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Text S1: Development of the gap filling models using artificial neural networks 

The estimation of annual carbon exchange budgets required filling the gaps in the CH4 and CO2 flux 

time series. 

Gap filling of the CH4 flux time series was performed separately on the lake and fen flux datasets, 

using artificial neural networks (ANN) (Dengel et al., 2013; Moffat et al., 2010; Papale and 

Valentini, 2003). Artificial neural networks (ANNs) are multivariate, non-linear regression models 

(Bishop 1995) that are fully empirical: the observational data are used to constrain the model’s 

numerical relationship between the inputs (independent variables) and output (dependent variable) 

(Papale and Valentini 2003, Moffat et al 2010). 

An artificial neural network is composed of nodes that are organized in layers and inter-connected. 

Each connection carries a weight that is analogous to a nonlinear regression parameter (Moffat et 

al., 2010). The development of the model consists of a training phase, followed by a testing 

(validation) phase. The weights are assigned and modified during the training phase, until reaching 

an optimal value. The network is trained by receiving sets of input data (independent variables i.e. 

environmental drivers) and associated output data (dependent variables i.e. flux time series). The 

training dataset was built by randomly selecting 40% of the available data pairs (environmental 

variables and associated flux data) and the testing set was selected as a randomly picked 40 % of the 

remaining available data pairs. The subsets were selected so that each season was represented. 

Environmental variables to be included as inputs were selected according to their physiological 

relevance to the production of CH4 and their transport from the surface to the atmosphere, as 

reported in the literature. These included peat temperature (for the wetland), surface sediment 

temperature and water temperature (for the lake), air temperature, wind speed, air pressure, net 

radiation at the surface and incoming solar radiation (for both). The relevance of the drivers was 

confirmed by correlation analysis. Before being used as input to the ANNs, the environmental 

variables have to be gap-free. On the period of interest, 10 to 25 % of the environmental input data 

was missing. These were filled using the online tool developed by Reichstein et al (2005) available 

at http://www.bgc-jena.mpg.de. Additional “fuzzy” datasets can be introduced as input variables to 

“force” a temporal parameter onto the modeled flux data, as described in Papale and Valentini 

(2003). Four fuzzy sets were used in this study, representing summer, autumn, winter and spring, 

respectively. The use of these fuzzy sets increased the performance of the ANNs to predict observed 

values, as seen by increasing r
2
. 



The networks comprised one input layer, one hidden layer where the neurons (nodes) receive the 

input values, each with an assigned weight, and one output layer. The addition of a hidden layer did 

not improve the performance of the network. The number of neurons to include in the hidden layer 

was chosen by running the ANNs with 5 to 12 neurons, and choosing the number of neurons low 

enough to keep the model simple yet high enough to minimize the error of the model and maximize 

the correlation coefficient. Eventually, 6 neurons for fen CH4 fluxes and 9 neurons for lake CH4 

fluxes were chosen. 

The networks were developed on the hourly scale to reduce uncertainty by reducing the proportion 

of missing values. All variables were scaled between 0 and 1 before training (Papale and Valentini 

2003) in order to remove potential bias due to the different numerical scale of the variables, and 

because a sigmoid function was used as transfer function between the neurons and the output 

values. At the end of the procedure the output variable is rescaled to their original units. The 

networks were optimized using the back-propagation algorithm (Dengel et al., 2013; Moffat et al., 

2007; Papale and Valentini, 2003). For each set (lake and fen), the runs were repeated; the best 

runs - with the highest r
2
 in the training phase between observed and modeled - were chosen and 

averaged as the main output. The gaps in the measured CH4 flux time series were replaced by 

predicted values, and the annual sum was computed by integrating the hourly flux values over time. 

The CO2 flux data from the fen were gap filled in the same way by developing an ANN on the fen 

flux dataset. Input variables were photosynthetic active radiation (PAR), air temperature, vapour 

pressure deficit (VPD) and net radiation at the fen surface. Net radiation showed to be relevant for 

night time data. Furthermore, previously mentioned fuzzy sets were incorporated too. The final 

selected network was built with 6 neurons. 

The performance of the ANN models was assessed by comparing the predicted values with original 

observed values of the entire dataset (Table S2). This represents the actual ability of the ANN to 

generalize (Papale and Valentini 2003) to untrained conditions. The goodness of fit was quantified 

with the coefficient of determination r
2
 and the absolute root mean square error (RMSE).  
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Table S1: Total (fen + lake) flux data coverage after post-processing, for each season and year, in 

numbers of half-hourly values per period. Corresponding relative coverage in % is in parenthesis. 

 
Ice-

free 1 

Ice-

free 2 

Ice-

free 3 

Ice-

cover 1 

Ice-

cover 2 

Ice-out 

1 

Ice-out 

2 
Year 1 Year 2 

CH4 
2376 

(0.35) 

4009 

(0.58) 

1731 

(0.28) 

1955 

(0.22) 

687 

(0.08) 

1616 

(0.82) 

979 

(0.39) 

5947 

(0.34) 

5468 

(0.31) 

CO2 
2240 

(0.34) 

1257 

(0.18) 

2599 

(0.42) 

2157 

(0.25) 

1249 

(0.15) 

1080 

(0.55) 

950 

(0.38) 

5619 

(0.32) 

3282 

(0.19) 

 

 

  



Table S2: Characteristics of the artificial neural networks developed for gap filling fen and lake 

CH4 fluxes and fen CO2 fluxes. All networks were developed with one hidden layer and with four 

fuzzy datasets as additional input to force seasonality. 

 Fen CH4 Fen CO2 Lake CH4 

Input variables Tair  

Tpeat at 10 cm  

Wind speed,  

Air pressure,  

Net radiation (fen) 

Incoming solar radiation 

 

 

Photosynthetic active 

radiation (PAR) 

Tair  

Vapour pressure deficit 

(VPD) 

Net radiation (fen) 

Tair 

T water at 10 cm 

T in sediment surface 

(100 cm) 

Wind speed 

Air pressure 

Net radiation (lake) 

Incoming solar 

radiation 

Number of neurons 6 6 9 

R2 (all predicted vs. 

obs.) 

0.85 0.86 0.70 

RMSE (all predicted 

vs. obs.) 

23% 35% 51% 

Mean random error 

of all predicted values 

(µmol m-2 s-1) 

0.004 0.23 0.011 

 

  



 

Figure S1. Flux footprint of the flux tower in winter averaged over all years. The location of the 

flux tower is indicated as a red circle. 

  



 

Figure S2. Significance of the CH4 (left panel) and CO2 (right panel) degassing rates at the lake 

during lake overturn (Season 1), as compared to flux rates during the following ice-free season 

(Season 2), in 2013 (grey boxes) and 2014 (brown boxes). The central line of the boxplots shows 

the median, box edges show 25
th

 and 75
th

 percentiles, and whiskers show 5
th

 and 95
th

 percentiles. 

The black dots indicate the mean flux rate. Outliers are not displayed. Only the main degassing 

peak, rather than the entire thaw season, was used to draw the figure. Numbers in italic indicate the 

amount of data available for each period. 

  



 

 

Figure S3. At the lake: example of periods during the summer when breakdown of a small thermal 

gradient (0.8-1.0 ˚C) between top (10 cm) and bottom (1 m) of the water column during morning 

hours (b) was coincident with CH4 degassing and decreasing atmospheric pressure at the lake (a), 

which can indicate the effect of water-side convection; while most degassing events occurred at 

decreasing air pressure but nearly-isothermal water column (c-d).  



 

Figure S4. Measured CH4 (grey) and CO2 (black) half-hourly fluxes at the lake during the spring 

period of 2013 (top panel) and 2014 (bottom panel). The x-axis shows day of year. Note the 

difference in the scale of the y-axis between the two panels. 

  



 

 

Figure S5. Diel course of the net CO2 exchange at the lake surface, measured as 30 minutes 

averages (blue) and 5 minutes averages (red) in June-August 2012. Each dot represents a half-hour 

flux normalized by the daily median, i.e. the figure shows the deviation of each flux value from the 

daily median. 

 

 

 

 


