
Dear Dr Bahn, 

Thank you for your email regarding manuscript Leaf trait variation and field spectroscopy of 

generalist tree species on contrasting soil types. We are grateful to reviewers for their very 

thorough review. We were pleased that referee #1 regarded the manuscript as “a well 

written, interesting paper” based on “a solid analysis” which “asks a relevant question of 

interest to the readers of this journal”.   However, the review proceeded to identify many 

typographical errors and points that needs clarification. Referee #2 explained that they were 

unable to understand two of our analyses and the associated figures.    

We have revised the text carefully following the reviewers’ suggestions.  Both referees 

criticised our choice to focus the discussion on the spectroscopy of foliar silicon; we now 

present a much broader perspective on the uses and limitations of field spectroscopy for 

detecting multiple traits. We have also sought to emphasize the key points of the paper by 

replacing two figures that the referees found difficult to understand with much simpler figures 

that convey the same message.  As requested by reviewer #2, we have included a figure 

that shows the reflectance spectra along with an indication of the regions relevant to 

estimation of different leaf traits (Figure 1) and have removed the sections on functional 

groupings.  Also, as requested by reviewer #2, P supply limitation was better discussed, as 

well as the soil and species effects on traits.    

We now focus the paper around one issue: the challenges of measuring intraspecific 

variation in some leaf traits using field spectroscopy.   Rock-derived nutrients lack absorption 

features in visible to shortwave-infrared region of the electromagnetic spectrum so cannot be 

measured directly by spectroscopy. They can, nevertheless, be estimated indirectly because 

element concentrations co-vary with organic molecules that do have strong absorption 

features (“constellation effects”). Our paper identifies a problem with this approach: there 

were strong differences in rock-derived mineral nutrients between soil types, but we could 

not measure these because the concentrations of defence and structural traits (used to 

indirectly estimate the mineral nutrient concentrations) were barely affected by soil type. We 

have shown many similarities between our study and those in tropical forests, demonstrating 

that this problem is likely to be widespread.    

You requested major revision of the manuscript.  These revisions have resulted in many 

changes to the text, as you will note in the track-changed document following the responses 

to the reviewers on the same document. However, the underlying analyses are unchanged.   

We thank the referees again for their insightful comments, and hope they find our revisions 

satisfactory.    



Yours sincerely  

Matheus Henrique Nunes and David Coomes. 

 

 

  



Response to Anonymous Referee #1’s comments 

Received and published: 07 December 2016  

 

General Comments : 

Referee comment:  This is a well written, interesting paper that attempts to use leaf 

spectroscopy to predict leaf traits in two contrasting soil types. They found that traits tended 

to be specific to species and that soil type had much less of an influence. They used the 

PLSR methodology to predict traits with spectroscopy and found reasonably good 

relationships which reflect previous studies. Overall, this is a solid analysis and asks a 

relevant question of interest to the readers of this journal. 

Author response: We thank the referee for these positive comments. 

 

Referee comment:  Below I suggest a few areas where the paper could be strengthened and 

a number of minor points. Specific comments: 

 

Referee comment:  1) The Material and Methods ‘Statistical Analyses’ section needs to be 

much expanded and clarified. Especially in regards to Figures 3 and 4. Without knowing how 

the data for those sections were acquired, it is difficult to evaluate the claims made in the 

results and discussion section.   

Author response: We have removed the former figure 4 and replaced it with a new figure that 

can be more easily interpreted (current Figure 5). We also have expanded the text in the 

methods section to clarify how we acquired and analysed the data. In particular, we have 

added the following sentence to clarify the methods used to construct the correlation matrix 

graphic: “To evaluate the correlation among traits, Spearman rank correlation coefficient was 

calculated between all trait pairs and the variables were ordered in the figure by hierarchical 

clustering.” 

We have provided a clearer explanation for Figure 5: “To evaluate the effectiveness 

of field spectroscopy at measuring variation in traits related to soil type and species identity, 

we partitioned variance in model-predicted trait values using exactly the same approach as 

we used with lab-measured traits (i.e. first paragraph of methods).”    



Figure 5. Partitioning of variance of foliar traits between species, soil, species-soil 

interaction and residual components for six generalist species found on both chalk and 

alluvial soils from predicted data. Residual variation arises from within-site intraspecific 

variation, micro-site variability, canopy selection but not measurement error variance, 

and is therefore smaller than for field measurements (Fig. 1). Predicted data were 

obtained from partial least square regression (PLSR).  

 

Referee comment:  2) Some of the findings discussed in the abstract need to be made 

clearer.  

Author response: We have added more references in the discussion that support our 

findings. Particularly, we have substantially improved the “Variation in traits between 

chalkland vs alluvial soils” section, by discussing how P deficiency could be associated with 



variation in leaf traits. Furthermore, we have improved the “Inter-specific and residual 

variation” section in the discussion.  

 

Referee comment:  3) Some of the claims/statements made in the abstract and intro either 

need to be changed or better supported with relevant literature.  

Author response: We removed two questions that were initially part of the paper. We have 

decided that rather than force our traits into the three functional groups, we should run a 

single PCA to discover how the traits were related to each other, and to both species identity 

and soil type. Furthermore, we agree that the fourth question was similar to question 3, and 

have merged both questions into a single one: “is field spectroscopy effective at predicting 

phenotypic variation in leaf traits between soil types, as well as interspecific differences?”. 

We changed some claims and statements in both introduction and discussion as highlighted 

by the referees.  

 

Referee comment:  4) Many frequently used terms throughout the paper need to be 

changed/clarified (see below).  

Author response: Many thanks for the suggestions on terminologies. It was done throughout 

the document, see comments below in minor amendments. 

 

Referee comment:  5) Why there is such an emphasis on being able to predict Si using 

PLSR throughout the paper needs to be clarified!  

Author response: We have reduced the discussion on Si and broadened the review out to 

include other traits.  

 

Referee comment:  6) Discuss more clearly the relevance of the findings in terms of future 

high resolution aircraft campaigns. Based on these results, what sort of aircraft data could be 

produced for temperate forests. 

Author response: We have added as the last section of the discussion the “Difficulties in 

measuring phenotypic variation by field spectroscopy and its implications for mapping 



functional traits”. We have included some considerations on the relevance of our findings in 

terms of high resolution aircraft campaigns.  

 

Referee comment:  Technical Corrections Terminology.  

Change uses of “among species’ to “between species” (if that is what is meant).  

Change uses “species x soil interaction” to “species-soil interaction” or something similar.  

Change uses of “goodness-of-fit” to “strength of relationships” or something similar. Change 

uses of “leaf property” to “leaf trait”.  

Line 58 – typo. Change “include phosphorous” to “including phosphorus”.  

Line 84 – “leaf property”. Replace with “leaf trait”?  

Line 108: “Leaf areas were measured”. Suggested “Leaf area was measured?”  

Line 169: “strong co-llinearity”. Typo.  

Line 326: “relative”. Typo (relatively)  

Line 357: “A review in the literature”. “A review of the literature”  

Author response: Thank you for pointing out these issues. We have made the corrections 

requested. 

 

Referee comment:  Abstract/summary Line 10 – change “traits variation” to “trait variation”  

Author response: We now use the terms “trait variation” and “variation in traits”. 

 

Referee comment:  Line 12 – “Hyperspectroscopy is a recently developed technology for 

estimating the traits of fresh leaves” – disagree (the technique dates back to the 90s – e.g. 

Curran, 1989)  

Author response: The claim was wrong indeed. We have replaced it with a sentence 

highlighting the importance of hyperspectroscopy for vegetation science. “There is currently 

great interest in using hyper-spectroscopy as a tool for studying the chemical and structural 

traits of leaves, particularly because improved airborne sensors and faster computing make 



it possible to map functional traits from the air (G. P. Asner et al., 2017; Gregory P. Asner & 

Martin, 2016b; Jetz et al., 2016; Ustin et al., 2009). Plans to put hyperspectral sensors into 

space (e.g. DRL plan to launch EnMAP in 2018; Guanter et al. 2015) will soon enable 

spectral response curves of vegetation communities to be assessed at the global scale.”. 

 

Referee comment:  Line 13 – “Few studies have evaluated its potential for assessing inter- 

and intraspecific trait variability in community ecology” – This is a contentious claim given a 

lot of Asner’s work (e.g. Asner and Martin, 2011). This statement is not supported in the 

introduction.  

Author response: We agree that the Asner’s team have published several papers on this 

topic for temperate forests. But we argue on the text that analyses involving this large suite 

of traits provide optimism to develop general, predictive rules in community ecology as we 

refine our understanding of which traits are varying in a given environment. There is also a 

need for broader testing of the mechanisms underlying interspecific variation in phenotypic 

plasticity across traits and environmental variables (e.g. Weiner, 2004; Funk et al., 2016) 

and how this variation ultimately informs species and community responses to environmental 

change (Funk et al., 2016). 

 

Referee comment:  Line 14 – “Working with 24 leaf traits”. Contradicted by line 151 which 

mentions 26 leaf traits.  

Author response: The number is 24 and we have altered the text accordingly.  

 

Referee comment:  Line 19 - “(iv) Can leaf spectra be used to detect inter-soil as well as 

inter-specific variation in traits?” – I don’t understand how this question differs from iii (“what 

traits can be estimated precisely using field spectroscopy?”). If you can precisely estimate a 

trait using field spectroscopy, then surely it will be able to detect inter-soil and inter-specific 

variations. Unless the estimation only works on one species type on one particular soil type. 

Maybe rephrase?    

Author response: We agree with you. We have rephrased and merged both questions into a 

single one: “is field spectroscopy effective at predicting phenotypic variation in leaf traits 

between soil types, as well as interspecific differences?”. 

http://onlinelibrary.wiley.com/doi/10.1111/brv.12275/full#brv12275-bib-0258


 

Referee comment:  Line 20 – “The contribution of species and soil-type effects to variation in 

traits were evaluated using statistical analyses” – maybe state a few of the main statistical 

analyses used?  

Author response: Thanks for the comment. We agree that it should have been better 

explained in the abstract. We changed it to “Analyses were performed within the R statistics 

framework (R Team 2014). To evaluate the correlation among traits, Spearman rank 

correlation coefficient was calculated between all trait pairs and the variables were ordered 

in the figure by hierarchical clustering. Analyses of variance (ANOVA) were used to examine 

the influences of species identity and soil type on each of the 24 leaf traits. Species, soil and 

soil x species terms were included in the model, and the ratio of sum of squares of these 

terms versus the total sum of squares was used as an index of species- versus site-level 

variation. This partitioning of variance quantifies the variation between species, between soil 

types, the interaction between soil and species, and the unexplained variance (residual 

variance).  The residual variance comprises analytical error and various types of intraspecific 

variation including micro-site and within-canopy variation. Where necessary, variables were 

log transformed to meet assumptions of ANOVA (see Table 1 for details). In addition, 

permutation-based multivariate analysis of variance (PERMANOVA; Anderson 2001) was 

applied to the matrix of dissimilarity among traits to evaluate the importance of soil type, 

species identity and the interaction soil-species as a source of variation in the 24 traits 

simultaneously. The non-parametric permutation-based analysis of variance (PERMANOVA) 

was then performed on the resulting distances (10000 permutations). An alpha level of 0.05 

was used for all significance tests, and no effort was made to test for or address non-normal 

data distributions. The PERMANOVA used distance matrices calculated using the adonis 

function in the vegan package of R. 

Leaf traits were grouped using principal component analysis (PCA) using Simca-P 

(2016) software (Umetrics Ltd, Sweden).  The principal components for the variables were 

obtained by the correlation matrix modelling in lieu of covariance matrix modelling. We used 

the unit variance scaling (van den Berg, Hoefsloot, Westerhuis, Smilde, & van der Werf, 

2006) to avoid the effects of variables with high variance. The PCA was used to obtain score 

scatter, loadings, as well as R2 and Q2 overview plots to evaluate whether traits clustered 

into functional groups. R2 values denote how well a trait can be explained in the model and 

Q2 denote how well a trait can be predicted from the dataset.” 

 



 

Referee comment:  Line 21 – “Foliar traits were predicted from spectral reflectance using 

partial least square regression, and so inter- and intra-specific variation.” – Presumed typo – 

rewrite.  

Author response: We have changed the text to: Foliar traits were predicted from spectral 

reflectance data using partial least square regression. 

 

Referee comment:  Line 22 – “Most leaf traits varied greatly among species” – a) replace 

‘among species’ with either within or between species (presumed between?) b) Also this 

sentence is confusing – suggests that there was simply a wide variation in leaf trait 

measurements - slightly random to mention in abstract. Actual meaning I think is something 

along these lines “Inter-specific variation was the largest contributor to trait variation”.  

Author response: We have altered the sentence to “.  Analysis of variance showed that inter-

specific differences in traits were generally much stronger than phenotypic differences 

related to soil type, accounting for 25% versus 5% of total trait variation, respectively.” in the 

abstract and further explained in the results.  

 

Referee comment:  Line 23 – “Macronutrient concentrations were greater on alluvial than 

chalk soils while micronutrient concentration showed the opposite trend” – Foliar 

macronutrient concentrations or soil macronutrient concentrations? (presumed the former?). 

Also, slightly odd sentence – what’s the significance? Maybe meant to say something along 

these lines? - “However, foliar macro- and micronutrient concentrations were found to be 

more strongly influenced by soil type”.  

Author response: We have changed the text to: “foliar concentrations of rock-derived 

nutrients did vary: P and K concentration were lower on chalk than alluvial soils, while Ca, 

Mg, B, Mn and Zn concentrations were all higher, consistent with the findings of previous 

ecological studies.” 

 

Referee comment:  Line 24 – “Si predictions using spectroscopy appear to be promising” – 

what’s so special about Si predictions?! Why do they get singled out?  



Author response: It was the first time Si was reported as a trait able to be predicted using 

spectroscopy in forests. But we agree that it should not be singled out as Si is not the main 

focus for the paper. We have rephrased the sentences that were mentioning Si as a very 

important finding and we have reduced the amount of text on Si in the discussion. 

 

Referee comment:  Line 28 – “However, it [field spectroscopy] was unable to detect subtle 

within species variation of traits associated with soil type” – repetition of line 25? (“Field 

spectroscopy. . ..was less effective at detecting subtle variation of rock-derived nutrients 

between soil types”). Combine sentences to keep abstract concise?  

Author response: We have rephrased it and considerably expanded the text on the lack of 

detection of subtle variation of rock-derived nutrients due to soil variation as follows: “Some 

of most accurately predicted traits have no absorption features in the visible-to-near-infrared, 

but were instead estimated indirectly via constellation effects.  Rock-derived nutrients lack 

absorption features in visible to shortwave-infrared region of the electromagnetic spectrum 

so cannot be measured directly by spectroscopy.  They can, nevertheless, be estimated 

indirectly by virtue of the fact that element concentrations co-vary with organic molecules 

that do have strong absorption features (“constellation effects”, see above). This paper 

identifies a problem with this approach: there were strong differences in rock-derived mineral 

nutrients between soil types, but we could not measure these because the concentrations of 

defence and structural traits were barely affected by soil type. We have shown many 

similarities between our study and those in tropical forests, demonstrating that this problem 

is likely to be widespread.”   

 

Introduction  

 

Referee comment:  Line 64 – “along environmental change”. Typo. Suggested “along 

environmental gradients”?  

Author response: We have changed the text to “In response to environmental change”.  

 

Referee comment:  Line 71 – “However, spectral and chemical properties may be uncoupled 

if intraspecific variation in foliar traits is high and/or phenotypic plasticity exceeds 



phylogenetic patterns among leaf properties”. Disagree. Spectral and chemical relationships 

would still hold, it would just be harder to identify species type based on their reflectance 

signatures.  

Author response: We agree with you. We found references supporting your statement: “Wu 

et al., (2016) found that leaf traits and spectra vary systematically and predictably with leaf 

age between forest sites on contrasting soil types thousands of kilometers apart.” Madritch 

et al. (2014) also demonstrated the high correlation between spectral properties, traits and 

soil very well. 

Structural differences (i.e., leaf thickness, number of air water interfaces, cuticle thickness, 

and pubescence) between leaves may have significant effects on the relationship between 

leaf reflectance and traits, and can complicate interpretation of data (Sims & Gamon, 2002; 

Wu et al., 2016). The ability of spectroscopy to measure phenotypic variation in multiples 

traits between soil types, particularly when some of those traits are indirectly determined 

through constellation effects, has not been critically evaluated.  

Madritch, M.D., Kingdon, C.C., Singh, A., Mock, K.E., Lindroth, R.L. and Townsend, P.A., 

2014. Imaging spectroscopy links aspen genotype with below-ground processes at 

landscape scales. Philosophical Transactions of the Royal Society of London B: Biological 

Sciences, 369(1643), p.20130194. 

Wu, J., Chavana‐Bryant, C., Prohaska, N., Serbin, S.P., Guan, K., Albert, L.P., Yang, X., 

Leeuwen, W.J., Garnello, A.J., Martins, G. and Malhi, Y., 2016. Convergence in relationships 

between leaf traits, spectra and age across diverse canopy environments and two 

contrasting tropical forests. New Phytologist. 

 

Referee comment:  Line 73 – “Martin and Aber (1996) demonstrated that equations for 

estimating leaf properties from one site were unable to predict leaf properties for other sites, 

due to variability in the magnitudes of foliar traits levels between data sets and 

environmental influences”. Very old reference and what about all the evidence to the 

contrary (e.g. all of Asner’s work) ???  

Author response: As per previous comment, we have deleted that reference. We also agree 

that we can find high correlation between spectral properties, traits and soil (see previous 

comment).  

 



Referee comment:  Line 75 – “To our knowledge, the link between foliar traits and spectral 

properties of trees has not been broadly demonstrated for temperate forests” – query this 

statement. The remote sensing of foliar traits began in temperate forests.  

Author response: We are no longer making this statement, which can be proved wrong 

indeed. ”There is currently great interest in hyperspectroscopy in vegetation science, 

particularly because improved airborne sensors and faster computing make it possible to 

map functional traits from the air (Asner and Martin, 2016; Jetz et al., 2016; Asner et al., 

2017)”. We have slightly changed the focus of the paper. “The ability of spectroscopy to 

measure phenotypic variation in multiples traits between soil types, particularly when some 

of those traits are indirectly determined through constellation effects, has not been critically 

evaluated.” 

 

Referee comment:  Line 86 – “what is the relative contribution of soil type and species to leaf 

trait variation?”. Missed word? “what is the relative contribution of soil type and species type 

to leaf trait variation”. 

Author response: We have included the word species identity.  

 

Referee comment:  Line 88 – “does the importance of the three functional groups change 

due to soil or more due to species variation?” – awkward phrasing. Rephrase.  

Author response: We have rephrased all the sentences involving functional groups.   

 

Material and Methods  

Referee comment:  Line 102: “Leaves of 66 trees of six species were collected from the two 

contrasting soil types. The six species were in common to both sites”. Suggested “Across 

both sites, leaves were collected from 66 trees, representing six species. The six species 

common to both sites were:”  

Author response: Many thanks. We have made this amendment. 

 

Referee comment:  Line 103: “Acer campestre L. (Field Maple)” – what does the L stand for?  



Author response: L. is the authority -  the person who named the species formally.  In this 

case Linnaeus,  who back in the 1700s  invented the Latin binomial system for naming 

species that is still used today.   Some biology journals insist on including these.  We have 

removed them from this paper  

 

Referee comment:  Line 105: “Two fully sunlit branches were selected, were cut and placed 

on ice in a cool box, and transported to a lab for processing within 2 hours (and often within 

30 minutes)”.  

Author response: We have changed the text to: Two fully sunlit branches were selected, cut 

and placed in a cool box, and subsequently transported to a laboratory for processing within 

two hours. 

 

Referee comment:  Line 149: “2.4 Statistical analyses”. Needs to be split up into each 

statistical analysis performed and titled accordingly.  

Author response: This has been carried out as requested. 

 

Referee comment:  Line 156: “Where necessary, variables were log transformed to meet 

assumptions of ANOVA”.  

Author response: Table 1 has additional information concerning which variables were log 

transformed and how they can be found.  

 

Referee comment:  Line 168: PLSR section – no mention of using 70% to calibrate and 30% 

to test but Cal and Val appear on Table 3. No mention of how the data for Figure 3 and 4 is 

acquired!!!  

Author response: We added the following sentences to the text to make it clearer: “We 

adopted a leave-one-out cross-validation for each PLSR model. Model accuracy and 

precision were expressed by the coefficient of determination (R2) and root mean square 

error (RMSE). We also standardised RMSE to the percentage of the response range 

(RMSE%) by dividing each RMSE by the maximum and minimum values of each leaf trait, 



as in Feilhauer et al. (2010). RMSE and R2 were acquired during both model calibration and 

after model validation.” 

Regarding Figure 3: We have rephrased the text to: “To evaluate the correlation among 

traits, Spearman rank correlation coefficient was calculated between all trait pairs and the 

variables were ordered in the figure by hierarchical clustering.” 

Regarding Figure 4: Picture 4 no longer exists as previously explained.  

 

Results  

Referee comment:  Line 204 – “Species exerted little or no influence on pigment 

concentrations” – Refer to species in this context (and throughout paper) as ‘species type”? 

Author response: Yes, it does. We have changed this throughout the document to species 

identity. 

 

Referee comment:  Line 241: “Ability to predict leaf traits from hyperspectral reflectance 

varied greatly among the 24 traits fitted using the 6 species (Table 3)”. “fitted using the 6 

species” - confusing. Rephrase.  

Author response: We have removed the “fitted using the 6 species” as it did not make any 

sense. 

 

Referee comment:  Line 243: “PLSR modelling for LMA, water, Si, phenolics, carotenoids, K, 

B, efficiency of PSII, N, chlorophyll a and chlorophyll b were in descending order the best 

performing in terms of”  

Author response: Thank you. We have corrected the text. 

 

Referee comment:  Line 248- “higher goodness-of-fit” – use a different term? E.g. stronger 

relationships/correlations etc.  

Author response: OK – we have changed the text to higher strength of relationship.  

 



Referee comment:  Line 256: “There were strong correlations among some of the leaf 

properties (Fig. 3) that can be potentially leveraging the estimation of other leaf traits from 

the use of PLSR”. Interesting. Explain further?  

Author response: We added the following sentences in the results: “Some leaf traits which 

appeared to be predicted accurately by PLSR do not have absorbance features in the 400-

2500 nm range, and were instead predicted because of their close association with leaf traits 

that do have absorbance features in that range (see correlations in Fig. 4).  For instance, Si 

and B do not have absorption features in the 400-2500 nm range, but their concentrations 

are highly correlated to hemicellulose, cellulose and lignin concentrations, and these organic 

polymers do have strong absorbance features in the SWIR region. Likewise, K do not have 

absorption features in the 400-2500 nm range, but K concentration is highly correlated to 

leaf water content, soluble carbon, lignin, hemicellulose and cellulose, all of which have 

absorbance features in the region. The importance of these “constellation effects” (sensu 

Chadwick and Asner 2016) becomes apparent when we examine the partitioning of variance 

of PLSR-predicted trait values: several rock-derived nutrients vary significantly with soil type 

when measured in leaves (Fig. 1) but little of that variation is successfully modelled by PLSR 

(Fig. 5). The explanation for this failure to model soil-related variation correctly is that 

concentrations of their associated traits remain invariant of soil type (Table 1). The use of 

PLSR also considerably under-predicted the importance of soil (~ 37 %) on the δ15N 

variation, presumably for similar reasons.  Some species-soil interaction effects were 

detected by PLSR modelling, except for traits that showed strong interaction (Mn, P and 

δ13C).  PLSR models were better able to detect intra-specific variation in foliar N 

concentrations, because much of the nitrogen is contained in proteins, which have strong 

absorbance features.” 

 

Referee comment:  Line 257: “The correlation graphic also shows the similarity among 

variables through cluster analysis”. Explain. Cluster analysis was not been mentioned in the 

Materials and Methods. Explain how this was achieved, why it was done and expand on 

results.  

Author response: We have made it clearer in the Material and methods as follows: “To 

evaluate the correlation among traits, Spearman rank correlation coefficient was calculated 

between all trait pairs and the variables were ordered in the figure by hierarchical clustering.” 

 



 

Discussion  

Referee comment:  Line 271: “Some leaf traits were strongly influenced by both species and 

soil type, while others were hardly affected by soil and only varied with species”. Vague. 

Make more specific.  

Author response: We added many references on the P supply implications in chalk soils as 

follows: “Compared with trees growing on deep alluvium, trees on thin chalk soils had low 

concentrations of N, P and K macronutrients in their leaves, but high concentrations of 

several micronutrients. Similar findings have been reported for herbaceous species growing 

on chalk (Hillier, Walton, & Wells, 1990).” And “Compared with trees growing on deep 

alluvium, trees on thin chalk soils had low concentrations of N, P and K macronutrients in 

their leaves, but high concentrations of several micronutrients. Similar findings have been 

reported for herbaceous species growing on chalk (Hillier et al., 1990).” 

 

Referee comment:  Line 305: “water” – change to ‘leaf water content’.  

Author response: Thank you. We have done all the corrections ad changed the term “water” 

to “leaf water content” throughout the text.  

 

Referee comment:  Line 321: “but their study sampled only from fully sunlit leaves”. 

Suggested - “Similarly, their study sampled only from fully sunlit leaves”.  

Author response: Thank you. Alteration made. 

 

Referee comment:  Line 325: “The investment in light capture had high intra-specific 

variation, and neither species nor soil accounted for variation in [these] foliar properties”. 

Missing word.  

Author response: We have restructured the sentence.  

 

Referee comment:  Line 327: “separating out some species”. Confusing. Rephrase?  



Author response: We have improved the discussion and included the following sentence that 

had the same meaning: “The investment in structure and defence-related traits were little 

influenced by soil type and was mainly determined by species identity.” “The traits most 

influenced by species (in descending order) were Si, leaf water content, B, soluble C, N, 

LMA, K, cellulose, lignin, hemicellulose, magnesium, Zn, phenolics and Fe.” 

 

Referee comment:  Line 327: “Investment in traits related to defence and leaf structure is 

species-mediated, and may be separated into two defensive strategies”. State the two 

defensive strategies?  

Author response: We improved the discussion regarding the functional grouping as follows: 

“Species had a greater influence on trait values than soils for all traits except P, and PCA 

analyses demonstrated that species with traits associated with fast growth had low 

concentration of traits associated with defence and structure (see Coley 1983; 1987; Fine et 

al. 2006). Traits favouring high photosynthetic rate and growth are usually considered 

advantageous in rich-resource soil environments, while traits favouring resource 

conservation are considered advantageous in low-resource environments (Aerts & Chapin, 

1999; Westoby, Falster, Moles, Vesk, & Wright, 2002), but in this study the species were 

generalists growing on both soil types. “ 

 

Referee comment:  Line 342: “Doing so revealed that. . .”. Awkward. Rephrase.  

Author response: This sentence does not exist anymore after the changes throughout the 

discussion. 

 

Referee comment:  Line 351: “Although chlorophylls also contain nitrogen, the spectra of 

chlorophylls differ greatly from proteins because of their dissimilar chemical structures, 

showing strong absorption due to C-H bonds in the phytol tail of the molecule (Katz et al., 

1966), also confirmed in this work when visualizing the regions of importance for 

predictions.” Require a full stop after (Katz et al. 1996) and develop last sentence (“also 

confirmed in this work when visualizing the regions of importance for predictions”).  

Author response: We have refined the text to “Although chlorophylls also contain nitrogen, 

the spectra of chlorophylls differ greatly from proteins because of their dissimilar chemical 

structures, showing strong absorption due to C-H bonds in the phytol tail of the molecule 



(Katz, Dougherty, & Boucher, 1966). That can be confirmed in this work as the visible region 

of the spectrum showed the best predictions of pigments.” 

Referee comment:  Line 360: “On the other hand, the use of spectroscopy on fresh leaves is 

particularly better for LMA predictions”  

Author response: We have edited the paragraph, which included that specific sentence to 

“Leaf mass per unit area (LMA) is consistently among the more accurately predicted traits 

using spectroscopy (ASNER & Martin, 2008; Chavana-Bryant et al., 2016; Serbin, Singh, 

McNeil, Kingdon, & Townsend, 2014),  but is measured indirectly via its close coupling with 

water content and leaf structural traits (Asner et al. 2011b).” 

 

Referee comment:  Line 365: “The use of spectroscopy for Si predictions on fresh leaves 

appears to be promising considering our accurate results”. Maybe, but why are Si 

predictions so important? What ecological function does Si perform?!  

Author response: We have reduced the text on Si to avoid singling it out, as it is not a 

specific question on this paper.  

 

Referee comment:  Line 339: 4.4 Predictions of foliar traits using spectroscopy – this section 

maybe a bit long? Could condense? Says some interesting things but I’m not sure they’re all 

relevant to the paper.  

Author response: We have condensed and restructured the entire section named 

“Measuring interspecific variation in leaf traits with field spectroscopy”. We have also 

discussed the Difficulties in measuring phenotypic variation by field spectroscopy and its 

implications for mapping functional traits. 

Referee comment:  Line 384: Consideration on the use of spectroscopy to quantify patterns 

of foliar traits. Typo - Consideration of the use of spectroscopy to quantify patterns of foliar 

traits.  

Author response: Thanks. The correction was made.  

 

Referee comment:  Line 385. “The range of variation within species for most predicted traits 

tend to be smaller with the use of PLSR on reflectance”. Very confusing. Rephrase.  



Referee comment:  Line 399: “This study particularly provides findings for a large range of 

traits that indicate that the use of spectroscopy may be useful to quantify structural traits but 

can be misleading to measure the environmental filtering on traits that are indirectly 

predicted, such as macro- and micronutrients”. I might agree if I understood Figure 4 but, as 

I don’t, I query this statement.  

Author response: The updated Figure 4 is Figure 5. However, we have changed to picture to 

one that can be easily interpreted. We have restructured the text to make the Figure 4 

clearer.  

 

Figure 5. Partitioning of variance of foliar traits between species, soil, species-soil interaction 

and residual components for six generalist species found on both chalk and alluvial soils 

from predicted data. Residual variation arises from within-site intraspecific variation, micro-



site variability, canopy selection and measurement error variance. Predicted data were 

obtained from partial least square regression (PLSR).  

 

Referee comment:  Line 401: “While remote sensing is not a direct replacement of field 

sampling, the ability of remote sensing platforms to assess biological phenomena at large 

spatial scales is unparalleled”. Slightly random – doesn’t follow from previous 

statement/results section.  

Author response: We agree that it completely disagree with previous statements and results. 

We are no longer including this statement on the paper.  

 

Conclusion  

Referee comment:  Line 407: “rock-derived nutrients are strongly influenced by the soil 

characteristics”. Need to tone down or change previous sentence, otherwise statements are 

contradictory.  

Referee comment:  Line 409: “This study also demonstrates the potential for estimating foliar 

traits by field spectroscopy and its promising use to predict Si”. a) “demonstrates the 

potential” –this has already been done many times. Maybe something more along the lines 

of “agrees with the existing literature in demonstrating the potential. . .” b) “its promising use 

to predict Si”. Once again – what is so important about Si?!?!?!  

 

Author response: We no longer have the conclusion but we decided to expand the 

discussion on the Difficulties in measuring phenotypic variation by field spectroscopy and its 

implications for mapping functional traits 

 

Figures 

Referee comment:  Line 661: “Red and black circles mean negative and positive 

correlations”. Which way round?  

Referee comment:  Line 668: “The greyness and size of each dot reflects the goodness-of-fit 

of the PLSR for each foliar trait, with darker and bigger points representing the most 



accurate PLSR predictions. goodness-of-fit”. Give statistical boundaries for how dots were 

sorted into each size/shape category.  

Author response: We have the changed the figure to: 

 

 

Figure 5. Partitioning of variance of foliar traits between species, soil, species-soil interaction 

and residual components for six generalist species found on both chalk and alluvial soils 

from predicted data. Residual variation arises from within-site intraspecific variation, micro-

site variability, canopy selection and measurement error variance. Predicted data were 

obtained from partial least square regression (PLSR).  

  



  

Referee comment:  Perhaps add the word “…respectively” at the end to clarify which is 

which? 

Author response: Thank you. The correction was made.  

 

Referee comment:  Line 675: Table 1. CV needs to be represented as %CV, as stated in the 

heading. 

Author response: Thank you. It is corrected now. 

 

Response to Anonymous Referee #2’s comments 

Received and published: 16 December 2016  

 

Referee comment:  The article “Leaf trait variation and field spectroscopy of generalist tree 

species on contrasting soil types“ by Nunes and co-authors analyzed field spectroscopy data 

collected on different European tree species on contrasting soil types. The authors worked 

with 24 leaf traits and explored the following questions: What contribution do soil type and 

species identity make to trait variation? When traits are clustered into three functional groups 

(light capture and growth, leaf structure and defence, as well as rock-derived nutrients), are 

some groups more affected by soil than others? What traits can be estimated precisely using 

field spectroscopy? Can leaf spectra be used to detect inter-soil as well as inter-specific 

variation in traits? The authors found that most leaf traits varied greatly among species. The 

effects of soil type were generally weak by comparison.  

Specific Comments:  

Referee comment:  Line 28 variation in foliar traits and Si predictions using spectroscopy 

appear to be promising. Not clear what Si means at this stage, it becomes clear later. But in 

general all the discussion on Si is poor  

Author response: Firstly, we spelled out Si and all the nutrients that were presented on the 

paper as an acronym. We previously singled out the performance of Si as a promising result 

but its performance should not be the main focus of the manuscript. We have reduced the 

discussion on Si and broadened the review out to include other traits.  

 

Referee comment:  Line 162 We recognize that grouping leaf properties into functional 

classes can be controversial, given that a single leaf property can contribute to. This is 



particularly true for P, this assumption has to be justified as foliar P can be easily considered 

a trait associated to growth. 

Author response: An increasing number of leaf traits are measured routinely in plant 

communities and global tradeoffs among these traits are often interpreted in terms of life 

history of different species (Adler et al., 2014; Aubin, Ouellette, Legendre, Messier, & 

Bouchard, 2009; Fry, Power, & Manning, 2014; Pillar, Sosinski, & Lepš, 2003). In this study 

we measured 24 traits which we organise into three functional groups (Gregory P. Asner et 

al., 2015; Gregory Pa Asner, 2014). We recognise that leaf traits can contribute to more than 

one class (e.g. LMA is related to growth but also to defence, P is a rock-derived nutrient also 

associated with growth). Leaf traits were grouped using principal component analysis (PCA) 

using Simca-P (2016) software (Umetrics Ltd, Sweden).  The principal components for the 

variables were obtained by the correlation matrix modelling in lieu of covariance matrix 

modelling. We used the unit variance scaling (van den Berg et al., 2006) to avoid the effects 

of variables with high variance. The PCA was used to obtain score scatter, loadings, as well 

as R2 and Q2 overview plots to evaluate whether traits clustered into functional groups. R2 

values denote how well a trait can be explained in the model and Q2 denote how well a trait 

can be predicted from the dataset. 

 

 Results Section Spectroscopy of leaf properties  

 Referee comment:  The results of PLSR are on one hand encouraging because the portion 

of spectra selected for specific traits are in line with what expected from the literature. Some 

examples from the article: 1) higher goodness-of-fit were obtained for K, Ca and P in the 

SWIR regions. 2) Pigments were the only traits that predictions were more accurate when 

using the visible region (400 – 700 nm)  

Author response: Many thanks. We thought this encouraging too. 

 

Referee comment:  I think would be useful to have more discussion on what is known and 

what is new compared for instance to the review from Homolova et al., which discuss many 

of the traits mentioned by the authors and how these traits can be predicted from remote 

sensing data. What do we learn from these results? I think the authors should make an effort 

to improve this aspect because can be quite relevant considering the great dataset they 

have. For example a figure with a reflectance spectra with an indication of the regions 

relevant to estimate other the traits indicated might be useful for the reader.  

Author response: I agree that it would be interesting to have a figure with an average 

reflectance spectrum indicating the relevant regions for each trait, as per Figure 1. We 

included the Coefficient of variation  (%) and the average reflectance with the regions 



partitioning indicating which part of the spectrum is more suitable for each trait. There are 

amendments in the Material and Methods, as well as Results sections on the graphic.  

 

 

Figure 3. Spectral reflectance and coefficient of variation (% CV) of reflectance of six 

generalists species for alluvial and chalk soils. The spectral regions for each trait were 

selected based on the model that minimised RMSE.  

 

Referee comment:  Line 267 The species x soil interaction effects were detected by PLSR 

modelling, except for traits that showed strong interaction (Mn, P and δ 13C). This should be 

better discussed  

Author response: We have improved considerably the discussion on the ability of field 

spectroscopy to predict trait variation. The following paragraph was added to the results: 

“Some leaf traits which appeared to be predicted accurately by PLSR do not have 

absorbance features in the 400-2500 nm range, and were instead predicted because of their 

close association with leaf traits that do have absorbance features in that range (see 

correlations in Fig. 4).  For instance, Si and B do not have absorption features in the 400-

2500 nm range, but their concentrations are highly correlated to hemicellulose, cellulose and 

lignin concentrations, and these organic polymers do have strong absorbance features in the 

SWIR region. Likewise, K do not have absorption features in the 400-2500 nm range, but K 

concentration is highly correlated to leaf water content, soluble carbon, lignin, hemicellulose 



and cellulose, all of which have absorbance features in the region. The importance of these 

“constellation effects” (sensu Chadwick and Asner 2016) becomes apparent when we 

examine the partitioning of variance of PLSR-predicted trait values: several rock-derived 

nutrients vary significantly with soil type when measured in leaves (Fig. 1) but little of that 

variation is successfully modelled by PLSR (Fig. 5). The explanation for this failure to model 

soil-related variation correctly is that concentrations of their associated traits remain invariant 

of soil type (Table 1). The use of PLSR also considerably under-predicted the importance of 

soil (~ 37 %) on the δ15N variation, presumably for similar reasons.  Some species-soil 

interaction effects were detected by PLSR modelling, except for traits that showed strong 

interaction (Mn, P and δ13C).  PLSR models were better able to detect intra-specific 

variation in foliar N concentrations, because much of the nitrogen is contained in proteins, 

which have strong absorbance features. ”. 

And this to the discussion: “Rock-derived nutrients lack absorption features in visible 

to shortwave-infrared region of the electromagnetic spectrum so cannot be measured 

directly by spectroscopy.  They can, nevertheless, be estimated indirectly by virtue of the 

fact that element concentrations co-vary with organic molecules that do have strong 

absorption features (“constellation effects”, see above). This paper identifies a problem with 

this approach: there were strong differences in rock-derived mineral nutrients between soil 

types, but we could not measure these because the concentrations of defence and structural 

traits were barely affected by soil type. We have shown many similarities between our study 

and those in tropical forests, demonstrating that this problem is likely to be widespread.    

What are the implications of the constellation-effect problem for mapping functional 

traits using imaging spectroscopy? Ever larger areas of earth are being mapped with 

airborne spectrometers (e.g. Asner et al. 2017) and the anticipated launch of satellite-borne 

sensors (e.g. EnMAP; DLR 2015; Guanter et al. 2015) will soon enable vegetation and 

ecosystem function to be characterised at a global scale. The effectiveness of indirect 

prediction of traits using constellation-effect will depend critically on whether soils act as a 

strong filter on tree species within a particular region. In the Amazonian lowlands, Asner et 

al. (2015) found that variation in soil P was mirrored by changes in species composition, and 

that P variation among species was correlated with changes in structural and defence 

compounds: in this instance, indirect estimation should be effective (e.g. Dana Chadwick & 

Asner 2016).  On the other hand, in low-diversity temperate forests, a single tree species is 

often found to span many different soil types and show substantial phenotypic plasticity in 

some traits (Oleksyn, Reich, Zytkowiak, Karolewski, & Tjoelker, 2002; Turnbull et al., 2016). 

The six species growing on both chalk and alluvial soils in this study are a case in point.  In 

these low diversity systems, it will be much more difficult to map variation using constellation 



effects, for the reasons explained above. Our study confirms the power of spectroscopy for 

predicting biochemical and structural plant traits, but we urges caution in interpreting results 

when species range across contrasting soil types. ” 

 

Referee comment:  Line 279 Our findings that trees growing on the chalk soils had relatively 

low concentrations of N, P and K in their leaves, and relatively high concentrations of Ca, 

Mg, B, Mn, Si and Zn, is consistent with previous analyses of mineral nutrition in calcareous 

soils. Please add a reference here  

Author response: Compared with trees growing on deep alluvium, trees on thin chalk soils 

had low concentrations of N, P and K macronutrients in their leaves, but high concentrations 

of several micronutrients. Similar findings have been reported for herbaceous species 

growing on chalk (Hillier et al., 1990). 

 

Referee comment:  The discovery that structural and defensive traits do not vary with soil is 

consistent with a previous study in New Zealand’s lowland temperate rain forests (Wright et 

al., 2010). That study compared traits of trees growing on phosphorus rich alluvium versus 

phosphorus-depleted marine terraces. Foliar phosphorus concentrations of species were 

halved on the marine terraces, but there was no detectable variation in structural traits, 

phenolic or tannin concentrations. I would add more discussion at line 298. At the moment is 

more a description of results. Please specify at the beginning which traits are you talking 

about and why they do not change between poor and rich soils:  

Author response: We have added more references and made the sentences clearer: 

“Importantly for our later discussion on indirect estimation of traits by spectroscopy, species 

did not vary between soil types in their structural and defensive traits (i.e. LMA, lignin, 

phenolics) despite these differences in rock-derived nutrients. A similar lack of phenotypic 

change has been found in New Zealand rainforest trees growing on alluvium versus 

phosphorus-depleted marine terraces (Wright et al., 2010) and in several other studies 

(Boege & Dirzo, 2004; Fine et al., 2006; Koricheva, Larsson, Haukioja, & Keinanen, 1998).” 

 

Referee comment:  "Water“ was defined as trait. Please define exactly what do you mean 

with water and how this was computed also here  

Author response: We included the following sentence on the paper: “Leaf water content was 

computed as the ratio between the quantity of water (fresh weight – dry weight) and the 

fresh weight.”  We also used the term leaf water content throughout the paper.  

 

Referee comment:  Line 304: Species had a greater influence on trait values than soils for all 

traits, except P. This makes completely sense to me because the content of P in leaves 



should be more related to the P available in the soil for the plants and not too much to the 

species. But again I found the discussion poor. There is a lot of literature about the leaf 

stoichiometry and P stoichiometry and the relationship with physical and chemical properties 

of the soil.  

Author response: We agree that some discussion on P was missing out and we expanded 

the soil and species effects on traits considering that P supply limitation: “Compared with 

trees growing on deep alluvium, trees on thin chalk soils had low concentrations of N, P and 

K macronutrients in their leaves, but high concentrations of several micronutrients. Similar 

findings have been reported for herbaceous species growing on chalk (Hillier et al., 1990). 

Phosphorus and several micronutrients form low-solubility compounds in alkaline soils and 

become less available for plant uptake (Marschner, 1995; Misra & Tyler, 2000; Sardans & 

Peñuelas, 2004; Tyler, 2002), while the low N concentrations may reflect stoichiometric 

constraints (Niklas, Owens, Reich, & Cobb, 2005). The lower efficiency of PSII in the chalk 

soil is likely to be consequence of phosphorus deficiency (Santos et al. 2006). Importantly for 

our later discussion on indirect estimation of traits by spectroscopy, species did not vary 

between soil types in their structural and defensive traits (i.e. LMA, lignin, phenolics) despite 

these differences in rock-derived nutrients. A similar lack of phenotypic change has been 

found in New Zealand rainforest trees growing on alluvium versus phosphorus-depleted 

marine terraces (Wright et al., 2010) and in several other studies (Boege & Dirzo, 2004; Fine 

et al., 2006; Koricheva et al., 1998).     

Species had a greater influence on trait values than soils for all traits except P, and 

PCA analyses demonstrated that species with traits associated with fast growth had low 

concentration of traits associated with defence and structure (see Coley 1983; 1987; Fine et 

al. 2006). Traits favouring high photosynthetic rate and growth are usually considered 

advantageous in rich-resource soil environments, while traits favouring resource 

conservation are considered advantageous in low-resource environments (Aerts & Chapin, 

1999; Westoby et al., 2002), but in this study the species were generalists growing on both 

soil types. The traits most influenced by species (in descending order) were Si, leaf water 

content, B, soluble C, N, LMA, K, cellulose, lignin, hemicellulose, magnesium, Zn, phenolics 

and Fe. It is interesting to note that two trace elements were near the top of this list; it is 

likely that strong differences in B and Si concentrations between species reflect differences 

in ion channel activity in roots (Ma & Yamaji, 2006). Previous studies have also shown Si to 

be under strong phylogenetic control, and to be little affected by environmental conditions 

(Hodson, White, Mead, & Broadley, 2005). We also found Si and B concentrations to be 

positively correlated, which might ameliorate the effects on B toxicity as Si can increase B 

tolerance of plants (Gunes, Inal, Bagci, Coban, & Sahin, 2007). High Zn organization at the 



species level corroborates earlier analysis that show more than 70% of Zn variation occurs 

within family and substantial differences exist between and within species (Broadley, White, 

Hammond, Zelko, & Lux, 2007).    

The patterns revealed by our variance partitioning analysis of six temperate species 

(Fig. 1) bear surprising similarities to those emerging from an analysis of 3246 species from 

nine tropical regions (Fig. 5 of Asner & Martin 2016a). The tropical analyses included a “site” 

term which captured variation due to soil and geology, among other factors. They, like us, 

found that taxonomic identity explained far more variation than site for most traits. They, like 

us, found foliar concentrations of P and other rock-derived minerals varied strongly with site, 

while nitrogen concentrations varied little. They, like us, found that soluble carbon, structural 

and defensive traits hardly varied between sites. And they, like us, observed that pigments 

(in their case just chlorophyll) was the least predictable of traits, probably because 

photosynthesis is rapidly up- and down-regulated in response to light environment among 

other factors (Gregory P Asner & Martin, 2011). Similarly, δ13C is known to vary strongly 

with light condition and with relative humidity (Buchmann, Kao, & Ehleringer, 1997; Yan et 

al., 2012) which may explain why species and soil explained little of its variance in our study.  

These parallels between tropical and temperate systems suggest broad similarities in plant 

responses to soil across different regions that differ greatly in temperature. ” 

 

Referee comment:  Also with the database the authors have they can also explore how the 

reflectance is related to ratio such as C/P N/P or C/N ratios.  

Author response: Unfortunately, P is not well predicted; the few studies spectroscopy studies 

available differ in the spectral bands they chose to model P (Homolová, Malenovský, 

Clevers, García-Santos, & Schaepman, 2013). RNA and DNA absorb in the ultraviolet (e.g. 

Tataurov et al. 2008) and phosphates in the longwave infrared, but there are no pronounced 

absorption features in the VSWIR region (Homolová et al., 2013) and covariance with other 

traits is weak so constellation effects are unreliable. Rock-derived nutrients lack absorption 

features in visible to shortwave-infrared region of the electromagnetic spectrum so cannot be 

measured directly by spectroscopy.  They can, nevertheless, be estimated indirectly by 

virtue of the fact that element concentrations co-vary with organic molecules that do have 

strong absorption features (“constellation effects”). Because of the confounding factors 

revolving around rock-derived nutrients predictions, we decided not to include ratios that 

would not be directly detected.  

 

Referee comment:  Line 350 The region of importance with correlated wavelengths with 

nitrogen varies between 1192 nm in deciduous forest (Bolster et al., 1996) to 2490 for forage 

matter (Marten et al., 1983), which results directly from nitrogen in the molecular structure. 



Please also cite other recent papers showing similar results with spectrometers similar to the 

one used in this study (e.g. Homolova et al., 2013).  

Author response: Thank you for the suggestion. We have included it: “According to Kumar et 

al. (2001), three main protein absorption features report as important for N estimation are 

located around 1680 nm, 2050 nm and 2170 nm.” 

 

Referee comment:  Line 353 Although chlorophylls also contain nitrogen, the spectra of 

chlorophylls differ greatly from proteins because of their dissimilar chemical structures, 

showing strong absorption due to C-H bonds in the phytol tail of the molecule (Katz et al., 

1966), Here if I understand correctly the authors they want to make the point that Chl and N 

are estimated with different regions of the spectrum despite N is one component of Chl and 

should covary. If my interpretation is correct I suggest another line of argumentation: 

Nitrogen Chl are contained in the green vegetation and N content and Chl are correlated 

(see Houborg et al., 2013). However, in dry leaves there is only N and not Chl. And therefore 

we cannot expect that the PLSR select similar regions for Chl and N.  

Author response: We have added the following sentences to the text: “The region of 

importance with correlated wavelengths with nitrogen varies between 1192 nm in deciduous 

forest (Bolster et al., 1996) to 2490 for forage matter (Marten et al., 1983), which results 

directly from nitrogen in the molecular structure. According to Kumar et al. (2001), three 

main protein absorption features reported as important for N estimation are located around 

1680 nm, 2050 nm and 2170 nm. Although chlorophylls also contain nitrogen, the spectra of 

chlorophylls differ greatly from proteins because of their dissimilar chemical structures, 

showing strong absorption due to C-H bonds in the phytol tail of the molecule (Katz et al., 

1966). That can be confirmed in this work as the visible region of the spectrum showed the 

best predictions of pigments.” 

Chl and N were not correlated in our study and the spectral measurements were done on 

fresh leaves.  The main reason for PLSR to select different regions was that N is correlated 

to the proteins and Chl (even though they contain nitrogen) to the phytoil tails.  
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Summary 

Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the 

context of global change.  Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar 

traits, but few studies have evaluated its accuracy when assessing intraspecific variation in multiple traits.  

Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting 

soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is 

greater between tree species or soil type; and (ii) whether field spectroscopy is effective at predicting 

intraspecific variation in leaf traits as well as interspecific differences.  Analysis of variance showed that inter-

specific differences in traits were generally much stronger than intraspecific differences related to soil type, 

accounting for 25% versus 5% of total trait variation, respectively.  Structural traits, phenolic defences and 

pigments were barely affected by soil type.  In contrast, foliar concentrations of rock-derived nutrients did 

vary: P and K concentration were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations 

were all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 

400-2500 nm reflectance spectra collected by field spectroscopy using partial least square regression, a 

method that is commonly employed in chemometrics.  Pigments were best modelled using reflectance data 

from the visible region (400 - 700 nm), whilst all other traits were best modelled using reflectance data from 

the shortwave infrared region (1100 - 2500 nm) region. Spectroscopy delivered accurate predictions of 

species-level variation in traits. However, it was ineffective at detecting intraspecific variation in rock-derived 

nutrients (with the notable exception of P).  The explanation for this failure is that rock-derived elements do 

not have absorption features in the 400-2500 nm region, and their estimation is indirect, relying on elemental 

concentrations co-varying with structural traits that do have absorption features in that spectral region 

(“constellation effects”).  Since the structural traits did not vary with soil type, it was impossible for our 

regression models to predict intraspecific variation in rock-derived nutrients via constellation effects. This 

study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar traits across 
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species, but highlights problems with predicting intraspecific variation indirectly. We discuss the implications 

of these findings for mapping functional traits by airborne and space-borne imaging spectroscopy.  

 

Key-words Inter-specific variation; partial least-squares regression; plant traits; reflectance spectroscopy; soil 

variation; temperate forests; within-species variation.  

 

 

 

1 Introduction 

There is currently great interest in using plant traits to understand the influences of environmental filtering 

and species identity on the functioning of plant communities, and to model community responses to 

environmental change (MacGillivray et al. 1995; McGill et al. 2006; Green et al. 2008; Funk et al. 2016). Traits 

vary at multiple scales within individuals, within populations, between populations and between species 

(Albert et al. 2011), and analysis of this variation is key to evaluating the strength of various filtering processes 

on communities growing along environmental gradients (Davey et al. 2009; Violle et al. 2012). For example, 

intraspecific variation in traits may reflect differences in microclimate driven by competition, disturbance, 

environmental conditions and age (Funk et al. 2016), whereas inter-specific and inter-site variation may reflect 

both genetic variation and intraspecific variation in response to environment (Davey et al. 2009; Sultan 2001; 

Donohue et al. 2005). Despite substantial advances in trait-based community ecology over the past decade 

(Kunin et al. 2009; Funk et al. 2016), the importance of environmental filters is still debated, especially at small 

scales where biotic factors may prevail over abiotic environmental constraints (Vellend 2010). Global analyses 

of leaf nitrogen, phosphorus and leaf mass per unit areas (LMA) indicate that about half of all variation occurs 

within communities (Wright et al. 2004), underscoring the importance of community-level variation in traits.  

An increasing number of leaf traits are measured routinely in plant communities and global tradeoffs 

among these traits are often interpreted in terms of life history of different species (Adler et al. 2014; Pillar et 

al. 2003; Aubin et al. 2009; Fry et al. 2014). In this study we measured 24 traits which we organise into three 

functional groups (Asner 2014, Asner et al. 2014; Asner et al. 2015): (i) light capture and growth traits include 

pigments, the maximum efficiency of photosystem II (PSII), nitrogen concentration which is closely related to 

protein concentration (Milton & Dintzis 1981), soluble C compounds and leaf water content, C isotope 

discrimination (δ
13

C), N isotope discrimination (δ
15

N); (ii) defence and structural traits include silicon (Si) 

organic cell wall constituents (cellulose, hemicellulose and lignin), that are associated with leaf toughness, 

longevity and defence capability (Hikosaka 2004), polyphenols that are associated with defence against 

herbivores (Mithöfer & Boland 2012), and LMA, a primary axis of specialization among plants (Grime et al. 

1997; Lambers & Poorter 1992), that plays a crucial role in herbivore defence as well as leaf longevity (Wright 
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et al. 2004); finally, (iii) rock-derived nutrients include phosphorus (P), which is involved in many enzymatic, 

genetic and epigenetic processes (Schachtman et al. 1998), and calcium (Ca), magnesium (Mg), potassium (K), 

zinc (Zn), manganese (Mn), boron (B) and iron (Fe), which are involved in signalling pathways and/or cofactors 

of enzymes (Marschner 2012). We recognise that leaf traits can contribute to more than one class (e.g. LMA is 

related to growth but also to defence, P is a rock-derived nutrient also associated with growth). Many analyses 

of traits have focussed on interspecific variation, but there is recognition that intraspecific variation can 

strongly influence species and community responses to environmental change (e.g. Weiner 2004; Funk et al. 

2016). 

There is currently great interest in using hyper-spectroscopy as a tool for studying the chemical and 

structural traits of leaves, particularly because improved airborne sensors and faster computing make it 

possible to map functional traits from the air (Ustin et al. 2009; Asner & Martin 2016b; Jetz et al. 2016; Asner 

et al. 2017). Plans to put hyperspectral sensors into space (e.g. DRL plan to launch EnMAP in 2018; Guanter et 

al. 2015) will soon enable spectral response curves of vegetation communities to be assessed at the global 

scale. Rapid, non-destructive determination of leaf traits in vivo and in situ using spectroscopy reduces the 

need to collect large amounts of material in the field, decreases processing time, lessens costly chemical 

analyses, and eliminates sampling that could itself alter experimental conditions (Couture et al. 2013). 

Spectroscopy can provide predictions of a range of foliar traits at the leaf and canopy scales within diverse 

tropical ecosystems (Asner et al. 2011a; Doughty et al. 2011) and temperate forests (Wessman et al. 1988; 

Serbin et al. 2014).  However, some traits do not have absorption features within the visible and shortwave 

infrared spectral range of spectrometers conventionally used for vegetation analyses, but can be estimated 

indirectly through their covariance with traits that do have absorption features in the visible-to-shortwave-

infrared region (“constellation effects” sensu Dana Chadwick & Asner 2016). These traits include elemental 

concentrations and isotope ratios (e.g. Serbin et al. 2014). In addition, structural differences (i.e., leaf 

thickness, number of air water interfaces, cuticle thickness, and pubescence) between leaves may have 

significant effects on the relationship between leaf reflectance and traits, and can complicate interpretation of 

data (Sims & Gamon 2002; Wu et al. 2016). The ability of spectroscopy to measure intraspecific variation in 

multiples traits between soil types, particularly when some of those traits are indirectly determined through 

constellation effects, has not been critically evaluated.  

This paper examines the drivers of leaf trait variation in temperate woodlands growing on chalk in 

southern England compared with woodlands growing on nearby alluvial soils. Several studies have evaluated 

change in species composition among British semi-natural habitats that differ markedly in soil type (Haines-

Young et al. 2003; Smart et al. 2003), but none to our knowledge have compared within- versus between-

species variation of leaf traits in this context. The alkalinity of calcareous soils gives rise to phosphorus 

limitation, preventing short-term responses to nitrogen addition (Grime et al. 2000), so comparisons of 

chalklands with less-alkaline soils nearby provide strong edaphic contrast. We investigated 24 leaf traits on 

these contrasting soil types and examined the ability of reflectance spectroscopy to quantify these leaf 

chemical and structural traits. We place these traits into groups based on ordination analyses, rather than 
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working with pre-defined functional groups, and evaluate the functional significance of these groups. Our 

specific questions were: (i) is variability in leaf traits greater between tree species or soil type?  (ii)  is field 

spectroscopy effective at predicting intraspecific variation in leaf traits between soil types, as well as 

interspecific differences?   

 

2 Material and methods 

 

2.1 Field site and sampling 

Leaves were collected from trees growing on deep alluvial soils and shallow chalk soils, near Mickleham in 

Surrey, UK (latitude = 51°16’N, longitude = 0°19’W).  The alluvial soil, along the banks of the river Mole, was a 

loam of several metres depth. The chalk soil was located on a steep south-facing escarpment into which the 

river was cutting; the top soil was a few centimetres deep, underlain by solid chalk (i.e. a typical rendzina soil).  

The chalk soils were alkaline with an average pH and standard deviation of 7.9   1.0 (n = 10), whereas the 

alluvial was near neutral having a pH of 6.7   0.2 (n = 10). Phosphorus becomes unavailable to plants in 

alkaline chalk soil (Gerke 1992), and greater depth of loamy soil on the alluvial surfaces must result in much 

greater availability of nutrients to plants.  

Across both sites, leaves were collected from 66 trees, representing six species. The six species 

common to both sites were: Acer campestre (field maple), Acer pseudoplatanus (sycamore), Corylus avellana 

(hazel), Crataegus monogyna (hawthorn), Fraxinus excelsior (ash) and Sambucus nigra (elder). Two fully sunlit 

branches were selected, cut and placed in a cool box, and subsequently transported to a laboratory for 

processing within two hours.  For each branch, ten mature leaves were selected. Three samples of 15 leaf disks 

were cored from these leaves using a 6 mm corer, wrapped in aluminium foil and frozen in liquid N for later 

chemical analyses. Leaf area was measured from fixed-height photos against a white background analysed in 

imageJ. The scanned leaves were weighed to give hydrated mass, then dried at 70 °C for a minimum of 72 h to 

obtain dry mass.  Leaf mass per area (LMA) was calculated as dry mass per unit of fresh leaf area. Leaf water 

content was computed as the ratio between the quantity of water (fresh weight – dry weight) and the fresh 

weight. A further 22 leaf chemical traits were measured on these samples (see below). 

 

2.2 Chemical assays 

Protocols for chemical assays are adapted from those developed by the Carnegie Airborne Observatory (see 

http://spectranomics.ciw.edu). Briefly, oven dried leaves were ground and analysed for a variety of elements 

and carbon fractions. Concentration of elements (B, Ca, K, Mg, Mn, P, Si, Fe, Zn) were determined by ashing 

samples in a muffle furnace followed by digesting them in nitric acid and analysis on an inductively-coupled 
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plasma mass spectrometry (Perkin Elmer SCIEX, Elan DRCII, Shelton, CT, USA). Nitrogen and carbon 

concentrations were determined using a Thermo Finnigan 253 with elemental analyser using a gas 

chromatographic separation column linked to a continuous flow isotope ratio mass spectrometer. This 

technique also provided foliar concentrations of the stable isotopes of N and C. Carbon fractions, including 

hemicellulose, cellulose, lignin and soluble carbon (mainly carbohydrates, lipids, pectin and soluble proteins), 

were determined by sequential digestion of increasing acidity (Van Soest, 1994) in an Ankom fiber analyzer 

(Ankom Technology, Macedon, NY, USA). These carbon fractions are presented on an ash-free dry mass basis. 

Concentrations of photosynthetic pigments (chlorophyll a, b, anthocyanins and total carotenoids) were 

measured by spectroscopy of solution derived from frozen leaf disks on area basis. Absorbance values of the 

supernatant were measured at wavelengths 470 nm, 649 nm and 665 nm for chlorophyll a, b and total 

carotenoids determination and published equations used to calculate pigment concentrations as in 

Lichtenthaler (1987). Absorbance values were also measured at wavelengths 530 nm and 650 nm for 

anthocyanins determination and published equations used as per Giusti et al. (1999), but corrected for 

possible chlorophyll contamination as per Sims & Gamon (2002). The maximum efficiency of photosystem II 

(PSII) was calculated according to Genty et al. (1989) by measuring the maximum fluorescence (Fm) and the 

yield of fluorescence in the absence of an actinic (photosynthetic) light (Fo) using a PAM fluorometer. Total 

phenolic concentration of the upper methanol/water layer was determined colorimetrically using the Folin-

Ciocalteau method, based on absorbance at 760 nm on a spectrophotometer, and quantified using tannic acid 

equivalents with water serving as a blank as per Davey et al. (2007). 

 

2.3 Leaf and canopy spectroscopy 

The remaining leaves were detached from the branches, and 10 leaves selected at random, avoiding damaged 

and soft or young leaves. These leaves were laid on a matt black surface. Reflectance within bands ranging 

from 400–2500 nm was measured using a FieldSpec 4, produced by Analytical Spectral Devices (ASD, Boulder, 

Colorado, USA). The spectrometer’s contact probe was mounted on a clamp and firmly pushed down onto the 

sample, so that no light escaped through the sides.  The spectral measurements were taken at the mid-point 

between the main vein and the leaf edge, approximately half-way between the petiole and leaf tip, with the 

abaxial surface pointing towards the probe. The readings were calibrated against a Spectralon white reference 

every 5 samples. In all statistical analyses, the mean reflectance values of the 10 measurements per branch 

were used. 

 

2.4 Statistical analyses 

Analyses were performed within the R statistics framework (R Team 2014). To evaluate the correlation among 

traits, Spearman rank correlation coefficient was calculated between all trait pairs and the variables were 

ordered in the figure by hierarchical clustering. Analyses of variance (ANOVA) were used to examine the 
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influences of species identity and soil type on each of the 24 leaf traits. Species, soil and soil x species terms 

were included in the model, and the ratio of sum of squares of these terms versus the total sum of squares 

was used as an index of species- versus site-level variation. This partitioning of variance quantifies the variation 

between species, between soil types, the interaction between soil and species, and the unexplained variance 

(residual variance).  The residual variance comprises analytical error and various types of intraspecific variation 

including micro-site and within-canopy variation. Where necessary, variables were log transformed to meet 

assumptions of ANOVA (see Table 1 for details). In addition, permutation-based multivariate analysis of 

variance (PERMANOVA; Anderson 2001) was applied to the matrix of dissimilarity among traits to evaluate the 

importance of soil type, species identity and the interaction soil-species as a source of variation in the 24 traits 

simultaneously. The non-parametric permutation-based analysis of variance (PERMANOVA) was then 

performed on the resulting distances (10000 permutations). An alpha level of 0.05 was used for all significance 

tests, and no effort was made to test for or address non-normal data distributions. The PERMANOVA used 

distance matrices calculated using the adonis function in the vegan package of R. 

Leaf traits were grouped using principal component analysis (PCA) using Simca-P (2016) software 

(Umetrics MKS Data Analytics Solutions, Sweden).  The principal components for the variables were obtained 

by the correlation matrix modelling in lieu of covariance matrix modelling. We used the unit variance scaling 

(van den Berg et al. 2006) to avoid the effects of variables with high variance. The PCA was used to obtain 

score scatter and  loadings plots to show the relatedness of all leaf traits in the dataset. R
2
 and Q

2
 overview 

plots were computed from the cumulated PCA axes 1-5. R
2
 values denote how well a trait can be explained in 

the model and Q
2
 denote how well a trait can be predicted from the dataset. The traits are ranked in 

descending R
2
 order of how well they correlate with the other traits in the data set. These plots were used to 

evaluate whether traits clustered into functional groups. .  

Partial least squares regression (PLSR) was used to evaluate whether field spectroscopy can reliably 

predict leaf traits (Haaland and Thomas, 1988). The spectral reflectance values of each sample were 

transformed into pseudo-absorption values, that is log [1/ R]) where R is reflectance (see Bolster et al. 1996; 

Gillon et al. 1999; Richardson & Reeves III 2005; Petisco et al. 2006; Kleinebecker et al. 2009). There is strong 

autocorrelation in pseudo-absorption values, so PLSR involves dimensionality reduction, producing orthogonal 

uncorrelated latent vectors containing the maximum explanatory power in relation to the trait data (Wold et 

al. 2001). The number of latent variables (nL) used in the PLSR analysis was predicted by minimising the 

Prediction Residual Error Sum of Squares (PRESS) statistic (Chen et al. 2004; Zhao et al. 2015). We adopted a 

leave-one-out cross-validation for each PLSR model. Model accuracy and precision were expressed by the 

coefficient of determination (R
2
) and root mean square error (RMSE). We also standardised RMSE to the 

percentage of the response range (RMSE%) by dividing each RMSE by the maximum and minimum values of 

each leaf trait, as in Feilhauer et al. (2010). RMSE and R
2 

were acquired during both model calibration and after 

model validation. PLSR was conducted initially using all available wavelengths (i.e. 400-2500 nm), but we then 

evaluated whether models based on smaller regions of the spectrum performed any better (see Serbin et al. 

2014), based on comparisons of RMSE. The smaller regions were selected from absorption features recognised 
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in previous papers (Curran 1989; Elvidge 1990; Kokaly et al. 2009). The visible (VIS, 400-700 nm), near infra-red 

(NIR, 700-1500 nm) and shortwave infra-red I (SWIR I, 1500-1900 nm), shortwave infra-red II (SWIR II, 1900-

2500 nm) regions, as well as combinations of the regions (700-1100 nm, 700-1900 nm, 700-2500 nm, 1100-

1500 nm, 1100 -1900 nm, 1100-2500 nm, 1500-2500 nm and 400-2500 nm) were tested and the best-

supported model selected based on minimisation of RMSE. To evaluate the effectiveness of field spectroscopy 

at measuring variation in traits related to soil type and species identity, we partitioned variance in model-

predicted trait values using exactly the same approach as we used with lab-measured traits (i.e. first paragraph 

of methods).    

 

3 Results 

 

3.1 Soil and species controls on leaf traits 

Foliar concentrations of rock-derived nutrients varied with soil type, but few other traits varied strongly with 

soil.  Foliar concentrations of the macronutrients N, P and K were 17 %, 43 % and 24 % higher on alluvial 

compared to chalk soils (Table 1). Nitrogen isotope discrimination (δ
15

N) varied greatly between the two soils, 

from -3.8 ‰ in the chalk soil to 3.4 ‰ in the alluvial.  Foliar concentrations of nutrients required in smaller 

quantities (Si, Ca, Mg, B, Mn and Zn) showed the opposite trend: they were higher in chalk soils (by 22%, 37%, 

50%, 19%, 23% and 49%, respectively). Fe was the only rock-derived mineral nutrient that was unaffected by 

soil type. In contrast, hemicellulose, cellulose, lignin and LMA were completely unaffected by soil type, and  

pigments and traits related to water status (δ
13

C and water content) varied little with soil type, with the 

exception of carotenoids concentration, which was 25 % higher in alluvial soil. The efficiency of PSII showed 

only a slight increase of 4 % in alluvial soil.  The percentage contribution of soluble C was affected by soil, with 

an increase in soluble C of 9 % in the alluvial soil.  

Most traits varied greatly between species and that variation was far greater than the soil effects (Fig. 

1). Interspecific variation (green bars, Fig. 1) accounted for > 60% of the variation of eight traits (in descending 

order Si, water content, B, soluble C, N, LMA, K and cellulose concentrations), and > 40% of the variation of 

another six traits (in descending order, lignin, hemicellulose, Mg, Zn, phenolics and Fe). Species identity 

exerted little or no influence on pigment concentrations, efficiency of PSII, δ
13

C, δ
15

N, P, Ca or Mn 

concentrations. The interactions between species and soil (blue bars, Fig. 1) explained little variation and were 

significant for δ
15

N, P, Mn and Zn, but for no other traits. The pigments, efficiency of PSII and δ
13

C had the 

largest unexplained variance. PERMANOVA analyses showed that, overall, species identity accounted for 25% 

of the variation in leaf traits, soil type accounted for 5%, while the interaction between species and soil 

accounted for virtually no variation (i.e. the traits of different species responded similarly to soil type).  
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The Principal Component Analysis (PCA) was able to distinguish species across component 1 and 2 

(Fig. 2A), with less separation of species within the same genus (i.e. A. campestre and A. pseudoplatanus). The 

first two components of PCA explain 45% of the total variance. Separation of individuals between the soil types 

was weak. Growth vs structural/defence traits were separated in its first axis and area-based vs concentration-

based traits in its second axis. The first two components of PCA explain 46% of the total variance. Considering 

only traits that were well-predicted by PCA (i.e. had Q
2
 > 0.5), the first component distinguishes the traits 

associated in growth (i.e. N, K and soluble carbon concentrations, and water content) from traits associated 

with leaf defence and structure (i.e. hemicellulose and Si). The second component is chlorophyll a, chlorophyll 

b, carotenoids, anthocyanins and LMA, and mainly separates the traits that were calculated on area basis. The 

first component distinguishes species relatively well, with less separation of species within the same genus (i.e. 

A. campestre and A. pseudoplatanus).  

 

3.2 Spectroscopy of leaf traits 

 

The ability to predict leaf traits from hyperspectral reflectance spectra varied greatly among the 24 traits 

(Table 2). The R
2
 values of validation data varied from 0.92 to 0.16, with traits ranked by goodness of fit as 

follows (highest first): LMA, leaf water content, Si, phenolics, carotenoids, K, B, efficiency of PSII, N, chlorophyll 

a and chlorophyll b.  Some minerals, such as P, Zn and Mn, as well as δ
13

C and δ
15

N showed low R
2
.  There was 

virtually no difference in the average reflectance curves of leaves of trees growing on chalk and alluvial soils 

(Fig. 3a), but the coefficient of variation among plants was greater on the chalk soil (Fig. 3b).  Pigments were 

most accurately modelled using reflectance data from the visible region of the spectra, whilst other traits were 

most accurately modelled using spectral data in the 1100 - 2500 nm range (Fig. 3). Efficiency of PSII and Fe 

were the only foliar traits for which the strength of relationship was greatest when all wavelengths between 

400 and 2500 nm were used in the model.   

Some leaf traits which appeared to be predicted accurately by PLSR do not have absorbance features 

in the 400-2500 nm range, and were instead predicted because of their close association with leaf traits that 

do have absorbance features in that range (see correlations in Fig. 4).  For instance, Si and B do not have 

absorption features in the 400-2500 nm range, but their concentrations are highly correlated to hemicellulose, 

cellulose and lignin concentrations, and these organic polymers do have strong absorbance features in the 

SWIR region. Likewise, K do not have absorption features in the 400-2500 nm range, but K concentration is 

highly correlated to leaf water content, soluble carbon, lignin, hemicellulose and cellulose, all of which have 

absorbance features in the region. The importance of these “constellation effects” (sensu Chadwick and Asner 

2016) becomes apparent when we examine the partitioning of variance of PLSR-predicted trait values: several 

rock-derived nutrients vary significantly with soil type when measured in leaves (Fig. 1) but little of that 

variation is successfully modelled by PLSR (Fig. 5). The explanation for this failure to model soil-related 
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variation correctly is that concentrations of their associated traits remain invariant of soil type (Table 1). The 

use of PLSR also considerably under-predicted the importance of soil (~ 37 %) on the δ
15

N variation, 

presumably for similar reasons.  Some species-soil interaction effects were detected by PLSR modelling, except 

for traits that showed strong interaction (Mn, P and δ
13

C).  PLSR models were better able to detect intra-

specific variation in foliar N concentrations, because much of the nitrogen is contained in proteins, which have 

strong absorbance features.  

 

4 Discussion 

  

4.1 Patterns of variation in leaf traits  

Compared with trees growing on deep alluvium, trees on thin chalk soils had low concentrations of N, P and K 

macronutrients in their leaves, but high concentrations of several micronutrients. Similar findings have been 

reported for herbaceous species growing on chalk (Hillier et al. 1990). Phosphorus and several micronutrients 

form low-solubility compounds in alkaline soils and become less available for plant uptake (Marschner 1995; 

Misra & Tyler 2000; Tyler 2002; Sardans & Peñuelas 2004), while the low N concentrations may reflect 

stoichiometric constraints (Niklas et al. 2005). The lower efficiency of PSII in the chalk soil is likely to be a 

consequence of phosphorus deficiency (Santos et al. 2006). Importantly for our later discussion on indirect 

estimation of traits by spectroscopy, species did not vary between soil types in their structural and defensive 

traits (i.e. LMA, lignin, phenolics) despite these differences in rock-derived nutrients. A similar lack of 

intraspecific change has been found in New Zealand rainforest trees growing on alluvium versus phosphorus-

depleted marine terraces (Wright et al. 2010) and in several other studies (Koricheva et al. 1998; Boege & 

Dirzo 2004; Fine et al. 2006).     

Species had a greater influence on trait values than soils for all traits except P, and PCA analyses 

demonstrated that species with traits associated with fast growth had low concentration of traits associated 

with defence and structure (see Coley 1983; 1987; Fine et al. 2006). Traits favouring high photosynthetic rate 

and growth are usually considered advantageous in rich-resource soil environments, while traits favouring 

resource conservation are considered advantageous in low-resource environments (Aerts & Chapin 1999; 

Westoby et al. 2002), but in this study the species were generalists growing on both soil types. The traits most 

influenced by species (in descending order) were Si, leaf water content, B, soluble C, N, LMA, K, cellulose, 

lignin, hemicellulose, magnesium, Zn, phenolics and Fe. It is interesting to note that two trace elements were 

near the top of this list; it is likely that strong differences in B and Si concentrations between species reflect 

differences in ion channel activity in roots (Ma & Yamaji 2006). Previous studies have also shown Si to be 

under strong phylogenetic control, and to be little affected by environmental conditions (Hodson et al. 2005). 

We also found Si and B concentrations to be positively correlated, which might ameliorate the effects on B 

toxicity as Si can increase B tolerance of plants (Gunes et al. 2007). High Zn organization at the species level 
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corroborates earlier analyses that showed more than 70% of Zn variation occured within family and substantial 

differences existed between and within species (Broadley et al. 2007).    

The patterns revealed by our variance partitioning analysis of six temperate species (Fig. 1) bear 

similarities to those emerging from an analysis of 3246 species from nine tropical regions (Fig. 5 of Asner & 

Martin 2016a). The tropical analyses included a “site” term which captured variation due to soil and geology, 

among other factors. They, like us, found that taxonomic identity explained far more variation than site for 

most traits. Additionally they found foliar concentrations of P and other rock-derived minerals varied strongly 

with site, while nitrogen concentrations varied little; found that soluble carbon, structural and defensive traits 

hardly varied between sites; and observed that pigments (in their case just chlorophyll) was the least 

predictable of traits, probably because photosynthesis is rapidly up- and down-regulated in response to light 

environment among other factors (Asner & Martin 2011). Similarly, δ
13

C is known to vary strongly with light 

condition and with relative humidity (Buchmann et al. 1997; Yan et al. 2012) which may explain why species 

and soil explained little of its variance in our study.  These parallels between tropical and temperate systems 

suggest broad similarities in plant responses to soil across different regions that differ greatly in temperature.  

 

 

4.2 Measuring interspecific variation in leaf traits with field spectroscopy 

The spectral regions selected by our PLSR models match the locations of known spectral absorption features 

related to proteins, starch, lignin, cellulose, hemicellulose and leaf water content  (Knipling 1970; Curran 1989; 

Elvidge 1990; Fourty & Baret 1998; Kokaly et al. 2009).  In the region between 700 and 2500 of the 

electromagnetic spectrum, absorption features are commonly the result of overtones and combinations of 

fundamental absorptions at longer wavelengths. The visible region was useful to predict pigments 

concentrations and contributed to the predictions of the efficiency of PSII and Fe only, whereas the infra-red 

region was associated with most traits. The region of importance with correlated wavelengths with nitrogen 

varies between 1192 nm in deciduous forest (Bolster et al. 1996) to 2490 for forage matter (Marten et al. 

1983), which results directly from nitrogen in the molecular structure. According to (Kumar et al. 2002), three 

main protein absorption features reported as important for N estimation are located around 1680 nm, 

2050 nm and 2170 nm. Although chlorophylls also contain nitrogen, the spectra of chlorophylls differ greatly 

from proteins because of their dissimilar chemical structures, showing strong absorption due to C-H bonds in 

the phytol tail of the molecule (Katz et al. 1966). That can be confirmed in this work as the visible region of the 

spectrum showed the best predictions of pigments. The 1500-1900 nm region was also important for phenolic 

compounds prediction, which includes the 1660 nm feature across a variety of species and phenolic 

compounds (Windham et al. 1988; Kokaly & Skidmore 2015). The primary and secondary effects of water 

content on leaf reflectance are greatest in spectral bands centred at 1450, 1940, and 2500 nm (Carter & Porter 

1991), but has also been predicted using bands between 1100-1230 nm absorption features (Ustin et al. 1998; 
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Asner et al. 2004). With respect to the other rock-derived nutrients, Galvez-Sola et al. (2015) also showed that 

near-infrared spectroscopy can constitute a feasible technique to quantify several macro and micronutrients 

such as N, K, Ca, Mg, Fe and Zn in citrus leaves of different leaves with coefficient of determination (R
2
) varying 

between 0.53 for Mn and 0.98 for Ca, whereas B showed less accurate results with the use of spectroscopy. 

The regions of importance for prediction described in those studies were relatively similar to all the mineral 

nutrients analysed in our study, except for B that had the band between 1500 and 1900 as the best predictive 

region.  

Some of most accurately predicted traits have no absorption features in the visible-to-near-infrared, 

but were instead estimated indirectly via constellation effects.  Leaf mass per unit area (LMA) is consistently 

among the more accurately predicted traits using spectroscopy (Asner & Martin 2008; Serbin et al. 2014; 

Chavana-Bryant et al. 2016),  but is measured indirectly via its close coupling with water content and leaf 

structural traits (Asner et al. 2011b). Silicon (Si) concentrations were well-predicted by field spectroscopy, as 

recently reported by Smis et al. (2014). Silicon is absorbed by plants from the soil solution in the form of silicic 

acid (H4SiO4), being translocated to the aerial parts through xylem, and then deposited as phytoliths (Tripathi 

et al. 2011). Si is closely associated with phenol- or lignin-carbohydrate complexes (Inanaga et al. 1995), 

cellulose (Law & Exley 2011), and polysaccharide and peptidoglycans (Schwarz 1973). However, it seems likely 

that spectroscopy is able to predict Si concentrations reliably because it integrates information on several of 

these foliar traits to make the predictions. Similar to Si, the relative high precisions for K, Fe and B predictions 

is likely to be stronger due to the integrating information on several foliar traits simultaneously.  

Unfortunately, P is not well predicted; the few studies spectroscopy studies available differ in the spectral 

bands they chose to model P (Homolová et al. 2013). RNA and DNA absorb in the ultraviolet (e.g. Tataurov et 

al. 2008) and phosphates in the longwave infrared, but there are no pronounced absorption features in the 

VSWIR region (Homolová et al. 2013) and covariance with other traits is weak so constellation effects are 

unreliable.   

 

4.2 Difficulties in measuring intraspecific variation by field spectroscopy and its implications for mapping 

functional traits 

Rock-derived nutrients lack absorption features in visible to shortwave-infrared region of the electromagnetic 

spectrum so cannot be measured directly by spectroscopy.  They can, nevertheless, be estimated indirectly by 

virtue of the fact that element concentrations co-vary with organic molecules that do have strong absorption 

features (“constellation effects”, see above). This paper identifies a problem with this approach: there were 

strong differences in rock-derived mineral nutrients between soil types, but we could not measure these 

because the concentrations of defence and structural traits were barely affected by soil type. We have shown 

many similarities between our study and those in tropical forests, demonstrating that this problem is likely to 

be widespread.    
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There are likely to be  implications of the constellation-effect problem for mapping functional traits 

using imaging spectroscopy. Ever larger areas of earth are being mapped with airborne spectrometers (e.g. 

Asner et al. 2017) and the anticipated launch of satellite-borne sensors (e.g. EnMAP; DLR 2015; Guanter et al. 

2015) will soon enable vegetation and ecosystem function to be characterised at a global scale. The 

effectiveness of indirect prediction of traits using constellation-effect approaches will depend critically on 

whether soils act as a strong filter on tree species within a particular region. In the Amazonian lowlands, Asner 

et al. (2015) found that variation in soil P was mirrored by changes in species composition, and that P variation 

among species was correlated with changes in structural and defence compounds: in this instance, indirect 

estimation should be effective (e.g. Dana Chadwick & Asner 2016).  However, in low-diversity temperate 

forests, a single tree species is often found to span many different soil types and show substantial intraspecific 

variation in some traits (Oleksyn et al. 2002; Turnbull et al. 2016). The six species growing on both chalk and 

alluvial soils in this study are a case in point.  In these low diversity systems, it will be much more difficult to 

map variation using constellation effects, for the reasons explained above. Our study confirms the power of 

spectroscopy for predicting biochemical and structural plant traits, but we urge caution in interpreting results 

when species range across contrasting soil types.    
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Figure 1. Partitioning of variance of foliar traits between species, soil, species-soil interaction and residual 

components for six generalist species found on both chalk and alluvial soils. Residual variation arises from 

within-site intraspecific variation, micro-site variability, canopy selection and measurement error variance.  
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Figure 2. Principal component analysis of all leaf traits (unit variance scaled) measured across all species and 

sites. (A) Score scatter plot showing first and second principal components using all six species for which data 

exist for all 24 traits on two contrasting soil types. Colours represent species identity: Fe = Fraxinus excelsior; 

Sn = Sambucus nigra; Ac = Acer campestre; Cm = Crataegus monogyna; Ca = Corylus avellana; Ap = Acer 

pseudoplatanus. Samples from chalk sites are denoted by squares symbols and alluvium sites are denoted by 

triangles. (B) Loadings plot showing position and correlation of all leaf traits. Traits highlighted in red denote 

are those with Q
2
 > 0.5; (C) cumulated R

2
 of PCA axes 1-5 (Green bars denote how well a trait can be explained 
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in the model) and Q
2
 (Blue bars denote how well a trait can be predicted) values for each trait. The traits are in 

descending R
2
 order of how well they correlate with the other traits in the data set. 

 

Figure 3. Spectral reflectance and percentage coefficient of variation (CV) of reflectance of six generalists 

species for alluvial and chalk soils. The spectral regions for each trait were selected based on the model that 

minimised RMSE.  
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Figure 4.  Spearman correlation rank test among leaf traits of 6 species growing on both soil types. Red and 

black circles mean, respectively, negative and positive correlations. Foliar traits were organised using cluster 

analysis.  
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Figure 5. Partitioning of variance of foliar traits between species, soil, species-soil interaction and residual 

components for six generalist species found on both chalk and alluvial soils from predicted data. Residual 

variation arises from within-site intraspecific variation, micro-site variability, canopy selection but not 

measurement error variance, and is therefore smaller than for field measurements (Fig. 1). Predicted data 

were obtained from partial least square regression (PLSR).  
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Table 1. Average, standard deviation (SD) and coefficient of variation (CV) in percentage for leaf traits of six 

generalist species growing on alluvial and chalk soils. Foliar trait was statistically different between soil types 

with P-value < 0.05 *, < 0.01 ** and < 0.001 ***.   Note that water content and the concentrations of defence 

and structure compounds are invariant of soil type, as this is key to understanding why variation in elemental 

concentrations between soil types cannot be predicted indirectly by “constellation effects”.   

Traits 
Alluvial Chalk 

Mean ± SD %CV Mean ± SD %CV 

 

Light capture and growth 
    

N (%) *** 2.53 ± 0.81 32.1 2.16 ± 0.73 34.0 

δ
15

N (‰) *** 3.43 ± 2.65 77.3 -3.83 ± 2.01 52.3 

δ
13

C (‰) -28.2 ± 1.2 4.5 -28.7± 1.0 3.6 

+
Chlorophyll a (mg m

-2
) 338.8 ± 116.0 34.2 279.6 ± 89.2 31.9 

Chlorophyll b (mg m
-2

) 78.6 ± 27.6 35.1 64.7 ± 22.4 34.7 

Anthocyanins (mg m
-2

) 423.3 ± 143.8 33.9 362.8 ± 121.6 33.5 

Carotenoids (mg m
-2

) * 110.5 ± 40.4 36.5 88.2± 35.5 40.2 

Efficiency of PSII ** 0.74 ± 0.05 7.1 0.71 ± 0.06 9.8 

Soluble C (%) ** 73.6 ± 6.5 8.8 70.3 ± 7.5 10.6 

Leaf water content (%) 59.1 ± 8.2 14.0 58.5 ± 7.9 13.5 

 

Defence and structure 
    

+
LMA (g cm

-2
) 60.8 ± 24.0 39.4 60.6 ± 23.6 38.9 

Phenolics (%) 83.7 ± 64.1 76.5 84.3 ± 49.7 59.0 

+
Hemicellulose (%) 10.9 ± 3.2 29.8 12.5 ± 3.6 29.4 

Cellulose (%) 10.1 ± 1.8 18.6 11.0 ± 2.1 19.3 

Lignin (%) 3.9 ± 1.9 49.8 4.7 ± 3.1 64.8 

+
Si (%) * 0.91 ± 0.56 62.2 1.11 ± 0.79 71.5 

 

Rock-derived nutrients 
    

+
P (%) *** 0.20 ± 0.05 25.5 0.14 ± 0.03 26.8 

K (%) *** 0.98 ± 0.49 50.0 0.79 ± 0.50 64.4 

+
Ca (%) * 1.67 ± 0.75 45.1 2.29 ± 1.24 54.1 

+
Mg (%) *** 0.24 ± 0.11 47.1 0.36 ± 0.15 43.8 

+
B (µg g

-1
) *** 29.0 ± 8.7 30.1 34.5 ± 12.4 36.0 

+
Fe (µg g

-1
) 122.3 ± 24.6 20.1 125.4 ± 32.0 25.5 

+
Mn (µg g

-1
) * 84.7 ± 64.3 75.9 103.8 ± 69.5 66.9 

+
Zn (µg g

-1
) *** 22.9 ± 12.6 55.0 34.1 ± 18.7 54.9 
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+log transformed prior to ANOVA. 

 

Table2. Partial Least Squares Regression (PLSR) on spectral data and leave-one-out cross-validation for 24 leaf 

traits of 6 species occurring on both alluvial and chalk soils. The model calibration (indicated with subscript cal) 

and validation (indicated as subscript val) performance was evaluated for each leaf trait by calculating the 

coefficient of determination (R
2
), root mean square error (RMSE) and the percentage root mean square error 

(%) based on the given number of latent variables (nL) for each PLS model.  

Leaf trait 
Spectral  

range (nm) 
nL 

R2 RMSE RMSE% 

Cal Val Cal Val Cal Val 

 

Light capture and growth 

N (%) 1100 – 2500 3 0.61 0.55 0.49 0.52 15.0 16.0 

δ
15

N (‰) 1100 – 2500 9 0.41 0.16 3.28 4.01 23.5 28.7 

δ
13

C (‰) 1100 – 2500 6 0.46 0.30 0.85 0.96 16.1 18.2 

+
Chlorophyll  a (mg m

-2
)

 
   400 – 700 7 0.65 0.53 60.05 69.62 13.5 15.7 

Chlorophyll b (mg m
-2

)   400 – 700 4 0.59 0.50 16.48 18.57 15.2 17.1 

Anthocyanins (mg m
-2

)   400 – 700 4 0.45 0.33 99.20 110.70 18.0 20.1 

Carotenoids (mg m
-2

)   400 – 700 7 0.75 0.62 19.31 23.54 11.0 13.4 

Efficiency of PSII   400 – 2500 6 0.68 0.55 0.03 0.04 13.4 15.9 

Soluble C (%) 1100 – 2500 4 0.54 0.46 4.76 5.15 18.1 19.6 

Leaf water content (%) 1100 – 1500 5 0.87 0.83 2.89 3.29 9.0 10.1 

 

Defence and structure 

+
LMA (g cm

-2
) 1100 – 2500 6 0.94 0.92 1.09 1.12 6.1 6.9 

Phenolics (%) 1500 – 1900 6 0.78 0.70 26.20 30.48 9.7 11.3 

+
Hemicellulose (%) 1100 – 2500 4 0.44 0.35 1.28 1.30 18.4 19.8 

Cellulose (%) 1100 – 2500 4 0.44 0.34 1.52 1.66 17.0 18.6 

Lignin (%) 1100 – 2500 4 0.57 0.47 1.72 1.89 13.0 14.2 

+
Si (%) 1100 – 2500 4 0.77 0.72 1.50 1.55 14.4 15.5 

 

Rock-derived nutrients 

+
P (%) 1500-2500 7 0.43 0.22 1.26 1.30 17.8 20.2 

K (%) 1500 – 2500 7 0.70 0.61 0.27 0.31 11.9 13.6 

+
Ca (%) 1500-2500 7 0.53 0.40 1.40 1.47 15.9 17.9 

+
Mg (%) 1900 – 2500 3 0.54 0.46 1.39 1.42 15.2 16.5 

+
B (µg g

-1
)

 
 1500-1900 6 0.66 0.56 1.24 1.28 13.6 15.2 
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+
Fe (µg g

-1
)

 
 700 – 2500 5 0.56 0.46 1.17 1.19 15.6 17.2 

+
Mn (µg g

-1
)

 
 1500-1900 6 0.35 0.20 1.83 1.95 20.5 22.7 

+
Zn (µg g

-1
)

 
 1500-1900 7 0.41 0.21 1.50 1.60 19.5 22.4 

  
+
 Trait values were natural log-transformed for PLSR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


