
1 

 

On the challenges of using field spectroscopy to measure the 1 

impact of soil type on leaf traits 2 

 3 

Matheus H. Nunes
1
, Matthew P. Davey

 1
, David A. Coomes

 *1
 4 

1
Department of Plant Sciences, University of Cambridge, CB2 3EA, UK 5 

 6 
* 
Corresponding author: dac18@cam.ac.uk 7 

 8 

Abstract 9 

Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the 10 

context of global change.  Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar 11 

traits, but few studies have evaluated its accuracy when assessing phenotypic variation in multiple traits.  12 

Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting 13 

soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is 14 

greater between tree species or soil type; and (ii) whether field spectroscopy is effective at predicting 15 

intraspecific variation in leaf traits as well as interspecific differences.  Analysis of variance showed that inter-16 

specific differences in traits were generally much stronger than intraspecific differences related to soil type, 17 

accounting for 25% versus 5% of total trait variation, respectively.  Structural traits, phenolic defences and 18 

pigments were barely affected by soil type.  In contrast, foliar concentrations of rock-derived nutrients did vary: 19 

P and K concentration were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations were 20 

all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 400-2500 21 

nm reflectance spectra collected by field spectroscopy using partial least square regression, a method that is 22 

commonly employed in chemometrics.  Pigments were best modelled using reflectance data from the visible 23 

region (400 - 700 nm), whilst all other traits were best modelled using reflectance data from the shortwave 24 

infrared region (1100 - 2500 nm) region. Spectroscopy delivered accurate predictions of species-level variation 25 

in traits. However, it was ineffective at detecting intraspecific variation in rock-derived nutrients (with the 26 

notable exception of P).  The explanation for this failure is that rock-derived elements do not have absorption 27 

features in the 400-2500 nm region, and their estimation is indirect, relying on elemental concentrations co-28 

varying with structural traits that do have absorption features in that spectral region (“constellation 29 

effects”).  Since the structural traits did not vary with soil type, it was impossible for our regression models to 30 

predict intraspecific variation in rock-derived nutrients via constellation effects. This study demonstrates the 31 

value of spectroscopy for rapid, non-destructive estimation of foliar traits across species, but highlights 32 

problems with predicting intraspecific variation indirectly. We discuss the implications of these findings for 33 

mapping functional traits by airborne imaging spectroscopy.  34 

 35 

Key-words Inter-specific variation; partial least-squares regression; plant traits; reflectance spectroscopy; soil 36 

variation; temperate forests; within-species variation.  37 

 38 

 39 



2 

 

 40 

1 Introduction 41 

There is currently great interest in using plant traits to understand the influences of environmental filtering and 42 

species identity on the functioning of plant communities, and to model community responses to environmental 43 

change (MacGillivray et al. 1995; McGill et al. 2006; Green et al. 2008; Funk et al. 2016). Traits vary at 44 

multiple scales within individuals, within populations, between populations and between species (Albert et al. 45 

2011), and analysis of this variation is key to evaluating the strength of various filtering processes on 46 

communities growing along environmental gradients (Davey et al. 2009; Violle et al. 2012). For example, 47 

intraspecific variation in traits may reflect differences in microclimate driven by competition, disturbance, 48 

environmental conditions and age (Funk et al. 2016), whereas inter-specific and inter-site variation may reflect 49 

both genetic variation and phenotypic plasticity in response to environment (Davey et al. 2009; Sultan 2001; 50 

Donohue et al. 2005). Despite substantial advances in trait-based community ecology over the past decade 51 

(Kunin et al. 2009; Funk et al. 2016), the importance of environmental filters is still debated, especially at small 52 

scales where biotic factors may prevail over abiotic environmental constraints (Vellend 2010). Global analyses 53 

of leaf nitrogen, phosphorus and leaf mass per unit areas (LMA) indicate that about half of all variation occurs 54 

within communities (Wright et al. 2004), underscoring the importance of community-level variation in traits.  55 

An increasing number of leaf traits are measured routinely in plant communities and global tradeoffs 56 

among these traits are often interpreted in terms of life history of different species (Adler et al. 2014; Pillar et al. 57 

2003; Aubin et al. 2009; Fry et al. 2014). In this study we measured 24 traits which we organise into three 58 

functional groups (Asner 2014, Asner et al. 2014; Asner et al. 2015): (i) light capture and growth traits include 59 

pigments, the maximum efficiency of photosystem II (PSII), nitrogen concentration which is closely related to 60 

protein concentration (Milton & Dintzis 1981), soluble C compounds and leaf water content, C isotope 61 

discrimination (δ
13

C), N isotope discrimination (δ
15

N); (ii) defence and structural traits include silicon (Si) 62 

organic cell wall constituents (cellulose, hemicellulose and lignin), that are associated with leaf toughness, 63 

longevity and defence capability (Hikosaka 2004), polyphenols that are associated with defence against 64 

herbivores (Mithöfer & Boland 2012), and LMA, a primary axis of specialization among plants (Grime et al. 65 

1997; Lambers & Poorter 1992), that plays a crucial role in herbivore defence as well as leaf longevity (Wright 66 

et al. 2004); finally, (iii) rock-derived nutrients include phosphorus (P), which is involved in many enzymatic, 67 

genetic and epigenetic processes (Schachtman et al. 1998), and calcium (Ca), magnesium (Mg), potassium (K), 68 

zinc (Zn), manganese (Mn), boron (B) and iron (Fe), which are involved in signalling pathways and/or cofactors 69 

of enzymes (Marschner 2012). We recognise that leaf traits can contribute to more than one class (e.g. LMA is 70 

related to growth but also to defence, P is a rock-derived nutrient also associated with growth). Many analyses 71 

of traits have focussed on interspecific variation, but there is recognition that intraspecific variation can strongly 72 

influence species and community responses to environmental change (e.g. Weiner 2004; Funk et al. 2016). 73 

There is currently great interest in using hyper-spectroscopy as a tool for studying the chemical and 74 

structural traits of leaves, particularly because improved airborne sensors and faster computing make it possible 75 

to map functional traits from the air (Ustin et al. 2009; Asner & Martin 2016b; Jetz et al. 2016; Asner et al. 76 

2017). Plans to put hyperspectral sensors into space (e.g. DRL plan to launch EnMAP in 2018; Guanter et al. 77 

2015) will soon enable spectral response curves of vegetation communities to be assessed at the global scale. 78 

Rapid, non-destructive determination of leaf traits in vivo and in situ using spectroscopy reduces the need to 79 

collect large amounts of material in the field, decreases processing time, lessens costly chemical analyses, and 80 
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eliminates sampling that could itself alter experimental conditions (Couture et al. 2013). Spectroscopy can 81 

provide predictions of a range of foliar traits at the leaf and canopy scales within diverse tropical ecosystems 82 

(Asner et al. 2011a; Doughty et al. 2011) and temperate forests (Wessman et al. 1988; Serbin et al. 2014).  83 

However, some traits do not have absorption features within the visible and shortwave infrared spectral range of 84 

spectrometers conventionally used for vegetation analyses, but can be estimated indirectly through their 85 

covariance with traits that do have absorption features in the visible-to-shortwave-infrared region (“constellation 86 

effects” sensu Dana Chadwick & Asner 2016). These traits include elemental concentrations and isotope ratios 87 

(e.g. Serbin et al. 2014). In addition, structural differences (i.e., leaf thickness, number of air water interfaces, 88 

cuticle thickness, and pubescence) between leaves may have significant effects on the relationship between leaf 89 

reflectance and traits, and can complicate interpretation of data (Sims & Gamon 2002; Wu et al. 2016). The 90 

ability of spectroscopy to measure intraspecific variation in multiples traits between soil types, particularly when 91 

some of those traits are indirectly determined through constellation effects, has not been critically evaluated.  92 

This paper examines the drivers of leaf trait variation in temperate woodlands growing on chalk in 93 

southern England compared with woodlands growing on nearby alluvial soils. Several studies have evaluated 94 

change in species composition among British semi-natural habitats that differ markedly in soil type (Haines-95 

Young et al. 2003; Smart et al. 2003), but none to our knowledge have compared within- versus between-96 

species variation of leaf traits in this context. The alkalinity of calcareous soils gives rise to phosphorus 97 

limitation, preventing short-term responses to nitrogen addition (Grime et al. 2000), so comparisons of 98 

chalklands with less-alkaline soils nearby provide strong edaphic contrast. We investigated 24 leaf traits on 99 

these contrasting soil types and examined the ability of reflectance spectroscopy to quantify these leaf chemical 100 

and structural traits. We place these traits into groups based on ordination analyses, rather than working with 101 

pre-defined functional groups, and evaluate the functional significance of these groups. Our specific questions 102 

were: (i) is variability in leaf traits greater between tree species or soil type?  (ii)  is field spectroscopy effective 103 

at predicting intraspecific variation in leaf traits between soil types, as well as interspecific differences?   104 

 105 

2 Material and methods 106 

 107 

2.1 Field site and sampling 108 

Leaves were collected from trees growing on deep alluvial soils and shallow chalk soils, near Mickleham in 109 

Surrey, UK (latitude = 51°16’N, longitude = 0°19’W).  The alluvial soil, along the banks of the river Mole, was 110 

a loam of several metres depth. The chalk soil was located on a steep south-facing escarpment into which the 111 

river was cutting; the top soil was a few centimetres deep, underlain by solid chalk (i.e. a typical rendzina soil).  112 

The chalk soils were alkaline with an average pH and standard deviation of 7.9 ± 1.0 (n = 10), whereas the 113 

alluvial was near neutral having a pH of 6.7 ± 0.2 (n = 10). Phosphorus becomes unavailable to plants in 114 

alkaline chalk soil (Gerke 1992), and greater depth of loamy soil on the alluvial surfaces must result in much 115 

greater availability of nutrients to plants.  116 

Across both sites, leaves were collected from 66 trees, representing six species. The six species 117 

common to both sites were: Acer campestre (field maple), Acer pseudoplatanus (sycamore), Corylus avellana 118 

(hazel), Crataegus monogyna (hawthorn), Fraxinus excelsior (ash) and Sambucus nigra (elder). Two fully sunlit 119 

branches were selected, cut and placed in a cool box, and subsequently transported to a laboratory for processing 120 

within two hours.  For each branch, ten mature leaves were selected. Three samples of 15 leaf disks were cored 121 
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from these leaves using a 6 mm corer, wrapped in aluminium foil and frozen in liquid N for later chemical 122 

analyses. Leaf area was measured from fixed-height photos against a white background analysed in imageJ. The 123 

scanned leaves were weighed to give hydrated mass, then dried at 70 °C for a minimum of 72 h to obtain dry 124 

mass.  Leaf mass per area (LMA) was calculated as dry mass per unit of fresh leaf area. Leaf water content was 125 

computed as the ratio between the quantity of water (fresh weight – dry weight) and the fresh weight. A further 126 

22 leaf chemical traits were measured on these samples (see below). 127 

 128 

2.2 Chemical assays 129 

Protocols for chemical assays are adapted from those developed by the Carnegie Airborne Observatory (see 130 

http://spectranomics.ciw.edu). Briefly, oven dried leaves were ground and analysed for a variety of elements and 131 

carbon fractions. Concentration of elements (B, Ca, K, Mg, Mn, P, Si, Fe, Zn) were determined by ashing 132 

samples in a muffle furnace followed by digesting them in nitric acid and analysis on an inductively-coupled 133 

plasma mass spectrometry (Perkin Elmer SCIEX, Elan DRCII, Shelton, CT, USA). Nitrogen and carbon 134 

concentrations were determined using a Thermo Finnigan 253 with elemental analyser using a gas 135 

chromatographic separation column linked to a continuous flow isotope ratio mass spectrometer. This technique 136 

also provided foliar concentrations of the stable isotopes of N and C. Carbon fractions, including hemicellulose, 137 

cellulose, lignin and soluble carbon (mainly carbohydrates, lipids, pectin and soluble proteins), were determined 138 

by sequential digestion of increasing acidity (Van Soest, 1994) in an Ankom fiber analyzer (Ankom 139 

Technology, Macedon, NY, USA). These carbon fractions are presented on an ash-free dry mass basis. 140 

Concentrations of photosynthetic pigments (chlorophyll a, b, anthocyanins and total carotenoids) were measured 141 

by spectroscopy of solution derived from frozen leaf disks on area basis. Absorbance values of the supernatant 142 

were measured at wavelengths 470 nm, 649 nm and 665 nm for chlorophyll a, b and total carotenoids 143 

determination and published equations used to calculate pigment concentrations as in Lichtenthaler (1987). 144 

Absorbance values were also measured at wavelengths 530 nm and 650 nm for anthocyanins determination and 145 

published equations used as per Giusti et al. (1999), but corrected for possible chlorophyll contamination as per 146 

Sims & Gamon (2002). The maximum efficiency of photosystem II (PSII) was calculated according to Genty et 147 

al. (1989) by measuring the maximum fluorescence (Fm) and the yield of fluorescence in the absence of an 148 

actinic (photosynthetic) light (Fo) using a PAM fluorometer. Total phenolic concentration of the upper 149 

methanol/water layer was determined colorimetrically using the Folin-Ciocalteau method, based on absorbance 150 

at 760 nm on a spectrophotometer, and quantified using tannic acid equivalents with water serving as a blank as 151 

per Davey et al. (2007). 152 

 153 

2.3 Leaf and canopy spectroscopy 154 

The remaining leaves were detached from the branches, and 10 leaves selected at random, avoiding damaged 155 

and soft or young leaves. These leaves were laid on a matt black surface. Reflectance within bands ranging from 156 

400–2500 nm was measured using a FieldSpec 4, produced by Analytical Spectral Devices (ASD, Boulder, 157 

Colorado, USA). The spectrometer’s contact probe was mounted on a clamp and firmly pushed down onto the 158 

sample, so that no light escaped through the sides.  The spectral measurements were taken at the mid-point 159 

between the main vein and the leaf edge, approximately half-way between the petiole and leaf tip, with the 160 

abaxial surface pointing towards the probe. The readings were calibrated against a Spectralon white reference 161 

http://spectranomics.ciw.edu/
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every 5 samples. In all statistical analyses, the mean reflectance values of the 10 measurements per branch were 162 

used. 163 

 164 

2.4 Statistical analyses 165 

Analyses were performed within the R statistics framework (R Team 2014). To evaluate the correlation among 166 

traits, Spearman rank correlation coefficient was calculated between all trait pairs and the variables were 167 

ordered in the figure by hierarchical clustering. Analyses of variance (ANOVA) were used to examine the 168 

influences of species identity and soil type on each of the 24 leaf traits. Species, soil and soil x species terms 169 

were included in the model, and the ratio of sum of squares of these terms versus the total sum of squares was 170 

used as an index of species- versus site-level variation. This partitioning of variance quantifies the variation 171 

between species, between soil types, the interaction between soil and species, and the unexplained variance 172 

(residual variance).  The residual variance comprises analytical error and various types of intraspecific variation 173 

including micro-site and within-canopy variation. Where necessary, variables were log transformed to meet 174 

assumptions of ANOVA (see Table 1 for details). In addition, permutation-based multivariate analysis of 175 

variance (PERMANOVA; Anderson 2001) was applied to the matrix of dissimilarity among traits to evaluate 176 

the importance of soil type, species identity and the interaction soil-species as a source of variation in the 24 177 

traits simultaneously. The non-parametric permutation-based analysis of variance (PERMANOVA) was then 178 

performed on the resulting distances (10000 permutations). An alpha level of 0.05 was used for all significance 179 

tests, and no effort was made to test for or address non-normal data distributions. The PERMANOVA used 180 

distance matrices calculated using the adonis function in the vegan package of R. 181 

Leaf traits were grouped using principal component analysis (PCA) using Simca-P (2016) software 182 

(Umetrics MKS Data Analytics Solutions, Sweden).  The principal components for the variables were obtained 183 

by the correlation matrix modelling in lieu of covariance matrix modelling. We used the unit variance scaling 184 

(van den Berg et al. 2006) to avoid the effects of variables with high variance. The PCA was used to obtain 185 

score scatter and  loadings plots to show the relatedness of all leaf traits in the dataset. R
2
 and Q

2
 overview plots 186 

were computed from the cumulated PCA axes 1-5. R
2
 values denote how well a trait can be explained in the 187 

model and Q
2
 denote how well a trait can be predicted from the dataset. The traits are ranked in descending R

2
 188 

order of how well they correlate with the other traits in the data set. These plots were used to evaluate whether 189 

traits clustered into functional groups. .  190 

Partial least squares regression (PLSR) was used to evaluate whether field spectroscopy can reliably 191 

predict leaf traits (Haaland and Thomas, 1988). The spectral reflectance values of each sample were transformed 192 

into pseudo-absorption values, that is log [1/ R]) where R is reflectance (see Bolster et al. 1996; Gillon et al. 193 

1999; Richardson & Reeves III 2005; Petisco et al. 2006; Kleinebecker et al. 2009). There is strong 194 

autocorrelation in pseudo-absorption values, so PLSR involves dimensionality reduction, producing orthogonal 195 

uncorrelated latent vectors containing the maximum explanatory power in relation to the trait data (Wold et al. 196 

2001). The number of latent variables (nL) used in the PLSR analysis was predicted by minimising the 197 

Prediction Residual Error Sum of Squares (PRESS) statistic (Chen et al. 2004; Zhao et al. 2015). We adopted a 198 

leave-one-out cross-validation for each PLSR model. Model accuracy and precision were expressed by the 199 

coefficient of determination (R
2
) and root mean square error (RMSE). We also standardised RMSE to the 200 

percentage of the response range (RMSE%) by dividing each RMSE by the maximum and minimum values of 201 

each leaf trait, as in Feilhauer et al. (2010). RMSE and R
2 

were acquired during both model calibration and after 202 
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model validation. PLSR was conducted initially using all available wavelengths (i.e. 400-2500 nm), but we then 203 

evaluated whether models based on smaller regions of the spectrum performed any better (see Serbin et al. 204 

2014), based on comparisons of RMSE. The smaller regions were selected from absorption features recognised 205 

in previous papers (Curran 1989; Elvidge 1990; Kokaly et al. 2009). The visible (VIS, 400-700 nm), near infra-206 

red (NIR, 700-1500 nm) and shortwave infra-red I (SWIR I, 1500-1900 nm), shortwave infra-red II (SWIR II, 207 

1900-2500 nm) regions, as well as combinations of the regions (700-1100 nm, 700-1900 nm, 700-2500 nm, 208 

1100-1500 nm, 1100 -1900 nm, 1100-2500 nm, 1500-2500 nm and 400-2500 nm) were tested and the best-209 

supported model selected based on minimisation of RMSE. To evaluate the effectiveness of field spectroscopy 210 

at measuring variation in traits related to soil type and species identity, we partitioned variance in model-211 

predicted trait values using exactly the same approach as we used with lab-measured traits (i.e. first paragraph of 212 

methods).    213 

 214 

3 Results 215 

 216 

3.1 Soil and species controls on leaf traits 217 

Foliar concentrations of rock-derived nutrients varied with soil type, but few other traits varied strongly with 218 

soil.  Foliar concentrations of the macronutrients N, P and K were 17 %, 43 % and 24 % higher on alluvial 219 

compared to chalk soils (Table 1). Nitrogen isotope discrimination (δ
15

N) varied greatly between the two soils, 220 

from -3.8 ‰ in the chalk soil to 3.4 ‰ in the alluvial.  Foliar concentrations of nutrients required in smaller 221 

quantities (Si, Ca, Mg, B, Mn and Zn) showed the opposite trend: they were higher in chalk soils (by 22%, 37%, 222 

50%, 19%, 23% and 49%, respectively). Fe was the only rock-derived mineral nutrient that was unaffected by 223 

soil type. In contrast, hemicellulose, cellulose, lignin and LMA were completely unaffected by soil type, and  224 

pigments and traits related to water status (δ
13

C and water content) varied little with soil type, with the exception 225 

of carotenoids concentration, which was 25 % higher in alluvial soil. The efficiency of PSII showed only a 226 

slight increase of 4 % in alluvial soil.  The percentage contribution of soluble C was affected by soil, with an 227 

increase in soluble C of 9 % in the alluvial soil.  228 

Most traits varied greatly between species and that variation was far greater than the soil effects (Fig. 229 

1). Interspecific variation (green bars, Fig. 1) accounted for > 60% of the variation of eight traits (in descending 230 

order Si, water content, B, soluble C, N, LMA, K and cellulose concentrations), and > 40% of the variation of 231 

another six traits (in descending order, lignin, hemicellulose, Mg, Zn, phenolics and Fe). Species identity 232 

exerted little or no influence on pigment concentrations, efficiency of PSII, δ
13

C, δ
15

N, P, Ca or Mn 233 

concentrations. The interactions between species and soil (blue bars, Fig. 1) explained little variation and were 234 

significant for δ
15

N, P, Mn and Zn, but for no other traits. The pigments, efficiency of PSII and δ
13

C had the 235 

largest unexplained variance. PERMANOVA analyses showed that, overall, species identity accounted for 25% 236 

of the variation in leaf traits, soil type accounted for 5%, while the interaction between species and soil 237 

accounted for virtually no variation (i.e. the traits of different species responded similarly to soil type).  238 

The Principal Component Analysis (PCA) was able to distinguish species across component 1 and 2 239 

(Fig. 2A), with less separation of species within the same genus (i.e. A. campestre and A. pseudoplatanus). The 240 

first two components of PCA explain 45% of the total variance. Separation of individuals between the soil types 241 

was weak. Growth vs structural/defence traits were separated in its first axis and area-based vs concentration-242 

based traits in its second axis. The first two components of PCA explain 46% of the total variance. Considering 243 
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only traits that were well-predicted by PCA (i.e. had Q
2
 > 0.5), the first component distinguishes the traits 244 

associated in growth (i.e. N, K and soluble carbon concentrations, and water content) from traits associated with 245 

leaf defence and structure (i.e. hemicellulose and Si). The second component is chlorophyll a, chlorophyll b, 246 

carotenoids, anthocyanins and LMA, and mainly separates the traits that were calculated on area basis. The first 247 

component distinguishes species relatively well, with less separation of species within the same genus (i.e. A. 248 

campestre and A. pseudoplatanus).  249 

 250 

3.2 Spectroscopy of leaf traits 251 

 252 

The ability to predict leaf traits from hyperspectral reflectance spectra varied greatly among the 24 traits (Table 253 

2). The R
2
 values of validation data varied from 0.92 to 0.16, with traits ranked by goodness of fit as follows 254 

(highest first): LMA, leaf water content, Si, phenolics, carotenoids, K, B, efficiency of PSII, N, chlorophyll a 255 

and chlorophyll b.  Some minerals, such as P, Zn and Mn, as well as δ
13

C and δ
15

N showed low R
2
.  There was 256 

virtually no difference in the average reflectance curves of leaves of trees growing on chalk and alluvial soils 257 

(Fig. 3a), but the coefficient of variation among plants was greater on the chalk soil (Fig. 3b).  Pigments were 258 

most accurately modelled using reflectance data from the visible region of the spectra, whilst other traits were 259 

most accurately modelled using spectral data in the 1100 - 2500 nm range (Fig. 3). Efficiency of PSII and Fe 260 

were the only foliar traits for which the strength of relationship was greatest when all wavelengths between 400 261 

and 2500 nm were used in the model.   262 

Some leaf traits which appeared to be predicted accurately by PLSR do not have absorbance features in 263 

the 400-2500 nm range, and were instead predicted because of their close association with leaf traits that do 264 

have absorbance features in that range (see correlations in Fig. 4).  For instance, Si and B do not have absorption 265 

features in the 400-2500 nm range, but their concentrations are highly correlated to hemicellulose, cellulose and 266 

lignin concentrations, and these organic polymers do have strong absorbance features in the SWIR region. 267 

Likewise, K do not have absorption features in the 400-2500 nm range, but K concentration is highly correlated 268 

to leaf water content, soluble carbon, lignin, hemicellulose and cellulose, all of which have absorbance features 269 

in the region. The importance of these “constellation effects” (sensu Chadwick and Asner 2016) becomes 270 

apparent when we examine the partitioning of variance of PLSR-predicted trait values: several rock-derived 271 

nutrients vary significantly with soil type when measured in leaves (Fig. 1) but little of that variation is 272 

successfully modelled by PLSR (Fig. 5). The explanation for this failure to model soil-related variation correctly 273 

is that concentrations of their associated traits remain invariant of soil type (Table 1). The use of PLSR also 274 

considerably under-predicted the importance of soil (~ 37 %) on the δ
15

N variation, presumably for similar 275 

reasons.  Some species-soil interaction effects were detected by PLSR modelling, except for traits that showed 276 

strong interaction (Mn, P and δ
13

C).  PLSR models were better able to detect intra-specific variation in foliar N 277 

concentrations, because much of the nitrogen is contained in proteins, which have strong absorbance features.  278 

 279 

4 Discussion 280 

  281 

4.1 Patterns of variation in leaf traits  282 

Compared with trees growing on deep alluvium, trees on thin chalk soils had low concentrations of N, P and K 283 

macronutrients in their leaves, but high concentrations of several micronutrients. Similar findings have been 284 
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reported for herbaceous species growing on chalk (Hillier et al. 1990). Phosphorus and several micronutrients 285 

form low-solubility compounds in alkaline soils and become less available for plant uptake (Marschner 1995; 286 

Misra & Tyler 2000; Tyler 2002; Sardans & Peñuelas 2004), while the low N concentrations may reflect 287 

stoichiometric constraints (Niklas et al. 2005). The lower efficiency of PSII in the chalk soil is likely to be a 288 

consequence of phosphorus deficiency (Santos et al. 2006). Importantly for our later discussion on indirect 289 

estimation of traits by spectroscopy, species did not vary between soil types in their structural and defensive 290 

traits (i.e. LMA, lignin, phenolics) despite these differences in rock-derived nutrients. A similar lack of 291 

intraspecific change has been found in New Zealand rainforest trees growing on alluvium versus phosphorus-292 

depleted marine terraces (Wright et al. 2010) and in several other studies (Koricheva et al. 1998; Boege & Dirzo 293 

2004; Fine et al. 2006).     294 

Species had a greater influence on trait values than soils for all traits except P, and PCA analyses 295 

demonstrated that species with traits associated with fast growth had low concentration of traits associated with 296 

defence and structure (see Coley 1983; 1987; Fine et al. 2006). Traits favouring high photosynthetic rate and 297 

growth are usually considered advantageous in rich-resource soil environments, while traits favouring resource 298 

conservation are considered advantageous in low-resource environments (Aerts & Chapin 1999; Westoby et al. 299 

2002), but in this study the species were generalists growing on both soil types. The traits most influenced by 300 

species (in descending order) were Si, leaf water content, B, soluble C, N, LMA, K, cellulose, lignin, 301 

hemicellulose, magnesium, Zn, phenolics and Fe. It is interesting to note that two trace elements were near the 302 

top of this list; it is likely that strong differences in B and Si concentrations between species reflect differences 303 

in ion channel activity in roots (Ma & Yamaji 2006). Previous studies have also shown Si to be under strong 304 

phylogenetic control, and to be little affected by environmental conditions (Hodson et al. 2005). We also found 305 

Si and B concentrations to be positively correlated, which might ameliorate the effects on B toxicity as Si can 306 

increase B tolerance of plants (Gunes et al. 2007). High Zn organization at the species level corroborates earlier 307 

analyses that showed more than 70% of Zn variation occured within family and substantial differences existed 308 

between and within species (Broadley et al. 2007).    309 

The patterns revealed by our variance partitioning analysis of six temperate species (Fig. 1) bear 310 

similarities to those emerging from an analysis of 3246 species from nine tropical regions (Fig. 5 of Asner & 311 

Martin 2016a). The tropical analyses included a “site” term which captured variation due to soil and geology, 312 

among other factors. They, like us, found that taxonomic identity explained far more variation than site for most 313 

traits. Additionally they found foliar concentrations of P and other rock-derived minerals varied strongly with 314 

site, while nitrogen concentrations varied little; found that soluble carbon, structural and defensive traits hardly 315 

varied between sites; and observed that pigments (in their case just chlorophyll) was the least predictable of 316 

traits, probably because photosynthesis is rapidly up- and down-regulated in response to light environment 317 

among other factors (Asner & Martin 2011). Similarly, δ
13

C is known to vary strongly with light condition and 318 

with relative humidity (Buchmann et al. 1997; Yan et al. 2012) which may explain why species and soil 319 

explained little of its variance in our study. These parallels between tropical and temperate systems suggest 320 

broad similarities in plant responses to soil across different regions that differ greatly in temperature.  321 

 322 

 323 

4.2 Measuring interspecific variation in leaf traits with field spectroscopy 324 
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The spectral regions selected by our PLSR models match the locations of known spectral absorption features 325 

related to proteins, starch, lignin, cellulose, hemicellulose and leaf water content  (Knipling 1970; Curran 1989; 326 

Elvidge 1990; Fourty & Baret 1998; Kokaly et al. 2009).  In the region between 700 and 2500 of the 327 

electromagnetic spectrum, absorption features are commonly the result of overtones and combinations of 328 

fundamental absorptions at longer wavelengths. The visible region was useful to predict pigments 329 

concentrations and contributed to the predictions of the efficiency of PSII and Fe only, whereas the infra-red 330 

region was associated with most traits. The region of importance with correlated wavelengths with nitrogen 331 

varies between 1192 nm in deciduous forest (Bolster et al. 1996) to 2490 for forage matter (Marten et al. 1983), 332 

which results directly from nitrogen in the molecular structure. According to Kumar et al. (2002), three main 333 

protein absorption features reported as important for N estimation are located around 1680 nm, 2050 nm and 334 

2170 nm. In this study, pigments were found to influence the visible region of the spectrum while PSII-335 

efficiency was predicted from features across the VSWIR range.  The spectra of chlorophylls are distinct from 336 

those of proteins because C-H bonds in their phytols tails create a strong absorption feature not found in proteins 337 

(Katz et al. 1966). However, pigments are tightly bound by proteins to form photosynthetic antenna complexes 338 

that capture light energy and transfer it to the PSI and PSII reaction centres (Liu et al., 2004). The vibration of 339 

the bonds in the pigment–protein complex adds additional absorption features to the spectra of pigments and 340 

may help explain why so many bands were involved in PSII-efficiency prediction (Porcar-Castell et al., 2014). 341 

The 1500-1900 nm region was important for phenolic compounds prediction, which includes the 1660 nm 342 

feature across a variety of species and phenolic compounds (Windham et al. 1988; Kokaly & Skidmore 2015). 343 

The primary and secondary effects of water content on leaf reflectance are greatest in spectral bands centred at 344 

1450, 1940, and 2500 nm (Carter & Porter 1991), but has also been predicted using bands between 1100-1230 345 

nm absorption features (Ustin et al. 1998; Asner et al. 2004). With respect to the other rock-derived nutrients, 346 

Galvez-Sola et al. (2015) also showed that near-infrared spectroscopy can constitute a feasible technique to 347 

quantify several macro and micronutrients such as N, K, Ca, Mg, Fe and Zn in citrus leaves of different leaves 348 

with coefficient of determination (R
2
) varying between 0.53 for Mn and 0.98 for Ca, whereas B showed less 349 

accurate results with the use of spectroscopy. The regions of importance for prediction described in those studies 350 

were relatively similar to all the mineral nutrients analysed in our study, except for B that had the band between 351 

1500 and 1900 as the best predictive region.  352 

Some of most accurately predicted traits have no absorption features in the visible-to-near-infrared, but 353 

were instead estimated indirectly via constellation effects.  Leaf mass per unit area (LMA) is consistently among 354 

the more accurately predicted traits using spectroscopy (Asner & Martin 2008; Serbin et al. 2014; Chavana-355 

Bryant et al. 2016),  but is measured indirectly via its close coupling with water content and leaf structural traits 356 

(Asner et al. 2011b). Silicon (Si) concentrations were well-predicted by field spectroscopy, as recently reported 357 

by Smis et al. (2014). Silicon is absorbed by plants from the soil solution in the form of silicic acid (H4SiO4), 358 

being translocated to the aerial parts through xylem, and then deposited as phytoliths (Tripathi et al. 2011). Si is 359 

closely associated with phenol- or lignin-carbohydrate complexes (Inanaga et al. 1995), cellulose (Law & Exley 360 

2011), and polysaccharide and peptidoglycans (Schwarz 1973). It seems that spectroscopy is able to predict Si 361 

concentrations reliably because it integrates information on several of these foliar traits to make the predictions. 362 

Similarly, the relative high precisions for K, Fe and B predictions may be as strong as they are because 363 

information on several foliar traits are integrated.  Unfortunately, foliar P concentrations are not closely 364 

predicted by spectroscopy.  RNA and DNA absorb in the ultraviolet (e.g. Tataurov et al. 2008) and phosphates 365 
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in the longwave infrared, but there are no pronounced absorption features in the VSWIR region (Homolová et 366 

al. 2013) and covariance with other traits is weak, making constellation effects unreliable.  Whilst a few 367 

spectroscopy studies have modelled P with some success, the spectral bands chosen differs among studies  368 

(Homolová et al. 2013) suggesting that constellation effects cannot be relied upon. 369 

 370 

4.2 Difficulties in measuring intraspecific variation by field spectroscopy and its implications for mapping 371 

functional traits 372 

Rock-derived nutrients lack absorption features in visible to shortwave-infrared region of the electromagnetic 373 

spectrum so cannot be measured directly by spectroscopy.  They can, nevertheless, be estimated indirectly by 374 

virtue of the fact that element concentrations co-vary with organic molecules that do have strong absorption 375 

features (“constellation effects”, see above). This paper identifies a problem with this approach: there were 376 

strong differences in rock-derived mineral nutrients between soil types, but we could not measure these because 377 

the concentrations of defence and structural traits were barely affected by soil type. We have shown many 378 

similarities between our study and those in tropical forests, demonstrating that this problem is likely to be 379 

widespread.    380 

There are likely to be implications of the constellation-effect problem for mapping functional traits 381 

using imaging spectroscopy. Ever larger areas of earth are being mapped with airborne spectrometers (e.g. 382 

Asner et al. 2017) and the anticipated launch of satellite-borne sensors (e.g. EnMAP; DLR 2015; Guanter et al. 383 

2015) will soon enable vegetation and ecosystem function to be characterised at a global scale. The 384 

effectiveness of indirect prediction of traits using constellation-effect approaches will depend critically on 385 

whether soils act as a strong filter on tree species within a particular region. In the Amazonian lowlands, Asner 386 

et al. (2015) found that variation in soil P was mirrored by changes in species composition, and that P variation 387 

among species was correlated with changes in structural and defence compounds: in this instance, indirect 388 

estimation should be effective (e.g. Dana Chadwick & Asner 2016).  However, in low-diversity temperate 389 

forests, a single tree species is often found to span many different soil types and show substantial phenotypic 390 

plasticity in some traits (Oleksyn et al. 2002; Turnbull et al. 2016). The six species growing on both chalk and 391 

alluvial soils in this study are a case in point.  In these low diversity systems, it will be much more difficult to 392 

map variation using constellation effects, for the reasons explained above. Our study confirms the power of 393 

spectroscopy for predicting biochemical and structural plant traits, but we urge caution in interpreting results 394 

when species range across contrasting soil types.    395 

 396 

5 Conclusions 397 

Trees on thin chalk soils had low concentrations of N, P and K macronutrients in their leaves than trees growing 398 

on deep alluvium, but had high concentrations of several micronutrients. Phosphorus is sequestered in insoluble 399 

forms in alkaline soils. This shortage of plant available phosphorus was associated in this study with low 400 

concentrations of foliar N and low efficiency of PSII, but had no effect on structural and defensive traits.  Trait 401 

differences were far greater among species than between soil types, for all traits except foliar P.  Foliar traits 402 

predicted from VSWIR reflectance spectra matched the locations of known spectral absorption features related 403 

to proteins, starch, lignin, cellulose, hemicellulose and leaf water content. Some of the most accurately predicted 404 

traits have no absorption features in the VSWIR range, and were estimated indirectly through their covariance 405 

with structural traits that do have absorption features in that spectral region (“constellation effects”) including 406 
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cell wall constituents. Since these structural traits did not vary with soil type, our models were unable to reliably 407 

predict intraspecific variation in rock-derived nutrients via constellation effects. Similarities between our results 408 

and those of large-scale tropical studies suggest this problem is likely to be widespread. This study demonstrates 409 

the value of spectroscopy for rapid, non-destructive estimation of foliar traits across species, but highlights the 410 

difficulties that can arise in detecting within-species changes along environmental gradients.  411 
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 694 

 695 

 696 

Figure 1. Partitioning of variance of foliar traits between species, soil, species-soil interaction and residual 697 

components for six generalist species found on both chalk and alluvial soils. Residual variation arises from 698 

within-site intraspecific variation, micro-site variability, canopy selection and measurement error variance.  699 

 700 

 701 

 702 

 703 
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 704 

 705 

 706 

 707 

Figure 2. Principal component analysis of all leaf traits (unit variance scaled) measured across all species and 708 

sites. (A) Score scatter plot showing first and second principal components using all six species for which data 709 

exist for all 24 traits on two contrasting soil types. Colours represent species identity: Fe = Fraxinus excelsior; 710 

Sn = Sambucus nigra; Ac = Acer campestre; Cm = Crataegus monogyna; Ca = Corylus avellana; Ap = Acer 711 

pseudoplatanus. Samples from chalk sites are denoted by squares symbols and alluvium sites are denoted by 712 

triangles. (B) Loadings plot showing position and correlation of all leaf traits. Traits highlighted in red denote 713 

are those with Q
2
 > 0.5; (C) cumulated R

2
 of PCA axes 1-5 (Green bars denote how well a trait can be explained 714 
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in the model) and Q
2
 (Blue bars denote how well a trait can be predicted) values for each trait. The traits are in 715 

descending R
2
 order of how well they correlate with the other traits in the data set. 716 

 717 

 718 

Figure 3. Spectral reflectance and percentage coefficient of variation (CV) of reflectance of six generalists 719 

species for alluvial and chalk soils. The spectral regions for each trait were selected based on the model that 720 

minimised RMSE.  721 

 722 
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 723 

Figure 4.  Spearman correlation rank test among leaf traits of 6 species growing on both soil types. Red and 724 

black circles mean, respectively, negative and positive correlations. Foliar traits were organised using cluster 725 

analysis.  726 
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 731 

Figure 5. Partitioning of variance of foliar traits between species, soil, species-soil interaction and residual 732 

components for six generalist species found on both chalk and alluvial soils from predicted data. Residual 733 

variation arises from within-site intraspecific variation, micro-site variability, canopy selection but not 734 

measurement error variance, and is therefore smaller than for field measurements (Fig. 1). Predicted data were 735 

obtained from partial least square regression (PLSR).  736 

 737 
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 741 
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Table 1. Average, standard deviation (SD) and coefficient of variation (CV) in percentage for leaf traits of six 743 

generalist species growing on alluvial and chalk soils. Foliar trait was statistically different between soil types 744 

with P-value < 0.05 *, < 0.01 ** and < 0.001 ***.   Note that water content and the concentrations of defence 745 

and structure compounds are invariant of soil type, as this is key to understanding why variation in elemental 746 

concentrations between soil types cannot be predicted indirectly by “constellation effects”.   747 

Traits 
Alluvial Chalk 

Mean ± SD %CV Mean ± SD %CV 

 

Light capture and growth 
    

N (%) *** 2.53 ± 0.81 32.1 2.16 ± 0.73 34.0 

δ
15

N (‰) *** 3.43 ± 2.65 77.3 -3.83 ± 2.01 52.3 

δ
13

C (‰) -28.2 ± 1.2 4.5 -28.7± 1.0 3.6 

+
Chlorophyll a (mg m

-2
) 338.8 ± 116.0 34.2 279.6 ± 89.2 31.9 

Chlorophyll b (mg m
-2

) 78.6 ± 27.6 35.1 64.7 ± 22.4 34.7 

Anthocyanins (mg m
-2

) 423.3 ± 143.8 33.9 362.8 ± 121.6 33.5 

Carotenoids (mg m
-2

) * 110.5 ± 40.4 36.5 88.2± 35.5 40.2 

Efficiency of PSII ** 0.74 ± 0.05 7.1 0.71 ± 0.06 9.8 

Soluble C (%) ** 73.6 ± 6.5 8.8 70.3 ± 7.5 10.6 

Leaf water content (%) 59.1 ± 8.2 14.0 58.5 ± 7.9 13.5 

 

Defence and structure 
    

+
LMA (g cm

-2
) 60.8 ± 24.0 39.4 60.6 ± 23.6 38.9 

Phenolics (%) 83.7 ± 64.1 76.5 84.3 ± 49.7 59.0 

+
Hemicellulose (%) 10.9 ± 3.2 29.8 12.5 ± 3.6 29.4 

Cellulose (%) 10.1 ± 1.8 18.6 11.0 ± 2.1 19.3 

Lignin (%) 3.9 ± 1.9 49.8 4.7 ± 3.1 64.8 

+
Si (%) * 0.91 ± 0.56 62.2 1.11 ± 0.79 71.5 

 

Rock-derived nutrients 
    

+
P (%) *** 0.20 ± 0.05 25.5 0.14 ± 0.03 26.8 

K (%) *** 0.98 ± 0.49 50.0 0.79 ± 0.50 64.4 

+
Ca (%) * 1.67 ± 0.75 45.1 2.29 ± 1.24 54.1 

+
Mg (%) *** 0.24 ± 0.11 47.1 0.36 ± 0.15 43.8 

+
B (µg g

-1
) *** 29.0 ± 8.7 30.1 34.5 ± 12.4 36.0 

+
Fe (µg g

-1
) 122.3 ± 24.6 20.1 125.4 ± 32.0 25.5 

+
Mn (µg g

-1
) * 84.7 ± 64.3 75.9 103.8 ± 69.5 66.9 

+
Zn (µg g

-1
) *** 22.9 ± 12.6 55.0 34.1 ± 18.7 54.9 

+log transformed prior to ANOVA. 748 

 749 
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Table2. Partial Least Squares Regression (PLSR) on spectral data and leave-one-out cross-validation for 24 leaf 750 

traits of 6 species occurring on both alluvial and chalk soils. The model calibration (indicated with subscript cal) 751 

and validation (indicated as subscript val) performance was evaluated for each leaf trait by calculating the 752 

coefficient of determination (R
2
), root mean square error (RMSE) and the percentage root mean square error (%) 753 

based on the given number of latent variables (nL) for each PLS model.  754 

Leaf trait 
Spectral  

range (nm) 
nL 

R2 RMSE RMSE% 

Cal Val Cal Val Cal Val 

 

Light capture and growth 

N (%) 1100 – 2500 3 0.61 0.55 0.49 0.52 15.0 16.0 

δ
15

N (‰) 1100 – 2500 9 0.41 0.16 3.28 4.01 23.5 28.7 

δ
13

C (‰) 1100 – 2500 6 0.46 0.30 0.85 0.96 16.1 18.2 

+
Chlorophyll  a (mg m

-2
)

 
   400 – 700 7 0.65 0.53 60.05 69.62 13.5 15.7 

Chlorophyll b (mg m
-2

)   400 – 700 4 0.59 0.50 16.48 18.57 15.2 17.1 

Anthocyanins (mg m
-2

)   400 – 700 4 0.45 0.33 99.20 110.70 18.0 20.1 

Carotenoids (mg m
-2

)   400 – 700 7 0.75 0.62 19.31 23.54 11.0 13.4 

Efficiency of PSII   400 – 2500 6 0.68 0.55 0.03 0.04 13.4 15.9 

Soluble C (%) 1100 – 2500 4 0.54 0.46 4.76 5.15 18.1 19.6 

Leaf water content (%) 1100 – 1500 5 0.87 0.83 2.89 3.29 9.0 10.1 

 

Defence and structure 

+
LMA (g cm

-2
) 1100 – 2500 6 0.94 0.92 1.09 1.12 6.1 6.9 

Phenolics (%) 1500 – 1900 6 0.78 0.70 26.20 30.48 9.7 11.3 

+
Hemicellulose (%) 1100 – 2500 4 0.44 0.35 1.28 1.30 18.4 19.8 

Cellulose (%) 1100 – 2500 4 0.44 0.34 1.52 1.66 17.0 18.6 

Lignin (%) 1100 – 2500 4 0.57 0.47 1.72 1.89 13.0 14.2 

+
Si (%) 1100 – 2500 4 0.77 0.72 1.50 1.55 14.4 15.5 

 

Rock-derived nutrients 

+
P (%) 1500-2500 7 0.43 0.22 1.26 1.30 17.8 20.2 

K (%) 1500 – 2500 7 0.70 0.61 0.27 0.31 11.9 13.6 

+
Ca (%) 1500-2500 7 0.53 0.40 1.40 1.47 15.9 17.9 

+
Mg (%) 1900 – 2500 3 0.54 0.46 1.39 1.42 15.2 16.5 

+
B (µg g

-1
)

 
 1500-1900 6 0.66 0.56 1.24 1.28 13.6 15.2 

+
Fe (µg g

-1
)

 
 700 – 2500 5 0.56 0.46 1.17 1.19 15.6 17.2 

+
Mn (µg g

-1
)

 
 1500-1900 6 0.35 0.20 1.83 1.95 20.5 22.7 

+
Zn (µg g

-1
)

 
 1500-1900 7 0.41 0.21 1.50 1.60 19.5 22.4 

  
+
 Trait values were natural log-transformed for PLSR. 755 


