Phosphorus addition mitigates N₂O and CH₄ emissions in N saturated subtropical forest, SW China

- 3 Longfei Yu¹, Yihao Wang^{2, 3}, Xiaoshan Zhang³, Peter Dörsch¹, Jan Mulder^{1*}
- 4 ¹Faculty of Environmental Sciences and Natural Resource Management, Norwegian University
- 5 of Life Sciences, Postbox 5003, N-1432 Aas, Norway.
- ⁶ ²Chongqing Academy of Forestry, 400036, Chongqing, China.
- ⁷ ³Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085,
- 8 Beijing, China
- 9 *Correspondence: Jan Mulder, tel. +47 67231852, E-mail jan.mulder@nmbu.no
- 10 Article type: Research Article

11 Abstract

12 Chronically elevated nitrogen (N) deposition has led to severe nutrient imbalance in forest soils. Particularly in tropical and subtropical forest ecosystems, increasing N loading has aggravated 13 phosphorus (P) limitation of biomass production, and has resulted in elevated emissions of 14 nitrous oxide (N₂O) and reduced uptake of methane (CH₄), both of which are important 15 16 greenhouse gases. Yet, the interactions of N and P and their effects on GHG emissions remain understudied. Here, we report N₂O and CH₄ emissions together with soil N and P data for a 17 period of 18 months following P addition (79 kg P ha⁻¹ yr⁻¹, applied as NaH₂PO₄ powder) to an 18 N-saturated, Masson pine-dominated forest at TieShanPing (TSP), Chongqing, SW China. We 19 20 observed a significant decline both in NO₃⁻ concentrations in soil water (at 5- and 20-cm depths) and in N₂O emissions, the latter by 3 kg N ha⁻¹ yr⁻¹. We hypothesize that enhanced N uptake by 21 plants and soil microbes in response to P addition, results in less available NO3⁻ for 22 23 denitrification. By contrast to most other forest ecosystems, TSP is a net source of CH₄. As for N₂O, P addition significantly decreased CH₄ emissions, turning the soil into a net sink. Based on 24 our observation and previous studies in South America and China, we believe that P addition 25 relieves N-inhibition of CH₄ oxidation. Within the 1.5 years after P addition, no significant 26 increase of forest growth was observed at TSP, but we cannot exclude that understory vegetation 27 increased. Our study indicates that P fertilization of N-saturated, subtropical forest soils mitigates 28 N₂O and CH₄ emissions, in addition to alleviating nutrient imbalances and reducing losses of N 29 through NO₃⁻ leaching. 30

Key Word: N₂O and CH₄ emission, N saturation, Phosphate fertilization, soil CH₄ uptake, acid
forest soil.

33 **1 Introduction**

Anthropogenic activities have transformed the terrestrial biosphere into a net source of CH₄, N₂O 34 and CO₂, leading to increased radiative forcing (Montzka et al., 2011; Tian et al., 2016). During 35 the last decade, atmospheric concentrations of CO2, CH4, N2O have increased at rates of 1.9 ppm 36 yr⁻¹, 4.8 and 0.8 ppb yr⁻¹, respectively (Hartmann et al., 2013). In China, the exponential increase 37 of reactive nitrogen (N) input into the biosphere since the 1970s has likely led to more carbon (C) 38 being sequestered in the biosphere (Cui et al., 2013; Shi et al., 2015). However, enhanced 39 emissions of N₂O and CH₄ due to chronic N pollution potentially offset the cooling effect by C 40 sequestration (Liu and Greaver, 2009; Tian et al., 2011). 41

Microbial nitrification and denitrification in soils account for about 60% of N₂O emissions 42 globally (Ciais et al., 2013; Hu et al., 2015). Although, microbial activity is often restricted in 43 low pH soils of unproductive forests, surprisingly large N₂O emissions have been reported from 44 acid, upland forest soils in South China (Zhu et al., 2013b). Reported average N2O fluxes in 45 humid, subtropical forests range from 2.0 to 5.4 kg ha⁻¹ yr⁻¹ (Fang et al., 2009; Tang et al., 2006; 46 Zhu et al., 2013b), which by far exceeds global averages for temperate or tropical forest 47 ecosystems (Werner et al., 2007; Zhuang et al., 2012). This has been attributed to frequently 48 49 shifting aeration conditions during monsoonal summers, promoting both nitrification and denitrification (Zhu et al., 2013b) and to large soil NO₃⁻ concentrations due to efficient cycling of 50 deposited N in acid subtropical soils (Yu et al., 2016). 51

52 Chronically elevated rates of N deposition (30-65 kg ha⁻¹ yr⁻¹; Xu et al., 2015) have resulted in 53 strong nutrient imbalances in southern Chinese forests, aggravating phosphorus (P) limitation 54 (Du et al., 2016). Phosphorous deficiency in N-saturated forests restricts forest growth and thus

constrains its capability to retain N (Huang et al., 2015; Li et al., 2016), resulting in ample 55 amounts of mineral N (NH_4^+ and NO_3^-) being present in the soil solution. Accordingly, Hall & 56 Matson (1999) observed larger N₂O emission in P-limited than in N-limited tropical forests after 57 one year of repeated N addition. Likewise, previous N manipulation studies in forests of South 58 China reported pronounced stimulation of N₂O emissions by N addition (Chen et al., 2016; 59 Wang et al., 2014; Zheng et al., 2016), supporting the idea that P limitation causes forests to be 60 more susceptible to N saturation and N2O-N loss. In an N-limited tropical montane forest in 61 southern Ecuador, P addition alone (10 kg P ha⁻¹ yr⁻¹) had no effect on N₂O emissions during the 62 first two years. However, N₂O emission was smaller when P was added together with N (50 kg N 63 ha⁻¹ yr⁻¹) than in treatments with N addition alone (Martinson et al., 2013). After continued 64 fertilization for three years, also P addition alone reduced N2O emissions at these sites (Müller et 65 al., 2015). In tropical China, with high N deposition (~ 36 kg ha⁻¹ yr⁻¹; Mo et al., 2008), P 66 addition (150 kg P ha⁻¹ yr⁻¹) to an old-growth forest revealed a similar pattern, with no initial 67 effect on N₂O emissions (0-2 years) but a significant longer term effect (3 to 5 years) on N₂O 68 emissions (Chen et al., 2016; Zheng et al., 2016). In a secondary tropical forests in South China, 69 Wang et al. (2014) found no effect on N₂O emissions of P alone (100 kg P ha⁻¹ yr⁻¹), and in 70 treatments combining P with N (100 kg N ha⁻¹ yr⁻¹), N₂O emissions increased during the wet 71 season. Meanwhile, they observed a significant increase in soil microbial biomass after P 72 addition, which is in line with previous findings in tropical forest soils of South China (Liu et al., 73 2012). Thus, they attributed the stimulating effect of P addition on N₂O emissions to the larger 74 nitrification and denitrification potential of the increased soil microbial biomass. This was also 75 proposed by Mori et al. (2014), based on results from a short-term incubation study with P 76 addition, excluding plant roots. 77

As the sole biogenic sink for CH₄, upland soils play an important role in balancing terrestrial 78 CH₄ emissions (Ciais et al., 2013; Dutaur and Verchot, 2007). Atmospheric CH₄ uptake in soil is 79 mediated by the activity of methanotrophic bacteria, which oxidize CH₄ to CO₂ to gain energy 80 for growth. Well-drained forest and grassland soils are dominated by yet uncultured, high-81 affinity methanotrophs residing in the upper soil layers (Le Mer and Roger, 2010). In addition to 82 edaphic factors (pH and nutrients), parameters affecting the diffusion of CH₄ into the soil (soil 83 84 structure, moisture, temperature) are believed to be the major controllers for CH₄ uptake (Smith et al., 2003). A number of studies have shown that excess N affects CH₄ fluxes in forest soils 85 (Liu and Greaver, 2009; Veldkamp et al., 2013; Zhang et al., 2008b). In general, N addition 86 87 promotes CH₄ uptake in N-limited soils by enhancing growth and activity of methanotrophs, whereas excessive N input and N saturation inhibit CH₄ oxidation on an enzymatic level 88 (Aronson and Helliker, 2010; Bodelier and Laanbroek, 2004). P addition experiments in N-89 90 enriched soils have shown positive effects on CH_4 uptake (Mori et al., 2013a; Zhang et al., 2011), but the underlying mechanisms, i.e. whether P addition affects the methanotrophic community in 91 soils directly or alleviates the N-inhibition effect on CH₄ oxidation through enhanced N uptake 92 (Mori et al., 2013b; Veraart et al., 2015), remain unresolved. 93

Subtropical forests in South China show strong signs of N saturation, with exceedingly high NO₃⁻ concentrations in soil water (Larssen et al., 2011; Zhu et al., 2013b). Little is known about how P addition affects N cycling and N₂O emission in these acidic, nutrient-poor soils. Likewise, the importance of increased mineral N concentrations for soil-atmosphere exchange of CH₄, and how this is affected by P fertilization remain to be elucidated for soils of the subtropics. Here, we assessed N₂O and CH₄ fluxes in an N-saturated subtropical forest in SW China under ambient N deposition and studied the effects of P addition on emission rates, nutrient availability and tree growth. The objectives were i) to quantify N₂O and CH₄ emissions, ii) to investigate the effect of
P addition on N₂O and CH₄ emission.

103 2 Materials and Methods

104 2.1 Site description

The study site "TieShanPing" (TSP) is a 16.2 ha subtropical forest (29° 380 N, 106° 410 E; 450 105 m a.s.l.), about 25 km northeast of Chongqing, SW China. TSP is a naturally regenerated, 106 107 secondary mixed coniferous-broadleaf forest, which developed after clear cutting in 1962 (Larssen et al., 2011). The forest stand is dominated by Masson pine (Pinus massoniana) and has 108 a density of about 800 stems ha⁻¹ (Huang et al., 2015). TSP has a monsoonal climate, with mean 109 annual precipitation of 1028 mm, and a mean annual temperature of 18.2 °C (Chen and Mulder, 110 2007a). Most of the precipitation (> 70%) occurs during summer periods (April to September). 111 Soils are predominantly well-drained, loamy yellow mountain soil, classified as Haplic Acrisol 112 (WRB 2014), with a thin O horizon (< 2 cm). In the O/A horizon, soil pH is around 3.7, and the 113 mean C/N and N/P ratios are 17 and 16, respectively. In the AB horizon, which has a slightly 114 higher pH, mean C/N is well above 20. The soil bulk density of the O/A horizon (~ 5 cm) is 115 about 0.75 g cm⁻³. Soil water-filled pore space (10 cm) at TSP hilltop generally ranges from 50 116 to 70% (mean \sim 60%; Zhu et al., 2013b). More details on soil properties are given in Table 1. 117

Annual N deposition at TSP measured in throughfall varies between 40 and 65 kg ha⁻¹ (dominated by NH_4^+ ; Yu et al., 2016), while the annual bulk N deposition is from 20 to 30 kg ha⁻¹ (Chen and Mulder, 2007b). According to regional data, annual P deposition via throughfall is < 0.40 kg ha⁻¹ (Du et al., 2016). Strong soil acidification at TSP has resulted in severe decline in forest growth (Li et al., 2014; Wang et al., 2007), and in decreased abundance and diversity of ground vegetation (Huang et al., 2015). Pronounced N saturation with strong NO_3^- leaching from the top soil has aggravated P deficiency (Huang et al., 2015). The total P content in the O/A horizon is ~ 300 mg kg⁻¹, while ammonium lactate-extractable P is smaller than 5 mg kg⁻¹ (Table 1).

127 2.2 Experimental Design

Three blocks, each having two 20 m * 20 m plots, were established on well drained soils of a 128 gently sloping hillside. Adjacent plots were separated by at least 10-m buffer zone. In each block, 129 plots were randomly assigned to a Reference and a P treatment. On 4 May 2014, a single dose of 130 P fertilizer was applied as solid NaH₂PO₄⁻²H₂O, at a rate of 79.5 kg P ha⁻¹. The amount of P 131 added was estimated from P adsorption isotherms (Supplementary Materials, Table S1 and 132 Figure S1), to ensure significantly increase in soil available P. To apply P fertilizer evenly, we 133 divided each plot into a 5 m * 5 m grid and broadcasted the powdered fertilizer by hand in each 134 grid cell. The P dose applied at TSP was intermediate as compared to the 10 kg P ha⁻¹ yr⁻¹ 135 applied by Müller et al. (2015) to a mountain forest in Ecuador and the 150 kg P ha⁻¹ yr⁻¹ applied 136 by Zheng et al. (2016) to a subtropical forest in South China. 137

The addition of NaH₂PO₄·2H₂O at the P-treated plots also resulted in an input of 59.0 kg ha⁻¹ of sodium (Na). One month after the fertilizer application, Na⁺ concentrations in soil water of the P treatments were about 5 mg L⁻¹ at 5-cm depth and 3 mg L⁻¹ at 20-cm depth (Table S2). Although somewhat larger than in the reference plots, the Na⁺ concentration in soil water of the P treatments are unlikely to have exerted a strong negative impact on plant and microbial activities.

143 **2.3 Sample collection and analyses**

Within each plot, three ceramic lysimeters (P80; Staatliche Porzellanmanufaktur, Berlin) were
installed at 5- and 20-cm soils near the plot centre in August 2013. To obtain water samples,

146 350-ml glass bottles with rubber stoppers were pre-evacuated, using a paddle pump, and 147 connected to the lysimeters for overnight sampling. Between November 2013 and October 2015, 148 we sampled soil pore water bi-monthly in the dry and dormant season and monthly during the 149 growing season. All water samples were kept frozen during storage and transport. Concentrations 150 of NH_4^+ , NO_3^- , potassium (K⁺), calcium (Ca²⁺), and magnesium (Mg²⁺) in soil water were 151 measured at the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy 152 of Sciences, Beijing, using ion chromatography (DX-120 for cations and DX-500 for anions).

In August 2013, soils from the O/A (0-3 cm), AB (3-8 cm) and B (8-20 cm) horizons were 153 sampled near the lysimeters for soil analysis. Total P and plant-available P contents were 154 155 monitored in samples collected from the O/A horizons every six months, starting two days before P addition. Soil samples were kept cold (< 4 °C) during transport and storage. Before 156 analysis, soil samples were air dried and sieved (2 mm). Soil pH was measured in soil 157 158 suspensions (10 g dry soil and 50 ml deionized water) using a pH meter (PHB-4, Leici, China). Total soil C and N contents were determined on dried and milled samples, using a LECO 159 elemental analyzer (TruSpec[@]CHN, USA). To measure total P, 1 g dry soil was digested with 5 160 ml of 6 M H₂SO₄ (Singh et al., 2005) and measured as ortho-phosphate by the molybdenum blue 161 method (Murphy and Riley, 1962). Ammonium lactate (0.01 M)-extractable P and H₂O-162 extractable P (P_{A1} and P_{H2O} , respectively) were measured as ortho-phosphate after extraction (1.5 163 g dry soil in 50 ml solution) (Singh et al., 2005). Ammonium oxalate (0.2 M)-extractable Fe, Al 164 and P were measured by inductive coupled plasma (7500; Agilent) after extraction (1.5 g dry soil 165 166 in 50 ml solution).

From August 2013 onwards, we measured N_2O and CH_4 emissions in triplicate close to the lysimeters, using static chambers (Zhu et al., 2013b). To investigate the immediate effect of P

addition on N₂O emissions, we sampled the gas emissions once before (2 May) and three times 169 (7, 10 and 12 May) after the P application. Gas samples (20 ml) were taken 1, 5, 15 and 30 170 minutes after chamber deployment and injected into pre-evacuated glass vials (12 ml) crimp-171 sealed with butyl septa (Chromacol, UK), maintaining overpressure to avoid contamination 172 during sample transport. Mixing ratios of N₂O and CH₄ were analyzed using a gas 173 chromatograph (Model 7890A, Agilent, US) at RCEES, equipped with an ECD for detection of 174 N₂O (at 375 °C with 25 ml min⁻¹ Ar/CH₄ as make up gas), a FID for CH₄ (250 °C; 20 ml min⁻¹ 175 N₂ as make-up gas) and a TCD for CO₂. Exchange rates between soil and atmosphere 176 (emission/uptake) were calculated from measured concentration change in the chambers over 177 time, applying linear or polynomial fits to the concentration data. Cumulative N₂O emissions 178 over time were estimated by linear interpolation between measurement dates (Zhu et al., 2013b). 179

From October 2013 onwards, litterfall was collected during the first week of every month in five 180 replicates per plot. Litterfall collectors were made of 1 m^2 nylon nets (1 mm mesh size), held in 181 place by four wooden poles 0.8 m above the ground. Fresh litter was dried at 65°C. In early 182 November 2013 and 2014 (at the end of the growing season), we collected current-year pine 183 needles from several branches of three trees in each plot. The collected needles were dried at 184 65 °C and the dry weight of 500 needles was determined. A subsample was dried at 80 °C and 185 finely milled prior to chemical analysis at the Chinese Academy of Forestry. Total C and N were 186 measured using an elemental analyzer (FLASH 2000; Thermo Scientific; USA). The contents of 187 K, Ca, Mg and P in the needles were determined by ICP-AES (IRIS Intrepid II; Thermo 188 189 Scientific; USA) after digesting 0.25 g dry weight samples with 5 ml of ultra-pure nitric acid. In November 2013, and 2014, and in February of 2015, we measured the height and the diameter at 190 breast height (DBH) of 6 to 10 Masson pines (only those with DBH > 5 cm) at each plot. These 191

data were used to estimate the standing biomass of Masson pines based on standard allometricequations (Li et al., 2011; Zeng et al., 2008).

Daily average air temperature and sum of precipitation were monitored by a weather station (WeatherHawk 232, USA) placed on the roof at the local forest bureau, in about 1 km distance from the sampling site (Yu et al., 2016).

197 **2.4 Statistical analyses**

Statistical analyses were performed using R version 3.3.1 (R Core Team, 2016). All data were 198 tested for normality (Kolmogorov-Smirnov's test) and homoscedasticity (Levene's test) before 199 further analysis. If not normally distributed, the data were normalized by logarithmic 200 transformation. Considering heterogeneity among blocks, temporal variabilities of NO₃⁻ 201 202 concentrations, N₂O and CH₄ fluxes were presented separately for each block. For time series data, we used linear mixed-effect (LME) models, to account for both repeated measurements and 203 within-group variance of a stratification variable (block design). LME models were applied to 204 test the effects of P addition on soil N₂O and CH₄ fluxes, NH₄⁺, NO₃⁻, K⁺, Ca²⁺ and Mg²⁺ 205 206 concentrations in soil water, as well as litterfall (Koehler et al., 2009; Müller et al., 2015). The analysis was based on data for plot means (the average of 3 subplot replicates) from three blocks. 207 In LME models, treatments (Reference or P addition) were considered fixed effects, while 208 sampling time and plots were treated as random effects. We then assessed the significance of 209 fixed effects through analysis of variance for LME models. One-way analysis of variance 210 (ANOVA, Turkey post-hoc test) was conducted to examine the treatment effects on soil pH, 211 nutrient contents in organic matter, and data of tree growth. Significance levels were set to p < p212 0.05, if not specified otherwise. 213

214 **3 Results**

215 **3.1 Nutrient concentrations in soil and soil water**

Addition of P resulted in a significant increase in soil P content in the O/A horizon, both as P_{Al} 216 and total P (Table 2). However, after 15 months, only PAI indicated an enhanced P status, while 217 218 total soil P did not differ significantly from background values at the reference sites. P addition had no significant effect on soil pH, or soil C and N content. The NO₃⁻ concentration in soil 219 water collected at 5 cm depth varied seasonally, with significantly greater values (30-40 mg N L⁻ 220 ¹) towards the start of the growing season in 2015 (April, Fig. S2), but not in 2014, likely due to 221 dilution by abundant precipitation in February to March 2014. Addition of P resulted in 222 significantly smaller NO_3^- concentrations in soil water at both 5- and 20-cm depths (Fig. 1b). In 223 general, the concentration of NH_4^+ in soil water was small (< 0.5 mg L⁻¹) and not affected by P 224 addition (Fig. 1a). At both depths, mean soil water concentrations of Mg^{2+} and Ca^{2+} were 225 significantly smaller in the P-treated than the reference plots, and the sum of charge of dissolved 226 base cations declined significantly in response to P addition (Fig. S3). 227

228 3.2 N₂O and CH₄ fluxes: effects of P addition

During the experimental period, N₂O fluxes varied seasonally (Fig. 2), showing a significant relationship with daily precipitation (Fig. S4a), but not with daily mean temperature (Fig. S4b). In the Reference plots, mean N₂O fluxes were generally below 50 μ g N m⁻² hr⁻¹ in the dry, cool season, but reached values of up to 600 μ g N m⁻² hr⁻¹ in the growing season (Fig. 2). Cumulative N₂O emissions were estimated with seasonally averaged fluxes, and they differed greatly among the three blocks (Fig. 3). The greatest annual N₂O emission was observed in the Reference plot (7.9 kg N ha⁻¹) of block 2. Mean N₂O fluxes during the 1.5 years after P addition were significantly smaller in the P treatment than in the Reference (Fig. 4). The P addition resulted in a decrease in cumulative N₂O emission by about 3 kg N ha⁻¹ yr⁻¹ on average, which is a 50% reduction (Fig. 3). No immediate effects (within days) of P addition on N₂O emission was observed (Fig. S5).

CH₄ fluxes varied greatly between blocks (Fig. 5). Net-emission of CH₄ was observed in summer 240 2013 (~ 80 μ g C m⁻² hr⁻¹) in blocks 1 and 2, whereas block 3 showed CH₄ uptake. From spring 241 2014 until October 2015, CH₄ fluxes were less variable in all blocks, with values fluctuating 242 around zero. A longer period of net-emission was observed in block 3 during the dry season 243 2014. The fluxes did not correlate with either precipitation or air temperature (Fig. S5c&d). In 244 the 1.5 years following P addition, mean CH₄ fluxes indicated net CH₄ emission ($\sim +3.8 \ \mu g \ C \ m^{-1}$ 245 ² hr⁻¹) in the Reference, whereas net CH₄ uptake (\sim -6.5 µg C m⁻² hr⁻¹) was observed in the P 246 treatment (Fig. 6). The suppressing effect of P addition on CH₄ emission was in accordance with 247 248 what was found for NO₃⁻ concentration and N₂O emission.

249 **3.3 The effect of P addition on tree growth**

Throughout the 2-year experimental period, we observed no change in tree biomass (138 t ha⁻¹) in response to P addition (Table S3). Likewise, there was no effect of P treatment on the 500needle weight (13 g on average). Between the two samplings in 2013 and 2014, we found differences in chemical composition of the pine needles, but this effect was not linked to P addition. Also, the C/N and N/P ratios of the needles (40 and 16, respectively) were hardly affected by P addition. Monthly litterfall varied seasonally in both Reference and P treatment (Fig. S6), but no significant difference was found between the two treatments.

257 **4 Discussion**

Background N₂O emission rates in the Reference plots were relatively large (Fig. 2), with mean 258 values close to 100 µg N m⁻² hr⁻¹ (Fig. 4). This is within the range of N₂O emission rates 259 previously reported for well-drained hillslope soils at TSP (Zhu et al., 2013b), but greater than 260 the rates reported for other forests in South China. For instance, N₂O emission rates averaged to 261 $37 \ \mu g \ N \ m^{-2} \ hr^{-1}$ in unmanaged sites at Dinghushan (Fang et al., 2009; Tang et al., 2006) and 50 262 µg N m⁻² hr⁻¹ in N-fertilized sites (Zhang et al., 2008a). TSP Reference plots emitted on average 263 5.3 kg N ha⁻¹ yr⁻¹ (Fig. 3), which is about 10% of the annual N deposition (50 kg ha⁻¹ yr⁻¹) 264 (Huang et al., 2015). These fluxes are well above average fluxes reported for tropical rainforests 265 (Werner et al., 2007). Large N₂O emissions at TSP are likely due to the large N deposition rates 266 (Huang et al., 2015), as suggested by the similar trends indicated by data from a wide range of 267 ecosystems (Liu et al., 2009). Also, warm-humid conditions during monsoonal summers may 268 stimulate N₂O emissions (Ju et al., 2011), as monsoonal rainstorms triggered peak fluxes (Pan et 269 al., 2003). The positive correlation between precipitation and N₂O emission peaks (Fig. S4a) 270 may indicate the importance of denitrification as the dominant N₂O source. This is supported by 271 recent ¹⁵N tracing experiments at TSP (Zhu et al., 2013a). 272

Addition of P caused a significant decline in soil mineral N (predominantly NO_3^- ; Fig. 2), particularly during summers, when NO_3^- concentrations were relatively high (Fig. S2). At the same time, annual N₂O emissions decreased by more than 50% (Figs. 3 and 4). These findings are consistent with a number of previous studies (Baral et al., 2014; Hall and Matson, 1999; Mori et al., 2014), which attributed the reduction of N₂O emissions in P-treated soils decreased mineral N content, most likely as a consequence of stimulated plant uptake and/or microbial

assimilation. It is noteworthy that there was no significant correlation between N_2O emission 279 rates and soil water NO₃⁻ concentration in our study (Figs. 2 and S2), suggesting that the 280 suppressing effect of P on N₂O emissions was indirect, probably by affecting the competition for 281 mineral N between plant roots and microbes (Zhu et al., 2016). In contrast to our 1.5-year study, 282 P-addition experiments in South Ecuador (Martinson et al., 2013) and South China (at 283 Dinghushan Biosphere Reserve (Zheng et al., 2016) found no effect of a single P addition on 284 N₂O emission during the first two years after application. However, significant reduction in N₂O 285 emission was observed after three to five years with continuous P addition, both at the 286 Ecuadorian and the Chinese site (Chen et al., 2016; Müller et al., 2015). For the montane forest 287 site in Ecuador, the observed delay in N₂O emission response to P addition may be explained by 288 the moderate amount of P added (10 kg P ha⁻¹ yr⁻¹; Martinson et al., 2013). Moreover, the 289 experiments were conducted in a forest with low ambient N deposition (~ 10 kg N ha⁻¹ yr⁻¹) and 290 N₂O fluxes (~ 0.36 kg N ha⁻¹ yr⁻¹ in the Reference plots) (Martinson et al., 2013; Müller et al., 291 2015). By contrast, the Dinghushan site in South China receives 28 kg N ha⁻¹ yr⁻¹ through wet 292 inorganic N deposition (Zheng et al., 2016), which is similar to the N deposition at our site (Chen 293 and Mulder, 2007b; Huang et al., 2015). They also observed larger N_2O emission rates (~ 0.88 294 kg N ha⁻¹ yr⁻¹ in the Reference plots) than in the Ecuadorian site. However, forests do not always 295 display a straightforward relationship between N deposition and N₂O emissions. Manipulation 296 experiments in the European NITREX project, for instance, revealed a much stronger correlation 297 of N_2O emissions with soil NO_3^- leaching than with N deposition (Gundersen et al., 2012). 298 Indeed, KCl-extractable mineral N at the Dinghushan site (~ 40 mg kg⁻¹; Zheng et al., 2016) is 299 several-fold smaller than at our site (> 100 mg kg⁻¹; Zhu et al., 2013b), indicating that 300 Dinghushan is less N-rich than TSP. This suggests that the response of N₂O emission to P 301

addition might depend on the N status of the soil. The fact that numerous studies found apparent suppression of N₂O emission in short-term experiments (< 2 years) in N + P treatments, but not in treatments with P alone, supports this idea (Müller et al., 2015; Zhang et al., 2014b; Zheng et al., 2016).

Other studies have observed increased N₂O emissions upon P addition (Mori et al., 2013c; Wang 306 et al., 2014). In an Acacia mangium plantation, fertilized with P, Mori et al. (2013b&c) found 307 308 that N₂O emissions were stimulated in the short-term but reduced in the long-term. While suppression of N₂O emission by P has been attributed to increased plant N uptake (Mori et al., 309 2014), increased N₂O emission are generally explained by enhanced microbial biomass (Liu et 310 311 al., 2012) and denitrification activity (Ehlers et al., 2010; He and Dijkstra, 2015). N₂O emissions measured shortly after P addition at our site in May 2014 were not different from fluxes in 312 untreated reference plots (Fig. S5). This may indicate that plant uptake at TSP is more important 313 314 for the effect of P addition on N₂O emissions than changes in microbial activity, which are expected to occur more rapidly. 315

The Reference plots at TSP showed net CH₄ emission for extended periods of the year (Figs. 5 316 and 6). Also, long-term CH₄ fluxes sampled between 2012 and 2014 on hillslopes near-by (Fig. 317 S7; Zhu et al., unpublished data) showed net CH₄ emission. This is in contrast to the generally 318 reported CH₄ sink function of forested upland soils (Ciais et al., 2013; Dutaur and Verchot, 319 2007). For example, CH₄ uptake rates reported for well-drained, forest soils in South Chinese 320 forest range from 30 to 60 μ g C m⁻² hr⁻¹ (Fang et al., 2009; Tang et al., 2006; Zhang et al., 2014a). 321 Since aerated upland soils typically provide favourable conditions for microbial CH₄ uptake (Le 322 Mer and Roger, 2010), the net emission observed in our sites is unlikely due to enhanced 323 production, but rather by supressed consumption. One reason for the net CH₄ emission at TSP 324

could be inhibition of CH₄ oxidation by NH_4^+ , as reported previously (Bodelier and Laanbroek, 2004; Zhang et al., 2014a). The concentration of NH_4^+ in the soil water was rather small (< 0.5 g L^{-1;} Fig. 1), which does not preclude, however, that NH_4^+ availability from the soil exchangeable pool is high. Zhu et al. (2013b) found extraordinarily high KCL-extractable NH_4^+ in TSP surface soils, likely reflecting the large atmogenic NH_4^+ input at the TSP site (Huang et al., 2015).

P addition had a significant impact on CH₄ fluxes, changing the soil from a net source to a net 330 sink on an annual basis (Fig. 6). However, the uptake rates of CH₄ in the P treatments remained 331 smaller than those reported for forest soils in tropical China (Tang et al., 2006; Zhang et al., 332 2008b). The stimulating effect of P addition on CH₄ uptake is consistent with previous studies 333 (Mori et al., 2013a, 2013b; Zhang et al., 2011), and has been attributed to lessening the NH₄⁺ 334 inhibition of methane oxidation. Unfortunately, we did not measure KCl-extractable NH_4^+ in our 335 study, but a decline of available NH_4^+ , which is the substrate for nitrification, is likely as NO_3^- 336 concentrations in soil water were significantly smaller with in the P-treatments (Fig. 1). P 337 addition may also result in a change of the taxonomic composition of the methane oxidizing 338 community (Mori et al., 2013a; Veraart et al., 2015). Alternatively, CH₄ oxidation may be 339 stimulated by increased CH₄ diffusion into the soil, due to enhanced root growth and increased 340 soil water loss due to transpiration in P-amended plots (Zhang et al., 2011). Given the strong N 341 enrichment of TSP forest (Huang et al., 2015), it is likely that the reason for the observed 342 reduction in CH₄ emissions in response to P fertilization is due to alleviating direct NH₄⁺ 343 inhibition of methane monooxygenase (Veldkamp et al., 2013), rather than to P-stimulation of 344 345 methanotrophic activity (Veraart et al., 2015).

346 Shortly after fertilizer application, we observed a modest, albeit significant increase of Na⁺ 347 concentration in soil water (Table S2). Other studies have documented the potential toxicity of excess Na⁺ in soil water to plant and microbial activities (Rengasamy et al., 2003; Wong et al., 2008). However, the occurrence of Na⁺ toxicity at the treated plots, affecting N turnover processes, is unlikely, as Na⁺ concentrations in soil water, within one month after application (Table S2), did not exceed 5 mg L⁻¹, far smaller than the values commonly assumed to indicate toxicity (40 to 100 mg L⁻¹) (Bernstein 1975). Frequent precipitation at TSP (Yu et al., 2016), both prior and following the addition of NaH₂PO₄.2H₂O (Fig. 2), apparently diluted and leached Na⁺, thus preventing toxic effects.

P application significantly increased plant-available P in the P-limited TSP soil (Table 2). 355 Meanwhile, concentrations of leachable base cations (K^+ , Mg^{2+} , Ca^{2+}) in soil water decreased 356 (Fig. S3), as expected from the reduction of NO_3^- concentrations in the P-treatments, which 357 represent a major decline in mobile anions in the P-treated soils (Mochoge and Beese, 1986). We 358 observed no sign of stimulated forest growth or increased N uptake by plants within the 359 360 relatively short period of our study (Table S3 and Fig. S6), making it difficult to link the observed reduction in mineral N in the soil solution (Fig. 1) to plant growth. When interpreting 361 the observed P effect on NO_3^- concentrations in soil water, several aspects need to be considered. 362 Firstly, two years of observation may be too short to detect any significant increase in tree 363 growth, due to NO₃⁻ uptake by plants, given the commonly large variabilities in tree biomass 364 365 estimates (Alvarez-Clare et al., 2013; Huang et al., 2015). Secondly, a significant proportion of the added P, and of excess N, may have been assimilated by the understory biomass, which was 366 not assessed in this study. Previously, understory vegetation has been reported to quickly 367 respond to P addition (Fraterrigo et al., 2011). Thirdly, as long-term N saturation and 368 acidification at TSP have reduced forest health (Lu et al., 2010; Wang et al., 2007), we may not 369 expect immediate response of forest growth to P addition. Large needle N/P ratios (17-22, Table 370

S3) indicated that P limitation for tree growth was not relieved 1.5 years after P addition (Li et al.,
2016). Therefore, enhanced N uptake by understory growth and/or soil microbial biomass may
have been the main mechanisms responsible for observed NO₃⁻ decline in the P-treated soil (Hall
& Matson 1999).

Overall, our study suggests that N-saturated TSP soils act as a regional hotspot for N_2O and CH_4 emissions. Within the short experimental period of 1.5 years, P fertilization was shown to significantly decrease NO_3^- concentrations in soil water and to reduce both N_2O and CH_4 emissions. These findings provide a promising starting point for improving forest management towards GHG abatement targets, taking into account the P and N status of subtropical soils in the region.

381 **5 Acknowledgement**

Longfei Yu thanks the China Scholarship Council (CSC) for supporting his PhD study. Support from the Norwegian Research Council to project 209696/E10 'Forest in South China: an important sink for reactive nitrogen and a regional hotspot for N₂O?' is gratefully acknowledged. We thank Prof. Wang Yanhui, Prof. Duan Lei, Dr. Wang Zhangwei, Zhang Yi, Zhang Ting, Zou Mingquan for their help during sample collection and data analysis. Dr. Zhu Jing is gratefully acknowledged for unpublished data on long-term CH₄ fluxes in the TSP catchment.

388 **Reference**

- Alvarez-Clare, S., Mack, M. C. and Brooks, M.: A direct test of nitrogen and phosphorus
- limitation to net primary productivity in a lowland tropical wet forest, Ecology, 94(7), 1540–
 1551, 2013.
- 391 1331, 2013.
- Anon: World Reference Base for Soil Resources 2014, FAO, Rome., 2014.
- Aronson, E. L. and Helliker, B. R.: Methane flux in non-wetland soils in response to nitrogen
 addition: A meta-analysis, Ecology, 91(11), 3242–3251, doi:10.1890/09-2185.1, 2010.
- Bernstein, L.: Effects of salinity and sodicity on plant growth, Annual Review of Phytopathology,
 13, 295-312, 1975.
- 397 Baral, B. R., Kuyper, T. W. and Van Groenigen, J. W.: Liebig's law of the minimum applied to a
- $\begin{array}{ll} \text{398} & \text{greenhouse gas: Alleviation of P-limitation reduces soil N}_2\text{O emission, Plant Soil, 374(1-2),} \\ \text{539-548, doi:10.1007/s11104-013-1913-8, 2014.} \end{array}$
- Bodelier, P. L. E. and Laanbroek, H. J.: Nitrogen as a regulatory factor of methane oxidation in
 soils and sediments, FEMS Microbiol. Ecol., 47(3), 265–277, doi:10.1016/S01686496(03)00304-0, 2004.
- Chen, H., Gurmesa, G. A., Zhang, W., Zhu, X., Zheng, M., Mao, Q., Zhang, T. and Mo, J.:
 Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition:
- 405 Hypothesis testing, Funct. Ecol., 30(2), 305–313, doi:10.1111/1365-2435.12475, 2016.
- 406 Chen, X. and Mulder, J.: Indicators for nitrogen status and leaching in subtropical forest
- 407 ecosystems, South China, Biogeochemistry, 82(2), 165–180, doi:10.1007/s10533-006-9061-3,
 408 2007a.
- Chen, X. Y. and Mulder, J.: Atmospheric deposition of nitrogen at five subtropical forested sites
 in South China., Sci. Total Environ., 378(3), 317–30, doi:10.1016/j.scitotenv.2007.02.028, 2007b.
- 411 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R.,
- 412 Galloway, J., Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S. and Thornton, P.:
- 413 Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science
- 414 Basis., edited by T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y.
- Xia, V. B. and P. M. M. Stocker, Cambridge University Press, Cambridge, United Kingdom and
 New York, NY, USA., 2013.
- Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H. and Zhu, Y.-G.: Centennial-scale analysis
 of the creation and fate of reactive nitrogen in China (1910-2010), Proc. Natl. Acad. Sci. U. S. A.,
 110(C) 2052 7. doi:10.1072/com.1221(20110.2012)
- 419 110(6), 2052–7, doi:10.1073/pnas.1221638110, 2013.
- 420 Du, E., de Vries, W., Han, W., Liu, X., Yan, Z. and Jiang, Y.: Imbalanced phosphorus and
- 421 nitrogen deposition in China's forests, Atmos. Chem. Phys., (16), 8571–8579, doi:10.5194/acp-
- 422 2015-984, 2016.
- 423 Dutaur, L. and Verchot, L. V.: A global inventory of the soil CH₄ sink, Global Biogeochem.
- 424 Cycles, 21(4), 1–9, doi:10.1029/2006GB002734, 2007.

- 425 Ehlers, K., Bakken, L. R., Frostegård, Å., Frossard, E. and Bünemann, E. K.: Phosphorus
- 426 limitation in a Ferralsol: Impact on microbial activity and cell internal P pools, Soil Biol.
- 427 Biochem., 42, 558–566, doi:10.1016/j.soilbio.2009.11.025, 2010.
- 428 Fang, Y., Gundersen, P., Zhang, W., Zhou, G., Christiansen, J. R., Mo, J., Dong, S. and Zhang,
- 429 T.: Soil-atmosphere exchange of N₂O, CO₂ and CH₄ along a slope of an evergreen broad-leaved
- 430 forest in southern China, Plant Soil, 319(1–2), 37–48, doi:10.1007/s11104-008-9847-2, 2009.
- 431 Fraterrigo, J. M., Strickland, M. S., Keiser, A. D. and Bradford, M. A.: Nitrogen uptake and
- preference in a forest understory following invasion by an exotic grass, Oecologia, 167(3), 781–
 791, doi:10.1007/s00442-011-2030-0, 2011.
- 434 Gundersen, P., Christiansen, J. R., Alberti, G., Brüggemann, N., Castaldi, S., Gasche, R., Kitzler,
- B., Klemedtsson, L., Lobo-Do-Vale, R., Moldan, F., Rütting, T., Schleppi, P., Weslien, P. and
- 436 Zechmeister-Boltenstern, S.: The response of methane and nitrous oxide fluxes to forest change
- 437 in Europe, Biogeosciences, 9(10), 3999–4012, doi:10.5194/bg-9-3999-2012, 2012.
- Hall, S. J. and Matson, P. A.: Nitrogen oxide emissions after nitrogen additions in tropical forests,
 Nature, 400(July), 152, doi:10.1038/22094, 1999.
- 440 Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V, Brönnimann, S.,
- 441 Charabi, Y. A.-R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J.,
- 442 Thorne, P. W., Wild, M. and Zhai, P.: Observations: Atmosphere and Surface, In: Climate
- 443 Change 2013: The Physical Science Basis., edited by T.F., D. Qin, G.-K. Plattner, M. Tignor,
- 444 S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. B. and P. M. M. Stocker, Cambridge University
- 445 Press, Cambridge, United Kingdom and New York, NY, USA., 2013.
- He, M. and Dijkstra, F. A.: Phosphorus addition enhances loss of nitrogen in a phosphorus-poor
 soil, Soil Biol. Biochem., 82, 99–106, doi:10.1016/j.soilbio.2014.12.015, 2015.
- Huang, Y., Kang, R., Mulder, J., Zhang, T. and Duan, L.: Nitrogen saturation, soil acidification,
 and ecological effects in a subtropical pine forest on acid soil in southwest China, J. Geophys.
 Res. Biogeosciences, 120, 2457–2472, doi:10.1002/2015JG003048., 2015.
- 451 Hu, H. W., Chen, D. and He, J. Z.: Microbial regulation of terrestrial nitrous oxide formation:
- Understanding the biological pathways for prediction of emission rates, FEMS Microbiol. Rev.,
 39(5), 729–749, doi:10.1093/femsre/fuv021, 2015.
- Ju, X., Lu, X., Gao, Z., Chen, X., Su, F., Kogge, M., Römheld, V., Christie, P. and Zhang, F.:
- 455 Processes and factors controlling N₂O production in an intensively managed low carbon
 456 calcareous soil under sub-humid monsoon conditions, Environ. Pollut., 159(4), 1007–1016,
 457 doi:10.1016/j.envpol.2010.10.040, 2011.
- Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H. and Wright, S. J.: Immediate and longterm nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input, Glob.
 Chang. Biol., 15(8), 2049–2066, doi:10.1111/j.1365-2486.2008.01826.x, 2009.
- +00 Chang. Diol., 15(0), 20+9 2000, 401.10.1111/j.1505-2+00.2000.01020.x, 2009.
- 461 Larssen, T., Duan, L. and Mulder, J.: Deposition and leaching of sulfur, nitrogen and calcium in
- 462 four forested catchments in China: implications for acidification, Environ. Sci. Technol., 45(4),
 463 1192–8, doi:10.1021/es103426p, 2011.
- 464 Li, Y., Niu, S. and Yu, G.: Aggravated phosphorus limitation on biomass production under

- increasing nitrogen loading: A meta-analysis, Glob. Chang. Biol., 22(2), 934–943,
- doi:10.1111/gcb.13125, 2016.

Li, Z., Wang, Y., Liu, Y., Guo, H., Li, T., Li, Z. H. and Shi, G.: Long-term effects of liming on health and growth of a Masson pine stand damaged by soil acidification in Chongqing, China,

- 469 PLoS One, 9(4), 1–9, doi:10.1371/journal.pone.0094230, 2014.
- 470 Li, Z., Yu, P., Y., W., Li, Z., Y., W. and Du, A.: Charcters of Litter-Fall in Damaged Pinus
- 471 massoniana Forests and Its Responses to Environmental Factors in the Acid Rain Region of
 472 Chongqing, China, Sci. Silvae Sin., 47(8), 19–24, 2011.
- 473 Liu, L. and Greaver, T. L.: A review of nitrogen enrichment effects on three biogenic GHGs:
- The CO₂ sink may be largely offset by stimulated N₂O and CH₄ emission, Ecol. Lett., 12(10), 1103–1117, doi:10.1111/j.1461-0248.2009.01351.x, 2009.
- Liu, L., Gundersen, P., Zhang, T. and Mo, J.: Effects of phosphorus addition on soil microbial
 biomass and community composition in three forest types in tropical China, Soil Biol. Biochem.,
- 478 44(1), 31–38, doi:10.1016/j.soilbio.2011.08.017, 2012.
- Lu, X., Mo, J., Gilliam, F. S., Zhou, G. and Fang, Y.: Effects of experimental nitrogen additions
 on plant diversity in an old-growth tropical forest, Glob. Chang. Biol., 16(10), 2688–2700,
 doi:10.1111/j.1365-2486.2010.02174.x, 2010.
- 482 Martinson, G. O., Corre, M. D. and Veldkamp, E.: Responses of nitrous oxide fluxes and soil
- nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern
 Ecuador, Biogeochemistry, 112(1–3), 625–636, doi:10.1007/s10533-012-9753-9, 2013.
- Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soils: A review, Eur. J. Soil Biol., 37(2001), 2010.
- Mo, J., Li, D. and Gundersen, P.: Seedling growth response of two tropical tree species to
 nitrogen deposition in southern China, Eur. J. For. Res., 127(4), 275–283, doi:10.1007/s10342008-0203-0, 2008.
- Mochoge, B. O. and Beese, F.: Leaching of plant nutrients from an acid forest soil after nitrogen
 fertilizer application, Plant and Soil, 91, 17–29, 1986.
- Montzka, S. A., Dlugokencky, E. J. and Butler, J. H.: Non-CO₂ greenhouse gases and climate
 change, Nature, 476(7358), 43–50, doi:10.1038/nature10322, 2011.
- Mori, T., Ohta, S., Ishizuka, S., Konda, R., Wicaksono, A. and Heriyanto, J.: Effects of
 phosphorus application on CH₄ fluxes in an Acacia mangium plantation with and without root
 exclusion, Tropics, 22(1), 13–17, 2013a.
- Mori, T., Ohta, S., Ishizuka, S., Konda, R., Wicaksono, A. and Heriyanto, J.: Phosphorus
 application reduces N₂O emissions from tropical leguminous plantation soil when phosphorus
 uptake is occurring, Biol. Fertil. Soils, 50(1), 45–51, doi:10.1007/s00374-013-0824-4, 2014.
- 500 Mori, T., Ohta, S., Ishizuka, S., Konda, R., Wicaksono, A., Heriyanto, J., Hamotani, Y., Gobara,
- 501 Y., Kawabata, C., Kuwashima, K., Nakayama, Y. and Hardjono, A.: Soil greenhouse gas fluxes
- and C stocks as affected by phosphorus addition in a newly established Acacia mangium
- 503 plantation in Indonesia, For. Ecol. Manage., 310, 643–651, doi:10.1016/j.foreco.2013.08.010,

- 504 2013b.
- 505 Mori, T., Ohta, S., Ishizuka, S., Konda, R., Wicaksono, A., Heriyanto, J. and Hardjono, A.:
- 506 Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N₂O and NO
- 507 emissions from soil sampled under Acacia mangium plantation and incubated at 100 % of the
- 508 water-filled pore space, Biol. Fertil. Soils, 49(1), 13–21, doi:10.1007/s00374-012-0690-5, 2013c.
- 509 Müller, A. K., Matson, A. L., Corre, M. D. and Veldkamp, E.: Soil N₂O fluxes along an
- elevation gradient of tropical montane forests under experimental nitrogen and phosphorus
- addition, Front. Earth Sci., 3(October), 1–12, doi:10.3389/feart.2015.00066, 2015.
- Murphy, J. and Riley, J. P.: A modified single method for the determination of phosphate in
 natural waters, Anal. Chim. Acta, 27(27), 31–36, doi:10.1016/S0003-2670(00)88444-5, 1962.
- 514 Pan, F., Peters-Lidard, C. D. and Sale, M. J.: An analytical method for predicting surface soil
- 515 moisture from rainfall observations, Water Resour. Res., 39(11), 1314,
- 516 doi:10.1029/2003WR002142, 2003.
- R Core Team: A language and environment for statistical computing. R Foundation for statistical
 computing, 2015; Vienna, Austria, 2016.
- Rengasamy, P., Chittleborough D. and Helyar K.: Root-zone constraints and plant-based
 solutions for dryland salinity, Plant and Soil, 257, 249-260, 2003.
- 521 Shi, Y., Cui, S., Ju, X., Cai, Z. and Zhu, Y.: Impacts of reactive nitrogen on climate change in 522 China, Sci. Rep., 5, 8118, doi:10.1038/srep08118, 2015.
- Singh, B. R., Krogstad, T., Shivay, Y. S., Shivakumar, B. G. and Bakkegard, M.: Phosphorus
 fractionation and sorption in P-enriched soils of Norway, Nutr. Cycl. Agroecosystems, 73(2–3),
 245, 256, doi:10.1007/s10705.005.2650 = 2005
- 525 245–256, doi:10.1007/s10705-005-2650-z, 2005.
- 526 Smith, K. a., Ball, T., Conen, F., Dobbie, K. E., Massheder, J. and Rey, A.: Exchange of
- 527 greenhousegases between soil and atmosphere: interactions of soil physical factors and
- biological processes, Eur. J. Soil Sci., 54(December), 779–791, doi:10.1046/j.13652389.2003.00567.x, 2003.
- 530 Tang, X., Liu, S., Zhou, G., Zhang, D. and Zhou, C.: Soil-atmospheric exchange of CO₂, CH₄,
- and N₂O in three subtropical forest ecosystems in southern China, Glob. Chang. Biol., 12(3), 546–560, doi:10.1111/j.1365-2486.2006.01109.x, 2006.
- Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Huntzinger, D. N.,
- Gurney, K. R., Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G.,
- 535 Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., Prinn, R., Saunois, M.,
- 536 Schwalm, C. R. and Wofsy, S. C.: The terrestrial biosphere as a net source of greenhouse gases
- to the atmosphere, Nature, 531(7593), 225–228, doi:10.1038/nature16946, 2016.
- 538 Tian, H., Xu, X., Lu, C., Liu, M., Ren, W., Chen, G., Melillo, J. and Liu, J.: Net exchanges of
- 539 CO₂, CH₄, and N₂O between China's terrestrial ecosystems and the atmosphere and their
- contributions to global climate warming, J. Geophys. Res. Biogeosciences, 116(2), 1–13,
 doi:10.1029/2010JG001393, 2011.
- 542 Veldkamp, E., Koehler, B. and Corre, M. D.: Indications of nitrogen-limited methane uptake in

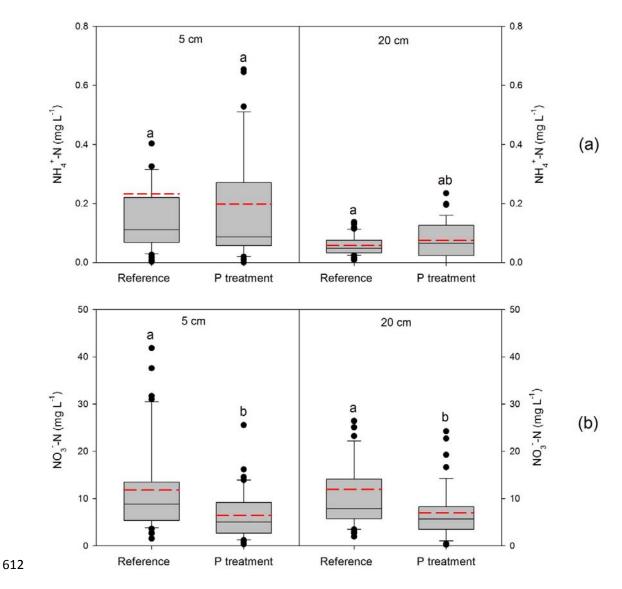
- tropical forest soils, Biogeosciences, 10(8), 5367–5379, doi:10.5194/bg-10-5367-2013, 2013.
- Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y. and Bodelier, P. L. E.: Beyond nitrogen:
 The importance of phosphorus for CH₄ oxidation in soils and sediments, Geoderma, 259–260,
 337–346, doi:10.1016/j.geoderma.2015.03.025, 2015.
- 540 557 540, doi.10.1010/j.geodernia.2015.05.025, 2015.
- Wang, F., Li, J., Wang, X., Zhang, W., Zou, B., Neher, D. a and Li, Z.: Nitrogen and phosphorus
 addition impact soil N₂O emission in a secondary tropical forest of South China., Sci. Rep., 4,
 5615, doi:10.1038/srep05615, 2014.
- Wang, Y., Solberg, S., Yu, P., Myking, T., Vogt, R. D. and Du, S.: Assessments of tree crown
 condition of two Masson pine forests in the acid rain region in south China, For. Ecol. Manage.,
 242(2–3), 530–540, doi:10.1016/j.foreco.2007.01.065, 2007.
- 553 Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T. and Kiese, R.: A global inventory of N₂O 554 emissions from tropical rainforest soils using a detailed biogeochemical model, Global
- 555 Biogeochem. Cycles, 21(3), doi:10.1029/2006GB002909, 2007.
- Wong, V.N.L., Dalal, R.C., Greene, R.S.B.: Salinity and sodicity effects on respiration and
 microbial biomass of soil, Biology and Fertility of Soils, 44, 943-953, 2008.
- Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H., Wu, Q.
 H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lu, S. H., Liang, T., Tong,
 Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H.,
 Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X.,
 Xin, Y. J., Shi, X. K., Du, E. Z., Dore, A. J., Tang, S., Collett, J. L., Goulding, K., Sun, Y. X.,
 Ren, J., Zhang, F. S. and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a
- nationwide monitoring network across China, Atmos. Chem. Phys., 15(21), 12345–12360,
 doi:10.5194/acp-15-12345-2015, 2015.
- Yu, L., Zhu, J., Mulder, J. and Dörsch, P.: Multiyear dual nitrate isotope signatures suggest that
 N-saturated subtropical forested catchments can act as robust N sinks, Glob. Chang. Biol., 22,
 3662-3674, doi:10.1111/gcb.13333, 2016.
- 569 Zeng, L., Wang, P., Xiao, W., Wan, R., Huang, Z. and Pan, L.: Allocation of Biomass and
- 570 Productivity of Main Vegetations in Three Gorges Reservoir Region, Sci. Silvae Sin., 44(8), 16–
 571 22, 2008.
- Zhang, T., Zhu, W., Mo, J., Liu, L. and Dong, S.: Increased phosphorus availability mitigates the
 inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China,
 Biogeosciences, 8(9), 2805–2813, doi:10.5194/bg-8-2805-2011, 2011.
- Zhang, W., Mo, J., Yu, G., Fang, Y., Li, D., Lu, X. and Wang, H.: Emissions of nitrous oxide
 from three tropical forests in Southern China in response to simulated nitrogen deposition, Plant
 Soil, 306(1–2), 221–236, doi:10.1007/s11104-008-9575-7, 2008a.
- Zhang, W., Mo, J., Zhou, G., Gundersen, P., Fang, Y., Lu, X., Zhang, T. and Dong, S.: Methane
 uptake responses to nitrogen deposition in three tropical forests in southern China, J. Geophys.
- 580 Res. Atmos., 113(11), 1–10, doi:10.1029/2007JD009195, 2008b.
- Zhang, W., Wang, K., Luo, Y., Fang, Y., Yan, J., Zhang, T., Zhu, X., Chen, H., Wang, W. and
 Mo, J.: Methane uptake in forest soils along an urban-to-rural gradient in Pearl River Delta,

- 583 South China., Sci. Rep., 4, 5120, doi:10.1038/srep05120, 2014a.
- Zhang, W., Zhu, X., Luo, Y., Rafique, R., Chen, H., Huang, J. and Mo, J.: Responses of nitrous
 oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing
 vs. non-N-fixing tree species, Biogeosciences, 11, 4941-4951, doi:10.5194/bg-11-4941-2014,
 2014.
- Zheng, M., Zhang, T., Liu, L., Zhu, W., Zhang, W. and Mo, J.: Effects of nitrogen and
 phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited
- tropical forests, Biogeosciences, 13, 3503–3517, doi:10.5194/bg-2015-552, 2016.
- 591 Zhu, Q., Riley, W.J., Tang, J., Koven, C.D.: Multiple soil nutrient competition between plants,
- 592 microbes, and mineral surfaces: model development, parameterization, and example applications 593 in several tropical forests, Biogeosciences 13, 341-36, doi:10.5194/bg-13-341-2016, 2016.
- Zhu, J., Mulder, J., Bakken, L. and Dörsch, P.: The importance of denitrification for N₂O
- emissions from an N-saturated forest in SW China: results from in situ ¹⁵N labeling experiments,
 Biogeochemistry, 116(1–3), 103–117, doi:10.1007/s10533-013-9883-8, 2013a.
- Zhu, J., Mulder, J., Wu, L. P., Meng, X. X., Wang, Y. H. and Dörsch, P.: Spatial and temporal
 variability of N₂O emissions in a subtropical forest catchment in China, Biogeosciences, 10(3),
 1309–1321, doi:10.5194/bg-10-1309-2013, 2013b.
- Zhuang, Q., Lu, Y. and Chen, M.: An inventory of global N₂O emissions from the soils of
- natural terrestrial ecosystems, Atmos. Environ., 47, 66–75, doi:10.1016/j.atmosenv.2011.11.036,
 2012.

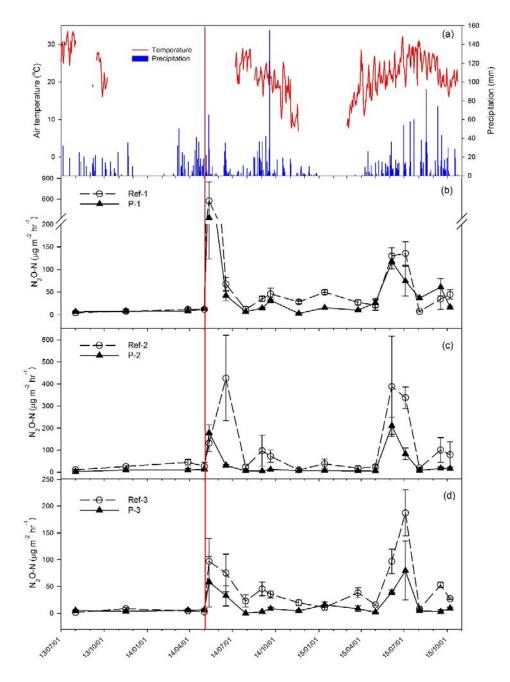
	Soil Layer	pН	Total C	Total N	Total P	C/N	N/P
			g kg ⁻¹	g kg ⁻¹	mg kg ⁻¹		
	O/A (0-3 cm)	3.7 (0.1)	80.7 (32.3)	4.8 (1.7)	308 (57)	17.0 (2.5)	15.5 (5.7)
Block 1	AB (3-8 cm)	3.8 (0.0)	23.9 (9.3)	1.3 (0.6)	*	20.0 (3.0)	-
	B (8-20 cm)	3.9 (0.2)	8.6 (1.2)	< 0.05	-	-	-
Block 2	O/A (0-3 cm)	3.6 (0.1)	77.6 (13.4)	4.7 (0.8)	297 (44)	16.7 (1.3)	15.7 (2.8)
	AB (3-8 cm)	3.7 (0.1)	20.2 (5.3)	1.0 (0.3)	-	21.4 (3.3)	-
	B (8-20 cm)	3.9 (0.1)	7.1 (1.6)	< 0.05	-	-	-
Block 3	O/A (0-3 cm)	3.6 (0.1)	67.0 (15.5)	3.8 (0.8)	223 (45)	17.4 (0.6)	17.2 (3.7)
	AB (3-8 cm)	3.6 (0.1)	21.0 (7.9)	1.1 (0.5)	-	24.5 (4.6)	-
	B (8-20 cm)	3.8 (0.1)	7.2 (1.5)	< 0.05	-	-	-
	Soil Layer	P _{H2O}	P _{Al}	Al _{ox}	Fe _{ox}	Pox	P _{ox} /
		mg kg ⁻¹	$(Al_{ox} + Fe_{ox})$				
	O/A (0-3 cm)	< 5.0	5.8 (1.4)	1700 (513)	1933 (350)	85.8 (22.6)	0.025 (0.008
Block 1	AB (3-8 cm)	< 5.0	2.1 (0.6)	1217 (243)	1692 (493)	47.1 (22.0)	0.016 (0.007
	B (8-20 cm)	< 5.0	< 1.0	1083 (90)	1158 (249)	29.3 (28.6)	0.012 (0.011
Block 2	O/A (0-3 cm)	< 5.0	5.9 (1.0)	1500 (238)	1792 (215)	79.2 (21.5)	0.024 (0.007
	AB (3-8 cm)	< 5.0	1.6 (0.4)	925 (149)	1517 (320)	37.2 (10.7)	0.016 (0.006
	B (8-20 cm)	< 5.0	< 1.0	892 (209)	1033 (413)	16.1 (10.5)	0.009 (0.007
Block 3	O/A (0-3 cm)	< 5.0	4.1 (0.9)	1367 (180)	1667 (168)	50.7 (10.9)	0.017 (0.003
	AB (3-8 cm)	< 5.0	4.4 (4.0)	1075 (128)	1350 (150)	24.8 (8.3)	0.010 (0.002
	B (8-20 cm)	< 5.0	< 1.0	992 (130)	875 (138)	8.0 (2.0)	0.004 (0.001

Table 1 Background soil properties of the experimental plots at Tieshanping (TSP). Values are means and standard deviations in parenthesis (n = 6). Soils were sampled in August 2013.

605 P_{H2O} = Water-extractable P, P_{A1} = Ammonium lactate-extractable P,

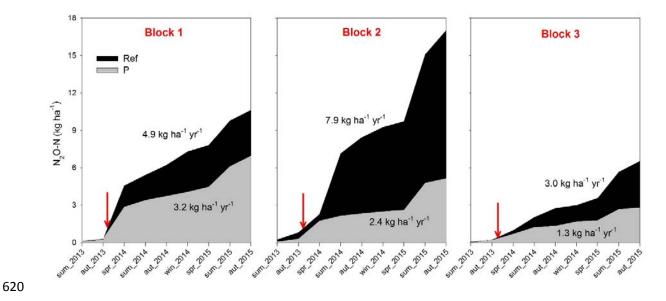

 $Al_{ox} = Oxalate extractable Al, Fe_{ox} = Oxalate extractable Fe, P_{ox} = Oxalate extractable P.$

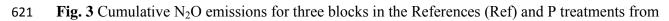
607 ^{*} Data not available

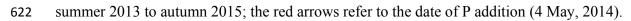

Table 2 Soil pH, C, N and P contents in the O/A horizon (0-3 cm) in the References (Ref) and P treatments. Values are means and standard deviations in parenthesis (n = 9). P addition was conducted on 14/05/04, after the first two sampling dates.

		pН	Total C	Total N	C/N	P _{Al}	Total P
			g kg ⁻¹	g kg ⁻¹		$mg kg^{-1}$	mg kg ⁻¹
13/08/02	Ref	$3.7 (0.1)^{bc\dagger}$	8.3 (2.3) ^{ab}	$0.5(0.1)^{bcd}$	$16.9(1.1)^{bcd}$	5.4 (1.4) ^c	292 (46) ^{bc}
	Р	$3.6(0.1)^{c}$	6.7 (2.0) ^b	$0.4 (0.1)^{bd}$	17.1 (2.1) ^{bc}	5.1 (1.3) ^c	260 (70) ^c
14/05/02	Ref	$3.7 (0.1)^{abc}$	12.2 (4.2) ^a	$0.9 (0.3)^{a}$	13.7 (1.5) ^e	19.0 (8.0) ^c	336 (65) ^{bc}
	Р	3.8 (0.2) ^{abc}	9.0 (3.5) ^{ab}	0.7 (0.2) ^{abc}	14.2 (2.8) ^{de}	13.7 (5.2) ^c	270 (72) ^{bc}
14/05/10	Ref	$3.8(0.1)^{abc}$	9.9 (2.1) ^{ab}	0.7 (0.2) ^{ab}	$14.0(0.7)^{e}$	15.4 (7.0) ^c	304 (49) ^{bc}
	Р	3.9 (0.3) ^{ab}	8.0 (1.9) ^{ab}	$0.6 (0.1)^{bcd}$	14.3 (1.3) ^{cde}	174 (114) ^a	572 (242) ^a
14/12/02	Ref	$3.8(0.1)^{abc}$	10.5 (3.6) ^{ab}	0.7 (0.3) ^{ab}	14.5 (1.3) ^{cde}	14.2 (7.4) ^c	328 (102) ^{bc}
	Р	3.9 (0.2) ^{abc}	9.5 (2.1) ^{ab}	0.7 (0.1) ^{abc}	14.0 (0.8) ^e	66 (24) ^{ab}	442 (106) ^{ab}
15/08/02	Ref	3.9 (0.2) ^{ab}	8.3 (2.2) ^{ab}	0.4 (0.1) ^{cd}	20.5 (2.5) ^a	13.4 (6.2) ^c	291 (61) ^{bc}
	Р	$4.0(0.2)^{a}$	6.5 (1.9) ^b	0.3 (0.1) ^d	19.7 (2.2) ^{ab}	57 (36) ^{ab}	383 (136) ^{bc}

611 [†] Different letters indicate significant differences (p < 0.05).




Fig. 1 Box whisker plots of NH_4^+ (a) and NO_3^- (b) concentration in soil water at 5- and 20-cm depths in the References and P treatments, throughout 1.5 years after the P addition; red dashed lines indicate mean values; different letters indicate significant differences (p < 0.05).



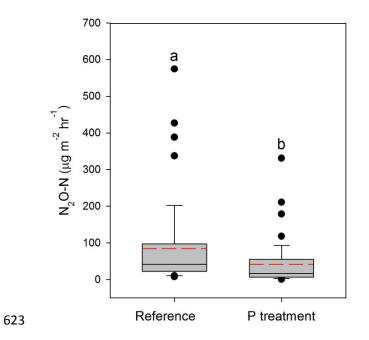
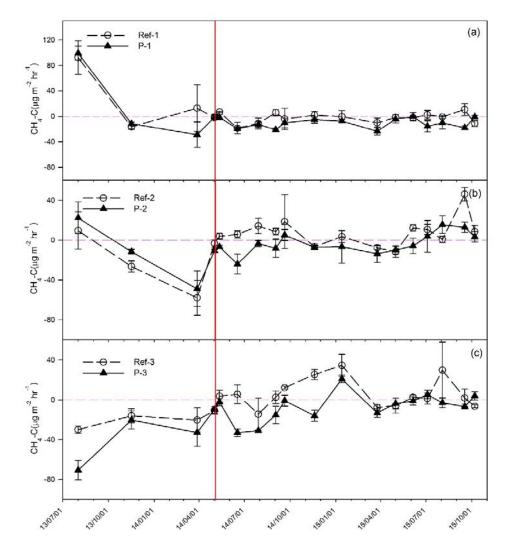
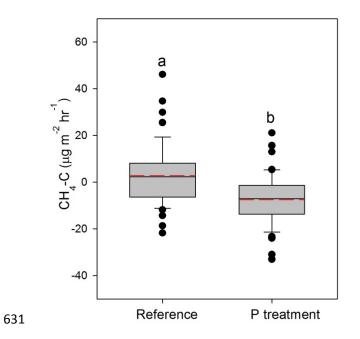

616

Fig. 2 Daily mean air temperature and precipitation (a), and monthly mean N_2O fluxes (±SE) in the References (Ref) and P treatments in each of the three blocks (b-d); the red vertical line gives the date of P addition (4 May, 2014).




Fig. 4 Box whisker plots for N_2O fluxes in the Reference and P treatment throughout 1.5 years

after the P addition; red dashed lines indicate mean values; different letters indicate significant difference (p < 0.05).

627

Fig. 5 Monthly mean CH_4 fluxes (±SE) in the References (Ref) and P treatments for three blocks (a-c); the horizontal broken line indicates zero flux the red vertical line refers to the date of P addition (4 May, 2014).

Fig. 6 Box whisker plots of CH₄ fluxes in the Reference and P treatment throughout 1.5 years

after the P addition; red dash lines indicate mean values; the different letters indicate significant difference (p < 0.05).