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Summary 8 

Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the 9 

context of global change.  Analyses of the drivers of traits variation based on thousands of tree species are 10 

starting to unravel patterns of variation at the global scale, but these studies tend to focus on interspecific 11 

variation, and the contribution of intraspecific changes remains less well understood. Hyperspectroscopy is a 12 

recently developed technology for estimating the traits of fresh leaves. Few studies have evaluated its potential 13 

for assessing inter- and intra-specific trait variability in community ecology. Working with 24 leaf traits for 14 

European tree species on contrasting soil types, found growing on deep alluvial soils and nearby shallow chalk 15 

soils, we ask: (i) What contribution do soil type and species identity make to trait variation? (ii) When traits are 16 

clustered into three functional groups (light capture and growth, leaf structure and defence, as well as rock-17 

derived nutrients), are some groups more affected by soil than others? (iii) What traits can be estimated 18 

precisely using field spectroscopy? (iv) Can leaf spectra be used to detect inter-soil as well as inter-specific 19 

variation in traits? The contribution of species and soil-type effects to variation in traits were evaluated using 20 

statistical analyses.  Foliar traits were predicted from spectral reflectance using partial least square regression, 21 

and so inter- and intra-specific variation. Most leaf traits varied greatly among species. The effects of soil type 22 

were generally weak by comparison.  Macronutrient concentrations were greater on alluvial than chalk soils 23 

while micronutrient concentration showed the opposite trend.  However, structural traits, as well as most 24 

pigments and phenolic concentrations varied little with soil type. Field spectroscopy provided accurate estimates 25 

of species-level trait values, but was less effective at detecting subtle variation of rock-derived nutrients between 26 

soil types. Field spectroscopy was a powerful technique for estimating cross-species variation in foliar traits and 27 

Si predictions using spectroscopy appear to be promising. However, it was unable to detect subtle within-species 28 

variation of traits associated with soil type.  29 

 30 

Key-words Inter-specific variation; Partial least-squares regression; Plant traits; Reflectance spectroscopy; Soil 31 

variation; Temperate forests; Within-species variation.  32 

 33 

1 Introduction 34 

There is currently great interest in using plant traits to understand the influences of environmental filtering and 35 

species identity on the functioning of plant communities, and to model community responses to environmental 36 

change (MacGillivray et al., 1995; McGill et al., 2006; Green et al., 2008; Funk et al., 2016). Traits vary at 37 

multiple scales within individuals, within populations, among populations, and among species (Albert et al., 38 

2011), and analysis of this variation is key to evaluating the strength of various filtering processes on 39 
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communities growing along environmental gradients (Violle et al., 2012).  For example, intraspecific variation 40 

in traits may reflect differences in microclimate driven by competition, disturbance, environmental conditions 41 

and age (Funk et al., 2016), whereas inter-specific and inter-site variation may reflect both genetic variation and 42 

phenotypic plasticity in response to environment (Sultan, 2001; Donohue et al., 2005). Despite substantial 43 

advances in trait-based community ecology over the past decade (Funk et al., 2016), the importance of 44 

environmental filters is still debated, especially at small scales where biotic factors may prevail over abiotic 45 

environmental constraints (Vellend, 2010). Global analyses of leaf nitrogen, phosphorus and leaf mass per unit 46 

areas (LMA) indicate that about half of all variation occurs within communities (Wright et al., 2004), 47 

underscoring the importance of community-level variation in traits.  48 

An increasing number of leaf traits are being measured routinely in plant communities (Asner et al., 49 

2011; Asner et al., 2015), and these traits can be placed with three functional groups involved in shaping plant 50 

performance (Asner, 2014): (i) light capture and growth traits which include pigments, C isotope discrimination, 51 

N isotope discrimination, N content, which constitutes on average 19% of protein mass (Milton and Dintzis, 52 

1981), soluble C compounds and leaf water content; (ii) defence and structural traits include Si, cell wall 53 

constituents (cellulose, hemicellulose and lignin), that are associated with leaf toughness, longevity and defence 54 

capability (Hikosaka, 2004), polyphenols that are associated with defence against herbivores (Mithöfer and 55 

Boland, 2012), and LMA, a primary axis of specialization among plants (Grime et al., 1997; Lambers and 56 

Poorter, 1992), that plays a crucial role in herbivore defence as well as leaf longevity (Wright et al., 2004); (iii) 57 

rock-derived nutrients include phosphorus, which is involved in many enzymatic, genetic and epigenetic 58 

processes (Schachtman et al.,1998), and calcium, magnesium, potassium, zinc, manganese, boron and iron, 59 

which are involved in signalling pathways and/or cofactors of enzymes  (Marschner, 2012). Analyses involving 60 

this large suite of traits are so far restricted to comparisons of tropical forests, and emphasize cross-site and 61 

cross-species differences with little consideration on within-species variation (Asner et al., 2011; Asner et al., 62 

2015). Placing traits into functional groups, and analysing intraspecific variation, may help understand trade-63 

offs and plant strategies along environmental change. 64 

Remote sensing has increasingly emerged as a promising tool for studying plant chemistry (Ustin et al., 65 

2004; Asner and Martin, 2009; Ustin et al., 2009). Rapid, non-destructive determination of leaf traits in vivo and 66 

in situ using spectroscopy reduces the need to collect large amounts of material in the field, decreases 67 

processing time, lessens costly chemical analyses, and eliminates sampling that could itself alter experimental 68 

conditions (Couture et al., 2013). Spectroscopy can provide estimates of a range of foliar properties at the leaf 69 

and canopy scales within diverse tropical ecosystems (Asner et al., 2011; Doughty et al., 2011). However, 70 

spectral and chemical properties may be uncoupled if intraspecific variation in foliar traits is high and/or 71 

phenotypic plasticity exceeds phylogenetic patterns among leaf properties (Asner and Martin, 2011). Bolster, 72 

Martin and Aber (1996) demonstrated that equations for estimating leaf properties from one site were unable to 73 

predict leaf properties for other sites, due to variability in the magnitudes of foliar traits levels between data sets 74 

and environmental influences. To our knowledge, the link between foliar traits and spectral properties of trees 75 

has not been broadly demonstrated for temperate forests and the capacity of measuring inter-specific trait 76 

variability and environmental variation using spectroscopy is relatively unknown.  77 

This paper examines the drivers of leaf trait variation in temperate woodlands growing on the 78 

chalklands of southern England compared with woodlands growing on nearby alluvial soils.  Several studies 79 

have evaluated change in species composition among British semi-natural habitats that differ markedly in soils 80 
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(Haines-Young et al., 2003; Smart et al., 2003), but few have compared within- versus between-species 81 

variation of leaf traits in this context.  The alkalinity of calcareous soils gives rise to phosphorus limitation, 82 

preventing short-term responses to nitrogen addition (Grime et al., 2000), so comparisons of chalklands with 83 

less-alkaline soils nearby provide strong edaphic contrast. We investigated leaf property on these contrasting 84 

soil types and examined the ability of reflectance spectroscopy to quantify leaf chemical and structural traits. 85 

Our specific questions were: (i) what is the relative contribution of soil type and species to leaf trait variation? 86 

(ii) does the importance of the three functional groups (light capture and growth, leaf structure and defence, as 87 

well as rock-derived nutrients and secondary elements) change due to soil or more due to species variation? (iii) 88 

What traits can be accurately and precisely estimated using spectroscopy in temperate woodlands? (iv) To what 89 

extent can leaf spectra be used to detect inter-soil and inter-specific variation in traits?  90 

 91 

2 Material and methods 92 

 93 

2.1 Field site and sampling 94 

Leaves were collected from trees growing on deep alluvial soils and shallow chalk soils, near Mickleham in 95 

Surrey (Latitude = 51.26, Longitude = 0.32).  The alluvial soil, along the banks of the river Mole, was a loam of 96 

several metres depth. The chalk soil was located on a steep south-facing escarpment into which the river was 97 

cutting; the top soil was a few centimetres deep, underlain by solid chalk (i.e. a typical rendzina soil).  The chalk 98 

soils were alkaline with a pH of 7.9 ± 1.0 (n = 10), whereas the alluvial was near neutral having a pH of 6.7 ± 99 

0.2 (n = 10). Phosphorus becomes unavailable to plants in alkaline chalk soil (Gerke, 1992), and much greater 100 

depth of loamy soil on the alluvial surfaces must result in much greater availability of nutrients to plants.  101 

Leaves of 66 trees of six species were collected from the two contrasting soil types. The six species 102 

were in common to both sites: Acer campestre L. (Field Maple), Acer pseudoplatanus L. (Sycamore), Corylus 103 

avellana L. (Hazel), Crataegus monogyna Jacq. (Hawthorn), Fraxinus excelsior L. (Ash) and Sambucus nigra 104 

L. (Elder). Two fully sunlit branches were selected, were cut and placed on ice in a cool box, and transported to 105 

a lab for processing within 2 hours (and often within 30 minutes).  For each branch, ten mature leaves were 106 

selected. Three samples of 15 leaf disks were cored from these leaves using a 6 mm corer, wrapped in 107 

aluminium foil and frozen in liquid N for later chemical analyses. Leaf areas were measured from fixed-height 108 

photos against a white background analysed in imageJ. The scanned leaves were weighed to give hydrated 109 

mass, then dried at 70 °C for a minimum of 72 h to obtain dry mass.  Leaf mass per area (LMA) was calculated 110 

as dry mass per unit of fresh leaf area.  A further 23 leaf chemical traits were measured on these samples (see 111 

below). 112 

 113 

2.2 Chemical assays 114 

Protocols for chemical assays are adapted from those developed by the Carnegie Airborne Observatory (see 115 

http://spectranomics.ciw.edu).  They are outlined here, with full details available in Supplementary Information. 116 

Oven dried leaves were ground and analysed for a variety of elements and carbon fractions. Concentration of 117 

elements (B, Ca, K, Mg, Mn, P, Si, Fe, Zn) were determined by ashing samples in a muffle furnace, digesting 118 

them in nitric acid, then running them through an inductively-coupled plasma mass spectrometry (Perkin Elmer 119 

SCIEX, Elan DRCII, Shelton, CT, USA). Nitrogen and carbon concentrations were determined using a Thermo 120 

Finnigan 253 with elemental analyser using a gas chromatographic separation column linked to a continuous 121 
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flow isotope ratio mass spectrometer. This technique provided foliar concentrations of the stable isotopes of N 122 

and C. Carbon fractions, including hemicellulose, cellulose, lignin and soluble carbon (mainly carbohydrates, 123 

lipids, pectin and soluble proteins), were determined by sequential digestion of increasing acidity (Van Soest, 124 

1994) in an Ankom fiber analyzer (Ankom Technology, Macedon, NY, USA). These carbon fractions are 125 

presented on an ash-free dry mass basis. Concentrations of photosynthetic pigments (chlorophyll a, b, 126 

anthocyanins and total carotenoids) were measured by spectroscopy of solution derived from frozen leaf disks 127 

on area basis. Absorbance values of the supernatant were measured at wavelengths 470 nm, 649 nm and 665 nm 128 

for chlorophyll a, b and total carotenoids determination and published equations used to calculate pigment 129 

concentrations as in Lichtenthaler (1987). Absorbance values were also measured at wavelengths 530 nm and 130 

650 nm for anthocyanins determination and published equations used as per Giusti et al. (1999), but corrected 131 

for possible chlorophyll contamination as per Sims and Gamon (2002). The maximum efficiency of 132 

photosystem II (PSII) was calculated according to Genty  et al. (1989) by measuring the maximum fluorescence 133 

(Fm) and the yield of fluorescence in the absence of an actinic (photosynthetic) light (Fo) using a PAM 134 

fluorometer. Total phenolic concentration of the upper methanol/water layer was determined colorimetrically 135 

using the Folin-Ciocalteau method, based on absorbance at 760 nm on a spectrophotometer, and quantified 136 

using tannic acid equivalents with water serving as a blank as per Davey et al. (2007). 137 

 138 

2.3 Leaf and canopy spectroscopy 139 

The remaining leaves were detached from the branches, and 10 leaves selected at random, avoiding damaged 140 

and soft/young leaves.  These leaves were laid on a matt black surface. Reflectance within bands ranging from 141 

400–2500 nm was measured using a FieldSpec 4, produced by Analytical Spectral Devices (ASD). The 142 

spectrometer’s contact probe was mounted on a clamp and firmly pushed down onto the sample, so that no light 143 

escaped through the sides.  The spectral measurements were taken at the mid-point between the main vein and 144 

the leaf edge, approximately half-way between the petiole and leaf tip, with the abaxial surface pointing towards 145 

the probe. The readings were calibrated against a Spectralon white reference every 5 samples. In all statistical 146 

analyses, the mean reflectance values of the 10 measurements per branch were used. 147 

 148 

2.4 Statistical analyses 149 

Analyses were performed within the R statistics framework (R Core Team 2014). Analyses of variance 150 

(ANOVA) were used to examine the influences of species and soil type on each of the 26 leaf traits. Species, 151 

soil and soil x species terms were included in the model, and the ratio of sum of squares of these terms versus 152 

the total sum of squares was used as an index of species- versus site-level variation. This partition of variance 153 

represent the variation between species, the influence of soil, the interaction between soil and species, and the 154 

unexplained variance referred as to residual variance, which is a combination of intraspecific variation, micro-155 

site variability, canopy selection and analytical error. Where necessary, variables were log transformed to meet 156 

assumptions of ANOVA.  157 

To evaluate the influence of soil and species on allocation of traits associated with (a) light capture and 158 

growth, (b) defence and structure and (c) rock-derived nutrients and secondary elements, permutational non-159 

parametric multivariate analysis were performed (Anderson, 2001). This is an analysis of variance using 160 

distance matrices calculated using the adonis function in the vegan package of R. We recognise that grouping 161 

leaf properties into functional classes can be controversial, given that a single leaf property can contribute to 162 

Biogeosciences Discuss., doi:10.5194/bg-2016-432, 2016
Manuscript under review for journal Biogeosciences
Published: 4 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 

 

more than one class (e.g. LMA is related to growth but also to defence). We also performed principal 163 

component analysis (PCA) for each functional class using the function prcomp in R.  The principal components 164 

for the variables were obtained by the correlation matrix modelling in lieu of covariance matrix modelling, and 165 

then we used the unit variance scaling as in van den Berg et al. (2006) to avoid the effects of variables with high 166 

variance.   167 

Partial least squares regression  (PLSR) was used to evaluate whether field spectroscopy can reliably 168 

estimate leaf properties (Haaland and Thomas, 1988).  There is strong co-llinearity in spectral reflectance data. 169 

PLSR involves dimensionality reduction, producing orthogonal uncorrelated latent vectors containing the 170 

maximum explanatory power in relation to the trait data (Wold et al., 2001). The number of latent variables (nL) 171 

used in the PLSR analysis was estimated by minimising the Prediction Residual Error Sum of Squares (PRESS) 172 

statistic to avoid overfitting (Chen et al. 2004), however was set from 1 to 10 to avoid over-fitting (Zhao et al., 173 

2015). We adopted a leave-one-out cross-validation for each PLSR model and evaluated the model performance 174 

using coefficient of determination (R
2
) and root mean square error (RMSE). We also standardised RMSE to the 175 

percentage of the response range (RMSE%) by dividing each RMSE by the maximum and minimum values of 176 

each leaf trait, as in Feilhauer et al., 2010.  177 

The spectral reflectance curve of each sample was transformed into pseudo-absorption (log [1/ R]), 178 

where R is reflectance, based on previous studies (Bolster et al., 1996; Gillon et al., 1999; Richardson and 179 

Reeves, 2005; Petisco et al., 2006; Kleinebecker et al., 2009; Serbin et al., 2014). We reviewed past studies 180 

(Curran, 1989; Elvidge, 1990; Kokaly et al. 2009) to select well documented regions of the spectrum for 181 

absorption features as a basis for predicting each leaf trait. The visible (VIS, 400-700 nm), near infra-red (NIR, 182 

700-1500) and shortwave infra-red I (SWIR I, 1500-1900), shortwave infra-red II (SWIR II, 1900-2500) 183 

regions, as well as combinations of the regions (700-1100 nm, 700-1900 nm, 700-2500 nm, 1100-1500 nm, 184 

1100 -1900 nm, 1100-2500 nm, 1500-2500 nm and 400-2500 nm) were tested and selected based on the model 185 

that minimised RMSE.  186 

 187 

3 Results 188 

 189 

3.1 Soil and species controls on leaf properties 190 

Relative foliar concentrations of the macronutrients N, P and K were 17 %, 43 % and 24 % higher on alluvial 191 

compared to chalk soils (Table 1). Nitrogen isotope discrimination (δ
15

N) varied greatly between the two soils, 192 

from -3.8 ‰ in the chalk soil to 3.4 ‰ in the alluvial. However, foliar concentrations of nutrients required in 193 

smaller quantities (Si, Ca, Mg, B, Mn and Zn) showed the opposite trend: they were higher in chalk soils (by 194 

22%, 37%, 50%, 19%, 23% and 49%, respectively). Fe was the only mineral nutrient unaffected by soil type. 195 

The percentage contribution of soluble C was affected by soil, with an increase in soluble C of 9 % in the 196 

alluvial soil, whereas hemicellulose, cellulose, lignin and LMA were completely unaffected by location. 197 

Carotenoids had 25 % higher concentration in alluvial soil; however other pigments and traits related to water 198 

status (δ
13

C and water content) varied little with soil type. The efficiency of PSII, which is related to carbon 199 

fixation under controlled conditions, showed a slight increase of 4 % in alluvial soil. 200 

Most traits varied greatly among species and that variation was far greater than the soil effects (Fig. 1). 201 

Interspecific variation ( Green, Fig. 1) accounted for > 60% of the variation of eight traits (in descending order 202 

Si, water content, B, soluble C, N, LMA, K and cellulose concentrations), and > 40% of the variation of another 203 
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six traits (in descending order, lignin, hemicellulose, Mg, Zn, phenolics and Fe). Species exerted little or no 204 

influence on pigment concentrations, efficiency of PSII, δ
13

C, δ
15

N, P, Ca and Mn concentrations. The 205 

interaction between species and soil (Blue, Fig. 1) explained little variation and were significant for δ
15

N, P, Mn 206 

and Zn, but for no other traits. The pigments, efficiency of PSII and δ
13

C represented the largest unexplained 207 

variance.   208 

 209 

3.2 Variation among functional groups of traits 210 

Species identity explained 59% of the investment in traits related to defence and structure and 31% of variation 211 

in investment in rock-derived nutrients and secondary elements altogether, but exerted no influence on the 212 

investment in light capture and growth (expressed as R
2 

values in Table 2). By contrast, soil type explained 6% 213 

of the variation in the rock-derived nutrients with no influences on other functional group. There was an 214 

interaction between soil and species for properties related to the latter group only, which explained 19% of the 215 

total variability in the foliar properties. These results indicate that some species have to invest more in defence 216 

than others regardless of the soil type, whereas soil is an important modifier of traits related to allocation of 217 

macro and micronutrients to the leaves, even though species identity still play an important role in foliar traits 218 

variation for this group.  219 

For leaf properties associated with light capture and growth, the first principal component (PC1) 220 

represents the variation in pigments and investment in light capture, and explains 38% of the total variability, 221 

whereas the second principal component (PC2) represents the variation in water, N, δ
15

N and soluble C, which 222 

is related to investment in growth, and explains 25% the variability (Fig. 2). The heterogeneity within species 223 

along the PC1 axis tends to be large for all the species, whereas the variation within species along the PC2 tends 224 

to be considerably smaller. Investment in light capture is not species-oriented and also unaffected by soil 225 

variation.  226 

For defence and structure, PC1 represents the lignocellulosic biomass explaining 51% of the total 227 

variability, whereas the PC2 represents LMA and phenolics explaining 21% the variability. Thus, it is possible 228 

to observe a separation of species into two main defensive strategies based on the type of defence. The PC1 229 

distinguish, regardless of the soil type, the species into groups regarding the concentration of lignocellulosic 230 

biomass and Si. The PC2 distinguishes another two groups of species that are also not separated into soil type 231 

regarding the phenolic concentration and LMA.  232 

For macro and micronutrients variation, PC1 represents the mineral nutrients required in greater 233 

amounts explaining 27% of the total variability of leaf properties, whereas the PC2 represents some 234 

micronutrients required in smaller quantities explaining 25% the variability. These 2 axes together explain 52% 235 

of the total variation and can be used to cluster soil into 2 groups: alluvial soils with high P and K concentration 236 

and chalk soil with high B, Mn and Zn concentrations. The inter-specific variation is greater along the PC1 237 

related to Ca, Mg, Fe and B concentrations and can be used to group species.  238 

 239 

3.3 Spectroscopy of leaf properties 240 

Ability to predict leaf traits from hyperspectral reflectance varied greatly among the 24 traits fitted using the 6 241 

species (Table 3).  The number of latent variables ranged from 3 to 9. The R
2
 obtained varied between 0.16 and 242 

0.92, and RMSE% between 6.9% and 28.7%.  PLSR modelling for LMA, water, Si, phenolics, carotenoids, K, 243 

B, efficiency of PSII, N, chlorophyll a and chlorophyll b were in descending order the best performing in terms 244 
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of R
2
.  The highest RMSE % values were for LMA, water, phenolics, carotenoids, K, lignin, B, Si, chlorophyll a 245 

and efficiency of PSII. Some minerals, such as P, Zn and Mn, as well as δ
13

C and δ
15

N showed low R
2
 and 246 

RMSE% values.  247 

 The majority of leaf properties showed higher goodness-of-fit using the regions of the spectrum 248 

between 1100 and 2500 nm. Pigments were the only traits that predictions were more accurate when using the 249 

visible region (400 – 700 nm). Predictions of phenolics, B, Zn and Mn were more accurate with the use of the 250 

region in the SWIR I between 1500 and 1900 nm, whilst Mg needs the use of SWIR II (1900-2500 nm) only. 251 

LMA showed higher R
2
 and lower RMSE when using the spectrum region between 1100 and 2500 nm, as did 252 

Si, N, soluble C, hemicellulose, cellulose, lignin, δ
13

C and δ
15

N. When using both SWIR regions, higher 253 

goodness-of-fit were obtained for K, Ca and P. Fe was the only foliar property that required the spectrum region 254 

between 700 and 2500 nm.   255 

 There were strong correlations among some of the leaf properties (Fig. 3) that can be potentially 256 

leveraging the estimation of other leaf traits from the use of PLSR. The correlation graphic also shows the 257 

similarity among variables through cluster analysis.  258 

 259 

3.4 Use of spectroscopy to distinguish environmental and inter-specific variation 260 

PLSR models of reflectance data were able to estimate differences in traits among species and detect intra-261 

specific variation (Fig. 4). In general, inter-specific variation estimated foliar traits quantities reasonably well, as 262 

did for the unexplained variance of most traits. The soil importance was precise for the majority of leaf 263 

properties, but PLSR did not detect precisely the variation of rock-derived nutrients concentration in the leaves 264 

due to soil differences. The use of PLSR also considerably underestimated the importance of soil (~ 37 %) on 265 

the δ
15

N variation, but the result was not shown in the graphic (see in soil, Fig. 4) due to visual aspects. The 266 

species x soil interaction effects were detected by PLSR modelling, except for traits that showed strong 267 

interaction (Mn, P and δ
13

C).  268 

 269 

4 Discussion 270 

Some leaf traits were strongly influenced by both species and soil type, while others were hardly affected by soil 271 

and only varied with species. Soil had a strong influence on concentrations of mineral nutrients in the leaves. 272 

Other foliar properties – mostly those involved in structure, defence and growth - varied among species but soil 273 

had little detectable effect.  It is important to emphasize that only fully sunlit leaves were included in the 274 

analyses; as LMA, protein and pigment concentrations are strongly influenced by light environment, sampling 275 

understory leaves would have given a different result. 276 

 277 

4.1 Phenotypic variation associated with soil  278 

Our findings that trees growing on the chalk soils had relatively low concentrations of N, P and K in their 279 

leaves, and relatively high concentrations of Ca, Mg, B, Mn, Si and Zn, is consistent with previous analyses of 280 

mineral nutrition in calcareous soils. Thin chalk soils contain small quantities of macronutrients needed by 281 

plants, and are unproductive for growing crops unless heavily fertilized; however, cation exchange sites in the 282 

soil contain high concentrations of calcium and magnesium (Hillier et al., 1990). Soil pH has a strong influence 283 

on the plant-availability of many micronutrients: for instance, Zn is readily adsorbed at high pH and forms 284 

organic Zn-ligand complexes at low pH (Broadley et al., 2007).  Species that specialize on chalks (so-called 285 
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calcicole species) have developed mechanisms for tolerating alkaline soils, associated with low phosphorus 286 

availability and excessive Ca and Mg supply (Misra and Tyler, 2000; Tyler, 2002).  287 

δ
15

N discrimination was strongly influenced by soil type, increasing from -3.83 in the chalk soil to 3.43 288 

in the alluvial soil, resulting as the most sensitive foliar trait to soil changes. Although the species Alnus 289 

glutinosa (L.) Gaertn. was not included in the field measurements for trait determination, this species was 290 

restricted to alluvial soils in our study area and may help explain some differences in leaf traits between soils. 291 

The species Alnus glutinosa is an N fixing plant and is known to be dependent on mycorrhizal fungi (Hall et al., 292 

1979) and the most important benefit of mycorrhizae is an increase in the efficiency of nutrient uptake by plants, 293 

especially phosphorus.  Variation in δ
15

N among plants within an ecosystem has been interpreted as representing 294 

differences in fixation, mycorrhizal dependence, depth of acquisition within the soil profile, utilization of 295 

depositional N and the form of N that plants predominantly acquire (Vallano and Sparks, 2013).  296 

The discovery that structural and defensive traits do not vary with soil is consistent with a previous 297 

study in New Zealand’s lowland temperate rain forests (Wright et al., 2010). That study compared traits of trees 298 

growing on phosphorus rich alluvium versus phosphorus-depleted marine terraces.  Foliar phosphorus 299 

concentrations of species were halved on the marine terraces, but there was no detectable variation in structural 300 

traits, phenolic or tannin concentrations.   301 

 302 

4.2 Inter-specific and residual variation 303 

Species had a greater influence on trait values than soils for all traits, except P.  The traits most influenced by 304 

species (in descending order) were Si, water, B, soluble C, N, LMA, K, cellulose, lignin, hemicellulose, 305 

magnesium, Zn, phenolics and Fe. It is interesting to note that two trace elements were near the top of this list; it 306 

is likely that strong differences in B and Si concentrations among species reflect differences in ion channel 307 

activity in roots (Ma and Yamaji, 2006).  Previous studies have also shown Si to be under strong phylogenetic 308 

control, and to be little affected by environmental conditions (Hodson et al., 2005). We also found Si and B 309 

concentrations to be positively correlated, which might ameliorate the effects on B toxicity as Si can increases B 310 

tolerance of plants (Gunes et al., 2007). High Zn organization at the species level corroborates earlier analysis 311 

that show more than 70% of Zn variation occurs between and within species (Broadley et al., 2007). Structural 312 

foliar traits and more expensive compounds were also found to have high interspecific variation, such as 313 

cellulose and lignin, suggesting that even on a strong soil filtering, species play the crucial role to invest in these 314 

specific traits.   315 

The residual variation is a combination of intraspecific variation, micro-site variability, canopy 316 

selection and measurement error. The residual variation was high for δ
13

C and pigments, greatly exceeding soil 317 

and species effects, as also reported for pantropical trait studies (Asner and Martin, 2011). Low coefficient of 318 

variation in δ
13

C among samples, and high residual variation, suggest that the efficiency of C fixation is 319 

maintained among species and soil. δ
13

C is known to vary strongly with light condition and relative humidity 320 

(Yan et al., 2012), but their study sampled only from fully sunlit leaves. 321 

 322 

4.3 Functional groups on contrasting soils   323 

We investigated how traits in generalist species are responding to different soil conditions and the factors most 324 

contributing to changing leaf properties. The investment in light capture had high intra-specific variation, and 325 

neither species nor soil accounted for variation in foliar properties. The investment in growth showed relative 326 
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high inter-specific variation separating out some species. Investment in traits related to defence and leaf 327 

structure is species-mediated, and may be separated into two defensive strategies. Considering these traits, some 328 

species invest more in LMA and phenolics and other species invest more in lignocellulosic biomass and Si 329 

regardless of soil type. The allocation of rock-derived nutrients to leaves is highly dependent on soil as 330 

environmental filter.  331 

Traits favouring high photosynthetic rate and growth are considered to be advantageous in rich-332 

resource soil environments, whereas expressions of traits favouring resource conservation are considered 333 

advantageous in low-resource environments (Aerts and Chapin, 1999, Westoby et al., 2002). Nevertheless, Fine 334 

et al. (2006) found similar results to ours with seedlings transplantation for 6 species into different soil types, 335 

concluding that investment in defence is due to genetically based, fixed traits, and defence differences are not 336 

just passive responses to differences of available nutrients in the soils.   337 

 338 

4.4 Predictions of foliar traits using spectroscopy 339 

Several leaf chemical traits and LMA could be estimated accurately using visible-to-shortwave infrared 340 

spectroscopy. Previous studies have also shown that leaf spectra can be used to predict leaf chemical properties 341 

(Asner and Martin, 2008, Asner and Martin, 2009; Asner et al., 2015). Doing so revealed that LMA, water, Si, 342 

total phenolics, carotenoids and K produced the most consistent and accurate calibrations.  343 

The locations of important wavelengths in our PLSR models match the locations of known spectral 344 

absorption features related to proteins, starch, lignin, cellulose, hemicellulose and leaf water content (Kokaly et 345 

al., 2009). In the region between 700 and 2500 of the electromagnetic spectrum, absorption features are 346 

commonly the result of overtones and combinations of fundamental absorptions at longer wavelengths. The 347 

visible region was useful to predict pigments concentrations and the efficiency of PSII only, whereas the infra-348 

red region was associated with most traits. The region of importance with correlated wavelengths with nitrogen 349 

varies between 1192 nm in deciduous forest (Bolster et al., 1996) to 2490 for forage matter (Marten et al., 350 

1983), which results directly from nitrogen in the molecular structure. Although chlorophylls also contain 351 

nitrogen, the spectra of chlorophylls differ greatly from proteins because of their dissimilar chemical structures, 352 

showing strong absorption due to C-H bonds in the phytol tail of the molecule (Katz et al., 1966), also 353 

confirmed in this work when visualizing the regions of importance for predictions. The 1500-1900 nm region 354 

was also important for phenolic compounds prediction, which includes the 1660 nm feature across a variety of 355 

species and phenolic compounds (Windham et al., 1988; Kokaly and Skidmore, 2015). 356 

A review in the literature suggests that the use of dry leaves may improve predictions of lignocellulosic 357 

biomass in the leaves with the use of spectroscopy (Richardson and Reeves, 2005; Asner et al., 2011; Serbin et 358 

al., 2014), as the strong water absorption features mask most of the biochemical absorption features (Fourty and 359 

Baret, 1998). On the other hand, the use of spectroscopy on fresh leaves is particularly better for LMA 360 

predictions, given the strong coupling between water content, leaf structure and LMA (Asner et al., 2011). The 361 

primary and secondary effects of water content on leaf reflectance are greatest in spectral bands centred at 1450, 362 

1940, and 2500 nm (Carter, 1991), but has also been predicted using bands between 1100-1230 nm absorption 363 

features (Ustin et al., 1998; Asner et al., 2004).  364 

The use of spectroscopy for Si predictions on fresh leaves appears to be promising considering our 365 

accurate results. The data available in the literature show that the ecological functions of Si have generally been 366 

poorly studied, and that there are almost no data about the role of Si structures in the reflection and transmission 367 
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spectra of short-wave or photosynthetically active radiation in plants. Silicon is absorbed by plants from the soil 368 

solution in the form of silicic acid (H4SiO4) being translocated to the aerial parts of the vegetal through xylema, 369 

and then deposited along the plant as phytoliths (silicified bodies) (Tripathi, 2011). Smis et al. (2014) showed 370 

for the first time the potential use of NIR spectroscopy to predict Si concentration. Si shows strong interactions 371 

with plant biomolecules such as phenol- or lignin-carbohydrate complexes (Inanaga et al., 1995), cellulose (Law 372 

and Exley, 2011), and proteins (Perry and Keeling-Tucker, 2003). Predictions of Si concentrations, and other 373 

traits, from leaf spectra reflectance can be stronger than expected likely because leaf spectra integrate 374 

information on several foliar traits simultaneously.  375 

Galvez-Sola et al. (2015) showed that near-infrared spectroscopy can constitute a feasible technique to 376 

quantify several macro and micronutrients such as N, K, Ca, Mg, Fe and Zn in citrus leaves of different leaves 377 

with coefficient of determination (R
2
) varying between 0.53 for Mn and 0.99 for N, whereas B showed less 378 

accurate results with the use of spectroscopy. The regions of importance for prediction were relatively similar to 379 

all the mineral nutrients analysed in this study, except for B that had the band between 1500 and 1900 as the 380 

best predictive region. Similar to Si, the relative high precisions for K, Fe and B predictions can be stronger due 381 

to the integrating information on several foliar traits simultaneously.  382 

 383 

4.5 Consideration on the use of spectroscopy to quantify patterns of foliar traits 384 

The range of variation within species for most predicted traits tend to be smaller with the use of PLSR on 385 

reflectance, resulting in consistent slight overpredictions of the inter-specific variance. The interrelationships 386 

between foliar chemical and spectral properties for each species help to explain the successful results reported in 387 

developing species-level variation from leaf spectral data (Asner et al., 2009). In general, the residuals variation 388 

was lower for most leaf traits with the use of spectroscopy, possibly because the use of spectroscopy affects the 389 

ability to quantify measurement error, one of the residual variation components. 390 

The variation caused by soil on mineral nutrients and δ
15

N allocated to the leaves remained unchanged 391 

with the use of spectroscopy, possibly because structural leaf traits, such as LMA, cellulose, water, as well as 392 

pigments, contribute more to leaf reflectance. As these structural traits remained unchanged between soil types 393 

for the six species, it possibly explains why the analyses were not able to detect the mineral nutrients and δ
15

N 394 

effects on reflectance, considering that spectroscopy sensitivity to these properties are an artefact of traits 395 

correlation rather than a real feature. The same occurs when accounting for variation related to the interaction 396 

between soil and species. The soil component in the interaction tends to be underestimated for rock-derived and 397 

δ
13

C.  398 

This study particularly provides findings for a large range of traits that indicate that the use of 399 

spectroscopy may be useful to quantify structural traits but can be misleading to measure the environmental 400 

filtering on traits that are indirectly predicted, such as macro- and micronutrients. While remote sensing is not a 401 

direct replacement of field sampling, the ability of remote sensing platforms to assess biological phenomena at 402 

large spatial scales is unparalleled. 403 

 404 

5 Conclusions 405 

Analyses of trait variation shows that the identity of the species has a much stronger influence on most traits 406 

than the substrate upon which the tree grows. Traits associated with light capture, cell wall structure and defence 407 

were particularly uninfluenced by substrate, while rock-derived nutrients are strongly influenced by the soil 408 
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characteristics. This study also demonstrates the potential for estimating foliar traits by field spectroscopy and 409 

its promising use to predict Si.  LMA, water, N, pigments, phenolics, K, B and hemicellulose were also 410 

accurately estimated at the species level. However, subtle changes in traits associated with soil type were not 411 

generally detectable, possibly because the spectroscopy sensitivity to these traits is an artefact of correlation 412 

with other traits that did not change due to soil type.  413 
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649 
Figure 1. Partitioning of variance of foliar properties between species, soil, species x soil interaction and 650 

residual components for six generalist species found on both chalk and alluvial soils. Residual variation arises 651 

from within-site intraspecific variation, micro-site variability, canopy selection and measurement error variance.  652 
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 654 

Figure2. Principal component analysis of traits related to light capture and leaf hydraulic, defence and leaf 655 

structure, and metabolism and maintenance. Fe = Fraxinus excelsior; Sn = Sambucus nigra; Ac = Acer 656 

campestre; Cm = Crataegus monogyna; Ca = Corylus avellana; Ap = Acer pseudoplatanus; ∆ = alluvial soils; 657 

and ○ = chalk soils.  658 
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 660 

Figure 3.  Spearman correlation rank test among leaf traits of 6 species growing on both soil types. Red and 661 

black circles mean negative and positive correlations. Foliar traits were organised using cluster analysis.  662 
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 664 

Figure 4. Predicted values from PLSR on reflectance versus actual partitioning of variance in foliar properties 665 

between species, soil, species x soil interaction and residual (intraspecific variation, micro-site variability, 666 

canopy selection and measurement error) variance, for six generalist species found on both chalk and alluvial 667 

soils. The greyness and size of each dot reflects the goodness-of-fit of the PLSR for each foliar trait, with darker 668 

and bigger points representing the most accurate PLSR predictions. 669 

 670 

 671 
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Table 1. Average, standard deviation (SD) and coefficient of variation (CV) in percentage for leaf traits of six 675 

generalist species growing on alluvial and chalk soils. Foliar property was statistically different between soil 676 

types with P-value < 0.05 *, < 0.01 ** and < 0.001 ***.  677 

Properties 
Alluvial Chalk 

Mean ± SD CV Mean ± SD CV 

 

Light capture and growth 
    

N (%) *** 2.53 ± 0.81 32.1 2.16 ± 0.73 34.0 

δ
15

N (‰) *** 3.43 ± 2.65 77.3 -3.83 ± 2.01 52.3 

δ
13

C (‰) -28.2 ± 1.2 4.5 -28.7± 1.0 3.6 

+
Chlorophyll a (mg m

-2
) 338.8 ± 116.0 34.2 279.6 ± 89.2 31.9 

Chlorophyll b (mg m
-2

) 78.6 ± 27.6 35.1 64.7 ± 22.4 34.7 

Anthocyanins (mg m
-2

) 423.3 ± 143.8 33.9 362.8 ± 121.6 33.5 

Carotenoids (mg m
-2

) * 110.5 ± 40.4 36.5 88.2± 35.5 40.2 

Efficiency of PSII ** 0.74 ± 0.05 7.1 0.71 ± 0.06 9.8 

Soluble C (%) ** 73.6 ± 6.5 8.8 70.3 ± 7.5 10.6 

Water (%) 59.1 ± 8.2 14.0 58.5 ± 7.9 13.5 

 

Defence and structure 
    

+
LMA (g cm

-2
) 60.8 ± 24.0 39.4 60.6 ± 23.6 38.9 

Phenolics (%) 83.7 ± 64.1 76.5 84.3 ± 49.7 59.0 

+
Hemicellulose (%) 10.9 ± 3.2 29.8 12.5 ± 3.6 29.4 

Cellulose (%) 10.1 ± 1.8 18.6 11.0 ± 2.1 19.3 

Lignin (%) 3.9 ± 1.9 49.8 4.7 ± 3.1 64.8 

+
Si (%) * 0.91 ± 0.56 62.2 1.11 ± 0.79 71.5 

 

Rock-derived nutrients 
    

+
P (%) *** 0.20 ± 0.05 25.5 0.14 ± 0.03 26.8 

K (%) *** 0.98 ± 0.49 50.0 0.79 ± 0.50 64.4 

+
Ca (%) * 1.67 ± 0.75 45.1 2.29 ± 1.24 54.1 

+
Mg (%) *** 0.24 ± 0.11 47.1 0.36 ± 0.15 43.8 

+
B (µg g

-1
) *** 29.0 ± 8.7 30.1 34.5 ± 12.4 36.0 

+
Fe (µg g

-1
) 122.3 ± 24.6 20.1 125.4 ± 32.0 25.5 

+
Mn (µg g

-1
) * 84.7 ± 64.3 75.9 103.8 ± 69.5 66.9 

+
Zn (µg g

-1
) *** 22.9 ± 12.6 55.0 34.1 ± 18.7 54.9 

+log transformed prior to ANOVA. 678 

 679 
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Table2. Permutational multivariate analysis to calculate the partitioning of variance in set of foliar traits related 683 

to each functional class between species, soil, species x soil interaction and residual variance for six generalist 684 

species found on both chalk and alluvial soils. All differences were significant (P-value < 0.05 *, < 0.01 ** and 685 

< 0.001 ***) unless indicated as not significant (NS).  686 

Component 
Light capture and growth Defence and structure Rock-derived nutrients  

F-test R
2
 F-test R

2
 F-test R

2
 

Species 1.48
ns

 0.13 14.9*** 0.59 6.1*** 0.31 

Site 2.96
 ns

 0.05 0.84
 ns

 0.00 5.6** 0.06 

Interaction 0.43
 ns

 0.04 1.23
 ns

 0.05 3.8*** 0.19 

Residuals  0.78  0.34  0.41 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 
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Table3. Partial Least Squares Regression (PLSR) on spectral data and leave-one-out cross-validation for 24 leaf 717 

traits of 6 species occurring on both alluvial and chalk soils. The model calibration and validation performance 718 

was evaluated for each leaf property by calculating the coefficient of determination (R
2
), root mean square error 719 

(RMSE) and the percentage root mean square error (%) based on the given number of latent variables (nL) for 720 

each PLS model.  721 

Leaf property 
Spectrum range  

(nm) 
nL 

R2 RMSE RMSE% 

Cal Val Cal Val Cal Val 

 

Light capture and growth 

N (%) 1100 – 2500 3 0.61 0.55 0.49 0.52 15.0 16.0 

δ
15

N (‰) 1100 – 2500 9 0.41 0.16 3.28 4.01 23.5 28.7 

δ
13

C (‰) 1100- 2500 6 0.46 0.30 0.85 0.96 16.1 18.2 

+
Chlorophyll  a (mg m

-2
)

 
 400-700 7 0.65 0.53 60.05 69.62 13.5 15.7 

Chlorophyll b (mg m
-2

) 400-700 4 0.59 0.50 16.48 18.57 15.2 17.1 

Anthocyanins (mg m
-2

) 400-700 4 0.45 0.33 99.20 110.70 18.0 20.1 

Carotenoids (mg m
-2

) 400-700 7 0.75 0.62 19.31 23.54 11.0 13.4 

Efficiency of PSII 400-2500 6 0.68 0.55 0.03 0.04 13.4 15.9 

Soluble C (%) 1100 – 2500 4 0.54 0.46 4.76 5.15 18.1 19.6 

Water (%) 1100 – 1500 5 0.87 0.83 2.89 3.29 9.0 10.1 

 

Defence and structure 

+
LMA (g cm

-2
) 1100 – 2500 6 0.94 0.92 1.09 1.12 6.1 6.9 

Phenolics (%) 1500 – 1900 6 0.78 0.70 26.20 30.48 9.7 11.3 

+
Hemicellulose (%) 1100-2500 4 0.44 0.35 1.28 1.30 18.4 19.8 

Cellulose (%) 1100-2500 4 0.44 0.34 1.52 1.66 17.0 18.6 

Lignin (%) 1100-2500 4 0.57 0.47 1.72 1.89 13.0 14.2 

+
Si (%) 1100 – 2500 4 0.77 0.72 1.50 1.55 14.4 15.5 

 

Rock-derived nutrients 

+
P (%) 1500-2500 7 0.43 0.22 1.26 1.30 17.8 20.2 

K (%) 1500 – 2500 7 0.70 0.61 0.27 0.31 11.9 13.6 

+
Ca (%) 1500-2500 7 0.53 0.40 1.40 1.47 15.9 17.9 

+
Mg (%) 1900 – 2500 3 0.54 0.46 1.39 1.42 15.2 16.5 

+
B (µg g

-1
)

 
 1500-1900 6 0.66 0.56 1.24 1.28 13.6 15.2 

+
Fe (µg g

-1
)

 
 700 – 2500 5 0.56 0.46 1.17 1.19 15.6 17.2 

+
Mn (µg g

-1
)

 
 1500-1900 6 0.35 0.20 1.83 1.95 20.5 22.7 

+
Zn (µg g

-1
)

 
 1500-1900 7 0.41 0.21 1.50 1.60 19.5 22.4 

+
 Trait values were natural log-transformed for PLSR. 722 
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