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Abstract 24 

The grasslands of northern China store a large amount of soil organic carbon (SOC), and the small 25 

changes in SOC stock could significantly affect the regional C cycle. However, recent estimates 26 

of SOC changes in this region are highly controversial. In this study, we examined the changes in 27 

the SOC density (SOCD) in the upper 30 cm of the grasslands of northern China between the 28 

1980s and 2000s, using an improved approach that integrates field-based measurements into 29 

machine learning algorithms (artificial neural network and random forest). The random 30 

forest-generated SOCD averaged 5.55 kg C m-2 in the 1980s and 5.53 kg C m-2 in the 2000s. The 31 

change ranged between -0.17 and 0.22 kg C m-2 at the 95% confidence level, suggesting that the 32 

overall SOCD did not change significantly during the study period. However, the change in 33 

SOCD exhibited large regional variability. The topsoil of the Inner Mongolian grasslands 34 

experienced a significant C loss (4.86 vs. 4.33 kg C m-2), whereas that of the Xinjiang grasslands 35 

exhibited an accumulation of C (5.55 vs. 6.46 kg C m-2). In addition, the topsoil C in the Tibetan 36 

alpine grasslands remained relatively stable (6.12 vs. 6.06 kg C m-2). A comparison of different 37 

grassland types indicated that SOCD exhibited significant decreases in typical steppe, whereas 38 

showed increases in mountain meadow, and were stable in the remaining grasslands (alpine 39 

meadow, alpine steppe, mountain steppe and desert steppe). Climate change could partly explain 40 

these changes in the SOCD of the different grassland types. Increases in precipitation could lead 41 

to SOC increase in temperate grasslands and SOC loss in alpine grasslands, while climate 42 

warming is likely to cause SOC loss in temperate grasslands. Overall, our study shows that 43 

northern grasslands in China remained a neutral SOC sink between the 1980s and 2000s. 44 

Keywords: alpine grasslands, artificial neural network, carbon density, climate change, 45 

grassland ecosystems, random forests, soil organic carbon, temperate grasslands.  46 
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1 Introduction 47 

Soil is the largest carbon (C) pool in the terrestrial ecosystem (Batjes, 1996), and even a few 48 

percent changes in stored C can have profound impacts on terrestrial C cycling (Johnson et al., 49 

2007). Previous studies have shown that climate warming will likely accelerate the 50 

microorganism decomposition of soil organic C (SOC) and induce greater carbon dioxide (CO2) 51 

emissions into the atmosphere, thus promoting positive C-climate feedback. However, this C loss 52 

from soil might be offset if the increased input of plant C to soil exceeds the increase in 53 

decomposition, which would promote negative C-climate feedback (Davidson and Janssens, 54 

2006). Hence, accurately unraveling SOC dynamics under climate change is crucial to determine 55 

whether positive C-climate feedback has occurred. 56 

 Grasslands are widely distributed in temperate regions of the world, and most C in grasslands 57 

stores in soil. (Fang et al., 2010). Due to this point, the SOC dynamics of grasslands have 58 

attracted considerable attention in recent decades (e.g., Hanegraaf et al., 2009; Mestdagh et al., 59 

2009; Yang et al., 2010). However, soil produces the largest amount of uncertainty with respect to 60 

estimating the terrestrial C budget (Ciais et al., 2013; Todd-Brown et al., 2013). For example, 61 

using a repeated soil inventory, Bellamy et al. (2005) reported that soils in England and Wales, 62 

including grassland soils, had experienced a significant C loss from 1978 to 2003. However, 63 

Emmett et al. (2010) analyzed a large-scale survey of soil profiles and found that the topsoil C 64 

concentration in Great Britain did not change as much as that reported by Bellamy et al. (2005) 65 

during the same study period. As an important component of global grassland ecosystem, nature 66 

grasslands in China cover more than 40% of country’s territory, and the C in soil account for 67 

about 96.6 % grassland ecosystem C stock in this area (Fang et al., 2010). Similarly, contrasting 68 

studies have also been reported with respect to the estimation of the SOC change in China’s 69 
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northern grasslands. Using the Terrestrial Ecosystem Model, Yan et al. (2015) suggested that 70 

Tibetan alpine grasslands sequestered C over the past 50 years at an annual rate of 10.1 Tg C. In 71 

contrast, Yang et al. (2008, 2010) demonstrated that the SOC stock in the grasslands of northern 72 

China did not change considerably between the 1980s and 2000s. These conflicting results 73 

suggest that intensive investigations and appropriate methodology are required to accurately 74 

assess the SOC dynamics of the grasslands in northern China.  75 

   In this study, we used repeated observations from two periods in the 1980s and 2000s and two 76 

advanced machine learning algorithms, artificial neural network (ANN) and random forest (RF) 77 

algorithms, to estimate long-term SOC changes in grasslands of northern China. The ANN and 78 

RF approaches consider the spatial relationships between study sites and the influence of climatic 79 

and edaphic parameters and could thus produce more accurate predictions compared with 80 

traditional spatial interpolation approaches, such as process-based models or Kriging-based spatial 81 

interpolations (Grimm et al., 2008; Li et al., 2013; Sreenivas et al., 2014; Yang et al., 2014). 82 

Specifically, we aimed to answer the following three questions: (1) Do the new approaches we 83 

used produce different estimates of SOC stocks and spatial heterogeneity compared with those 84 

obtained from previous studies? (2) How do the SOC changes vary spatially across the grasslands 85 

of northern China? and (3) How these changes are associated with climatic factors and vegetation 86 

types? 87 

 88 

2 Materials and methods 89 

2.1 Soil inventories 90 

Soil profile data in the 1980s were obtained from the National Soil Inventory (Wu, 1991; Hou and 91 

Zeng, 1992; Feng and Wang, 1993; Zhao, 1993; Gong, 1994; Liu, 1995) and were used to assess 92 
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the historical status of the SOC density (SOCD) in the grasslands of northern China. The soil 93 

inventory recorded the physical and chemical properties of the soils, such as geographical location, 94 

land cover, layer thickness, bulk density, proportion of rock fragments, and soil organic matter 95 

(SOM) concentration, which was determined using the Walkley-Black method (Nelson and 96 

Sommers, 1982). We used a constant value of 0.58 to convert SOM to SOC (Wu et al., 2003; Xie 97 

et al., 2007; Yang et al., 2010). A detailed description of the inventory soil profiles can be found 98 

in Yang et al. (2010). 99 

   The soil data in the 2000s were obtained from field sampling campaigns conducted from 100 

2001-2005 across the grasslands of northern China (Yang et al., 2010). The SOC concentration 101 

was determined following the same methodology as the National Soil Inventory (i.e., 102 

Walkley-Black method). The descriptions of this sampling method and the soil profiles (with 103 

environmental variables) are detailed in Yang et al. (2008, 2010). 104 

 105 

2.2 Vegetation information and climate/Normalized Difference Vegetation Index (NDVI) 106 

data 107 

According to the vegetation map of China (Chinese Academy of Sciences, 2001), six major 108 

grassland types occur in China: desert steppe (DS), typical steppe (TS), meadow steppe (MS), 109 

mountain meadow (MM), alpine steppe (AS), and alpine meadow (AM) (Fig. 1). To understand 110 

the variations in the SOCD dynamics among the different grassland types, the vegetation at each 111 

study site was classified into temperate grasslands (i.e., DS, TS, MS, and MM) and alpine 112 

grasslands (i.e., AS and AM) to examine the relationships between the SOCD dynamics and 113 

climate change. In addition, to compare our results with those of previous regional studies, we 114 
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divided our study area into three landscape regions: Inner Mongolia, Xinjiang (northwestern 115 

China), and the Tibetan Plateau.  116 

   To examine the relationships between the SOCD dynamics and environmental variables, we 117 

documented the following environmental variables for each site where soil profile information 118 

was collected: mean annual temperature (MAT), mean annual precipitation (MAP), seasonal 119 

climate variables (precipitation, mean temperature, maximum temperature and minimum 120 

temperature of each season). (National Meteorological Information Center; 121 

http://www.nmic.gov.cn), and annual NDVI data at a spatial resolution of 0.1° × 0.1° (GIMMS 122 

NOAA/AVHRR NDVI) (Tucker et al., 2005).  123 

 124 

2.3 Model validation and prediction 125 

First, we obtained site-level observations from Yang et al. (2010). Specifically, Yang et al. (2010) 126 

calculated the SOCD in the top 30 cm of soil using Eq. 1 to provide a consistent comparison with 127 

China’s National Soil Inventory from the 1980s. Because of the lack of bulk density information 128 

for certain profiles surveyed in the 1980s, Yang et al. (2010) developed an empirical relationship 129 

between bulk density and the SOC concentration (Eq. 2). 130 

!"#$ = &'	
)

'*+
×-$'	×!"#'×(1 − #'/100)/100,																(1) 131 

-$ = 0.29 + 1.296 exp −0.0167SOC                 (2)                        132 

 (r 2 = 0.63, P = 0.0001) 133 

   Second, we predicted the SOCD using the RF and ANN approaches (Fig. 2). The RF approach 134 

is a method that consists of averaging multiple deep decision trees trained on different parts of the 135 

same training set, and the goal is to reduce variance (Hastie et al., 2009). The general technique of 136 
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bootstrap aggregating was applied in the training algorithm of the RF model. The typical ANN 137 

used in this study included an input layer, a hidden layer and an output layer. Based on the 138 

National Soil Inventory from the 1980s and related environmental parameters, we trained the RF 139 

model and ANN to estimate the SOCD during the 1980s for those sites that were surveyed during 140 

the 2000s. Moreover, to assess the SOCD in the 2000s for sites that were surveyed in the 1980s, 141 

we used field observations recorded by Yang et al. (2010) and the related environmental 142 

parameters to construct the RF model and ANN. Specifically, the input variables of both 143 

approaches included latitude, longitude, altitude, grassland type, soil texture, NDVI, MAT, MAP, 144 

and precipitation, mean temperature, maximum temperature, minimum temperature of each 145 

season. The collected data sets for each period were divided into two parts. The training data set 146 

(90% of all data) was used to construct the RF model and ANN. The test data set (10% of all data) 147 

was used to validate the reliability of the two approaches. Moreover, the input variables of the 148 

ANN were normalized to a scale between -1 and 1, and the predictions of the ANN were rescaled 149 

to the actual SOCD. The predicted results were compared with field measurements to evaluate the 150 

validation and performance of the ANN and RF model. We repeated the training and prediction 151 

process 5000 times and adapted the mean value in both approaches. The parameters of both 152 

algorithms were optimized to achieve their best performance. 153 

   The final results were used to estimate the SOCD in the two periods. The SOCD changes in 154 

the entire grassland region, three different regions, and six grassland types were examined using a 155 

paired t-test. Furthermore, linear regression model was used to explore the relationship between 156 

the SOCD changes and the climate variables by grassland type.  157 

 158 

 159 
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2.4 Uncertainty analysis 160 

The accuracy of SOCD temporal changes was assessed by Monte Carlo simulation in this study. 161 

Here, to quantify the uncertainties of our estimation, we performed 5000 Monte Carlo simulations 162 

for each sites. During each stimulation, the input variables were randomly generated based on the 163 

probability distribution functions of their errors. Specifically, the error of climate data (i.e., MAT, 164 

MAP etc.) were calculated from the interpolation process. For the errors associated with the 165 

extrapolate models prediction of SOC density, we used values of the standard deviation of the 166 

error derived from the cross-validation, we applied this error randomly to each prediction in every 167 

sites. Moreover, for the soil profiles which bulk density were not recorded, we also use the error 168 

of relative pedotransfer function to present the uncertainty induced by lackness of bulk density 169 

record. 170 

   We also assumed any actual SOCD measurements was enough to present the true SOC stock, 171 

thus the uncertainty of SOC change was generated by those sites had not been surveyed. Finally, 172 

the interquartile range of the 5000 iterations of the simulation for each unsurveyed sites were 173 

calculated, and the summed interquartile were used to assess the relative uncertainty of the SOCD 174 

change over each region and grassland type (Ding et al., 2016). All analyses were performed 175 

using R software (R Development Core Team, 2014). 176 

 177 

3 Results 178 

3.1 Topsoil C changes and its uncertainty 179 

We tested the performance of the RF and ANN algorithms according to the root mean square 180 

error (RMSE) and determined the coefficient of variation (r2) through 5000 iterations. Positive 181 

linear relationships were observed between the measured and predicted SOCD during the 1980s 182 
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and 2000s; the mean r2 was 0.73 for RF and 0.62 for ANN, and the mean RMSE was 1.98 for RF 183 

and 2.39 for ANN (Fig. 3), demonstrating that both algorithms generated accurate and dependable 184 

predictions of SOCD during both time periods. 185 

   The SOCD during the 1980s for the sites surveyed in the 2000s was estimated as 5.21 kg C 186 

m-2 using the ANN approach and 5.39 kg C m-2 using the RF approach (Table 1). The SOCD 187 

during the 2000s for the sites surveyed in the 1980s was estimated as 5.70 kg C m-2 (ANN) and 188 

5.97 kg C m-2 (RF). The comparison between the actual measurements and the predictions from 189 

both approaches showed that there were no significant differences in these two methods (paired 190 

t-test, P > 0.05), suggesting that the ANN and RF methods generated accurate estimates. Notably, 191 

we only presented RF estimates in further analyses because of a higher r2 and lower RMSE. 192 

   By summarizing the estimates based on the measured SOCD profiles combined with the 193 

predicted data, we estimated the mean SOCD from 573 sites as 5.55 kg C m-2 and 5.53 kg C m-2 194 

for the 1980s and 2000s, respectively. A paired t-test indicated that the SOCD during the 2000s 195 

was not significantly different from the corresponding value in the 1980s at the site level (P = 196 

0.81), the change amounted to -0.17~ 0.22 kg C m-2 at the 95% confidence level. Taking the area 197 

of each grassland type into consideration, the total change in the SOC stock in the upper 30 cm 198 

depth was estimated as 11.03 Pg C in the 1980s and 11.16 Pg C in the 2000s. The overall rate of 199 

the change in the SOCD at this depth was 3.68 g C m-2 yr-1 (Table 2).  200 

 201 

3.2 SOCD changes in different grassland types and regions 202 

We illustrated spatial distributions in the SOCD in the topsoil in the 2000s (Fig. 4a) and its 203 

changes between the 1980s and 2000s (Fig. 4b) using the RF approach. Although there was no 204 

significant difference between the mean SOCD in the 2000s and the corresponding value in the 205 
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1980s at the site level (Tables 1, 2 and 3), the spatial distribution and temporal change of SOCD 206 

among different regions and grassland types were markedly different (Fig. 4). The mean SOCD 207 

decreased significantly in Inner Mongolia (4.86 vs. 4.33 kg C m-2, P < 0.01), at an average rate of 208 

-28.46 g C m-2 yr-1, but increased significantly in Xinjiang (5.55 vs. 6.46 kg C m-2, P < 0.01), at an 209 

average rate of 70.36g C m-2 yr-1. The SOCD was relatively stable in the Tibetan alpine grasslands 210 

(6.12 vs. 6.06 kg C m-2, P = 0.70) (Fig. 5a). When considering the different grassland types, the 211 

mean SOCD increased significantly in the MM and decreased significantly in the TS, but no 212 

significant changes occurred in the AS, MS, AM and DS (Fig. 5b). 213 

 214 

3.3 Effects of climate and soil geochemistry on SOCD changes  215 

The SOCD change values for the temperate grasslands decreased with the temperature of spring 216 

and summer (P < 0.01) and increased with the precipitation change values (P < 0.01) (Figure 6 217 

and 7). However, in the alpine grasslands, the SOCD change values decreased with the MAP 218 

change values (P < 0.01), and there was no significant trend related to other annual or seasonal 219 

temperature change values (Fig. 6 and 7). Moreover, we found a significant negative linear 220 

correlation between the change in SOCD and the original SOCD (P < 0.01, Fig. 8) across northern 221 

China. This relationship was also observed in the temperate and alpine grasslands (P < 0.01 , Fig. 222 

8). 223 

 224 

4 Discussion 225 

4.1 SOC changes in China’s grasslands  226 

Several studies have explored SOC dynamics across China’s grasslands and presented 227 

considerably different and even contrasting estimates because various approaches were used 228 
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(Table 4). For example, Huang et al. (2010) estimated the C sink rate in soils of Chinese 229 

grasslands as 4.9±1.9 Tg C yr-1 (from 1981 to 2000). In contract, Xie et al. (2007) claimed that 230 

Chinese grasslands experienced tremendous C losses in soil (-178.2 Tg C yr-1). In a recent study, 231 

Yang et al. (2010) noted that there were insignificant changes in the SOC of grasslands in 232 

northern China, based on a comparison between historical national soil inventory data and their 233 

field soil campaign data. In the current study, we used a machine learning approach, national soil 234 

inventory data and our own field survey and concluded that while Chinese grasslands remained an 235 

neutral SOC sink, but it was spatially heterogeneous during the 1980s to the 2000s. 236 

   The uncertainties in the estimation of SOC changes are largely induced by insufficient 237 

observations and methodological issues (Yang et al., 2014). In this study, we used two machine 238 

learning algorithms (i.e., ANN and RF) to estimate the SOCD in the 2000s for sites that were only 239 

surveyed in the 1980s, and vice versa. These algorithms generated promising predictions with 240 

high coefficients of determination (r2) and low RMSE values. For both approaches, we integrated 241 

field-based measurements and related environmental factors to train the models and thus acquired 242 

comparable SOCD values for the two time periods at each site by generating reliable SOCD 243 

predictions for unsurveyed sites at each time period. The underlying assumptions of this approach 244 

were that the grassland type and soil texture did not change substantially in two decades, and the 245 

SOCD change was driven by the balance of C inputs from vegetation litter (inferred from 246 

Temperature, Precipitation and NDVI) and SOC decomposition (inferred from Temperature and 247 

Precipitation). Compared with other widely used spatial extrapolation methods, such as 248 

Kriging-based interpolations, a machine learning method combined with multiple sources of 249 

relevant information shows better performance in theory and practice (Table S1)(Li et al., 2013). 250 
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   Although we used an improved approach that integrates field survey data into machine 251 

learning-based models to determine SOCD dynamics, there are some uncertainties in our study 252 

(Table 3). The major sources of the uncertainties may originate from the models and their input 253 

variables, as well as changes in land cover. First, the uncertainties and errors of the input variables 254 

of the models may generate uncertainties in our estimations. For example, the lack of bulk density 255 

data for some soil profiles may result in uncertainties in our estimates because bulk density is a 256 

key variable for calculating SOCD. However, Yang et al. (2010) developed a well-quantified 257 

relationship between bulk density and SOC (r2 = 0.63), and using it may not result in a large bias 258 

in our analysis. Climate data (i.e., MAT and MAP) are also a source of uncertainty because they 259 

are based on spatial interpolations. Furthermore, uneven spatial distribution of field measurements 260 

may also introduce additional uncertainties.  261 

   Second, we used two machine learning models (ANN and RF) to predict regional SOCD 262 

distribution from field-based observations, which will certainly produce some uncertainties 263 

because model simulation is sensitive to upscaling, and the extrapolation ability of any model is 264 

limited. However, the simulation performance of both models (ANN and RF) illustrated a good 265 

agreement between the predicted and field-observed SOCD (Fig. 3). This suggests that the models 266 

we used are appropriate for the estimation of SOC in Chinese grasslands. Finally, we did not 267 

consider the effects of land cover changes on the estimation of SOCD dynamics, which may 268 

introduce some uncertainties. However, there were no substantial land cover changes across most 269 

of the study region; thus, it is likely that the estimation was not greatly biased.  270 

     271 

 272 

 273 
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4.2 Effects of climate changes on SOC changes in different grassland types 274 

As shown in Fig. 6 and 7, climate change may play a critical role in controlling the SOCD 275 

changes, and different grassland types (alpine and temperate grasslands) revealed different 276 

responses to climate change. Increasing temperature, especially spring and summer maximum 277 

temperature, induced a C loss from the topsoil of temperate grasslands (P < 0.001), but this trend 278 

was not observed in the Tibetan alpine grasslands where the topsoil SOC remained relatively 279 

stable (P = 0.70). The decrease in the topsoil C of the temperate grasslands may be caused by 280 

increased substrate utilization efficiencies of soil microbial communities (Zogg et al., 1997) and 281 

decreased C input into soil due to reduced biomass when temperature increases in growing season 282 

(Yang et al., 2010). On the other hand, no significant change in SOC in the alpine grasslands has 283 

been shown by soil warming manipulation experiments (Zhang et al. 2015) and a soil 284 

transplantation experiment (Yue et al. 2015).  285 

   Precipitation is another critical factor that affected the SOCD change (Table 3). With an 286 

increase in precipitation, the SOCD increased in temperate grasslands (P < 0.0001) and decreased 287 

in alpine grasslands (P < 0.001). The underlying mechanisms that change in precipitation affects 288 

the SOC change in grassland ecosystems are complex (Bellamy et al., 2005). On the one hand, 289 

increased precipitation leads to an increase in plant growth and biomass and thus increased C 290 

input into soils in dry climates; on the other hand, it increases soil respiration and therefore 291 

enhances C emissions from soils (Thomey et al., 2011; Zhang et al., 2015). In very cold and 292 

humid regions, such an interaction between the SOC and changes in precipitation may produce an 293 

opposite result. Because we did not have regional soil respiration data in this study, we only 294 

examined how changes in precipitation affect plant growth in the temperate and alpine grasslands, 295 

using NDVI as an indicator of vegetation growth (Piao et al., 2005). There was a significantly 296 

positive relationship between the precipitation and NDVI changes in the temperate grasslands 297 

(Fig. 7a), while no such trend was found in the alpine grasslands (Fig. 7b). This suggests that 298 

increased precipitation does not significantly influence the SOC in alpine grasslands but could 299 

accelerate vegetation growth and therefore increase C input into the soil in temperate grasslands. 300 
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5 Conclusion 301 

In summary, we integrated field survey data into two machine learning algorithms (ANN and RF) 302 

to estimate the SOC stocks and dynamics in grasslands of northern China. We found that the 303 

overall SOC stocks did not change significantly between the 1980s and the 2000s, which indicates 304 

that the soils of these northern grasslands are a neutral C sink. Despite this overall stable SOC 305 

stock, there were large spatial differences in the SOCD changes between different regions and 306 

grassland types, suggesting differences in the climate changes and in the interactions between 307 

ecosystem C processes and climate systems. Our analysis indicated that the SOC exhibited a 308 

positive feedback to climate warming in the temperate grasslands, while this was not found for the 309 

alpine grasslands. In addition, the response of the SOCD dynamics to the changes in precipitation 310 

depended on grassland type.  311 

 312 

 313 
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 429 

Figure 1� Location of the study area and sampling sites during the 1980s and 2000s shown the 430 

background of China’s vegetation map (Chinese Academy of Sciences, 2001). 431 

 432 

 433 

 434 
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 436 

Figure 2� Methodology used for observing SOCD changes during the 1980s and 2000s. SOCD: 437 

soil organic carbon density, NDVI: Normalized Difference Vegetation Index, MAT: mean annual 438 

temperature, MAP: mean annual precipitation, ANN: artificial neural network, and RF: random 439 

forest.  440 
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 446 

Figure 3� Comparison between measured and predicted SOCD simulated using the ANN (a and 447 

c) and RF approaches (b and d) during the test process. The diagonal is the 1:1 line. SOCD: soil 448 

organic carbon density, ANN: artificial neural network, RF: random forest, r2: coefficient of 449 

determination, RMSE: root mean square error. 450 

 451 
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 455 

Figure 4� Spatial distributions of the SOCD in the top 30 cm for the 2000s (a) and its temporal 456 

changes (b) in the grasslands across northern China from the 1980s to the 2000s. SOCD: soil 457 

organic carbon density. 458 

 459 

 460 

Figure 5� Comparison of SOCD in the top 30 cm during the 1980s and 2000s across different 461 

regions and grassland types. The error bar represents the standard error. SOCD: soil organic 462 

carbon density, AM: alpine meadow, AS: alpine steppe, DS: desert steppe, MM: mountain 463 

meadow, MS: mountain steppe, TS: typical steppe.  464 
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 466 

Figure 6: Relationships between the SOCD change values and the MAT / MAP change values 467 

across the alpine (a and b) and temperate (c and d) grasslands from the 1980s to the 2000s. SOCD: 468 

soil organic carbon density, MAT: mean annual temperature, and MAP: mean annual 469 

precipitation.  470 
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 483 
Figure7: Relationships between the SOCD change values and the seasonal maximum temperature 484 

change values across the alpine (a, c, e and g) and temperate (b, d, f and h) grasslands from the 485 

1980s to the 2000s. SOCD: soil organic carbon density. 486 
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 490 

Figure 8� Relationships between the SOCD changes and the original value in the top 30 cm in 491 

grasslands across northern China from the 1980s to the 2000s. The lines are the regression lines 492 

for the whole grassland region and the two grassland types. SOCD: soil organic carbon density.  493 
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 503 
Figure 9� Relationships between NDVI and MAP changes in Chinese grasslands from the 1980s 504 

to the 2000s. (a) alpine grasslands, and (b) temperate grasslands. NDVI: Normalized Difference 505 

Vegetation Index, MAP: mean annual precipitation. 506 
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Table 1�Mean soil organic carbon density (SOCD) in the top 30 cm of the grasslands at the site 519 

level. The predicted SOCD was estimated using the artificial neural network (ANN) and random 520 

forest (RF) algorithms. The bold figures indicated the estimated SOCD from field measurements. 521 

SE: standard error of the mean value.  522 
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 529 
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 532 

 533 

 534 

 535 

 536 

Category No.  Mean SOCD/SE (kg C m-2) 
1980s 2000s 
ANN RF ANN RF 

Sites surveyed in the 1980s 246 5.70/0.24 5.70/0.21 5.97/0.19 

Sites surveyed in the 2000s 327 5.21/0.23 5.39/0.14 5.23/0.21 

All sites 573 5.42/0.22 5.55/0.13 5.43/0.18 5.53/0.14 
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Table 2
�

 Changes in topsoil (0-30 cm
) SO

C in grasslands across northern China from
 the 1980s to the 2000s. Estim

ates of area-w
eighted SO

C density 

and stocks w
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easured profiles and the predicted SO
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 forest (RF) m
ethod. SO
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: soil organic carbon 

density, A
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M
, alpine m

eadow
; D

S, desert steppe; TS, typical steppe; M
S, m

ountain steppe; M
M

, m
ountain m
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; and SE, standard 

error of the m
ean value. 
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N
orthern China 

O
verall 

196.34 
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Table 3: Estim
ate and relative uncertainty of SO
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 change of northern China grassland from

 1980s to 2000s. Estim
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interquartile range w
as generated by using 5000-iteration M
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Tables 4
�

 Previous estim
ations of carbon storage in the 2000s and its balance in Chinese grassland soil at different spatial scales using different 

approaches over a com
parable period.  
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