The effects of environment on *Arctica islandica* shell formation and architecture

Stefania Milano¹*, Gernot Nehrke², Alan D. Wanamaker Jr.³, Irene Ballesta-Artero⁴,⁵, Thomas Brey², Bernd R. Schöne¹

1 Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany
2 Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
3 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, 50011-3212, USA
4 Royal Netherlands Institute for Sea Research and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
5 Department of Animal Ecology, VU University Amsterdam, The Netherlands

* Corresponding author. Email: smilano@uni-mainz.de

Keywords: Confocal Raman microscopy; Scanning electron microscopy; Shell microstructure; Water temperature; Diet; Bivalve shell
Abstract

Mollusks record valuable information in their hard parts that reflect ambient environmental conditions. For this reason, shells can serve as excellent archives to reconstruct past climate and environmental variability. However, animal physiology and biomineralization, which are often poorly understood, can make the decoding of environmental signals a challenging task. Many of the routinely used shell-based proxies are sensitive to multiple different environmental and physiological variables. Therefore, the identification and interpretation of individual environmental signals (e.g. water temperature) often is particularly difficult. Additional proxies not influenced by multiple environmental variables or animal physiology would be a great asset in the field of paleoclimatology. The aim of this study is to investigate the potential use of structural properties of Arctica islandica shells as an environmental proxy. A total of eleven specimens were analyzed to study if changes of the microstructural organization of this marine bivalve are related to environmental conditions. In order to limit the interference of multiple parameters, the samples were cultured under controlled conditions. Three shells presented here were grown at two different water temperatures (10 °C and 15 °C) for multiple weeks and exposed only to ambient food conditions. An additional eight specimens were reared under three different dietary regimes. Shell material was analyzed with two techniques: (1) Confocal Raman microscopy (CRM) was used to quantify changes of the orientation of microstructural units and pigment distribution and (2) Scanning electron microscopy (SEM) was used to detect changes in microstructural organization. Our results indicate that A. islandica microstructure is not sensitive to changes in the food source, and likely, shell pigment are not altered by diet. However, seawater temperature had a statistically significant effect on the orientation of the biomineral. Although additional work is required, the
results presented here suggest that the crystallographic orientation of biomineral units of *A. islandica* may serve as an alternative and independent proxy for seawater temperature.

1. Introduction

Biomineralization is a process through which living organisms produce a protective, mineralized hard tissue. The considerable diversity of biomineralizing species contributes to high variability in terms of shape, organization and mineralogy of the structures produced (Lowenstam and Weiner, 1989; Carter et al., 2012). Different architectures at the micrometer and nanometer scale and different biochemical compositions determine material properties that serve specific functions (Weiner and Addadi, 1997; Currey, 1999; Merkel et al., 2007). Besides these differences, all mineralized tissues are hybrid materials consisting in hierarchical arrangements of biomineral units surrounded by organic matrix, also known as “microstructures” (Bøggild, 1930; Carter and Clark, 1985; Rodriguez-Navarro et al., 2006) or “ultrastructures” (Blackwell et al., 1977; Olson et al., 2012) or overall “fabrics” (Schöne, 2013; Schöne et al., 2013). The carbonate and organic phases represent the fundamental level of the organization of biomaterials (Aizenberg et al., 2005; Meyers et al., 2006). The mechanisms of microstructure formation and shaping, especially in mollusks, has attracted increasing attention during recent decades. At present, it is commonly accepted that the organic compounds play an important role in the formation of the inorganic phases of biominerals (Weiner and Addadi, 1991; Berman et al., 1993; Dauphin et al., 2003; Nudelman et al., 2006). However, the identification of the exact mechanisms driving biomineralization is still an open research question. Previous studies conducted on mollusks show that environmental parameters
can influence microstructure formation (Lutz, 1984; Tan Tiu and Prezant, 1987; Tan Tiu, 1988; Nishida et al., 2012). These results set the stage for a research interest toward the use of shell microstructures as proxies for reconstructing environmental conditions (Tan Tiu, 1988; Tan Tiu and Prezant, 1989; Olson et al., 2012; Milano et al., 2015).

Mollusks are routinely used as climate and environmental proxy archives because they can record a large amount of environmental information in their shells (Richardson, 2001; Wanamaker et al., 2011a; Schöne and Gillikin, 2013). Whereas structures at nanometric level are still underexplored as potential environmental recorders, shell patterns at lower magnification, such as individual growth increments, are commonly used for this purpose (Jones, 1983; Schöne et al., 2005; Marali and Schöne, 2015; Mette et al., 2016). Mollusks deposit skeletal material on a periodic basis and at different rates (Thompson et al., 1980; Deith, 1985). During periods of fast growth, growth increments are formed whereas during periods of slower growth, growth lines are formed (Schöne, 2008; Schöne and Gillikin, 2013). The periodicity of such structures ranges from tidal to annual (Gordon and Carriker, 1978; Schöne and Surge, 2012). By crossdating time-series with similar growth patterns it is possible to construct century and millennia-long master chronologies (Marchitto et al., 2000; Black et al. 2008; Black et al., 2016; Butler et al., 2013). This basic approach, in combination with geochemical methods, has great potential in reconstructing past climatic conditions (Wanamaker et al., 2011b). At present, the most frequently used and well-accepted geochemical proxy is oxygen isotopic composition of shell material (\(\delta^{18}O_{\text{shell}}\)) (Epstein, 1953; Grossman and Ku, 1986; Schöne et al., 2004; Wanamaker et al., 2007) which may serve as a paleothermometer and/or paleosalinometer (Mook, 1971; Andrus, 2011); however, the \(\delta^{18}O_{\text{shell}}\) is influenced by both seawater temperature and the isotopic composition of seawater (\(\delta^{18}O_{\text{water}}\), related to salinity). Thus, \(\delta^{18}O_{\text{shell}}\)-based temperature reconstructions are particularly challenging in habitats with fluctuating \(\delta^{18}O_{\text{water}}\) conditions such as estuaries or restricted basins (Gillikin et al.,
2005). Because of the multiple impacts on δ^{18}O$_{\text{shell}}$ values, there have been substantial efforts (including elemental ratios; cite Schone et al 2010 papers here) to develop alternative techniques to reconstruct environmental variables from mollusk shells.

This study investigates the possibility using shell microstructure properties to serve as a new environmental proxy. For this purpose, the effects of seawater temperature (grown at 10 °C and 15 °C) and dietary regime on the microstructural units of *Arctica islandica* cultured under controlled conditions were analyzed and quantified. *A. islandica* was chosen as model species because of its great potential in paleoclimatology and paleoceanography (see Schöne, 2013; Wanamaker et al., 2016). Its extreme longevity of up to more than 500 years makes this species a highly suitable archive for long-term paleoclimate and environmental reconstructions (Schöne et al., 2005; Wanamaker et al., 2008; Wanamaker et al., 2012; Butler et al., 2013).

2. Materials and Methods

The analyses were conducted on eleven *A. islandica* shells. Three juvenile *A. islandica* shells, sampled for the seawater temperature experiment, were collected alive on November 21, 2009 aboard the *F.V. Three of a Kind* off Jonesport, Maine USA (44° 26′ 9.829″N, 67° 26′ 18.045″W) in 82 m water depth. From 2009 to 2011, all animals were kept in a flowing seawater laboratory at the Darling Marine Center, Walpole, Maine, USA (see Beirne et al., 2012 for additional details). In 2011, clams were grown at two different temperature regimes for 16 weeks (Table 1). At the completion of the experiment, shells were estimated to be between 4 to 5 years old. Eight one-year
old juveniles were collected in July 2014 from Kiel Bay, Baltic Sea (54° 32′ N, 10° 42′ E; Fig. 1) and kept alive in tanks at 7 °C for six months at the Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany. During this time interval, the animals were fed with an algal mix of *Nannochloropsis* sp., *Isochrysis galbana* and *Pavlova lutheri*. Then, they were transferred to the Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands, and cultured in tanks at three different dietary conditions for 11 weeks (Table 1).

2.1 Seawater temperature experiment

The seawater temperature experiment started on 27 March 2011 and ended on 21 July 2011. Prior to the start of the experiment the animals were marked with calcein. The staining leaves a clear fluorescent marker in the shells that can be used to identify which shell material has formed prior to and during the experiment. Initially, the animals were kept at 10.3 ± 0.2 °C for 48 days. Then, they were briefly removed from the tanks and marked again. Subsequently, the clams were cultured for 69 more days at 15.0 ± 0.3 °C. Ambient seawater was pumped from the adjacent Damariscotta River estuary and adjusted to desired temperature. The salinity was measured with a Hydrolab® MiniSonde. It ranged between 30.2 ± 0.7 and 30.7 ± 0.7, in the two experimental phases, respectively. During the entire culture period, all clams were exposed to ambient food conditions. At the end of the experiment the soft tissues were removed.

2.2 Food experiment
The food experiment was carried out from 9 February 2015 to 29 April 2015. The animals were placed in aquaria inside a climate room at 9 °C. Water temperature in the tanks ranged between 8 and 10 °C. Water salinity was measured by using an ENDECO 102 refractometer and ranged between 29.6 and 29.9 ± 0.1 in each aquarium. The 15-liter tanks were constantly supplied with aerated water from the Wadden Sea. The clams were acclimated for three weeks before the start of the experiment. Three dietary regimes were chosen. One treatment consisted of feeding the animals with Microalgae Mix (food type 1), a ready-made solution of four marine microalgae (25 % *Isochrysis*, 25 % *Tetraselmis*, 25 % *Thalassiosira*, 25 % *Nannochloropsis*) with a particle size range of 2 - 30 µm. A second treatment was based on PhytoMaxx (food type 2), a solution of living *Nannochloropsis* algae with 2 - 5 µm size range. A third treatment served as control, i.e., the animals were not fed with any additional food. In treatments with food type 1 and 2, microalgae were provided at the constant optimum concentration of 20×10^6 cells/liter (Winter, 1969). A dispenser equipped with a timer was used to distribute the food five times per day. At the end of the experiment the soft tissues were removed. A distinct dark line in the shells indicated the transposition to the NIOZ aquaria and the associated stress. This line marks the beginning of the tank experiment.

2.3 Sample preparation

The right valve of each specimen was cut into two 1.5 millimeter-thick sections along the axis of maximum growth. For this purpose, a low speed precision saw (Buehler Isomet 1000) was used. Given the small size and fragility of the juvenile shells used in the food experiment, the valves were fully embedded in a block of Struers EpoFix (epoxy) and air-dried overnight prior the
sectioning. Sections of the clams used in the temperature experiment were embedded in epoxy after the cutting. All samples were ground using a Buehler Metaserv 2000 machine equipped with Buehler silicon carbide papers of different grit sizes (P320, P600, P1200, P2500). In addition, the samples were manually ground with Buehler P4000 grit paper and polished with a Buehler diamond polycrystalline suspension (3 µm). Sample surfaces were rinsed in demineralized water and air-dried. In the samples of the temperature experiment, the calcein marks were located under a fluorescence light microscope (Zeiss Axio Imager.A1m microscope equipped with a Zeiss HBO100 mercury lamp and filter set 38: excitation wavelength, ca. 450 - 500 nm; emission wavelength, ca. 500 - 550 nm).

2.4 *A. islandica* shell organization

The shell of *A. islandica* consists or pure aragonite and it is divided in two major layers, an outer (OSL) and the inner shell layer (ISL). The OSL is further subdivided in outer (oOSL) and inner portion (iOSL) (Schöne, 2013). These layers are characterized by specific microstructures (Ropes et al., 1984). The oOSL largely consists of homogenous microstructure with a bulky and granular aspect (Schöne et al., 2013). The iOSL and ISL are largely composed of crossed-lamellar to cross-acicular microstructures (Dunca et al., 2009). The present study focuses on ventral margin of the shells. Analyses were carried out exclusively in the OSL.

Similar to other mollusks, the shell of *A. islandica* contains pigment polyenes which are obviously visible when using CRM (Hedegaard et al., 2006). Polyenes are organic compounds containing single (C-C) and double (C=C) carbon-carbon bonds forming a polyenic chain. Their
distribution across the shell is not homogenous. The pigments are abundant in the oOSL whereas they become scarce in the iOSL (Stemmer and Nehrke, 2014).

2.5 Confocal Raman microscopy and image processing

Shells were mapped with a WITec alpha 300 R (WITec GmbH, Germany) confocal Raman microscope. Scans of $50 \times 50 \, \mu m$, $100 \times 50 \, \mu m$ and $150 \times 50 \, \mu m$ were performed using a piezoelectric scanner table. All Raman measurements were carried out using a 488 nm diode laser. A spectrometer (UHTS 300, WITec, Germany) was used with a 600 mm$^{-1}$ grating, a 500 nm blaze and an integration time of 0.03 s. On each sample two to six scans were made, depending of the thickness of the shell. For instance, in juvenile shells (food experiment), two scans of each sample were made. On larger shells used in the temperature experiment, six maps were completed, i.e., two maps in the oOSL, two in the middle of the iOSL and two in the inner portion of the iOSL. Each scan contained between 40,000 and 120,000 data points, depending on the map size. The spatial resolution equaled 250 nm. Half of the maps were performed on the shell portion formed before the experiments. The other half were made on the shell portion formed under experimental conditions. In order to avoid areas affected by transplantation or marking stress, the scans were located far off the calcein and stress lines. Raman maps on food experiment shells were performed 300 μm away from the stress line. In the shells from the temperature experiment, the scans were made 1 mm away from the calcein mark.

Polarized Raman microscopy is known to provide comprehensive information about the crystallographic properties of the materials (Hopkins and Farrow, 1985). The aragonite spectrum
is characterized by two lattice modes (translation mode T_a, 152cm^{-1} and librational mode L_a, 204cm^{-1}) and the two internal modes (in-plane band v_4, 705cm^{-1} and symmetric stretch v_1, 1085cm^{-1}). The ratio (R_{v1}/T_a) between peak intensities belonging to v_1 and T_a is caused by different crystallographic orientations of the aragonitic units (Hopkins and Farrow, 1985; Nehrke and Nouet, 2011). Within each scan, R_{v1}/T_a was calculated for each data point. New spectral images were generated using WITecProject software (version 4.1, WITec GmbH, Germany). These images were then binarized by replacing all values above 2.5 with 1 and the others with 0. The orientation was quantified by calculating the area formed by pixels of value 1 over the total scan area. The imaging software Gwyddion (http://gwyddion.net/last checked: June 2016) was used for this purpose. The results were expressed in percentage.

The Raman scans of the food experiment shells were analyzed to investigate the pigment composition. Polyene peaks have definite positions in the spectrum according to the number of the C-C and C=C bonds of the chain, which are specific for certain types of pigments. The two major polyene peaks at ~1130 (R_1) and 1520 cm$^{-1}$ (R_4) were identified by using the “multipeak fitting 2” routine of IGOR Pro (version 7.00, WaveMetrics, USA). Their exact position was determined adopting a Gaussian fitting function (Fig. 2). The number of single (N_1) and double carbon bonds (N_4) was calculated by applying the equations by Schaffer et al. (1991):

$N_1 = 476 (R_1 - 1,082)$

$N_4 = 830 (R_4 - 1,438)$

Spectral images of the R_4 band were used to locate the polyenes in the shell and measure the thickness of the pigmented layer. This analysis was conducted only on the shells of the food experiment. Given the larger size of the shells used in the temperature experiment, the spectral
maps were not sufficient for a correct localization of the pigmented layer boundaries and estimation of its thickness.

To quantify changes of the orientation of individual biomineral units of the juvenile shells (food experiment), the spectral maps were subdivided into two portions. The outermost shell portion (oOSL) was enriched in pigments whereas the iOSL showed a decrease in polyene content.

2.6 Scanning electron microscopy

After performing Raman measurements, the samples were prepared for SEM analysis. Each shell slab was ground with a Buehler Metaserv 2000 machine and Buehler silicon F2500 grit carbide paper. To reduce the impact of grinding on the sample surface of juvenile shells, extra grinding was done by hand. Then, the slabs were polished with a Buehler diamond polycrystalline suspension (3 µm). Afterward, shell surfaces were etched in 0.12 N HCl solution for 10 (food experiment samples) to 90 s (temperature experiment samples) and subsequently placed in 6 vol % NaClO solution for 30 min. After being rinsed in demineralized water, air-dried samples were sputter-coated with a 2 nm-thick platinum film by using a Low Vacuum Coater Leica EM ACE200.

A scanning electron microscope (LOT Quantum Design 2nd generation Phenom Pro desktop SEM) with backscattered electron detector and 10 kV accelerating voltage was used to analyze the shells. Images were taken at the same distances from the calcein and stress lines as in the case of the Raman measurements to assure comparability of the data.

In addition, stitched SEM images of the ventral margins were used to accurately determine the shell growth advance during the culturing experiments. Growth increment widths were
measured with the software Panopea (© Schöne and Peinl). Given the difference in duration of the two phases of the temperature experiment, the measurements were expressed as total growth and instantaneous growth rate (Fig. 3a + b). The latter was calculated using the following equation (Brey et al., 1990; Witbaard et al., 1997):

\[
\text{Instantaneous growth rate} = \frac{\ln \left(\frac{y_t}{y_0} \right)}{a}
\]

where \(y_0\) represents the initial shell height, \(y_t\) is the final shell height and \(a\) is the duration of the experiment. In the case of the food experiment, only the total growth was calculated (Fig. 3c).

3. Results

3.1 Effect of seawater temperature and diet on A. islandica shell growth

When exposed to a water temperature of 10 °C, the shells grew between 11.67 and 14.17 mm during a period of 48 days. During a period of 69 days at 15 °C, the growth ranged between 2.32 and 5.77 mm (Fig. 3a). Instantaneous growth rate showed a decrease between the two experimental phases. At 10 and 15 °C, the average instantaneous growth per day was 0.0091 and 0.0013, respectively (Fig. 3b). The decrease in total growth and growth rate between the two temperatures was statistically significant (t-test, \(p < 0.01\)).

During the food experiment, shells grew between 0.37 and 3.71 mm with large differences due to the different food types. Growth of specimens exposed to food type 1 ranged between 1.87 to 3.71 mm, whereas those cultured with food type 2 grew between 0.55 to 0.96 mm. Both control
specimens added 0.37 mm of shell during the experimental phase (Fig. 3c). ANOVA and Tukey’s HSD post hoc tests showed significant differences between specimens cultured with food type 1 and 2 (p < 0.05) and between food type 1 and control shells (p < 0.05).

3.2 Effect of seawater temperature on A. islandica microstructure

At a water temperature of 10 °C, the area occupied by microstructural units oriented with \(R_{v1/Ta} \) higher than 2.5 a.u. (= arbitrary units) ranged between 31.3 and 50.6 % in the oOSL and between 21.3 and 33.5 % in the iOSL. When exposed to 15 °C, values ranged between 25.6 and 48.7 % and between 45.7 and 55.9 % in the oOSL and iOSL, respectively (Fig. 4). Whereas the slight difference of area with \(R_{v1/Ta} > 2.5 \) in the oOSL was not significant between the two water temperatures (t-test, \(p = 0.62 \)), the area with \(R_{v1/Ta} > 2.5 \) in the iOSL significantly increased at 15 °C (t-test, \(p = 0.02 \)). Under the SEM, no difference was visible between units formed at 10 °C and 15 °C (Fig. 5).

3.3 Effect of food on A. islandica microstructure and pigments

In the shells cultured with food type 1, the area occupied by biomineral units oriented with \(R_{v1/Ta} \) higher than 2.5 a.u. during the experiment ranged between 24.8 % (oOSL) and 43.0 % (iOSL). In the shell portion deposited before the experiment, the ratio varied between 19.4 % (oOSL) and 36.2 % (iOSL). Although a trend was recognized, these variations were not statistically different (t-tests. OSL: \(p = 0.43 \); ISL: \(p = 0.57 \); Fig. 6a). On the contrary, in the clams exposed to food type 2, the
area occupied by units oriented with $R_{\nu_1/Ta} > 2.5$ ranged between 11.7% (oOSL) and 20.4% (iOSL). Before the experiment, the proportions were higher, i.e., 18.1% (oOSL) and 26.3% (iOSL) (Fig. 6b). As for the other treatment, the difference was not significant (t-tests. oOSL: $p = 0.34$; iOSL: $p = 0.28$). In the control shells grown with no extra food supply, the area with $R_{\nu_1/Ta} > 2.5$ ranged between 24.6% (oOSL) and 44.8% (iOSL) during the experiment and 21.2% (oOSL) and 44.5% (iOSL) before the experiment (Fig. 6c). Hence, no trend was visible and the two portions did not show significant differences (t-tests. oOSL: $p = 0.59$; iOSL: $p = 0.99$). As for the temperature experiment, under the SEM, the microstructure of the shells from the food experiment did not show any change (Fig. 7).

All treatments showed a slightly thicker pigmented layer formed during the experiment than during the acclimation phase (Fig. 8a). During the experiment, clams cultured with food type 1 showed, on average, a thickening by 6.4%. In the food type 2 specimens, the layer thickness increased by 9.9%. Control shells showed an increase of 10.4% (Fig. 8b). However, none of these differences was statistically significant (t-test. Food type 1: $p = 0.43$; Food type 2: $p = 0.39$; Control: $p = 0.10$). According to the position of the polyene peaks, the number of single carbon bonds in the pigment chain did not change between the acclimation and experimental phase ($N_1 = 10.1 \pm 1.3$ and $N_1 = 10.0 \pm 0.9$, respectively). Likely, no significant variation was observed in the number of double carbon bonds ($N_4 = 10.5 \pm 0.2$ and $N_4 = 10.4 \pm 0.3$, respectively; Table 2).
4. Discussion

According to the results, variations of both food type and water temperature can influence the shell production rate of *A. islandica*. However, the shell microstructure and pigmentation react differently to these two environmental variables. Whereas changes of the dietary conditions do not affect the shell architecture and pigment composition, the crystallographic orientation of the biomineral units responds to seawater temperature fluctuations.

4.1 Environmental influence on shell microstructure

The environmental conditions experienced by mollusks during the process of biomineralization appear to influence shell organization (Carter, 1980). Among the different environmental variables, water temperature is the most studied driving force of structural changes of the shell. For instance, shell mineralogy can vary depending on water temperature (Carter, 1980). According to the thermal potentiation hypothesis, nucleation and growth of calcitic structural units is favored at low temperatures by kinetic factors (Carter et al., 1998). As a consequence, bivalve species living in cold water environments exhibit additional or thicker calcitic layers compared to the corresponding species from warm waters (Lowenstam, 1954; Taylor and Kennedy, 1969). Changes in the calcium carbonate polymorph also affect the type of microstructures (Milano et al., 2016). However, architectural variations often occur without mineralogical impact (Carter, 1980).

The present results indicate that temperature induces a change in the crystallographic orientation of the biomineral units of *A. islandica*. Although water temperature was previously shown to have an impact on microstructure formation, the attention has been mainly addressed to
the effects on the morphometric characteristics (e.g. size and shape) or on the type of microstructure. Milano et al. (2015) demonstrated that size and elongation of prismatic structural units of *Cerastoderma edule* were positively correlated to seawater temperature variation throughout the growing season. Likely, low temperatures induced the formation of small nacre tablets in *Geukensia demissa* (Lutz, 1984). Seasonal changes of the microstructural type were reported in the freshwater bivalve *Corbicula fluminea* (Prezant and Tan Tiu, 1986; Tan Tiu and Prezant, 1989). During the warm months, crossed acicular structure was produced, whereas simple crossed-lamellae were formed during the winter period. So far, variations of the crystallographic properties of bivalve biominerals have been exclusively investigated as a response to hypercapnic (acidified) conditions. *Mytilus galloprovincialis* and *Mytilus edulis* showed a significant change in the orientation of the prisms forming shell calcitic layer when subjected to hypercapnia (Hahn et al., 2012; Fitzer et al., 2014). Altered crystallographic organization may derive from the animal exposure to suboptimal conditions. These findings together with the present results suggest that thermal- and hypercapnic-induced stress are likely to affect the ability of the bivalves to preserve the orientation of their microstructural units (Fitzer et al., 2015).

Different food sources do not significantly influence the orientation of the biomineral units or the composition and distribution of pigments in shells of *A. islandica*. In previous studies, the relationship between microstructure and diet was virtually overlooked resulting in a lack of data in the literature. As suggested by Hedegaard et al., (2006), however, the type of polyenes is influenced by food. The ingestion of pigment-enriched microalgae potentially leads to an accumulation of pigments in mollusk tissues and the shell (Soldatov et al., 2013). On the other hand, it has been argued that polyenes do not generate from food sources like other pigments (i.e., carotenoids), but they are locally synthesized (Karampelas et al., 2009). In accordance to Stemmer and Nehrke (2014), the results presented here support the view that the specific diets on which the animals rely
on do not influence shell pigment composition. The chemical characteristics of the polyenes are likely to be specie-specific and independent from the habitats.

4.2 Confocal Raman microscopy as tool for microstructural analysis

From a methodological perspective, the present study represents an innovative approach in the investigation of shell microstructural organization. Electron backscatter diffraction (EBSD) has been previously used to determine the crystallographic orientation of gastropod (Fryda et al., 2009; Pérez-Huerta et al., 2011) and bivalve microstructural units (Checa et al., 2006; Frenzel et al., 2012; Karney et al., 2012). Whereas, CRM on mollusk shells is generally applied within studies on taphonomic mineralogical alteration and pigment identification (Stemmer and Nehrke, 2014; Beierlein et al., 2015). Both techniques provide considerably high spatially resolved analysis up to 250 nm, allowing the identification of individual structural units at μm- and nm-scale (Cusack et al., 2008; Karney et al., 2012). CRM offers important advantages supporting a broader application of this methodology in the biomineralization research field. For instance, samples do not require any pre-treatment. Unlike EBSD, there is no need of preparing thin-sections (~ 150 μm thick) or etching the shell surface (Griesshaber et al., 2010; Hahn et al., 2012). Therefore, further structural and geochemical analyses can be easily performed on the same sections (Nehrke et al., 2012). In addition, the size of CRM scans can be remarkably large (~ 7-8 mm²) without compromising the achievable resolution. By overlapping adjacent scans, it is possible to produce stitched scans allowing to further increase the region of interest on the shell surface.
SEM has previously been demonstrated to provide a convenient approach for the identification of individual structural units and the quantification of potential changes occurring within them (Milano et al., 2015, 2016b). However, SEM exclusively provides information about the morphometric characteristics of the microstructural units. As highlighted by the present study, to achieve an exhaustive examination, it is suggested to combine SEM with techniques assessing crystallographic properties of the biomaterials. For instance, our results show that the effect of water temperature is detectable in crystallographic orientation but not in morphometric features of the biomineral units.

4.3 Environmental influence on shell growth

Numerous previous studies demonstrated that growth rate of A. islandica - and many other bivalves - is linked to environmental variables (e.g., Witbaard et al., 1997, 1999; Schöne et al., 2004; Butler et al., 2010; Mette et al., 2016). However, the relative importance of the main factors, temperature and food supply/quality driving shell formation are still not well understood. Positive correlations between shell growth and water temperature have been identified (i.e., Schöne et al., 2005; Wanamaker et al., 2009; Marali et al., 2015), but the relationship between shell growth and environment is more complex (Marchitto et al., 2010; Stott et al., 2010; Schöne et al., 2013) and likely dependent on the synergic effect of food availability and water temperature (Butler et al., 2013; Lohmann and Schöne, 2013; Mette et al., 2016). Tank experiments were run in order to precisely identify the role of these two parameters of shell growth of A. islandica (Witbaard et al., 1997; Hiebenthal et al., 2012). A tenfold increase in instantaneous growth rate was observed between 1 and 12 °C, with the greatest variation occurring below 6 °C (Witbaard et al., 1997). On the contrary, a temperature increase between 4 and 16 °C was shown to produce a slowdown of
shell production (Hiebenthal et al., 2012). Our results are in agreement with the latter study and show a decrease in the instantaneous growth rate between 10 and 15 °C. High temperatures are often associated with an increase of free radical production (Abele et al., 2002). A large amount of energy then has to be allocated to limit oxidative cellular damage (Abele and Puntarulo, 2004). This translates into a higher accumulation of lipofuscin and slower shell production rate (Hiebenthal et al., 2013). The contrasting results of previous studies may be explained by individual differences in the tolerance toward temperature change (Marchitto et al., 2000).

Along with water temperature, food availability was also shown to influence A. islandica shell growth (Witbaard et al., 1997). At high algal cell densities, the siphon activity increased. This, in turn, was positively correlated to shell growth. Previous experiments used different combinations of algae such as Isochrysis galbana and Dunaliella marina (Witbaard et al., 1997), or Nannochloropsis oculata, Phaeodactylum tricornutum and Chlorella sp. (Hiebenthal et al., 2012) to grow the clams. However, there are still uncertainties about the composition of the primary food source for this species (Butler et al., 2010). Even though it is challenging to determine the preferred algal species, our results show that the use of a mixture of different algal species results in significantly faster shell growth than the used of just one algal species. In the natural environment, suspension feeders such as A. islandica preferentially ingest certain particle sizes (Rubenstein and Koehl, 1977; Jorgensen, 1996; Baker et al., 1998). The exposure to a limited algal size range, as in the case of food type 2, may affect shell growth. Furthermore, multispecific solutions contain a higher variability of biochemical components that better meet the nutritional requirements of the animal (Widdows, 1991). Our results are in good agreement with previous findings. For instance, it has been shown by Strömgren and Cary (1984) that Mytilus edulis shell growth increased as a result of a diet based on three different algal species. Furthermore, Epifanio (1979) tested the differences on the growth of Crassostrea virginica and Mercenaria mercenaria of a mixed diet.
composed by *Isochrysis galbana* and *Thalassiosira pseudonana* and diets consisting of the single species. Faster growth was measured in the mixed diet treatment, indicating a synergic effect of the relative food composition (Epifanio, 1979). Likely, *Mytilus edulis* grew faster when reared with different types of mixed diets as opposed to monospecific diets (Galley et al., 2010).

5. Conclusions

Arctica islandica shell growth and biomineral orientation vary with changes in seawater temperature. However, exposure to different food sources affect shell deposition rate but do not influence the organization of the biomineral units. Given the exclusive sensitivity to one environmental variable, the orientation of biomineral units may represent a promising new temperature proxy for paleoenvironmental reconstructions. However, additional studies are needed to further explore the subject. In particular, intra-individual variability influence on the results needs to be assessed. In the present study, a variation in the orientation between individuals was well visible and the risks associated have to be taken in account when considering further application of the possible proxy. Furthermore, the effect of other environmental variables such as salinity needs to be tested.

The innovative application of CRM for microstructural orientation and proxy development proved that the technique has large potential in this research direction. More studies are needed to validate its suitability in paleoclimatology experimental works.
Acknowledgements

The authors acknowledge the crew of the F.V. Three of a Kind for helping with the collection of the animals. Design and execution of the seawater temperature experiment were successfully realized thanks to the support of B. Beal, D. Gillikin, A. Lorrain and the Darling Marine Center scientific team. Funding for this study was kindly provided by the EU within the framework of the Marie Curie International Training Network ARAMACC (604802).

References

Epifanio, C. E.: Growth in bivalve molluscs: nutritional effects of two or more species of algae in diets fed to the American oyster Crassostrea virginica (Gmelin) and the hard clam Mercenaria mercenaria (L.), Aquaculture, 18, 1-12, 1979.

Schöne, B. R., Radermacher, P., Zhang, Z. and Jacob, D. E.: Crystal fabrics and element impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in shells of Arctica islandica—Implications for paleoclimate

Taylor, J.D. and Kennedy, W.J.: The shell structure and mineralogy of *Chama pellucida* inst

Thompson, I., Jones, D. S. and Dreibelbis, D.: Annual internal growth banding and life history of

Wanamaker, A. D., Kreutz, K. J., Borns, H. W., Introne, D. S., Feindel, S., Funder, S., Rawson, P.
D. and Barber, B. J.: Experimental determination of salinity, temperature, growth, and
metabolic effects on shell isotope chemistry of *Mytilus edulis* collected from Maine and

Wanamaker, A. D., Heinemeier, J., Scourse, J. D., Richardson, C. A., Butler, P. G., Eiríksson, J.
and Knudsen, K. L.: Very long-lived mollusks confirm 17th century ad tephra-based
radiocarbon reservoir ages for North Icelandic shelf waters, Radiocarbon, 50(3), 399-412,
2008.

Wanamaker, A. D., Kreutz, K. J., Schöne, B. R., Maasch, K. A., Pershing, A. J., Borns, H. W.,
Introne, D. S. and Feindel, S.: A late Holocene paleo-productivity record in the western Gulf
of Maine, USA, inferred from growth histories of the long-lived ocean quahog (*Arctica

Wanamaker, A. D., Hetzinger, S. and Halfar, J.: Reconstructing mid- to high-latitude marine
climate and ocean variability using bivalves, coralline algae, and marine sediment cores from
the Northern Hemisphere, Palaeogeogr. Palaeoclimatol. Palaeoecol., 302(1), 1-9,

Figures and tables

Fig. 1. Shell of adult *Arctica islandica* used in the temperature experiment (left) and juvenile from the Baltic Sea used in the food experiment (right). The map indicates the localities where the two sets of shells were collected: Jonesport, Maine (circle) and Kiel Bay (square).
Fig. 2. Raman spectrum of *Arctica islandica* showing the typical aragonite peaks (grey line). The exact position of the polyene peaks R_1 and R_4 was determined by using a peak fitting routine based on a Gaussian function (black line).

Fig. 3. *Arctica islandica* shell growth under controlled conditions. (a) Total growth and (b) instantaneous growth rate during the temperature experiment. (c) Total growth during the food experiment.
Fig. 4. Effect of temperature increase on biomineral orientation. (a) Position of the Raman maps of the three specimens reared at 10 °C and 15 °C. Dotted lines indicate the location of the calcein marks. dog = direction of growth. (b) Raman spectral maps of Rν1/Ta. Left images of each column represents shell portion formed.
at 10 °C, right images represent shell portions formed at 15 °C. First row of pairs refers to oOSL, the other two represent the iOSL. Scale bars = 10 µm. (c) Proportions of biominerals with $R_{\nu1/\nu2} > 2.5$ a.u. with respect to the total map area. Asterisks indicate significant difference between the orientation of iOSL microstructures formed at 10 and 15°C ($p < 0.05$).
Fig. 5. SEM images of *Arctica islandica* shell microstructures formed at 10 °C (left column) and at 15 °C (right column). The sketch indicates the position of the images 1 mm away from the calcein mark (grey line). The first row of images refers to the oOSL, the other two refer to the iOSL. Scale bars if not otherwise indicated = 5 µm.

Fig. 6. Effect of different diets based on (a) food type 1, (b) food type 2 and (c) ambient food on biomineral orientation. The optical microscope images indicate the position of the Raman scans. Dotted line marks the start of the experiment. The portion of shell prior the line was formed during the acclimation phase. dog = direction of growth. The Raman spectral maps indicate the ratio R_{ν_1/ν_2} for each data point of the scan. For
each shell, maps on the left represent shell portions during the experiment, maps on the right represent shell portions formed during the acclimation phase. In the acclimation portion of the sample reared with ambient food, a significant change in the microstructure orientation is visible. The respective area of the Raman map was not considered in further calculations because it was influenced by the emersion and transportation stress at the start of the experiment. Scale bars = 10 µm. The graphs show the proportions of biominerals of oOSL and iOSL with $R_{\nu_1/T_a} > 2.5$ a.u. with respect to the total map area.

794

795
Fig. 7. SEM images of *Arctica islandica* shell microstructures formed during the acclimation phase at AWI (left column) and during the food experiment (right column). Scale bars = 4 µm.
Fig. 8. Effects of diet on shell pigment distribution. (a) Raman spectral maps of the 1524 cm$^{-1}$ band representing the distribution of the polyenes in the shell cultured with food type 2. Dotted line marks the start of the experiment. dog = direction of growth. (b) The graph shows the thickness of the pigmented layer over the whole shell thickness before and during the food experiments.
Table 1. List of the studied specimens of *Arctica islandica* and experimental conditions.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Locality</th>
<th>Age</th>
<th>Experiment</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Maine</td>
<td>5</td>
<td>Temperature</td>
<td>10 °C + 15 °C</td>
</tr>
<tr>
<td>A4</td>
<td>Maine</td>
<td>4</td>
<td>Temperature</td>
<td>10 °C + 15 °C</td>
</tr>
<tr>
<td>A5</td>
<td>Maine</td>
<td>4</td>
<td>Temperature</td>
<td>10 °C + 15 °C</td>
</tr>
<tr>
<td>S12</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>Food 1</td>
</tr>
<tr>
<td>S14</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>Food 1</td>
</tr>
<tr>
<td>S15</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>Food 1</td>
</tr>
<tr>
<td>G11</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>Food 2</td>
</tr>
<tr>
<td>G12</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>Food 2</td>
</tr>
<tr>
<td>G15</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>Food 2</td>
</tr>
<tr>
<td>N13</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>No additional food</td>
</tr>
<tr>
<td>N15</td>
<td>Kiel Bay</td>
<td>1</td>
<td>Diet</td>
<td>No additional food</td>
</tr>
</tbody>
</table>

Table 2. Details of the pigment composition of the *Arctica islandica* shells used in the food experiment.

The position of the major polyene peaks R_1 and R_4 in the Raman spectrum is indicated together with the number of single and double carbon bonds of the pigment molecular chain (N_1 and N_4). Each shell was analyzed in the portions formed before and during the experimental phase.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Shell portion</th>
<th>R_1 (cm$^{-1}$)</th>
<th>R_4 (cm$^{-1}$)</th>
<th>N_1</th>
<th>N_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S12</td>
<td>Acclimation</td>
<td>1130.9</td>
<td>1515.2</td>
<td>9.7</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>Food 1</td>
<td>1121.4</td>
<td>1515.3</td>
<td>12.1</td>
<td>10.7</td>
</tr>
<tr>
<td>S14</td>
<td>Acclimation</td>
<td>1133.2</td>
<td>1519.4</td>
<td>9.3</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Food 1</td>
<td>1132.2</td>
<td>1518.6</td>
<td>9.5</td>
<td>10.3</td>
</tr>
<tr>
<td>S15</td>
<td>Acclimation</td>
<td>1129.5</td>
<td>1516.5</td>
<td>10.0</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>Food 1</td>
<td>1132.1</td>
<td>1519.8</td>
<td>9.5</td>
<td>10.1</td>
</tr>
<tr>
<td>G11</td>
<td>Acclimation</td>
<td>1132.6</td>
<td>1518.4</td>
<td>9.4</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>Food 2</td>
<td>1129.5</td>
<td>1517.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>G12</td>
<td>Acclimation</td>
<td>1131.7</td>
<td>1518.7</td>
<td>9.6</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>Food 2</td>
<td>1132.1</td>
<td>1518.2</td>
<td>9.5</td>
<td>10.4</td>
</tr>
<tr>
<td>G15</td>
<td>Acclimation</td>
<td>1132.4</td>
<td>1519.5</td>
<td>9.4</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Food 2</td>
<td>1128.0</td>
<td>1520.9</td>
<td>10.3</td>
<td>10.0</td>
</tr>
<tr>
<td>N13</td>
<td>Acclimation</td>
<td>1130.2</td>
<td>1515.6</td>
<td>9.9</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>Ambient food</td>
<td>1131.4</td>
<td>1514.1</td>
<td>9.6</td>
<td>10.9</td>
</tr>
<tr>
<td>N15</td>
<td>Acclimation</td>
<td>1117.9</td>
<td>1516.0</td>
<td>13.3</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>Ambient food</td>
<td>1130.7</td>
<td>1517.0</td>
<td>9.8</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Average $1129.7 ± 4.2$ $1517.5 ± 2.0$ $10.1 ± 1.1$ $10.4 ± 0.3$