., 2014, 2017). These estimates indicate that seasonal differences in shelf net C exchange are as high 

as the annually integrated latitudinal gradient. An analysis performed over Atlantic shelves suggests that the seasonal 

variability in the air-sea CO2 exchange is most pronounced over temperate latitudes. In these regions, shelves generally 

behave as strong CO2 sinks in winter and spring, partly sustained by CO2 fixation during the spring phytoplankton bloom, 20 

but can become mild CO2 sources to the atmosphere in summer due to the effect of temperature-driven decrease CO2 

solubility in water (Laruelle et al., 2014). Such behaviour is consistent with that of the open ocean at similar latitudes 

(Takahashi et al., 2009). In the continental shelves surrounding other oceanic basins, however, a recent study suggests more 

complex seasonal patterns involving the contributions of processes other than temperature to the seasonality of coastal pCO2 

(Laruelle et al., 2017).    25 

Biogenic C emissions related to tropical aboveground biomass loss as well as crop and wood harvest are equally distributed 

across months in this study. When exactly C emissions from humans and livestock occur is difficult to predict and would 

require more detailed consumption data (Wolf et al., 2015a). 

  

5 Conclusions 30 

From the presented synthesis, we draw the following main conclusions:  

i) Current estimates of surface-atmosphere CO2 exchanges that are spatiotemporally explicit and entirely driven by 

surface observation are not sufficiently well constrained to close the C budget at the global scale. The data-driven 
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estimates show a large bias towards too much C uptake by the Earth surface of nearly 10 PgC / year. 

ii) The most likely candidate for inducing the mismatch between data-driven surface-atmosphere CO2 exchange and 

the atmospheric CO2 growth rate is land NEP. In particular tropical NEP estimates appear to be strongly 

overestimated (too large land sink). Understanding this bias will help designing better upscaling approaches (e.g., 

by including currently missing relevant predictors) and pinpointing variables that need to be (better) monitored in 5 

the future.   

iii) Regionally, the estimates of NCE are partly well constrained and may be used for model-data integration studies, 

validation of models, and evaluating claims and potentials of net C uptake within the framework of the Paris 

agreement (UNFCCC, 2015). These regions include Europe, Russia, South Asia, East Asia, Australia and most 

oceanic regions. Better constraining C fluxes in regions with currently high uncertainties should be a priority of 10 

future research. 
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Table 1. Datasets used in this study including reference, time period and number of ensemble runs. If not specified, 

temporal resolution is monthly. 

Data set Reference Time period used # Runs 

Ocean Landschützer et al. (2014) 

Rödenbeck et al. (2014) 

2001-2010 5+5 

Shelf Laruelle et al. (2014) 1 estimate 1 

Estuaries Laruelle et al. (2013) 1 estimate 1 

Marine  2001-2010 10 

Rivers Lauerwald et al. (2015) 1 estimate 50 

Lakes Raymond et al. (2013) 1 estimate 1 

NEP  Tramontana et al. (2016) 2001-2010 8 

Crops Wolf et al. (2015b) 2005-2010, annual 10 

Wood Poulter (2015) 2000, 1 estimate 1 

Fire Giglio et al. (2013) 2001-2010 1 

ELUC Tyukavina et al. (2015) 

Harris et al. (2012) 

2000-2010, 1 estimate 

2000-205, 1 estimate 

2 

FF (Fossil Fuels) CARBONES 2001-2010 1 

Atmospheric growth rate NOAA 2001-2010 1 
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Table 2. Net carbon exchange for different subsystems and variables that contribute to NCE (Eq. 1, negative numbers 

are surface uptake). Uncertainty (Unc.) is SD over ensemble runs. IAV is SD over annual values time (2001-2010), CV 

is coefficient of variation, computed as IAV divided by Mean. 

Variable Marine Rivers Lakes -NEP Crops Wood ELUC FF Fire NCE 

Mean -1.60 0.65 0.32 -18.41 2.68 0.71 0.83 7.78 1.81 -5.45 

Unc. 0.15 0.08  2.08 0.21  0.16   1.99 

IAV 0.36   0.36 0.09   0.75 0.11  

CV 0.22   0.02 0.03   0.10 0.06 0.11 
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Figure 1. Schematic explanation of the uncertainty propagation. Each spatiotemporal estimate of NCE is computed 

as the sum of randomly selected estimates of the 9 fluxes contributing to NCE (see Eq. 1, here denoted by Fi). For this 

study we compute 200 estimates of NCE. Uncertainties can be assessed at different spatial scales by first aggregating 

all NCE estimates to the desired scale and then using the 200 members for uncertainty estimation. 5 
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Figure 2. Different components of observation-driven C exchange between the Earth’s surface and the atmosphere. 

Red arrows denote a flux from the surface to the atmosphere (net source), green arrows denote a flux from the 

atmosphere to the surface (net sink). Units are in PgC / year. 

  5 
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Figure 3. Gridded spatial patterns of NCE. a) 2001-2010 decadal mean. b) Uncertainty; 1SD across the NCE 

ensemble. c) Relative uncertainty; uncertainty normalized by absolute mean. Latitudinal plots in b) and c) denote 

median across latitudes.  
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Figure 4. Mean and uncertainty (1 SD) of different subsets of NCE (2001-2010 decadal mean). a) All fluxes. b) 

Terrestrial fluxes. c) Aquatic fluxes. d) NCE without fossil fuels from this synthesis (black) and from inversions 

(blue). 

  5 
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Figure 5. NCE (2001-2010 decadal mean) in RECCAP regions over land, including (red) and without fossil fuels 

(blue). Shown are median, interquartile range (box) and 1.5 x interquartile range (whiskers). The regional estimates 

including uncertainties of NCE collected in Ciais et al (in revision) are underlain in grey. NA: North America, SA: 

South America, EU: Europe, AF: Africa, RU: Russia, EA: East Asia, SAs: South Asia, SEA: South East Asia, AU: 5 

Australia, Rest: remaining land areas. 
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Figure 6. NCE in RECCAP regions over the ocean. Shown are median, interquartile range (box) and 1.5 x 

interquartile range (whiskers) of the Marine fluxes. The RECCAP estimates including uncertainties are underlain in 

grey. NP: North Pacific extratropics, TP: Tropical Pacific, SP: South Pacific extratropics, AR: Arctic Ocean, NS: 

Northern Subtropics, EQ: Equatorial, SS: Southern Subtropics, NI: Northern Indian Ocean, SI: Southern Indian 5 

Ocean, SO: Southern Ocean. 
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Figure 7. Comparison of NCE-FF with NCE from inversions (by construction without FF) on interannual time scales. 

Both time series were zero-centered by adding an offset of 13.23 PgC / year for NCE-FF and 3.74 PgC / year for NCE 

from inversions. Lines show mean, shading is 1 SD.  

  5 
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Figure 8. NCE mean seasonal cycle and uncertainty (1 SD) for Northern (NH, 0°-90°N, blue) and Southern 

hemisphere (SH, 90°S-0°, green) for estimates from this study (dark colours) and inversions (light colours). 

 


