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Summary 

Abstract 

Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the 

context of global change.  Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar 

traits, but few studies have evaluated its accuracy when assessing phenotypic variation in multiple traits.  

Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting 

soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is 

greater between tree species or soil type; and (ii) whether field spectroscopy is effective at predicting 

intraspecific variation in leaf traits as well as interspecific differences.  Analysis of variance showed that inter-

specific differences in traits were generally much stronger than intraspecific differences related to soil type, 

accounting for 25% versus 5% of total trait variation, respectively.  Structural traits, phenolic defences and 

pigments were barely affected by soil type.  In contrast, foliar concentrations of rock-derived nutrients did 

vary: P and K concentration were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations 

were all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 

400-2500 nm reflectance spectra collected by field spectroscopy using partial least square regression, a 

method that is commonly employed in chemometrics.  Pigments were best modelled using reflectance data 

from the visible region (400 - 700 nm), whilst all other traits were best modelled using reflectance data from 

the shortwave infrared region (1100 - 2500 nm) region. Spectroscopy delivered accurate predictions of 

species-level variation in traits. However, it was ineffective at detecting intraspecific variation in rock-derived 

nutrients (with the notable exception of P).  The explanation for this failure is that rock-derived elements do 

not have absorption features in the 400-2500 nm region, and their estimation is indirect, relying on elemental 

concentrations co-varying with structural traits that do have absorption features in that spectral region 

(“constellation effects”).  Since the structural traits did not vary with soil type, it was impossible for our 

regression models to predict intraspecific variation in rock-derived nutrients via constellation effects. This 



study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar traits across 

species, but highlights problems with predicting intraspecific variation indirectly. We discuss the implications 

of these findings for mapping functional traits by airborne imaging spectroscopy.  

 

Key-words Inter-specific variation; partial least-squares regression; plant traits; reflectance spectroscopy; soil 

variation; temperate forests; within-species variation.  

 

1 Introduction 

There is currently great interest in using plant traits to understand the influences of environmental filtering 

and species identity on the functioning of plant communities, and to model community responses to 

environmental change (MacGillivray et al. 1995; McGill et al. 2006; Green et al. 2008; Funk et al. 2016). Traits 

vary at multiple scales within individuals, within populations, between populations and between species 

(Albert et al. 2011), and analysis of this variation is key to evaluating the strength of various filtering processes 

on communities growing along environmental gradients (Davey et al. 2009; Violle et al. 2012). For example, 

intraspecific variation in traits may reflect differences in microclimate driven by competition, disturbance, 

environmental conditions and age (Funk et al. 2016), whereas inter-specific and inter-site variation may reflect 

both genetic variation and phenotypic plasticity in response to environment (Davey et al. 2009; Sultan 2001; 

Donohue et al. 2005). Despite substantial advances in trait-based community ecology over the past decade 

(Kunin et al. 2009; Funk et al. 2016), the importance of environmental filters is still debated, especially at small 

scales where biotic factors may prevail over abiotic environmental constraints (Vellend 2010). Global analyses 

of leaf nitrogen, phosphorus and leaf mass per unit areas (LMA) indicate that about half of all variation occurs 

within communities (Wright et al. 2004), underscoring the importance of community-level variation in traits.  

An increasing number of leaf traits are measured routinely in plant communities and global tradeoffs 

among these traits are often interpreted in terms of life history of different species (Adler et al. 2014; Pillar et 

al. 2003; Aubin et al. 2009; Fry et al. 2014). In this study we measured 24 traits which we organise into three 

functional groups (Asner 2014, Asner et al. 2014; Asner et al. 2015): (i) light capture and growth traits include 

pigments, the maximum efficiency of photosystem II (PSII), nitrogen concentration which is closely related to 

protein concentration (Milton & Dintzis 1981), soluble C compounds and leaf water content, C isotope 

discrimination (δ
13

C), N isotope discrimination (δ
15

N); (ii) defence and structural traits include silicon (Si) 

organic cell wall constituents (cellulose, hemicellulose and lignin), that are associated with leaf toughness, 

longevity and defence capability (Hikosaka 2004), polyphenols that are associated with defence against 

herbivores (Mithöfer & Boland 2012), and LMA, a primary axis of specialization among plants (Grime et al. 

1997; Lambers & Poorter 1992), that plays a crucial role in herbivore defence as well as leaf longevity (Wright 

et al. 2004); finally, (iii) rock-derived nutrients include phosphorus (P), which is involved in many enzymatic, 

genetic and epigenetic processes (Schachtman et al. 1998), and calcium (Ca), magnesium (Mg), potassium (K), 



zinc (Zn), manganese (Mn), boron (B) and iron (Fe), which are involved in signalling pathways and/or cofactors 

of enzymes (Marschner 2012). We recognise that leaf traits can contribute to more than one class (e.g. LMA is 

related to growth but also to defence, P is a rock-derived nutrient also associated with growth). Many analyses 

of traits have focussed on interspecific variation, but there is recognition that intraspecific variation can 

strongly influence species and community responses to environmental change (e.g. Weiner 2004; Funk et al. 

2016). 

There is currently great interest in using hyper-spectroscopy as a tool for studying the chemical and 

structural traits of leaves, particularly because improved airborne sensors and faster computing make it 

possible to map functional traits from the air (Ustin et al. 2009; Asner & Martin 2016b; Jetz et al. 2016; Asner 

et al. 2017). Plans to put hyperspectral sensors into space (e.g. DRL plan to launch EnMAP in 2018; Guanter et 

al. 2015) will soon enable spectral response curves of vegetation communities to be assessed at the global 

scale. Rapid, non-destructive determination of leaf traits in vivo and in situ using spectroscopy reduces the 

need to collect large amounts of material in the field, decreases processing time, lessens costly chemical 

analyses, and eliminates sampling that could itself alter experimental conditions (Couture et al. 2013). 

Spectroscopy can provide predictions of a range of foliar traits at the leaf and canopy scales within diverse 

tropical ecosystems (Asner et al. 2011a; Doughty et al. 2011) and temperate forests (Wessman et al. 1988; 

Serbin et al. 2014).  However, some traits do not have absorption features within the visible and shortwave 

infrared spectral range of spectrometers conventionally used for vegetation analyses, but can be estimated 

indirectly through their covariance with traits that do have absorption features in the visible-to-shortwave-

infrared region (“constellation effects” sensu Dana Chadwick & Asner 2016). These traits include elemental 

concentrations and isotope ratios (e.g. Serbin et al. 2014). In addition, structural differences (i.e., leaf 

thickness, number of air water interfaces, cuticle thickness, and pubescence) between leaves may have 

significant effects on the relationship between leaf reflectance and traits, and can complicate interpretation of 

data (Sims & Gamon 2002; Wu et al. 2016). The ability of spectroscopy to measure intraspecific variation in 

multiples traits between soil types, particularly when some of those traits are indirectly determined through 

constellation effects, has not been critically evaluated.  

This paper examines the drivers of leaf trait variation in temperate woodlands growing on chalk in 

southern England compared with woodlands growing on nearby alluvial soils. Several studies have evaluated 

change in species composition among British semi-natural habitats that differ markedly in soil type (Haines-

Young et al. 2003; Smart et al. 2003), but none to our knowledge have compared within- versus between-

species variation of leaf traits in this context. The alkalinity of calcareous soils gives rise to phosphorus 

limitation, preventing short-term responses to nitrogen addition (Grime et al. 2000), so comparisons of 

chalklands with less-alkaline soils nearby provide strong edaphic contrast. We investigated 24 leaf traits on 

these contrasting soil types and examined the ability of reflectance spectroscopy to quantify these leaf 

chemical and structural traits. We place these traits into groups based on ordination analyses, rather than 

working with pre-defined functional groups, and evaluate the functional significance of these groups. Our 

specific questions were: (i) is variability in leaf traits greater between tree species or soil type?  (ii)  is field 



spectroscopy effective at predicting intraspecific variation in leaf traits between soil types, as well as 

interspecific differences?   

 

2 Material and methods 

 

2.1 Field site and sampling 

Leaves were collected from trees growing on deep alluvial soils and shallow chalk soils, near Mickleham in 

Surrey, UK (latitude = 51°16’N, longitude = 0°19’W).  The alluvial soil, along the banks of the river Mole, was a 

loam of several metres depth. The chalk soil was located on a steep south-facing escarpment into which the 

river was cutting; the top soil was a few centimetres deep, underlain by solid chalk (i.e. a typical rendzina soil).  

The chalk soils were alkaline with an average pH and standard deviation of 7.9 ± 1.0 (n = 10), whereas the 

alluvial was near neutral having a pH of 6.7 ± 0.2 (n = 10). Phosphorus becomes unavailable to plants in 

alkaline chalk soil (Gerke 1992), and greater depth of loamy soil on the alluvial surfaces must result in much 

greater availability of nutrients to plants.  

Across both sites, leaves were collected from 66 trees, representing six species. The six species 

common to both sites were: Acer campestre (field maple), Acer pseudoplatanus (sycamore), Corylus avellana 

(hazel), Crataegus monogyna (hawthorn), Fraxinus excelsior (ash) and Sambucus nigra (elder). Two fully sunlit 

branches were selected, cut and placed in a cool box, and subsequently transported to a laboratory for 

processing within two hours.  For each branch, ten mature leaves were selected. Three samples of 15 leaf disks 

were cored from these leaves using a 6 mm corer, wrapped in aluminium foil and frozen in liquid N for later 

chemical analyses. Leaf area was measured from fixed-height photos against a white background analysed in 

imageJ. The scanned leaves were weighed to give hydrated mass, then dried at 70 °C for a minimum of 72 h to 

obtain dry mass.  Leaf mass per area (LMA) was calculated as dry mass per unit of fresh leaf area. Leaf water 

content was computed as the ratio between the quantity of water (fresh weight – dry weight) and the fresh 

weight. A further 22 leaf chemical traits were measured on these samples (see below). 

 

2.2 Chemical assays 

Protocols for chemical assays are adapted from those developed by the Carnegie Airborne Observatory (see 

http://spectranomics.ciw.edu). Briefly, oven dried leaves were ground and analysed for a variety of elements 

and carbon fractions. Concentration of elements (B, Ca, K, Mg, Mn, P, Si, Fe, Zn) were determined by ashing 

samples in a muffle furnace followed by digesting them in nitric acid and analysis on an inductively-coupled 

plasma mass spectrometry (Perkin Elmer SCIEX, Elan DRCII, Shelton, CT, USA). Nitrogen and carbon 

concentrations were determined using a Thermo Finnigan 253 with elemental analyser using a gas 

http://spectranomics.ciw.edu/


chromatographic separation column linked to a continuous flow isotope ratio mass spectrometer. This 

technique also provided foliar concentrations of the stable isotopes of N and C. Carbon fractions, including 

hemicellulose, cellulose, lignin and soluble carbon (mainly carbohydrates, lipids, pectin and soluble proteins), 

were determined by sequential digestion of increasing acidity (Van Soest, 1994) in an Ankom fiber analyzer 

(Ankom Technology, Macedon, NY, USA). These carbon fractions are presented on an ash-free dry mass basis. 

Concentrations of photosynthetic pigments (chlorophyll a, b, anthocyanins and total carotenoids) were 

measured by spectroscopy of solution derived from frozen leaf disks on area basis. Absorbance values of the 

supernatant were measured at wavelengths 470 nm, 649 nm and 665 nm for chlorophyll a, b and total 

carotenoids determination and published equations used to calculate pigment concentrations as in 

Lichtenthaler (1987). Absorbance values were also measured at wavelengths 530 nm and 650 nm for 

anthocyanins determination and published equations used as per Giusti et al. (1999), but corrected for 

possible chlorophyll contamination as per Sims & Gamon (2002). The maximum efficiency of photosystem II 

(PSII) was calculated according to Genty et al. (1989) by measuring the maximum fluorescence (Fm) and the 

yield of fluorescence in the absence of an actinic (photosynthetic) light (Fo) using a PAM fluorometer. Total 

phenolic concentration of the upper methanol/water layer was determined colorimetrically using the Folin-

Ciocalteau method, based on absorbance at 760 nm on a spectrophotometer, and quantified using tannic acid 

equivalents with water serving as a blank as per Davey et al. (2007). 

 

2.3 Leaf and canopy spectroscopy 

The remaining leaves were detached from the branches, and 10 leaves selected at random, avoiding damaged 

and soft or young leaves. These leaves were laid on a matt black surface. Reflectance within bands ranging 

from 400–2500 nm was measured using a FieldSpec 4, produced by Analytical Spectral Devices (ASD, Boulder, 

Colorado, USA). The spectrometer’s contact probe was mounted on a clamp and firmly pushed down onto the 

sample, so that no light escaped through the sides.  The spectral measurements were taken at the mid-point 

between the main vein and the leaf edge, approximately half-way between the petiole and leaf tip, with the 

abaxial surface pointing towards the probe. The readings were calibrated against a Spectralon white reference 

every 5 samples. In all statistical analyses, the mean reflectance values of the 10 measurements per branch 

were used. 

 

2.4 Statistical analyses 

Analyses were performed within the R statistics framework (R Team 2014). To evaluate the correlation among 

traits, Spearman rank correlation coefficient was calculated between all trait pairs and the variables were 

ordered in the figure by hierarchical clustering. Analyses of variance (ANOVA) were used to examine the 

influences of species identity and soil type on each of the 24 leaf traits. Species, soil and soil x species terms 

were included in the model, and the ratio of sum of squares of these terms versus the total sum of squares 



was used as an index of species- versus site-level variation. This partitioning of variance quantifies the variation 

between species, between soil types, the interaction between soil and species, and the unexplained variance 

(residual variance).  The residual variance comprises analytical error and various types of intraspecific variation 

including micro-site and within-canopy variation. Where necessary, variables were log transformed to meet 

assumptions of ANOVA (see Table 1 for details). In addition, permutation-based multivariate analysis of 

variance (PERMANOVA; Anderson 2001) was applied to the matrix of dissimilarity among traits to evaluate the 

importance of soil type, species identity and the interaction soil-species as a source of variation in the 24 traits 

simultaneously. The non-parametric permutation-based analysis of variance (PERMANOVA) was then 

performed on the resulting distances (10000 permutations). An alpha level of 0.05 was used for all significance 

tests, and no effort was made to test for or address non-normal data distributions. The PERMANOVA used 

distance matrices calculated using the adonis function in the vegan package of R. 

Leaf traits were grouped using principal component analysis (PCA) using Simca-P (2016) software 

(Umetrics MKS Data Analytics Solutions, Sweden).  The principal components for the variables were obtained 

by the correlation matrix modelling in lieu of covariance matrix modelling. We used the unit variance scaling 

(van den Berg et al. 2006) to avoid the effects of variables with high variance. The PCA was used to obtain 

score scatter and  loadings plots to show the relatedness of all leaf traits in the dataset. R
2
 and Q

2
 overview 

plots were computed from the cumulated PCA axes 1-5. R
2
 values denote how well a trait can be explained in 

the model and Q
2
 denote how well a trait can be predicted from the dataset. The traits are ranked in 

descending R
2
 order of how well they correlate with the other traits in the data set. These plots were used to 

evaluate whether traits clustered into functional groups. .  

Partial least squares regression (PLSR) was used to evaluate whether field spectroscopy can reliably 

predict leaf traits (Haaland and Thomas, 1988). The spectral reflectance values of each sample were 

transformed into pseudo-absorption values, that is log [1/ R]) where R is reflectance (see Bolster et al. 1996; 

Gillon et al. 1999; Richardson & Reeves III 2005; Petisco et al. 2006; Kleinebecker et al. 2009). There is strong 

autocorrelation in pseudo-absorption values, so PLSR involves dimensionality reduction, producing orthogonal 

uncorrelated latent vectors containing the maximum explanatory power in relation to the trait data (Wold et 

al. 2001). The number of latent variables (nL) used in the PLSR analysis was predicted by minimising the 

Prediction Residual Error Sum of Squares (PRESS) statistic (Chen et al. 2004; Zhao et al. 2015). We adopted a 

leave-one-out cross-validation for each PLSR model. Model accuracy and precision were expressed by the 

coefficient of determination (R
2
) and root mean square error (RMSE). We also standardised RMSE to the 

percentage of the response range (RMSE%) by dividing each RMSE by the maximum and minimum values of 

each leaf trait, as in Feilhauer et al. (2010). RMSE and R
2 

were acquired during both model calibration and after 

model validation. PLSR was conducted initially using all available wavelengths (i.e. 400-2500 nm), but we then 

evaluated whether models based on smaller regions of the spectrum performed any better (see Serbin et al. 

2014), based on comparisons of RMSE. The smaller regions were selected from absorption features recognised 

in previous papers (Curran 1989; Elvidge 1990; Kokaly et al. 2009). The visible (VIS, 400-700 nm), near infra-red 

(NIR, 700-1500 nm) and shortwave infra-red I (SWIR I, 1500-1900 nm), shortwave infra-red II (SWIR II, 1900-



2500 nm) regions, as well as combinations of the regions (700-1100 nm, 700-1900 nm, 700-2500 nm, 1100-

1500 nm, 1100 -1900 nm, 1100-2500 nm, 1500-2500 nm and 400-2500 nm) were tested and the best-

supported model selected based on minimisation of RMSE. To evaluate the effectiveness of field spectroscopy 

at measuring variation in traits related to soil type and species identity, we partitioned variance in model-

predicted trait values using exactly the same approach as we used with lab-measured traits (i.e. first paragraph 

of methods).    

 

3 Results 

 

3.1 Soil and species controls on leaf traits 

Foliar concentrations of rock-derived nutrients varied with soil type, but few other traits varied strongly with 

soil.  Foliar concentrations of the macronutrients N, P and K were 17 %, 43 % and 24 % higher on alluvial 

compared to chalk soils (Table 1). Nitrogen isotope discrimination (δ
15

N) varied greatly between the two soils, 

from -3.8 ‰ in the chalk soil to 3.4 ‰ in the alluvial.  Foliar concentrations of nutrients required in smaller 

quantities (Si, Ca, Mg, B, Mn and Zn) showed the opposite trend: they were higher in chalk soils (by 22%, 37%, 

50%, 19%, 23% and 49%, respectively). Fe was the only rock-derived mineral nutrient that was unaffected by 

soil type. In contrast, hemicellulose, cellulose, lignin and LMA were completely unaffected by soil type, and  

pigments and traits related to water status (δ
13

C and water content) varied little with soil type, with the 

exception of carotenoids concentration, which was 25 % higher in alluvial soil. The efficiency of PSII showed 

only a slight increase of 4 % in alluvial soil.  The percentage contribution of soluble C was affected by soil, with 

an increase in soluble C of 9 % in the alluvial soil.  

Most traits varied greatly between species and that variation was far greater than the soil effects (Fig. 

1). Interspecific variation (green bars, Fig. 1) accounted for > 60% of the variation of eight traits (in descending 

order Si, water content, B, soluble C, N, LMA, K and cellulose concentrations), and > 40% of the variation of 

another six traits (in descending order, lignin, hemicellulose, Mg, Zn, phenolics and Fe). Species identity 

exerted little or no influence on pigment concentrations, efficiency of PSII, δ
13

C, δ
15

N, P, Ca or Mn 

concentrations. The interactions between species and soil (blue bars, Fig. 1) explained little variation and were 

significant for δ
15

N, P, Mn and Zn, but for no other traits. The pigments, efficiency of PSII and δ
13

C had the 

largest unexplained variance. PERMANOVA analyses showed that, overall, species identity accounted for 25% 

of the variation in leaf traits, soil type accounted for 5%, while the interaction between species and soil 

accounted for virtually no variation (i.e. the traits of different species responded similarly to soil type).  

The Principal Component Analysis (PCA) was able to distinguish species across component 1 and 2 

(Fig. 2A), with less separation of species within the same genus (i.e. A. campestre and A. pseudoplatanus). The 

first two components of PCA explain 45% of the total variance. Separation of individuals between the soil types 



was weak. Growth vs structural/defence traits were separated in its first axis and area-based vs concentration-

based traits in its second axis. The first two components of PCA explain 46% of the total variance. Considering 

only traits that were well-predicted by PCA (i.e. had Q
2
 > 0.5), the first component distinguishes the traits 

associated in growth (i.e. N, K and soluble carbon concentrations, and water content) from traits associated 

with leaf defence and structure (i.e. hemicellulose and Si). The second component is chlorophyll a, chlorophyll 

b, carotenoids, anthocyanins and LMA, and mainly separates the traits that were calculated on area basis. The 

first component distinguishes species relatively well, with less separation of species within the same genus (i.e. 

A. campestre and A. pseudoplatanus).  

 

3.2 Spectroscopy of leaf traits 

 

The ability to predict leaf traits from hyperspectral reflectance spectra varied greatly among the 24 traits 

(Table 2). The R
2
 values of validation data varied from 0.92 to 0.16, with traits ranked by goodness of fit as 

follows (highest first): LMA, leaf water content, Si, phenolics, carotenoids, K, B, efficiency of PSII, N, chlorophyll 

a and chlorophyll b.  Some minerals, such as P, Zn and Mn, as well as δ
13

C and δ
15

N showed low R
2
.  There was 

virtually no difference in the average reflectance curves of leaves of trees growing on chalk and alluvial soils 

(Fig. 3a), but the coefficient of variation among plants was greater on the chalk soil (Fig. 3b).  Pigments were 

most accurately modelled using reflectance data from the visible region of the spectra, whilst other traits were 

most accurately modelled using spectral data in the 1100 - 2500 nm range (Fig. 3). Efficiency of PSII and Fe 

were the only foliar traits for which the strength of relationship was greatest when all wavelengths between 

400 and 2500 nm were used in the model.   

Some leaf traits which appeared to be predicted accurately by PLSR do not have absorbance features 

in the 400-2500 nm range, and were instead predicted because of their close association with leaf traits that 

do have absorbance features in that range (see correlations in Fig. 4).  For instance, Si and B do not have 

absorption features in the 400-2500 nm range, but their concentrations are highly correlated to hemicellulose, 

cellulose and lignin concentrations, and these organic polymers do have strong absorbance features in the 

SWIR region. Likewise, K do not have absorption features in the 400-2500 nm range, but K concentration is 

highly correlated to leaf water content, soluble carbon, lignin, hemicellulose and cellulose, all of which have 

absorbance features in the region. The importance of these “constellation effects” (sensu Chadwick and Asner 

2016) becomes apparent when we examine the partitioning of variance of PLSR-predicted trait values: several 

rock-derived nutrients vary significantly with soil type when measured in leaves (Fig. 1) but little of that 

variation is successfully modelled by PLSR (Fig. 5). The explanation for this failure to model soil-related 

variation correctly is that concentrations of their associated traits remain invariant of soil type (Table 1). The 

use of PLSR also considerably under-predicted the importance of soil (~ 37 %) on the δ
15

N variation, 

presumably for similar reasons.  Some species-soil interaction effects were detected by PLSR modelling, except 



for traits that showed strong interaction (Mn, P and δ
13

C).  PLSR models were better able to detect intra-

specific variation in foliar N concentrations, because much of the nitrogen is contained in proteins, which have 

strong absorbance features.  

 

4 Discussion 

  

4.1 Patterns of variation in leaf traits  

Compared with trees growing on deep alluvium, trees on thin chalk soils had low concentrations of N, P and K 

macronutrients in their leaves, but high concentrations of several micronutrients. Similar findings have been 

reported for herbaceous species growing on chalk (Hillier et al. 1990). Phosphorus and several micronutrients 

form low-solubility compounds in alkaline soils and become less available for plant uptake (Marschner 1995; 

Misra & Tyler 2000; Tyler 2002; Sardans & Peñuelas 2004), while the low N concentrations may reflect 

stoichiometric constraints (Niklas et al. 2005). The lower efficiency of PSII in the chalk soil is likely to be a 

consequence of phosphorus deficiency (Santos et al. 2006). Importantly for our later discussion on indirect 

estimation of traits by spectroscopy, species did not vary between soil types in their structural and defensive 

traits (i.e. LMA, lignin, phenolics) despite these differences in rock-derived nutrients. A similar lack of 

intraspecific change has been found in New Zealand rainforest trees growing on alluvium versus phosphorus-

depleted marine terraces (Wright et al. 2010) and in several other studies (Koricheva et al. 1998; Boege & 

Dirzo 2004; Fine et al. 2006).     

Species had a greater influence on trait values than soils for all traits except P, and PCA analyses 

demonstrated that species with traits associated with fast growth had low concentration of traits associated 

with defence and structure (see Coley 1983; 1987; Fine et al. 2006). Traits favouring high photosynthetic rate 

and growth are usually considered advantageous in rich-resource soil environments, while traits favouring 

resource conservation are considered advantageous in low-resource environments (Aerts & Chapin 1999; 

Westoby et al. 2002), but in this study the species were generalists growing on both soil types. The traits most 

influenced by species (in descending order) were Si, leaf water content, B, soluble C, N, LMA, K, cellulose, 

lignin, hemicellulose, magnesium, Zn, phenolics and Fe. It is interesting to note that two trace elements were 

near the top of this list; it is likely that strong differences in B and Si concentrations between species reflect 

differences in ion channel activity in roots (Ma & Yamaji 2006). Previous studies have also shown Si to be 

under strong phylogenetic control, and to be little affected by environmental conditions (Hodson et al. 2005). 

We also found Si and B concentrations to be positively correlated, which might ameliorate the effects on B 

toxicity as Si can increase B tolerance of plants (Gunes et al. 2007). High Zn organization at the species level 

corroborates earlier analyses that showed more than 70% of Zn variation occured within family and substantial 

differences existed between and within species (Broadley et al. 2007).    



The patterns revealed by our variance partitioning analysis of six temperate species (Fig. 1) bear 

similarities to those emerging from an analysis of 3246 species from nine tropical regions (Fig. 5 of Asner & 

Martin 2016a). The tropical analyses included a “site” term which captured variation due to soil and geology, 

among other factors. They, like us, found that taxonomic identity explained far more variation than site for 

most traits. Additionally they found foliar concentrations of P and other rock-derived minerals varied strongly 

with site, while nitrogen concentrations varied little; found that soluble carbon, structural and defensive traits 

hardly varied between sites; and observed that pigments (in their case just chlorophyll) was the least 

predictable of traits, probably because photosynthesis is rapidly up- and down-regulated in response to light 

environment among other factors (Asner & Martin 2011). Similarly, δ
13

C is known to vary strongly with light 

condition and with relative humidity (Buchmann et al. 1997; Yan et al. 2012) which may explain why species 

and soil explained little of its variance in our study.  These parallels between tropical and temperate systems 

suggest broad similarities in plant responses to soil across different regions that differ greatly in temperature.  

 

 

4.2 Measuring interspecific variation in leaf traits with field spectroscopy 

The spectral regions selected by our PLSR models match the locations of known spectral absorption features 

related to proteins, starch, lignin, cellulose, hemicellulose and leaf water content  (Knipling 1970; Curran 1989; 

Elvidge 1990; Fourty & Baret 1998; Kokaly et al. 2009).  In the region between 700 and 2500 of the 

electromagnetic spectrum, absorption features are commonly the result of overtones and combinations of 

fundamental absorptions at longer wavelengths. The visible region was useful to predict pigments 

concentrations and contributed to the predictions of the efficiency of PSII and Fe only, whereas the infra-red 

region was associated with most traits. The region of importance with correlated wavelengths with nitrogen 

varies between 1192 nm in deciduous forest (Bolster et al. 1996) to 2490 for forage matter (Marten et al. 

1983), which results directly from nitrogen in the molecular structure. According to (Kumar et al. (2002), three 

main protein absorption features reported as important for N estimation are located around 1680 nm, 

2050 nm and 2170 nm. Although chlorophylls also contain nitrogen,In this study, pigments were found to 

influence the visible region of the spectrum while PSII-efficiency was predicted from features across the VSWIR 

range.  The spectra of chlorophylls differ greatlyare distinct from those of proteins because ofC-H bonds in 

their dissimilar chemical structures, showingphytols tails create a strong absorption due to C-H bonds in the 

phytol tail of the moleculefeature not found in proteins (Katz et al. 1966). That can be confirmed in this work 

as the visible region of the spectrum showed the best predictions of pigments. The 1500-1900 nm region was 

alsoHowever, pigments are tightly bound by proteins to form photosynthetic antenna complexes that capture 

light energy and transfer it to the PSI and PSII reaction centres (Liu et al., 2004). The vibration of the bonds in 

the pigment–protein complex adds additional absorption features to the spectra of pigments and may help 

explain why so many bands were involved in PSII-efficiency prediction (Porcar-Castell et al., 2014). The 1500-

1900 nm region was important for phenolic compounds prediction, which includes the 1660 nm feature across 



a variety of species and phenolic compounds (Windham et al. 1988; Kokaly & Skidmore 2015). The primary and 

secondary effects of water content on leaf reflectance are greatest in spectral bands centred at 1450, 1940, 

and 2500 nm (Carter & Porter 1991), but has also been predicted using bands between 1100-1230 nm 

absorption features (Ustin et al. 1998; Asner et al. 2004). With respect to the other rock-derived nutrients, 

Galvez-Sola et al. (2015) also showed that near-infrared spectroscopy can constitute a feasible technique to 

quantify several macro and micronutrients such as N, K, Ca, Mg, Fe and Zn in citrus leaves of different leaves 

with coefficient of determination (R
2
) varying between 0.53 for Mn and 0.98 for Ca, whereas B showed less 

accurate results with the use of spectroscopy. The regions of importance for prediction described in those 

studies were relatively similar to all the mineral nutrients analysed in our study, except for B that had the band 

between 1500 and 1900 as the best predictive region.  

Some of most accurately predicted traits have no absorption features in the visible-to-near-infrared, 

but were instead estimated indirectly via constellation effects.  Leaf mass per unit area (LMA) is consistently 

among the more accurately predicted traits using spectroscopy (Asner & Martin 2008; Serbin et al. 2014; 

Chavana-Bryant et al. 2016),  but is measured indirectly via its close coupling with water content and leaf 

structural traits (Asner et al. 2011b). Silicon (Si) concentrations were well-predicted by field spectroscopy, as 

recently reported by Smis et al. (2014). Silicon is absorbed by plants from the soil solution in the form of silicic 

acid (H4SiO4), being translocated to the aerial parts through xylem, and then deposited as phytoliths (Tripathi 

et al. 2011). Si is closely associated with phenol- or lignin-carbohydrate complexes (Inanaga et al. 1995), 

cellulose (Law & Exley 2011), and polysaccharide and peptidoglycans (Schwarz 1973). However, itIt seems 

likely that spectroscopy is able to predict Si concentrations reliably because it integrates information on 

several of these foliar traits to make the predictions. Similar to Si, the relative high precisions for K, Fe and B 

predictions is likely to be stronger due to the integrating information on several foliar traits simultaneously.  

Unfortunately, P is not well predicted; the few studies spectroscopy studies available differ in the spectral 

bands they chose to model P (Homolová et al. 2013).Similarly, the relative high precisions for K, Fe and B 

predictions may be as strong as they are because information on several foliar traits are integrated.  

Unfortunately, foliar P concentrations are not closely predicted by spectroscopy.  RNA and DNA absorb in the 

ultraviolet (e.g. Tataurov et al. 2008) and phosphates in the longwave infrared, but there are no pronounced 

absorption features in the VSWIR region (Homolová et al. 2013) and covariance with other traits is weak so 

constellation effects are unreliable.  , making constellation effects unreliable. Whilst a few spectroscopy 

studies have modelled P with some success, the spectral bands chosen differs among studies (Homolová et al. 

2013) suggesting that constellation effects cannot be relied upon. 

 

4.2 Difficulties in measuring intraspecific variation by field spectroscopy and its implications for mapping 

functional traits 

Rock-derived nutrients lack absorption features in visible to shortwave-infrared region of the electromagnetic 

spectrum so cannot be measured directly by spectroscopy.  They can, nevertheless, be estimated indirectly by 



virtue of the fact that element concentrations co-vary with organic molecules that do have strong absorption 

features (“constellation effects”, see above). This paper identifies a problem with this approach: there were 

strong differences in rock-derived mineral nutrients between soil types, but we could not measure these 

because the concentrations of defence and structural traits were barely affected by soil type. We have shown 

many similarities between our study and those in tropical forests, demonstrating that this problem is likely to 

be widespread.    

There are likely to be  implications of the constellation-effect problem for mapping functional traits 

using imaging spectroscopy. Ever larger areas of earth are being mapped with airborne spectrometers (e.g. 

Asner et al. 2017) and the anticipated launch of satellite-borne sensors (e.g. EnMAP; DLR 2015; Guanter et al. 

2015) will soon enable vegetation and ecosystem function to be characterised at a global scale. The 

effectiveness of indirect prediction of traits using constellation-effect approaches will depend critically on 

whether soils act as a strong filter on tree species within a particular region. In the Amazonian lowlands, Asner 

et al. (2015) found that variation in soil P was mirrored by changes in species composition, and that P variation 

among species was correlated with changes in structural and defence compounds: in this instance, indirect 

estimation should be effective (e.g. Dana Chadwick & Asner 2016).  However, in low-diversity temperate 

forests, a single tree species is often found to span many different soil types and show substantial phenotypic 

plasticity in some traits (Oleksyn et al. 2002; Turnbull et al. 2016). The six species growing on both chalk and 

alluvial soils in this study are a case in point.  In these low diversity systems, it will be much more difficult to 

map variation using constellation effects, for the reasons explained above. Our study confirms the power of 

spectroscopy for predicting biochemical and structural plant traits, but we urge caution in interpreting results 

when species range across contrasting soil types.    

 

5 Conclusions 

Trees on thin chalk soils had low concentrations of N, P and K macronutrients in their leaves than trees 

growing on deep alluvium, but had high concentrations of several micronutrients. Phosphorus is sequestered 

in insoluble forms in alkaline soils. This shortage of plant available phosphorus was associated in this study 

with low concentrations of foliar N and low efficiency of PSII, but had no effect on structural and defensive 

traits.  Trait differences were far greater among species than between soil types, for all traits except foliar P.  

Foliar traits predicted from VSWIR reflectance spectra matched the locations of known spectral absorption 

features related to proteins, starch, lignin, cellulose, hemicellulose and leaf water content. Some of the most 

accurately predicted traits have no absorption features in the VSWIR range, and were estimated indirectly 

through their covariance with structural traits that do have absorption features in that spectral region 

(“constellation effects”) including cell wall constituents. Since these structural traits did not vary with soil type, 

our models were unable to reliably predict intraspecific variation in rock-derived nutrients via constellation 

effects. Similarities between our results and those of large-scale tropical studies suggest this problem is likely 

to be widespread. This study demonstrates the value of spectroscopy for rapid, non-destructive estimation of 



foliar traits across species, but highlights the difficulties that can arise in detecting within-species changes 

along environmental gradients.  
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Figure 1. Partitioning of variance of foliar traits between species, soil, species-soil interaction and residual 

components for six generalist species found on both chalk and alluvial soils. Residual variation arises from 

within-site intraspecific variation, micro-site variability, canopy selection and measurement error variance.  

 

 

 

 

 

 



 

 

 

 



 

Figure 2. Principal component analysis of all leaf traits (unit variance scaled) measured across all species and 

sites. (A) Score scatter plot showing first and second principal components using all six species for which data 

exist for all 24 traits on two contrasting soil types. Colours represent species identity: Fe = Fraxinus excelsior; 

Sn = Sambucus nigra; Ac = Acer campestre; Cm = Crataegus monogyna; Ca = Corylus avellana; Ap = Acer 

pseudoplatanus. Samples from chalk sites are denoted by squares symbols and alluvium sites are denoted by 

triangles. (B) Loadings plot showing position and correlation of all leaf traits. Traits highlighted in red denote 

are those with Q
2
 > 0.5; (C) cumulated R

2
 of PCA axes 1-5 (Green bars denote how well a trait can be explained 

in the model) and Q
2
 (Blue bars denote how well a trait can be predicted) values for each trait. The traits are in 

descending R
2
 order of how well they correlate with the other traits in the data set. 

 



 

Figure 3. Spectral reflectance and percentage coefficient of variation (CV) of reflectance of six generalists 

species for alluvial and chalk soils. The spectral regions for each trait were selected based on the model that 

minimised RMSE.  



 

 

Figure 4.  Spearman correlation rank test among leaf traits of 6 species growing on both soil types. Red and 

black circles mean, respectively, negative and positive correlations. Foliar traits were organised using cluster 

analysis.  

 

 

 

 



 

Figure 5. Partitioning of variance of foliar traits between species, soil, species-soil interaction and residual 

components for six generalist species found on both chalk and alluvial soils from predicted data. Residual 

variation arises from within-site intraspecific variation, micro-site variability, canopy selection but not 

measurement error variance, and is therefore smaller than for field measurements (Fig. 1). Predicted data 

were obtained from partial least square regression (PLSR).  

 

 

 

 

 

 



Table 1. Average, standard deviation (SD) and coefficient of variation (CV) in percentage for leaf traits of six 

generalist species growing on alluvial and chalk soils. Foliar trait was statistically different between soil types 

with P-value < 0.05 *, < 0.01 ** and < 0.001 ***.   Note that water content and the concentrations of defence 

and structure compounds are invariant of soil type, as this is key to understanding why variation in elemental 

concentrations between soil types cannot be predicted indirectly by “constellation effects”.   

Traits 
Alluvial Chalk 

Mean ± SD %CV Mean ± SD %CV 

 

Light capture and growth 
    

N (%) *** 2.53 ± 0.81 32.1 2.16 ± 0.73 34.0 

δ
15

N (‰) *** 3.43 ± 2.65 77.3 -3.83 ± 2.01 52.3 

δ
13

C (‰) -28.2 ± 1.2 4.5 -28.7± 1.0 3.6 

+
Chlorophyll a (mg m

-2
) 338.8 ± 116.0 34.2 279.6 ± 89.2 31.9 

Chlorophyll b (mg m
-2

) 78.6 ± 27.6 35.1 64.7 ± 22.4 34.7 

Anthocyanins (mg m
-2

) 423.3 ± 143.8 33.9 362.8 ± 121.6 33.5 

Carotenoids (mg m
-2

) * 110.5 ± 40.4 36.5 88.2± 35.5 40.2 

Efficiency of PSII ** 0.74 ± 0.05 7.1 0.71 ± 0.06 9.8 

Soluble C (%) ** 73.6 ± 6.5 8.8 70.3 ± 7.5 10.6 

Leaf water content (%) 59.1 ± 8.2 14.0 58.5 ± 7.9 13.5 

 

Defence and structure 
    

+
LMA (g cm

-2
) 60.8 ± 24.0 39.4 60.6 ± 23.6 38.9 

Phenolics (%) 83.7 ± 64.1 76.5 84.3 ± 49.7 59.0 

+
Hemicellulose (%) 10.9 ± 3.2 29.8 12.5 ± 3.6 29.4 

Cellulose (%) 10.1 ± 1.8 18.6 11.0 ± 2.1 19.3 

Lignin (%) 3.9 ± 1.9 49.8 4.7 ± 3.1 64.8 

+
Si (%) * 0.91 ± 0.56 62.2 1.11 ± 0.79 71.5 

 

Rock-derived nutrients 
    

+
P (%) *** 0.20 ± 0.05 25.5 0.14 ± 0.03 26.8 

K (%) *** 0.98 ± 0.49 50.0 0.79 ± 0.50 64.4 

+
Ca (%) * 1.67 ± 0.75 45.1 2.29 ± 1.24 54.1 

+
Mg (%) *** 0.24 ± 0.11 47.1 0.36 ± 0.15 43.8 

+
B (µg g

-1
) *** 29.0 ± 8.7 30.1 34.5 ± 12.4 36.0 

+
Fe (µg g

-1
) 122.3 ± 24.6 20.1 125.4 ± 32.0 25.5 

+
Mn (µg g

-1
) * 84.7 ± 64.3 75.9 103.8 ± 69.5 66.9 

+
Zn (µg g

-1
) *** 22.9 ± 12.6 55.0 34.1 ± 18.7 54.9 



+log transformed prior to ANOVA. 

 

Table2. Partial Least Squares Regression (PLSR) on spectral data and leave-one-out cross-validation for 24 leaf 

traits of 6 species occurring on both alluvial and chalk soils. The model calibration (indicated with subscript cal) 

and validation (indicated as subscript val) performance was evaluated for each leaf trait by calculating the 

coefficient of determination (R
2
), root mean square error (RMSE) and the percentage root mean square error 

(%) based on the given number of latent variables (nL) for each PLS model.  

Leaf trait 
Spectral  

range (nm) 
nL 

R2 RMSE RMSE% 

Cal Val Cal Val Cal Val 

 

Light capture and growth 

N (%) 1100 – 2500 3 0.61 0.55 0.49 0.52 15.0 16.0 

δ
15

N (‰) 1100 – 2500 9 0.41 0.16 3.28 4.01 23.5 28.7 

δ
13

C (‰) 1100 – 2500 6 0.46 0.30 0.85 0.96 16.1 18.2 

+
Chlorophyll  a (mg m

-2
)

 
   400 – 700 7 0.65 0.53 60.05 69.62 13.5 15.7 

Chlorophyll b (mg m
-2

)   400 – 700 4 0.59 0.50 16.48 18.57 15.2 17.1 

Anthocyanins (mg m
-2

)   400 – 700 4 0.45 0.33 99.20 110.70 18.0 20.1 

Carotenoids (mg m
-2

)   400 – 700 7 0.75 0.62 19.31 23.54 11.0 13.4 

Efficiency of PSII   400 – 2500 6 0.68 0.55 0.03 0.04 13.4 15.9 

Soluble C (%) 1100 – 2500 4 0.54 0.46 4.76 5.15 18.1 19.6 

Leaf water content (%) 1100 – 1500 5 0.87 0.83 2.89 3.29 9.0 10.1 

 

Defence and structure 

+
LMA (g cm

-2
) 1100 – 2500 6 0.94 0.92 1.09 1.12 6.1 6.9 

Phenolics (%) 1500 – 1900 6 0.78 0.70 26.20 30.48 9.7 11.3 

+
Hemicellulose (%) 1100 – 2500 4 0.44 0.35 1.28 1.30 18.4 19.8 

Cellulose (%) 1100 – 2500 4 0.44 0.34 1.52 1.66 17.0 18.6 

Lignin (%) 1100 – 2500 4 0.57 0.47 1.72 1.89 13.0 14.2 

+
Si (%) 1100 – 2500 4 0.77 0.72 1.50 1.55 14.4 15.5 

 

Rock-derived nutrients 

+
P (%) 1500-2500 7 0.43 0.22 1.26 1.30 17.8 20.2 

K (%) 1500 – 2500 7 0.70 0.61 0.27 0.31 11.9 13.6 

+
Ca (%) 1500-2500 7 0.53 0.40 1.40 1.47 15.9 17.9 

+
Mg (%) 1900 – 2500 3 0.54 0.46 1.39 1.42 15.2 16.5 

+
B (µg g

-1
)

 
 1500-1900 6 0.66 0.56 1.24 1.28 13.6 15.2 



+
Fe (µg g

-1
)

 
 700 – 2500 5 0.56 0.46 1.17 1.19 15.6 17.2 

+
Mn (µg g

-1
)

 
 1500-1900 6 0.35 0.20 1.83 1.95 20.5 22.7 

+
Zn (µg g

-1
)

 
 1500-1900 7 0.41 0.21 1.50 1.60 19.5 22.4 

  
+
 Trait values were natural log-transformed for PLSR. 

 


