Response to the reviewers' comments

- 1 2
- ³ Ref: doi:10.5194/bg-2016-480
- 4 Title: Soil moisture control on sap-flow response to biophysical factors in a desert-shrub
- 5 species, Artemisia ordosica
- Authors: TianShan Zha, Duo Qian, Xin Jia, Yujie Bai, Yun Tian, Charles P.-A. Bourque,
 Jingyong Ma, Wei Feng, Bin Wu, Heli Peltola
- 89 Dear Editor,
- 10

15

19

23

45

11 Thank you very much for your and reviewers' helpful comments and suggestions for 12 improvement of our manuscript. We have carefully looked at your comments and have 13 revised the manuscript accordingly. Please find below our responses to your comments 14 and/or revisions to the manuscript.

We look forward to your decision and the possible publication of our manuscript in the special issue of BG, *Ecosystem processes and functioning across current and future dryness gradients in arid and semi-arid lands*.

- 20 Kind regards,
- 21 Tianshan Zha
- 22 -----
- 24 Anonymous Referee #1
- 25 General comments

*As the paper is about the soil moisture control on sap-flow and its response to 2.6 meteorological variables, a physical basis for the definition for drought condition and its 27 28 severity should be included. Instead, the authors keep on changing their definition of dry 29 conditions for each year and in various figures. What is the reason for using 0.08 m3 m-3, as the threshold to identify drought periods? Is it for severe, moderate or mild drought? The 30 analysis lacks consistency (Example figures 2 6). In section 2.4, they used 0.08 m3 m-3 as 31 the threshold to identify drought conditions. In Figure 2, it is 0.11 m³ m⁻³ for the drought year 32 2013 and 0.09 for the wet 2014. Why don't they use 0.08 m³ m⁻³ in both years? They change 33 threshold, definition of dry condition and VWC values in figure 6. I strongly suggest being 34 consistent in their definition of drought conditions and use the same threshold in all figures. 35 *The root zone depth for this species is around 60 cm (Line 291). The water deep in the root 36 zone can maintain transpiration rates even at low VWC. I think a better way is to define 37 threshold based on root zone soil water content in this paper. Is there any field capacity or 38 wilting point measurements available at the site? If so mention that in the paper and use 39 relative available water content in the root zone. If not, use relative water content (based on 40 41 maximum and minimum VWC values at the site) in the 30 cm soil layer to identify the 42 drought conditions. The value of VWC shown in Figure 1 indicate that soil drying occurred 43 mainly in shallow layer, not in the deep layer (30 cm), especially during pre and post growing periods. 44

RESPONSE: We agree with reviewer's suggestion of a consistent threshold of soil water

46 content among years. The soil drought conditions were defined based on relative extractable

soil water (REW) at a 30-cm depth during the measurement period (2013-2014) in the revised

48 manuscript. The consistent soil water threshold of $0.10 \text{ m}^3\text{m}^{-3}$ for sap flow was taken over

49 years in the revised manuscript (Fig. 1). Interestingly, this threshold is equivalent to a drought 50 REW value of 0.4 that was proposed by Granier et al. (1999: 2003). The plant is in drought

REW value of 0.4 that was proposed by Granier et al. (1999; 2003). The plant is in drought condition, when VWC at 30 cm depth is $\leq 0.10 \text{ m}^3 \text{ m}^{-3}$. For details relevant to what constitutes

⁵² drought condition, see the description in the revised text (see L188-195).

53

54 Literature that was added in the revised manuscript:

1. Granier et al.: Evidence for soil water control on carbon and water dynamics in European

- forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143,123-
- 57 145, 2007.

2. Granier, A., Bre´da, N., Biron, P., Villette, S.: A lumped water balance model to evaluate
duration and intensity of drought constraints in forest stands. Ecol. Model. 116, 269–283,
1999.

61

*Is it possible to include transpiration (mm) values in this paper? That will add more value
to understand the acclimation process of plants to the dry conditions.

RESPONSE: Yes, we have added estimated transpiration values (mm) in the revised
manuscript (Fig. 2f). The transpiration has been estimated on the basis of leaf area index
(LAI) and sap flow per leaf area (Equation 5, L205-208).

67

*The methods section reports leaf area measurements, but its values are not mentioned in the paper. Even in conclusion they have mentioned leaf expanded periods, but no data to support

70 it.

71 RESPONSE: The leaf area measurements were used to calculate the sap flow rate per leaf

⁷² area, which is a comparative unit with other species. We added the equation to calculate sap-

73 flow rates per leaf area in the revised manuscript (Equation 5, L205-208). Leaf area

⁷⁴ measurements were added to revised manuscript. (L142, L152-158, Table 1)

75 We added observations of phenological phases in the revised manuscript (Line 135-137).

76 Observations of phenological phases have been briefly described in section 2.1 relating to

the "Experimental site", see Lines 135-137 "Normally, shrub leaf-expansion, leaf-expanded,

⁷⁸ and leaf-coloration stages begin in April, June, and September, respectively."

79

*Statistical significance should be evaluated for each figure and include *p*-value along with
R2 in figures.

RESPONSE: We added statistical significance and R-square values in the figures of the
 revised manuscript.

84

*The 2013-2014 data shown clearly indicate that there is no direct control of VWC on sap

⁸⁶ flow (Figure 2 first vertical panel). Figure 2 also clearly shows that the relation between Js

87 with Rs , T and VPD are non-linear (check previous comments on p-value). If the

relationships are non-linear how can they explain the linear regression slopes shown in Figure

89 3? Is the linear relationships shown are statistically significant?

90 RESPONSE: We redefined VWC threshold of sap flow in the revised manuscript using

pooled data over two years (Fig. 2). The drought conditions were defined by the VWC

⁹² threshold and REW of 0.4 for drought conditions (Granier et al., 1999, 2002). The VWC

threshold of 0.10 m³m⁻³ at our site is equivalent to a REW threshold of 0.4 (Line 188-195).
Relations between mean sap-flow rate at specific times over a period of 8:00-20:00 and

corresponding environmental factors from Jun. 1 to Aug. 31 period were linear (p<0.05; Fig.

3) Corresponding environmental factors from full. I to Aug. 51 period were finear (p<0.05, Fig. 3). Regression slopes were, therefore, used to identify the sensitivity of sap flow (degree of

response) to the environmental variables (see e.g., Zha et al., 2013). (Line 212-215, Fig. 3)

99 References:

100 1. Granier et al.: Evidence for soil water control on carbon and water dynamics in European

- forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143,123-145, 2007.
- 2. Granier, A., Bre´da, N., Biron, P., Villette, S.: A lumped water balance model to evaluate
 duration and intensity of drought constraints in forest stands. Ecol. Model. 116, 269–283,
 1999.
- 105 106

98

107 Specific Comments

¹⁰⁸ *Abstract: 0.11 m3 m-3 is only for 2013, not for 2014.

Response: A consistent VWC threshold of 0.10 for both years was defined based on the
pooled data over two years. The related statements were revised accordingly in the revised
manuscript (Line 188-195, Fig. 1).

112

*Introduction: The section need to highlight what is the need for sap-flow measurements and how it influence ecosystem water transport and balance. The importance and need for the

how it influence ecosystem water transport and balance. The importance and need for the study is not properly addressed even though the authors explain the effect of environmental

variables on sap-flow in this section. In addition to this the section should refer more recent

papers on sap-flow measurements.

Response: We added statements addressing the importance and need for sap flow studies inthe revised manuscript (Line 86-88, Line 105-107).

120

135

*Line 131: Also include root zone depth, and mean leaf area values. Is it possible to include field capacity and wilting point here?

- Response: The root zone depth and leaf area values were added in the revised manuscript (Line 141-143, Table 1).
- 125 There were no data for field capacity and wilting point available. Therefore, we calculated
- the relative extractable soil water (REW, Fig. 2) as suggested by one of the reviewers and the
- 127 literature (Fernández et al., 1997; Zeppel et al., 2008).
- 128 REW=(VWC-VWC_{min})/(VWC_{max}-VWC_{min}),
- 129 where VWC is daily soil water content ($m^3 m^{-3}$), VWC_{min} and VWC_{max} are the minimum and
- 130 maximum VWC during the measurement period in each year, respectively.
- 131 References:
- Fernández, J. E., Moreno, F., Girón I. F., and Blázquez, O. M.: Stomatal control of water
 use in olive tree leaves, Plant Soil, 190, 179–192, 1997.
- 134 2. Zeppel, M. J. B., Macinnis-Ng, C. M. O., Yunusa, I. A. M., Whitley, R. J., Eamus, D. Long

term trends of stand transpiration in a remnant forest during wet and dry years, J. Hydrol.,

136	349,	200-213	, 2008.

- *Line 140: 'after dynamax 2005', what is that?
- 139 RESPONSE: The citation 'after dynamax 2005' was revised to 'Dynamax, 2005' (Line 149).
- ¹⁴¹ *Line 141: What is the frequency of measurements?
- Response: Sap-flow measurements were taken once per minute for each stem. This wasadded to the method section in the revised manuscript (L149-150).
- *Line 143: What was the mean leaf area? How did it vary with season?
- 146 Response: Mean leaf area is based on the mean of estimated leaf areas of five shrubs. The
- leaf area of each shrub is the product of branch numbers and leaf area per branch. Theseasonal changes in LAI was presented in the revised manuscript (Table 1).
- ¹⁵⁰ *Line 151-155: decoupling coefficient re-expresses gs, and can be removed.
- Response: We removed the term "decoupling coefficient" here in the revised manuscript (L166).
- 153

137

140

144

149

- *Line 164-171: Be consistent with label style. It is better to italicize all mathematical variable labels. Only u, gs and Js are italicized.
- 156 Response: We italicized all labels throughout the text in the revised manuscript.
- *Line 178- What is the reason for selecting VWC=0.08 m3 m-3 as the threshold to determine the drought condition. It is not explained in the paper. The time series of VWC (Figure 1) don't show any severe drought conditions in 30 cm depth. It is useful if the authors can include relative water content within 0-30 cm layer.

162 Response: We revised the VWC threshold using relative extractable soil water (REW) and

- VWC at 30-cm depth during the measurement period (2013-2014) using pooled data of two years. Consequently, a consistent VWC threshold of 0.10 was defined for the two years (Line
- 165 166

188-195).

- ¹⁶⁷ *Line 197: 'Lower than...' What is the reduction in percentage?
- 168 RESPONSE: We added the statement "Total precipitation and number of rainfall events
- during the 2013 measurement period (257.2 mm and 46 days) were about 5.6% and 9.8%
 lower than those during 2014 (272.4 mm and 51 days; Fig, 1d), respectively." into revised
- 171 manuscript. (L228-230)
- 172
- *Line 205-210: Can you add time series of gs here?
- 174 RESPONSE: Yes, we added monthly mean of gs (Table 1).
- 175
- *Line 215: See general comments above. The threshold to define drought conditions should
 be the same in both years.
- 178 RESPONSE: Yes, we revised VWC threshold as responded to general comments above (Line179 188-195).
- 180

*Line 222-228: How can you explain the use of the slope of linear regression relationship if the variation of Js with Rs, T and D are non-linear? Use values only when p<0.05.

RESPONSE: Each of slope in Fig. 5 (in revised ms) was from a linear regression between

sap-flow rates at specific times and corresponding environmental factors over the Jun. 1 to

Aug. 31 period. Related linear relations are statistically significant (Fig. 3 in revised ms).

186

¹⁸⁷ *Line 233-243: What is the reason for this delay?

188 RESPONSE: The reason for the delay between Js and R_s could be related to available energy.

189 Specific explanation could be that R_s can force T and VPD to increase, causing a phase

190 difference in time lags among the J_s -R_s, J_s -T, and J_s -VPD relations. Stomatal conductance gs

191 peaks earlier than Rs. These delays reflect an acclimation of plant to dry and hot

192 environments. We added this explanation in the revised manuscript (Line 338-343).

*Line 246-252: Figure 6 shows data from three days. What are those days in day number? A
meaning full explanation should be given for the use of VWC limits. The first panel shows

196 VWC variation within 0.001 m3 m-3! Is it meaning full considering the errors in VWC

197 measurements? Also use only significant digits while using VWC values. The data is only 198 three days. Is it possible to add more data in this figure, also from both years? Using only

three days for this analysis is not conclusive.

RESPONSE: We added the DOY in Fig. 8 caption. This figure compared the degree of soil water control on the hysteresis between J_s and R_s . Therefore, we took three contrasting drought classes (severe, moderate, light) to see corresponding changes in hysteresis to drought (Figure 8).

203 drought (Figure

²⁰⁵ *Line 252: Figure 8 should be included in the results section.

RESPONSE: Fig.10 in the revised ms was included in the results section, as suggested (L280-282).

*Line 263-265: This is already known. Provide some references here.

RESPONSE: References were added. Similar results were reported by Qian et al., 2015 and
 Zha et al., 2013) (Line 295-299).

213 References added:

1. Qian, D., Zha, T., Jia, X., Wu, B., Zhang, Y., Bourque C. P. A., Qin, S., and Peltola, H.:

Adaptive, water-conserving strategies in Hedysarum mongolicum endemic to a desert shrubland ecosystem, Environ. Earth. Sci., 74, 6039–6046, 2015.

217 2. Zha, T., Li, C., Kellomäki, S., Peltola, H., Wang, K.-Y., and Zhang, Y.: Controls of

218 Evapotranspiration and CO2 Fluxes from Scots Pine by Surface Conductance and Abiotic

219 Factors, Plos One, 8, e69027, 2013.

220

208

212

*Line 271: Rewrite this sentence. VWC don't show any direct effect on Js in the figure shown

RESPONSE: The sentence was rewritten as "...VWC is the most important factor modifying the response in sap flow in *Artemisia ordosica* to other environmental factors." (L304-306)

224

*Line 291: Provide information on root zone depth in the methods section.

RESPONSE: We added information on root zone depth in the methods section of the revised manuscript. Over 60% of the total roots were distributed in the 0-60cm depth (Zhao et al.

- 228 2010; Jia et al., 2016). (Line 143-144)
- 229

237

240

230 References that added:

1. Zhao, W., Liu, B., Chang, X., Yang, Q., Yang, Y., Liu Z., Cleverly, J., Eamus, Derek.:

- Evapotranspiration partitioning, stomatal conductance, and components of the water balance:
 A special case of a desert ecosystem in China. J. Hydrol., 538, 374-386, 2016.
- 234 2. Xin Jia, Tianshan Zha, Jinnan Gong, Ben Wang, et al.: Carbon and water exchange over

a temperate semi-arid shrublandduring three years of contrasting precipitation and soil

- moisturepatterns. Agricultural and Forest Meteorology, 228, 120-129, 2016.
- ²³⁸ *Figure 1: Dotted line is not explained in the figure caption.
- RESPONSE: We added an explanation in the caption of Fig. 2 in the revised ms.
- ²⁴¹ *Figure 2: Use the same definition for dry periods in 2013 and 2014 as mentioned above.
- RESPONSE: Consistent VWC threshold of 0.1 was used for the dry periods of 2013 and
 2014 in the revised manuscript.
- 244

*Figure 8: This figure is not mentioned in results sections. Look like p value is low (both
N and R2 low) and not statistically significant. If it is below 95.

247 RESPONSE: Fig.10 (in revised ms) was simply used to explain the hysteresis between sap

flow and the environmental factors. We added some results from Fig. 10 in the result section

of the revised manuscript. Statistical significance was checked. Only regression lines with pvalue < 0.05 are shown in the Fig. of the revised manuscript (Fig. 10; Line 280-282).

251 252

253 Anonymous Referee #2

254 *General comments

I have some minor comments which should be addressed about the drought classification,

soil and vegetation characteristics. Also at the end, I have some minor points about writing.

Based on Li et al., 2014 (L108), shrub is shallow rooted. If available/known, it may be good

to include root distribution of Artemisia ordosica such as XX% of shrub roots are located

within the top 30 cm, and tap root can reach up to 60 cm (Zhao et al., 2010 from L291). This also supports your soil moisture content measurements in the top 10 cm and 30 cm.

261 **RESPONSE**:

1) We redefined VWC threshold of sap flow in the revised manuscript using pooled data over

two years (Fig. 2). The drought conditions were defined by a VWC threshold and REW-value

of 0.4 for drought conditions (Granier et al., 1999, 2002). The VWC threshold of $0.10 \text{ m}^3\text{m}^-$

 3 at our site is equivalent to a REW threshold of 0.4 (Line 188-195).

266

267 References added in the revised manuscript:

Granier et al.: Evidence for soil water control on carbon and water dynamics in
 European forests during the extremely dry year: 2003. Agricultural and Forest
 Meteorology, 143,123-145, 2007.

- Granier, A., Bre´da, N., Biron, P., Villette, S.: A lumped water balance model to
 evaluate duration and intensity of drought constraints in forest stands. Ecol. Model.
 116, 269–283, 1999.
- 274 2) Information on root zone depth was added in the methods section of the revised manuscript.
- 275 Overall, more than 60% of the total roots were distributed within the 0-60 cm depth (Zhao et
- al. 2010; Jia et al., 2016). (L143-144)
- 277

297

278 References added in the revised manuscript:

- Zhao, W., Liu, B., Chang, X., Yang, Q., Yang, Y., Liu Z., Cleverly, J., Eamus, Derek.:
 Evapotranspiration partitioning, stomatal conductance, and components of the water
 balance: A special case of a desert ecosystem in China. J. Hydrol., 538, 374-386, 2016.
- Xin Jia, Tianshan Zha, Jinnan Gong, Ben Wang, et al.: Carbon and water exchange
 over a temperate semi-arid shrublandduring three years of contrasting precipitation
 and soil moisturepatterns. Agricultural and Forest Meteorology, 228, 120-129, 2016.
- *If available, it will be good to include stomata closure point, wilting point, and hygroscopic point levels. Hence, the reader can judge the severity of drought. So, there will be some
- justification based on your drought classification. You used 0.08 (L178), 0.09 (Figure 2), and
 0.11 (Figure 2). Is it 0.08 or 0.09?
- RESPONSE: There is no value of stomata closure point, wilting point and hygroscopic point
 available at the moment. We added monthly means of stomatal conductance to Table 1 in the
 revised manuscript.
- ²⁹³ We redefined VWC threshold of sap flow in revised manuscript using pooled data over two
- 294 years (Fig. 1). The drought conditions were defined by VWC threshold and REW value of
- 0.4 for drought condition (Granier et al., 1999, 2002). The VWC threshold of $0.10 \text{ m}^3\text{m}^{-3}$ at
- our site is equivalent to a REW threshold of 0.4 (Line 188-195).
- *Also knowing wilting point and hygroscopic point helps us appreciating the Figure 6. You stratified soil water content based on three limits. How much severe the lowest value. My back of envelope calculation by using Campbell (1974) for sandy soil where porosity is ~ 0.42 (1-1.54/2.65), the wilting point (15000cm) is ~ 0.07 . It seems your wilting point is much lower. Definitely, to appreciate the Figure 6 and drought severity, giving values are beneficial.
- RESPONSE: From our analysis of REW and VWC (Fig. 1, Fig. 2d,e), the plants are in drought conditions, when VWC at a 30-cm depth is $< 0.10 \text{ m}^3 \text{ m}^{-3}$, which is equivalent to a drought REW-value of 0.4 reported by Granier et al. (1999, 2003) (Line 188-195).
- drought REW-value of 0.4 reported by Granier et al. (1999, 2003) (Line 188-195).
- *A little more detail about vegetation setting is beneficial. LAI and plant canopy cover of
 shrub are beneficial. As far as I know, in Mu Us Desert dunes are migrating or semi-migrating
 depending on canopy cover. So, it will be beneficial for readers.
- RESPONSE: We added monthly means of LAI and descriptions of vegetation characteristics
 in the revised manuscript (Table 1).
- 313
- *L272-274. In your DISCUSSION, it will be good to include climate for these plant species.
- Because your ecosystem which is water-limited, most probably different than their study sites!

For example, Huang et al. (2009) study site (L275) is in Guangxi, where annual precipitation

is 1900 mm, and mean annual temperature is 19.3 °C. Most probably some/most part of the

year, the ecosystem is energy-limited. So, it is not so surprising to see solar radiation control on sap flow. I could not find electronic copy of Zhang et al. (2003) work. Please include

320 prevailing climate in their study area too.

321 RESPONSE: We added prevailing climate of these species in the revised manuscript.

Generally, the present result is in contrast to other shrub species. For example, it has been found that sap flow in *Haloxylon annodendron* in northwest China, where annual

precipitation is 37.9 mm, and mean annual temperature is 8.2 °C, was mainly controlled by

temperature (Zhang et al., 2003), while sap flow in *Cyclobalanopsis glauca* in south China,

where annual precipitation is 1900 mm and mean annual temperature is 19.3 °C, was

controlled by both radiation and temperature with VWC not limiting (Huang et al. 2009)."(Line 304-310)

329

- *L276-L278. To emphasize the importance of small events on ecological processes, I want
 to draw authors attention another study by Sala and Lauenroth (1982).
- Sala and Lauenroth (1982) showed the ecological importance of small events (<5mm) in
 semiarid site where dominated by C4 grass. I will be worth to check!
- 334 Sala O.E. and W.K. Lauenroth (1982). Small rainfall events: an ecological role in semi-
- arid regions. Oecologia, 53 (3), 301-304.
- RESPONSE: We appreciate the recommendation. We have read the paper and added the

relevant findings as a support and generalization of our own results in the revised manuscript(see references in the revised ms).

- 340 *Minor Points:
- 341 L69. VERB.low soil water availability limitS,
- 342 **RESPONSE:** We corrected this (Line 70)
- 343

339

- L70. VERB.limitS vegetation productivity
- RESPONSE: We corrected this as well (Line 71)
- 346

350

- L73. I recommend citation for: grass replacement by shrubs.
- 348 RESPONSE: We added the citation in the sentence "...semi-arid areas of northwestern China
- 349 (Yu et al., 2004)." in the revised manuscript (Line 74)
- 351 L103. Capitalization. ...the Mu Us Desert.....
- RESPONSE: The name 'Mu Us desert' was corrected to 'Mu Us Desert' in the revised manuscript. (Line 109)
- 354
- 355 L125. Capitalization. ...the Mu Us Desert....
- 356 RESPONSE: The name 'Mu Us desert' was corrected to 'Mu Us Desert' in the revised

- 357 manuscript. (Line 131)
- 358
- 359 L137. VERB. Mean height and sapwood area of sampled shrubs WERE
- 360 RESPONSE: We corrected this (Line 146)

- L156. Replace UPSILON in the equation with lower-case gamma, γ for psychrometric
- 363 constant.
- 364 RESPONSE: We revised as suggested (Line 168-170)
- 365

- 366 L161. Insert a comma after "ground".the ground, and....
- 367 **RESPONSE:** We inserted a comma in the sentence.
- 368
- 369 L180. VERB. Linear and nonlinear regression WERE
- 370 RESPONSE: We corrected this (Line 209)
- 371
- L197. VERB. Total precipitation and number of rainfall events.... WERE lower than THOSE....
- 374 **RESPONSE:** Yes, we corrected this (Line 229)
- L266. VERB. Synergistic interactions ARE....
- 377 RESPONSE: Corrected (Line 300)
- 378

L355-461. Please go through the references. Make sure the unity within the references.

- Journal names abbreviated some of them (L361, L367, L370 etc.), but not others (L 358,
- L383, L386 etc.). Choose one of them and stick with it. L424. Typo. Systems... L430. Typo.
- EcologY... L449. Typo. PLoS ONE. Compare with (L461 and L373). Use lower case for
- ³⁸³ article names. Check (L456, L461, L416 etc.).
- RESPONSE: We carefully checked and revised citations and references throughout the
 manuscript as suggested.
- 386
- L541. Figure 4. I recommend following some color scheme (pattern) to represent different months such as jet etc. This change will help the readers to follow the figure easier than the current form.
- RESPONSE: We replotted Fig. 6 in the revised ms using color, as suggested. (Fig. 6)
- 391

- 393 **RESPONSE:** We revised the sentence.
- 394
- ³⁹⁵ L554. To distinguish from straight arrows, I recommend using 'curved arrows' such as: The

- ³⁹⁶ CURVED arrowS indicate the clockwise....
- 397 RESPONSE: We revised as suggested. (Fig. 7)
- 398
- ³⁹⁹ L558. I recommend using 'three' instead of '3' days.
- 400 **RESPONSE:** We write "three" instead (Fig. 8)
- 401 402

³⁹² L553. Insert a comma after (dimensionless). (dimensionless), and

403	Track change manuscript version
404	Soil moisture control on sap-flow response to biophysical factors in a desert-shrub
405	species, Artemisia ordosica
406	Authors: Tianshan Zha ^{1,3*#} , Duo Qian ^{2#} , Xin Jia ^{1,3} , Yujie Bai ¹ , Yun Tian ¹ , Charles PA.
407	Bourque ⁴ , Wei Feng ¹ , Bin Wu ¹ , Heli Peltola ⁵
408	^{1.} Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry
409	University, Beijing 100083, China
410	^{2.} Beijing Vocational College of Agriculture, Beijing 102442, China
411	^{3.} Key Laboratory of State Forestry Administration on Soil and Water Conservation,
412	Beijing Forestry University, Beijing, China
413	^{4.} Faculty of Forestry and Environmental Management, 28 Dineen Drive, PO Box 4400,
414	University of New Brunswick, New Brunswick, E3B5A3, Canada
415	^{5.} Faculty of Science and Forestry, School of Forest Sciences, University of Eastern
416	Finland, Joensuu, FI-80101, Finland
417	*These authors contributed equally to this work.
418	
419	
420	Short title: Sap flow in Artemisia ordosica
421	
422	
423	Correspondence to: T. Zha (tianshanzha@bjfu.edu.cn),

425 Author Contribution Statement:

426	Dr.'s Duo Oia	an and Tiansha	n Zha contributed	l equally	to the design and	implementation of

- 427 the field experiment, data collection and analysis, and writing the first draft of the manuscript.
- 428 Dr. Xin Jia gave helpful suggestions concerning the analysis of the field data and contributed
- 429 to the scientific revision and editing of the manuscript.
- 430 Prof. Bin Wu contributed to the design of the experiment.

431 Dr.'s Charles P.-A. Bourque and Heli Peltola contributed to the scientific revision and editing

- 432 of the manuscript.
- 433 Yujie Bai, Wei Feng, and Yun Tian were involved in the implementation of the experiment

434 and in the revision of the manuscript.

435

436 Key Message: This study provides a significant contribution to the understanding of

437 acclimation processes in desert-shrub species to drought-associated stress in dryland

- 438 ecosystems
- 439

440 Conflict of Interest:

This research was financially supported by grants from the National Natural Science Foundation of China (NSFC No. 31670710), the National Basic Research Program of China (Grant No. 2013CB429901), and by the Academy of Finland (Project No. 14921). It is The project is also related to the Finnish-Chinese collaborative research project, EXTREME (2013-2016), between Beijing Forestry University and the University of Eastern Finland, and USCCC. We appreciate Dr. Ben Wang, Sijing Li, Qiang Yang, and others for their help with the fieldwork. The authors declare that they have no conflict of interest.

449	Abstract: Current understanding of acclimation processes in desert-shrub species to drought
450	stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in
451	Artemisia ordosica and associated environmental variables throughout the growing seasons
452	of 2013-2014 (May-September period of each year) to better understand the environmental
453	controls on the temporal dynamics of sap flow. We found that the occurrence of drought in
454	the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow
455	per leaf area (J_s) to decline significantly, resulting in a sizable drop in transpiration. Sap flow
456	per leaf area correlated positively with radiation $(\frac{R_s}{R_s})$, air temperature $(\frac{T}{T})$, and vapor pressure
457	deficit (VPD), when volumetric soil water content (VWC) was > 0. $++$ <u>10</u> m ³ m ⁻³ . Diurnal J_s
458	was generally ahead of R_s by as much as 6 hours. This lag time, however, decreased with
459	increasing VWC. Relative response of J_s to the environmental variables (i.e., $\frac{R_s, T}{R_s, T}$ and VPD)
460	varied with VWC, J_s being more biologically-biologically-controlled with <u>a</u> low decoupling
461	coefficient and thus being less sensitive sensitivity to the environmental variables during
462	periods of dryness-periods. According to this study, soil moisture is shown to control sap-
463	flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations
464	in biophysical factors. The findings of this study add to the knowledge of acclimation
465	processes in desert-shrub species under drought-associated stress. This knowledge is
466	essential to model desert-shrub-ecosystem functioning under changing climatic conditions.

Keywords: sap flow; transpiration; cold-desert shrubs; environmental stress; volumetric soil
water content

1	带格式的:	字体:倾斜,突出显示
-(带格式的:	字体:倾斜,突出显示
1	带格式的:	突出显示
1	带格式的:	字体: 倾斜
1	带格式的:	字体:倾斜,突出显示
-(带格式的:	突出显示
1	带格式的:	字体:倾斜,突出显示
X	带格式的:	突出显示

471 **1. Introduction**

472	Due to the low amount of precipitation and high potential evapotranspiration in desert
473	ecosystems, low soil water availability limit both plant water- and gas-exchange and, as a
474	consequence, limits vegetation productivity (Razzaghi et al., 2011). Therefore, it is important
475	to understand the mechanisms controlling the vegetation-water dynamics under rapidly
476	changing environments (Jacobsen et al., 2007)Grass species is are have already gradually
477	beingen replaced by shrub and semi-shrub species in arid and semi-arid areas of northwestern
478	China (Yu et al., 2004), This progression is predicted to continue under a changing climate
479	(Asner et al., 2003; Houghton et al., 1999; Pacala et al., 2001). This is mostly because desert
480	shrubs are able to adapt to hot-dry environments by modifying their morphological
481	characteristics, e.g., by (1) minimizing plant-surface area directly exposed to sun and hot air,
482	(2) producing thick epidermal hairs, (3) thickening cuticle, (4) recessing stomata into leaves
483	(Yang and Zhu, 2011), and (5) increasing root-to-shoot ratios (Eberbach and Burrows, 2006;
484	Forner et al., 2014). Also, acclimation of physiological characteristics of plants under water
485	stress, by way of e.g., water potential, osmotic regulation, anti-oxidation, and photosynthetic
486	characteristics, assist the plants to maintain a hydrological balance (Huang et al., 2011a).
487	Changes in stomatal conductance and, thus, transpiration may likewise affect plant water use
488	efficiency (Pacala et al., 2001; Vilagrosa et al., 2003)
489	Sap flow measurement—can accurately reflect the water consumption estimation
490	of <mark>byduring</mark> plant transpiration, water consumption, i <u>Jt has positive influence of</u> maintains

491 ecosystem balance bythrough the soil-plant-atmosphere continuum path but is often is

492 influencedaffected by environment factors (Huang *et al.*, 2010; Zhao et al., 2016). In recent

493	studies,	sap flow	in Tamarix	: elongate l	has been	observed to	o be controlled	l by solar radiati	ion
	· · · · · ·			0					

1	带格式的:	突出显示]
1	带格式的:	突出显示)

Λ	带格式的:	突出显示
(带格式的:	突出显示
1	带格式的:	突出显示

Ϊ	带格式的:	突出显示
	带格式的:	突出显示
	带格式的:	突出显示
	带格式的:	突出显示
\mathbb{Z}	带格式的:	突出显示
	带格式的:	突出显示
Η	带格式的:	突出显示
Ì	带格式的:	突出显示
$\langle \rangle$	带格式的:	突出显示
$\langle \rangle$	带格式的:	突出显示
	带格式的:	突出显示

494	and air temperature, whereas in Caragana korshinskii vapor pressure deficit and solar
495	radiation appear to be more important (Jacobsen et al., 2007; Xia et al., 2008). In Elaeagnus
496	angustifolia, transpiration is observed to peak at noon, i.e., just before stomatal closure at
497	mid-day under water-deficit conditions (Liu et al., 2011). In contrast, transpiration in
498	Hedysarum scoparium peaks multiple times during the day (Xia et al., 2007). Sap flow has
499	been observed to decrease rapidly when the volumetric soil water content (VWC) is lower
500	than the water loss through evapotranspiration (Buzkova et al., 2015). In general, desert
501	shrubs can close their stomata to reduce transpiration when exposed to dehydration stress
502	around mid-day. However, differences exist among shrub species with respect to their
503	stomatal response to changes in soil and air moisture deficits (Pacala et al., 2001). For some
504	shrubs, sap-flow response to precipitation varies from an immediate decline after a heavy
505	rainfall to no observable change after a small rainfall event (Asner et al., 2003; Zheng and
506	Wang, 2014). Sap flow has been found to increase with increasing rainfall intensity (Jian et
507	al., 2016). Drought-insensitive shrubs have relatively strong stomatal regulation and,
508	therefore, tend to be insensitive to soil water deficits and rainfall unlike their drought-
509	sensitive counterparts (Du et al., 2011)In-allIn_general, understandings Studies-onf, the
510	relationship s between the sap-flow rates in plants and environmental factors areis highly
511	inconsistent, varying with is conducive to understanding vegetal physiological responses to
512	<mark>theirplant</mark> habitat s (Liu <u>et al., 2011).</u>
513	Artemisia ordosica, a shallow-rooted desert shrub, is the dominant plant species in the
514	Mu Us desert-Desert of northwestern China. The shrubs have an important role in combating

desertification and in stabilizing sand dunes (Li et al., 2010). Increases in air temperature and

Ι	带格式的:	突出显示
-	带格式的:	突出显示
H	带格式的:	突出显示
Y	带格式的:	突出显示
Η	带格式的:	突出显示
N	带格式的:	突出显示
Ì	带格式的:	突出显示
Ч	带格式的:	突出显示
-	带格式的:	突出显示
Ľ	带格式的:	字体: 非倾斜, 突出显示
Y	带格式的:	突出显示
1	带格式的:	突出显示

516	precipitation variability and associated shorter wet periods and longer intervals of periodic
517	drought are expected to ensue with projected climate change (Lioubimtseva and Henebry,
518	2009). During dry periods of the year, sap flow in Artemisia ordosica has been observed to
519	be controlled by VWC at about 30-cm depth in the soil (Li et al., 2014). Sap-flow rate is
520	known to be affected by variation in precipitation patterns. Soil water content, in combination
521	with other environmental factors, may have a significant influence on sap-flow rate (Li et al.,
522	2014; Zheng and Wang, 2014). Thus, understanding the controlling mechanisms of sap flow
523	in desert shrubs as a function of variations in biotic and abiotic factors is greatly needed (Gao
524	et al., 2013; Xu et al., 2007).

In this study, we measured stem sap flow in *Artemisia ordosica* and associated environmental variables throughout the growing seasons of 2013-2014 (May-September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We believe that our findings will provide further understanding needed onof acclimation processes in desert-shrub species under <u>stress of dehydration-stress</u>.

530

531 2. Materials and Methods

532 2.1 Experimental site

Continuous sap-flow measurements were made at the Yanchi Research Station $(37^{\circ}42'$ 31″ N, 107°13′ 47″ E, 1530 m above mean sea level), Ningxia, northwestern China. The research station is located between the arid and semi-arid climatic zones along the southern edge of the Mu Us Ddesert. The sandy soil in the upper 10 cm of the soil profile has a bulk density of 1.54±0.08 g cm⁻³ (mean ± standard deviation, n=16). Mean annual precipitation

带格式的:突出显示

538	in the region is about 287 mm, of which 62% falls between July and September. Mean annual	
539	potential evapotranspiration and air temperature are about 2,024 mm and 8.1°C based on	
540	meteorological data (1954-2004) from the Yanchi County weather station. Normally, shrub	
541	leaf-expansion, leaf-expanded, and leaf-coloration stages begin in April, June, and	
542	September (Chen et al., 2015), respectively.	
543		
544	2.2 Measurements of sap flow, leaf area and stomatal conductance	
545	The experimental plot (10 m \times 10 m) was located on the western side of Yanchi Research	
546	Station in an Artemisia ordosica-dominated area. Mean age of the Artemisia ordosica was	
547	10-years old. Annual mMaximum monthly mean leaf area index (LAI) is infor leaf-expanded	
548	stageplant specimens with full leaf expansion <u>-was about 0.1 m² m⁻² (Table 1)62.14%</u>	/
549	Over 60% of the total their roots weight of Artemisia ordosica were	_
549 550	Over 60% of the total their roots weight of Artemisia ordosica were mainly-distributed in the soil depths of 0-60 cm -(Zhao et al., 2010; Jia et al., 2016). Five	
549 550 551	Over 60% of the total their roots weight of Artamisia ordosica were mainly-distributed in the soil depths of 0-60 cm(Zhao et al., 2010; Jia et al., 2016). Five stems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flow	
549 550 551 552	Over 60% of the total their roots weight of Artamisia ordevice were mainly-distributed in the soil depths of 0-60 cm -(Zhao et al., 2010; Jia et al., 2016). Five stems of Artemisia ordosica Five stems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flow measurement. Mean height and sapwood area of sampled shrubs was-were 84 cm and 0.17	
549 550 551 552 553	Over 60% of the total their roots weight of Artemisia ordesica-were mainly-distributed in the soil depths of 0-60 cm(Zhao et al., 2010; Jia et al., 2016). Five stems of Artemisia ordosica Five stems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flow measurement. Mean height and sapwood area of sampled shrubs were 84 cm and 0.17 cm², respectively. Sampled stems represented the average size of stems in the plot. A heat	
549 550 551 552 553 554	Over60%of the total theirroots weight of Artemisiaordesica-weremainly-distributed in the soil depths of 0-60 cm(Zhao et al., 2010; Jia et al., 2016). Fivestems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flowmeasurement. Mean height and sapwood area of sampled shrubswas-were84 cm and 0.17cm², respectively. Sampled stems represented the average size of stems in the plot. A heatbalance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cm	
549 550 551 552 553 554 555	Over 60% of the total their roots weight of Artamisia ordosies were mainly distributed in the soil depths of 0-60 cm - (Zhao et al., 2010; Jia et al., 2016). Five stems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flow measurement. Mean height and sapwood area of sampled shrubs were 84 cm and 0.17 cm ² , respectively. Sampled stems represented the average size of stems in the plot. A heat balance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cm above the ground surface on each of the five stems (after Dynamax, 2005), The frequency of	
549 550 551 552 553 554 555 556	Over60%of the total theirroots weight of Artamisiaordesica weremainly-distributed in the soil depths of 0-60 cm(Zhao et al., 2010; Jia et al., 2016). Fivestems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flowmeasurement. Mean height and sapwood area of sampled shrubsorm², respectively. Sampled stems represented the average size of stems in the plot. A heatbalance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cmabove the ground surface on each of the five stems (after Dynamax, 2005), The frequency ofsSapflow measurements wasere taken 1-recordonce per minute for each stem. Half-hourly	
549 550 551 552 553 554 555 556 557	Over 60% of the total their roots weight of Artemisia or desired were mainly-distributed in the soil depths of 0-60 cm - (Zhao et al., 2010; Jia et al., 2016). Five stems of Artemisia or dosica were randomly selected within the plot as replicates for sap-flow measurement. Mean height and sapwood area of sampled shrubs was-were 84 cm and 0.17 cm ² , respectively. Sampled stems represented the average size of stems in the plot. A heat balance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cm above the ground surface on each of the five stems (after Dynamax, 2005), The frequency of sSapflow measurements wasere taken 1-recordonce per minute for each stem. Half-hourly data were recorded by a Campbell CR1000 data logger from May 1 to September 30, 2013-	
549 550 551 552 553 554 555 556 557 558	Over60%of the total-theirroots weight of Artemisiaordevise-weremainly-distributed in the soil depths of 0-60 cm - (Zhao et al., 2010; Jia et al., 2016)Fivestems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flowmeasurement. Mean height and sapwood area of sampled shrubswas-were84 cm and 0.17cm², respectively. Sampled stems represented the average size of stems in the plot. A heatbalance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cmabove the ground surface on each of the five stems (after Dynamax, 2005), The frequency ofsSap-flow measurements wasere taken 1-recordonce per minute for each stem. Half-hourlydata were recorded by a Campbell CR1000 data logger from May 1 to September 30, 2013-2014 (Campbell Scientific, Logan, UT, USA).	

带格式的:突出显示

带格式的:	突出显示
带格式的:	突出显示

/	带格式的:	突出显示
-(带格式的:	突出显示

带格式的:突出显示

560	from five randomly sampled neighbouring shrubs with similar characteristics as to the shrubs
561	used for sap-sap-flow measurements, to avoid damaging them. Leaf area was measured
562	immediately at the station laboratory with a portable leaf-area meter (LI-3000, Li-Cor,
563	Lincoln, NE, USA). Leaf area index (LAI) was measured at roughly weekly intervals aton a
564	4×4 grid of 16 quadrats (10 m $\times10$ m each) within a 100 m $\times100$ m plot centered on the flux
565	tower using measurements of sampled leaves and allometric equations (Jia et al., 2014).
566	Estomatal conductance (g_s) was measured <i>in situ</i> for three to four leaves on each of the
567	sampled shrubs with a LI-6400 portable photosynthesis analyzer (Li-Cor Inc., Lincoln, USA).
568	Stomatal conductane The gree measurements were made every two hours from 7:00 to 19:00
569	h every ten days from May to September, 2013-2014.
570	The degree of coupling between the ecosystem surface and the atmospheric boundary
571	layer was estimated with the decoupling coefficient (Ω). The decoupling coefficient varies
572	from 0 (i.e., leaf transpiration is mostly controlled by g_s) to 1 (i.e., leaf transpiration is mostly
573	controlled by radiation). The <u>Q_decoupling coefficient</u> was calculated as described by
574	Jarvis and McNaughton (1986):
575	$\Omega = \frac{\Delta + \gamma}{\Delta + \gamma \left(1 + \frac{g_a}{g_s} \right)},\tag{1}$
576	where Δ is the rate of change of saturation vapor pressure vs. temperature (kPa K ⁻¹), γ is the
577	psychrometric constant (kPa K ⁻¹), and g_a is the aerodynamic conductance (m s ⁻¹ ; Monteith
578	and Unsworth, 1990):

	带格式的:	突出显示
	带格式的:	突出显示
Η	带格式的:	突出显示
-	带格式的:	突出显示
4	带格式的:	突出显示
/	带格式的:	突出显示
	带格式的:	突出显示
1	带格式的:	突出显示
-	带格式的:	突出显示
1	带格式的:	突出显示

Ι	带格式的:	突出显	ē示		
-	带格式的:	字体:	倾斜		
\neg	带格式的:	字体:	倾斜		

Ϊ	带格式的:	突出显	示		
	带格式的:	突出显	示		
\neg	带格式的:	字体:	倾斜,	突出显示	

\bigwedge	带格式的:	字体: 倾斜
0	WE 12. 15.14	21.0 Jack
\land	带格式的:	字体: 倾斜
\bigwedge	带格式的:	突出显示
-(带格式的:	字体:倾斜,突出显示
1	带格式的:	突出显示

带格式的:	字体:	倾斜
带格式的:	字体:	倾斜

带格式的:字体:倾斜

带格式的:字体:倾斜

579
$$g_a = \left(\frac{u}{u^{*2}} + 6.2u^{*-0.67}\right)^{-1},$$

where μ is <u>the</u> wind speed (m s⁻¹) at 6 m above the ground, and μ^* is the friction velocity (m 580

17

(2)

581 S	¹).
-------	-----------------

602

583 **2.3 Environmental measurements**

	584	Shortwave radiation (R_s in W m ⁻² ; CMP3, Kipp & Zonen, Netherland), air temperature (T in	_	带格式的: 带格式的:
	585	°C), wind speed (<i>u</i> in m s ⁻¹ , 034B, Met One Instruments Inc., USA), and relative humidity		带格式的:
	586	(RH in %; HMP155A, Väisälä, Finland) were measured simultaneously near the sap-flow		带格式的:
	587	measurement plot. Half-hourly data were recorded by a-data logger (CR3000 data logger,		
	588	Campbell Scientific Inc., USA). VWC at 10-and 30-cm depths were monitored with three	_(带格式的:
	589	ECH ₂ O-5TE soil moisture probes (Decagon Devices, USA). In the analysis, we used half-		
	590	hourly averages of VWC from the three soil moisture probes. Vapor pressure deficit (VPD		
ĺ	591	in kPa) was calculated from recorded <i>RH</i> and <i>T</i> .	_	带格式的: 带格式的:
	592			
	593	2.4 Data analysis		
Ì	594	In the <u>our</u> analysis, March-May represented spring, June-August summer, and September-		
	595	November autumn (Chen et al., 2015), Drought days were defined as those days with daily		带格式的:

596	mean VWC < 0.1 m ³ m ⁻³ . This is based on a VWC threshold of 0.1 m ³ m ⁻³ for J_g (Fig. 1).	带格式的:	字体:	倾斜,	下标
597	with J_s increasing with as increased-VWC increased. saturated saturating at VWC of 0.1 m ³	带格式的:	字体:	倾斜,	下标
598	m ⁻³ , and then showed a decreasing trend as VWC <u>continued to</u> increase d . The VWC threshold				
599	of 0.1 m ³ m ⁻³ is equivalent to a relative extractable soil water (REW) value of 0.4 for drought				
600	condition <u>s (by Granier et al., (1999, _ and 2007) and; Zeppel et al., (2004, _ and 2008) (; Fig.</u>				
		带格式的:	突出显	显示	
601	<u>2d, e).</u> Duration and severity of 'drought' were defined based on thea VWC threshold and	带核さめ・	室山月	見示	

REW value of 0.4. REW was calculated as as according to equation (3)-:-

1	带格式的:	突出显示
	带格式的:	突出显示
1	带格式的:	突出显示
	带格式的:	突出显示

字体: 倾斜 字体: 倾斜 字体: 倾斜

字体: 倾斜

突出显示

字体: 倾斜 字体: 倾斜

突出显示

	VWC VWC	域代码已更改
603	$REW = \frac{VWC - VWC_{\min}}{2}$ (3)	带格式的:突出显示
	$VWC_{max} - VWC_{min}$	
604	where VWC is the specific daily soil water content (m ³ m ⁻³), VWC _{min} and VWC _{max} are the	
		带权式的 , 家山昆云
605	minimum and maximum VWC during the measurement period in each year, respectively. An \geq	带带大的、天山亚小
606	extreme dry soil period was defined as the time period when VWC < 0.08 m ³ m ⁻³ for both	
607	10 and 30 cm depths for at least 10 consecutive days	
007		
600	San flowDdata analysis was conducted using hourly mean data from five sensors	带格式的:突出显示
008	<u>pap-now butta</u> analysis was conducted using notity-mean data from five sensors,	带格式的:突出显示
		带格式的:突出显示
609	so ap flow per leaf area (J _s) was used in this study ., i.e.,	带格式的:突出显示
		带格式的:突出显示
610	$J_{\perp} = \left(\sum_{i=1}^{n} E_{i} / A_{i}\right) / n \tag{4}$	域代码已更改
		带格式的:突出显示
		世故式的・空出显示
611	where, J_s is the sap flow per leaf area (kg m ⁻² h ⁻¹) or (kg m ⁻² d ⁻¹), summed over a 24 hour	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
612	$\frac{dav}{dav}$. E is the measured sap flow of a stem (g h ⁻¹). A _l is the leaf area of the sap-flow stem, and	带俗式的: 子体: 侧斜, 突出亚木
		带格式的: 突出並不
613	"n" is the number of rankingto can flow stems used $-($ in this case $n = 5)$	带格式的: 子体: 侧斜, 突出並不
015	The number of tentence sup now plents used of in this case, - 27.	带俗式的: 突出並不
614	Transpiration per ground area (T_r) was estimated in this study-according to:	带俗式的: 子体: 侧斜, 突出並亦
		带格式的:突出显示
	$T = \left(\sum_{i=1}^{n} I_{i} \downarrow_{i} I_{i} I_{i} \right) / T $ (7)	带格式的:突出显示
615	$I_r = \left(\sum_{i=1}^{J} J_s \times LAI\right) / n $ (3)	带格式的: 突出並不
		带格式的: 子体: 倾斜, 突出显示
616	where T is transpiration per ground area (mm d ⁻¹) and I AI is the leaf area index (m ²)	带格式的:突出显示
010		带格式的:突出显示
	-25	带格式的:突出显示
617	<u>m ⁻).</u>	帯格式的: 字体: 倾斜
		域代码已更改
618	Linear and non-linear regression were used to analyze abiotic control on sap-flow rate.	
619	In order to minimize the effects of different phenophases and rainfall, we used data only from	
1		带格式的:突出显示
620	mid-growing season, non-rainy days, and daytime measurements (8:00-20:00), i.e., from	带格式的:突出显示
		带格式的:突出显示
621	June 1 to August 31, with hourly shortwave radiation $> 10 \text{ W m}^{-2}$. The regression-Relations	带格式的:突出显示
		带格式的:突出显示
622	between mean san-flow rates at specific times over a period of 8:00-20:00 and its	带格式的:突出显示
022	and the second and the second and the second of the second and the	带格式的:突出显示
(22	corresponding equiremental fasters over period offrom lun oil to Average 21 can be average	带格式的:突出显示
023	corresponding environmental factors over period of non-junited i to Aug-us, 51° can bewere	带格式的:突出显示
•		带格式的:突出显示

		带格式的	: 突出显示
624	Hitted derived with linear regression (p<0.05; Fig. 3), Regression The Regression slopes of	带格式的	: 突出显示
		带格式的	: 突出显示
625	linear regression-weretherefore_used to identify the as indicators of sap-flow sensitivity of	带格式的	: 突出显示
626	sap flow (degree of response) to the various environmental variables (see e.g., Zha et al.,		
I			
627	2013). All statistical analyses were performed with SPSS v. 17.0 for Windows software		
628	(SPSS Inc., USA). Significance level was set at 0.05.		
629			
630	3. Results		
631	3.1 Seasonal variations in environmental factors and sap flow		
1		带体生物	• 它 体 · 桶创
632	Range of daily means (24-hour mean) for $\underline{R_{s_{1}}}T$, $\underline{R_{s_{2}}}VPD$, and VWC during the 2013 growing	带俗式的	• 亍 / · · · · · · · · · · · · · · · · · ·
633	season (May-September) were <u>31.1-364.9 W m⁻²</u> , 8.8-24.4°C, <u>31.1-364.9 W m⁻²</u> , 0.05-2.3		
634	kPa, and 0.06-0.17 m ³ m ⁻³ (Fig. 1Fig. 2a, b, c, d), respectively.; annual means for the same		
635	year being were 224.8 W m ⁻² , 17.7°C, 224.8 W m⁻², 1.03 kPa, and 0.08 m³ m⁻³. Corresponding		
636	range of daily means for 2014 were 31.0-369.9 W m ⁻² , 7.1-25.8°C, 31.0-369.9 W m ⁻² -0.08-		
637	2.5 kPa, and 0.06-0.16 m ³ m ⁻³ (Fig. 1Fig. 2a, b, c, d), respectively \div annual means were being		
007	2.5 K u, and 0.00 0.10 m m (1.6. 1 1 1 2 u , 0, 0, 0 1 1 1 1 1 1 1 1 1 1		
638	$234.0 \text{ W} \text{ m}^2$ 17.2°C $224.0 \text{ W} \text{ m}^2$ 1.05 kPa and 0.00 m ³ m ⁻³		
0.58	234.7 W III , 17.2 C, 254.7 W III , 1.05 KI a, and 0.07 III III .		
620	Total precipitation and number of rainfall events during the 2013 measurement period		
039	Total precipitation and number of familian events during the 2015 measurement period		
640	(257.2 mm and 46 days) wereas about 5.6% and 0.8% lower than these during 2014 (272.4	带格式的	: 突出显示
040	$(257.2 \text{ min and 40 days}) \frac{\text{weice as about 5.676 and 5.876 lower than \text{m}_{\text{ose}} at during 2014 (272.4)$		
(11	mm and 51 days. Fig. 0.1d) representively. In 2012, more integral or minfall events accurred	带格式的	: 突出显示
641	$\frac{1}{1}$ $\frac{1}$	带格式的	: 突出显示
(10)	then in 2014. The measurement period in 2012 had mean impacted an infall events around		
642	than in 2014 <u>,- The measurement period in 2015 had many irregular rainfail events compared</u>		
643	to 2014 , with 45.2% of rainfall falling in July and 8.8% in August., 2013 .		
		带格式的	: 突出显示
644	Drought condition-mainly occurred in May, June, and August of 2013 and in May and		
		带格式的	: 突出显示
645	June of 2014 (Hig. 1/1g. 2d.e). Both years had dry springs. A nearly <u>More than Over one-</u>	带格式的	: 突出显示
1		带格式的	: 突出显示

646	month period oflong summer drought occurred in August of 2013.	带格式的:突出显示
647	Range of daily means of J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013	
648	and 0.01-2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. <u>1e2f)</u> ; with annual means were of 0.89 kg m ⁻² d ⁻¹ in	
649	2013 and 1.31 kg m ⁻² d ⁻¹ in 2014. Mean <u>daily</u> J_s over the growing season of 2013 was 32%.	
650	lower than that of 2014. Mean daily T_r was were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the	带格式的: 字体: 倾斜
651	growing season in 2013 and 2014 (Fig. 2f), respectively, and it was being 34% lower in 2013	
652	than that in 2014. The total T_2 over growing season (May 1-September 30) in 2013 and 2014	带格式的: 突出显示 带格式的: 字体:倾斜
653	were 7.3 mm and 10.9 mm, respectively. Seasonal fluctuations in J_s and T_s corresponded with	带格式的: 突出显示 带格式的: 字体:倾斜
654	the seasonal pattern in VWC (Fig. 1Fig. 2d, ef). Daily mean J_s and T_r decreased or remained	
655	nearly constant during dry-soil periods (Fig. 1Fig. 2d, ef), with the lowest J_s and T_r observed	带格式的: 字体:倾斜
656	in spring and mid-summer (August) of 2013.	
657		
658	3.2 Sap flow response to environmental factors	
659	In summer, J _s _increased with increasing VWC (Fig. 2d, f; Fig. 3d). (Fig. 2), meanwhile,	带格式的: 非突出显示 带格式的: 突出显示
660	saturating at VWC -0.11 m ² m ⁻² in 2013 and -0.09 m ² m ⁻² in 2014, then decreasing with	
661		
001	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in	
662	WWC when WWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsS oil water is was shown to modify the response of J_s to environmental factors (Fig.	
662	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. S <u>5</u> Soil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). San flow J_s increased more rapidly with increases in R_s . T and VPD under high	带格式的: 字体: 倾斜
662 663	WC-when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsS oil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high	带格式的: 字体: 倾斜 带格式的: 字体: 倾斜
662 663 664	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T_s , and VPD under high VWC (i.e., VWC > 0.14 m ³ m ⁻³ both in both 2013 and - VWC > 0.09 m ³ m ⁻³ in 2014)	带格式的: 字体: 倾斜 带格式的: 字体: 倾斜 带格式的: 突出显示 带格式的: 突出显示
662 663 664	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. S <u>s</u> Soil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.1+1 m ³ m ⁻³ both in both 2013 and $VWC > 0.09 m3 - m-3 in -2014)$	带格式的: 字体: 倾斜 带格式的: 字体: 倾斜 带格式的: 突出显示 带格式的: 突出显示 带格式的: 突出显示 带格式的: 突出显示
662 663 664 665	WC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.++_1 m ³ m ⁻³ both in both 2013 and $\frac{VWC}{VC} > 0.09 m3 m-3 in 2014$) compared with periods with lower VWC (i.e., VWC < 0.++_1 m ³ m ⁻³ both in both 2013 and	带格式的: 字体: 倾斜 带格式的: 字体: 倾斜 带格式的: 突出显示 带格式的: 突出显示 带格式的: 突出显示 带格式的: 突出显示 带格式的: 突出显示
662 663 664 665	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.11 m ³ m ⁻³ both in both 2013 and - VWC > 0.09 m ³ m ⁻³ in 2014) compared with periods with lower VWC (i.e., VWC < 0.11 m ³ m ⁻³ both in both 2013 and - VWC < 0.00 m ³ m ⁻³ in 2014). Sap flow J_s was more constitue to R_s . T_s and VPD under high	# 格式的: 字体: 倾斜 # 格式的: 字体: 倾斜 # 格式的: 突出显示
662 663 664 665 666	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SesSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.11 m ³ m ⁻³ both in both 2013 and $-VWC > 0.09 m3 m-3 in 2014$) compared with periods with lower VWC (i.e., VWC < 0.11 m ³ m ⁻³ both in both 2013 and $VWC < 0.09 m3 m-3 in 2014$). Sap flow J_s was more sensitive to R_s , T , and VPD under high	#k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 突出显示 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜
662 663 664 665 666 667	WC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.44 m ³ m ⁻³ both in both 2013 and $VWC > 0.09 m2 - m-2 in - 2014$) compared with periods with lower VWC (i.e., VWC < 0.44 m ³ m ⁻³ both in both 2013 and $VWC < 0.09 m3 - m-3 in 2014$). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 24), which coincided with a larger regression slope under high VWC conditions.	#k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 突出显示 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜
662 663 664 665 666 667	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SsSoil water is-was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.11 m ³ m ⁻³ both in both 2013 and - VWC > 0.09 m ³ m ⁻³ in 2014) compared with periods with lower VWC (i.e., VWC < 0.11 m ³ m ⁻³ both in both 2013 and VWC < 0.00 m ³ m ⁻³ in 2014). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 24), which coincided with a larger regression slope under high VWC conditions.	#k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 突出显示 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜
 662 663 664 665 666 667 668 	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SeSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.44-1 m ³ m ⁻³ both in both 2013 and - VWC > 0.09 m ³ m ⁻³ in 2014) compared with periods with lower VWC (i.e., VWC < 0.44-1 m ³ m ⁻³ both in both 2013 and VWC < 0.09 m ³ m ⁻³ in 2014). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 24), which coincided with a larger regression slope under high VWC conditions. Sensitivity of J_s to environmental variables (in particular, R_s , T , VPD, T , and VWC)	#k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 字体: 倾斜
 662 663 664 665 666 667 668 	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. S <u>5</u> Soil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.44 m ³ m ⁻³ both in both 2013 and $-VWC > 0.09 m3 - m-2 in -2014$) compared with periods with lower VWC (i.e., VWC < 0.44 m ³ m ⁻³ both in both 2013 and $VWC = 0.09 m3 - m-2 in 2014$). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 24), which coincided with a larger regression slope under high VWC conditions. Sensitivity of J_s to environmental variables (in particular, R_s , T , VPD, T , and VWC) 21	#kzb: 字体: 倾斜 #kzb: 字体: 倾斜 #kzb: 突出显示 #kzb: 字体: 倾斜 #kzb: 字体: 倾斜 #kzb: 字体: 倾斜 #kzb: 字体: 倾斜
 662 663 664 665 666 667 668 	WWC when VWC is greater than the thresholds of 0.11 m ³ m ⁻³ in 2013 and 0.09 m ³ m ⁻³ in 2014. SeSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.44 m ³ m ⁻³ both in both 2013 and -VWC > 0.09 m ³ m ⁻³ in 2014) compared with periods with lower VWC (i.e., VWC < 0.44 m ³ m ⁻³ both in both 2013 and VWC < 0.09 m ³ m ⁻³ in 2014). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 24), which coincided with a larger regression slope under high VWC conditions. Sensitivity of J_s to environmental variables (in particular, R_s , T , VPD, T , and VWC) 21	#k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 突出显示 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜 #k式的: 字体: 倾斜
 662 663 664 665 666 667 668 	WWC when VWC is greater than the thresholds of 0.11 m ² -m ⁻³ -in 2013 and 0.09 m ² m ⁻³ -in 2014. SsSoil water is was shown to modify the response of J_s to environmental factors (Fig. 2Fig. 4). Sap flow J_s -increased more rapidly with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.44-1 m ³ m ⁻³ both in both 2013 andVWC > 0.09 m ³ -m ⁻² -in-2014) compared with periods with lower VWC (i.e., VWC < 0.44-1 m ³ m ⁻³ both in both 2013 and VWC < 0.09 m ³ -m ⁻² -in 2014). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 24), which coincided with a larger regression slope under high VWC conditions. Sensitivity of J_s to environmental variables (in particular, R_s , T_c VPD, T_c and VWC) 21	#kzb: 字体: 倾斜 #kzb: 字体: 倾斜 #kzb: 突出显示 #kzb: 突出显示 #kzb: 突出显示 #kzb: 突出显示 #kzb: 突出显示 #kzb: 突出显示 #kzb: 字体: 倾斜 #kzb: 字体: 倾斜 #kzb: 字体: 倾斜 #kzb: 字体: 倾斜

66	varied depending on the time of a day ($\frac{\text{Fig. 3}\text{Fig. 5}}{\text{Fig. 5}}$). Regression slopes for the relations of	
	I. D. I. T. and I. VDD more exceeded in the manning hefers 11.00 h, and lange during mid	带格式的: 字体: 倾斜
6/	$J_{s}-K_{s}, J_{s}-I$, and $J_{s}-VPD$ were greater in the morning before 11:00 h, and lower during mid-	带格式的: 字体: 倾斜
67	day and early afternoon (12:00-16:00 h). In contrast, regression slopes of the relation of J_s -	
67	VWC were lower in the morning (Fig. 3 <u>Fig. 5</u>), increasing thereafter, peaking at ~13:00 h,	
67	and subsequently decreasing in late afternoon. Regression slopes of the response of J_s to R_s ,	带格式的: 字体: 倾斜
67	<i>T</i> , and VPD in 2014 were greater than those in 2013.	带格式的: 字体: 倾斜
67	5	
67	3.3 Diurnal changes and hysteresis between sap flow and environmental factors	
67	Diurnal patterns of J_s were similar in both years (Fig. 46), initiating at 7:00 h and increasing	
67	thereafter, peaking before noon (12:00 h), and subsequently decreasing thereafter and	
67	¹⁹ remaining near zero from 20:00 to 6:00 h. Diurnal changes in stomatal conductance (g_s) were	带格式的: 突出显示 带格式的: 字体:倾斜、突出显示
68	similar to J_s , but peaking about 2 and 1 h earlier than J_s in July and August, respectively (Fig.	带格式的: 突出显示
68	4 <u>Fig. 6</u>).	
68	There were pronounced time lags between J_s and R_s over the two years (Fig. 5Fig. 7), J_s	带格式的: 字体: 倾斜
		带格式的: 字体: 倾斜, 突出显示
68	peaking earlier than R_s and, thus, earlier than either VPD or I . These time lags differed	带格式的:字体:倾斜,突出显示
68	seasonally. For example, mean time lag between J_s and R_s was 2 h during July, 5 h during	带格式的: 字体: 倾斜, 突出显示
68	May, and 3 h during June, August, and September of 2013. However, the time lags in 2014	
68	were generally shorter than those observed in 2013 (Table $\frac{12}{2}$).	
68	Use of normalized variables may remove the influence of J_s and $\frac{R_s}{R_s}$ from the data. As a	带格式的:字体:倾斜,突出显示
68	result, clockwise hysteresis loops between J_s and R_s during the growing period were observed	带格式的: 字体: 倾斜
68	(Fig. <u>57</u>). As R_s increased in the morning, J_s increased until it peaked at ~10:00 h. Sap-flow	带格式的: 字体: 倾斜, 突出显示
		带格式的:字体:倾斜、突出显示
69	rate declined with decreasing R_s during the afternoon. Sap flow J_s was higher in the morning	

691 than in the afternoon, forming a clockwise hysteresis loop.

⁶⁹² Diurnal time lag in the relation of J_s - R_s were influenced by VWC (Fig. 6Fig. 8, 79). For	带格式的:	字体:	倾翁
example, J_s peaked about 2 h earlier than R_s on days with low VWC (Fig. 6Fig. 8a), 1 h e	arlier	带格式的:	字体:	倾余
than R_s on days with moderate VWC (Fig. 6Fig. 8b), and at the same time as R_s on days	s with	带格式的:带格式的:	字体: 字体:	倾余倾余
high VWC (Fig. 6Fig. 8c). Lag hours between J_s and R_s over the growing season	were	带格式的:	字体:	倾余
negatively and linearly related to VWC ($\frac{1}{4}$ Fig. <u>9</u> 7: Lag (h) =-133.5×VWC+12.24, R ² =0	0.41 <u>-])</u> .			
697 Effect of VWC on time lags between J_s and R_s was smaller in 2014, with evenly distri	buted	带格式的:	字体:	倾余
rainfall during the growing season, than in 2013, with a pronounced summer drought	(Fig.			
699 7 Fig. 9). The State variables g_s and Ω showed a significantly increaseding trend	with	带格式的: 带格式的:	字体: 字体:	倾 倾 余
700 increasing VWC in 2013 and 2014, respectively (Fig. 8Fig. 10).				

Λ	带格式的:	字体:	倾斜
Λ	带格式的:	字体:	倾斜
Α	带格式的:	字体:	倾斜
	带格式的:	字体:	倾斜
1	带格式的:	字体:	倾斜

料,突出显示

701

4. Discussion and conclusions 702

703 4.1 Sap flow response to environmental factors

704 Drought tolerance of some plants may be related to lower overall sensitivity of the plants' physiological attributes to environmental stress and/or stomatal regulation (Huang et al., 705 2011b; Naithani et al., 2012). In this study, large regression slopes of linear relationships 706 between J_s and the environmental variables (R_s , VPD, and T) in the morning indicated that 707 708 sap flow was more sensitive to variations in R_s, VPD, and T during the less dry and hot period of the day (Fig. 35). Stomatal conductances were the largest in the morning (Fig. 46), which 709 led to increases in water fluxes to the atmosphere as a result of increased R_s , T, and VPD. 710 When R_s peaked during mid-day (13:00-14:00 h), there was often insufficient soil water to 711 meet the atmospheric demand of for water, causing stomatal conductances, to be limited by 712

4	带格式的:	字体:	倾斜
	带格式的:	字体:	倾斜
	带格式的:	字体:	倾斜
	带格式的:	字体:	倾斜

1	带格式的:	字体:	倾斜
-(带格式的:	字体:	倾斜
1	带格式的:	字体:	倾斜

带格式的: 突出显示 带格式的: 字体: 倾斜, 突出显示

/13	available soli moisture and making J_s more responsive to v wC at noon, but less responsive	
1		带格式的:字体:倾斜
714	to R _s and T. Similarly, <i>Hedysarum mongolicum</i> in athe nearby region positively correlated	带格式的: 字体: 倾斜
		带格式的:突出显示
715	towith VWC at noon (Qian et al., 2015), and the evapotranspiration over a f a Scots pine	带格式的:突出显示
		带格式的:突出显示
716	foreststand showed a higher sensitivity to surface conductance, Aemperature, WPD vapor	带格式的:突出显示
		带格式的:突出显示
717	pressure deficit, and radiation in the morning, than in the afternoon (Zha et al., 2013).	带格式的:突出显示
		带格式的:突出显示
718	Synergistic interactions among environmental factors influencing sap flow is-are	带格式的:突出显示
I		带格式的: 字体: (默认) Times N 显示
719	complex. In general, VWC has an influence on physiological processes of plants in water-	带格式的:突出显示
1		带格式的:字体:倾斜,突出显示
720	limited ecosystems (Lei et al., 2010; She et al., 2013). Our findings regarding lower	带格式的:字体:倾斜,突出显示
		带格式的:突出显示
721	sensitivity in J_s to environmental factors (R_s , T and VPD) during dry periods was in	带格式的:突出显示
		带格式的:突出显示
722	lineconsistent with a previousan earlier study of boreal grasslands (Zha et al., 2010). <mark>Also</mark>	带格式的:字体:倾斜,突出显示
		带格式的: 字体: 倾斜, 突出显示
723	our finding that soil water regulates the response of other environmental factors, suggests	带格式的:突出显示
		带格式的:突出显示
724	that VWC is the most important factor controlling -modifying the responses of in sap flow in	带格式的:突出显示
		带格式的:突出显示
725	Artemisia ordosica response to other environmental factors - This is was is in contrast to other	带格式的: 突出显示
		带格式的: 突出並示
726	shrub species ₂₇ where for For example, it has been found that sap flow in $\frac{Haloxylon}{Haloxylon}$	带格式的:突出显示
727	ammodendron in northwest China, where annual precipitation is 37.9 mm , and mean annual	
		带放士的 · 完休· 倾斜 密出显示
728	temperature is 8.2 °C, was mainly controlled by T (Zhang et al., 2003), while sap flow in	#松式的: 空出显示
		带格式的: 突出显示
729	Cyclobalanopsis glauca in south China, where annual precipitation is 1900 mm, and mean	带格式的:突出显示
		带放子的,它体、倾斜
730	annual temperature is 19.3 °C, was controlled by R_s and T , when VWC was not limiting	市俗八的 , 子体, 顾新 港核子的 , 完休, 倾斜
		节带我的: 于体: 顾杆
731	(Huang et al. <u>.</u> 2009).	
732	Precipitation, being the main source of VWC at our site, affected transpiration directly.	
733	In this sense, frequent small rainfall events (< 5 mm) were important to the survival and	

growth of the desert plants (Sala and Lauenroth, 1982; Zhao and Liu, 2010), Variations in J_s

734

713	available soil moisture ar	d making J_s more	e responsive to V	WC at noon, b	ut less responsive
-----	----------------------------	---------------------	-------------------	---------------	--------------------

/	带格式的:	突出显示
(带格式的:	突出显示

带格式的: 字体: (默认) Times New Roman, 小四, 突出

735	were clearly associated with the intermittent supply of water to the soil during rainfall events,
736	as we found indicated at our site (Fig. 1d2d, ef). Reduced J_s during rainy days can be
737	explained by a reduction in incident R_s and water-induced saturation on the leaf surface,
738	which led to a decrease in leaf turgor and stomatal closure. After each rainfall event, J_s
739	increased quickly when soil water was replenished. This finding is related to a positive
740	response in J. to R., T, and VPD under high VWC (Fig. 2). Schwinning and Sala (2004)
741	showed previously for similar research sites that VWC contributed the most to the response
742	in plant transpiration to post-rainfall events. We showed in this study that Artemisia ordosica
743	responded in a different way to wet and dry conditions. In the mid-growing season, high J_s
744	in July were related to rainfall-fed VWC, which increased the rate of transpiration. However,
745	dry soil conditions combined with high T and R_s , led to a reduction in J_s in August of 2013
746	(Fig. 1Fig. 2). In some desert shrubs, groundwater may replenish water lost by transpiration
747	by having deep roots (Yin et al., 2014). Artemisia ordosica roots are generally distributed in
748	the upper 60 cm of the soil (Zhao et al., 2010; Wang et al., 2016), and as a result the plant
749	usually depends on water directly supplied by precipitation because groundwater levels in
750	drylands can be well below the rooting zone, typically, at depths $\geq 10 \text{ m}$ at our site.

752 **4.2 Hysteresis between sap flow and environmental factors**

Diurnal patterns in J_s corresponded with those of R_s from sunrise until diverging later in the day (Fig. <u>57</u>), suggesting that R_s was a primary controlling factor of diurnal variation in J_s . According to O'Brien et al. (2004), diurnal variation in R_s could cause change in the diurnal variation in the consumption of water. As an initial energy source, R_s can force T and VPD 带格式的: 字体: 倾斜

带格式的:字体:倾斜

带格式的:字体:倾斜

1	带格式的:	字体:	倾斜,	突出显示
1	带格式的:	字体:	倾斜	
1	带格式的:	字体:	倾斜,	突出显示
1	带格式的:	字体:	倾斜,	突出显示
	带格式的:	字体:	倾斜,	突出显示

to increase, causing a phase difference in time lags among the relations J_s - R_s , J_s -T, and J_s -VPD.

We found a consistent clockwise hysteresis loop between J_s and R_s over a diurnal cycle 759 (Fig. 5Fig. 7), indicating that R_s lagged J_s , and the response of J_s to R_s varied both diurnally 760 and seasonally. A large g_s in the morning promoted higher rates of transpiration (Fig. 4Fig. 761 762 (6). In dry and hot conditions, g_s stomatal conductance decreased, causing the control of the stomata on J_s to increase relative to changes in environmental factors. Diurnal trends in J_s 763 764 and g_s occurred together, both peaking earlier than R_s . The g_s Stomatal conductance peaked 765 3-4 h earlier than R_s , leading to <u>a</u> reduction in J_s and an increase in R_s and a clockwise hysteresis loop. Contrary to our findings, counterclockwise hysteresis has been observed to 766 767 occur between transpiration (J_s) and R_s in tropical and temperate forests (Meinzer et al., 1997; O'Brien et al., 2004; Zeppel et al., 2004). A possible reason for this difference may be due to 768 769 differences in VWC associated with the different regions. According to Zheng and Wang (2014) favorable water conditions after rainfall could render clockwise hysteresis loops 770 between J_s and R_s under dry conditions to counterclockwise loops. In this study, due to a 771 772 large incidence of small rainfall events, soil water supply by rainfall pulses could not meet 773 the transpiration demand under high mid-day R_s , resulting in clockwise loops even though rainfall had occurred. 774

In semi-arid regions, low VWC restricts plant transpiration more than VPD. Water vapor deficits tend to restrict transpiration in forest species in wet regions to a greater extent. According to Zheng et al. (2014), high water availability in alpine shrubland meadows may contribute to weakened hysteresis between evapotranspiration and the environmental

带格式的:字体:倾斜 - **带格式的:**字体:倾斜

Ϊ	带格式的:	字体:	倾斜	
	带格式的:	字体:	倾斜	
	带格式的:	字体:	倾斜	
	带格式的:	字体:	倾斜	
1	带格式的:	字体:	倾斜	

Λ	带格式的:	字体: 倾斜
	带格式的:	突出显示
\square	带格式的:	字体:倾斜,突出显示
Y	带格式的:	突出显示
\mathbb{Z}	带格式的:	字体: 倾斜
Υ	带格式的:	字体: 倾斜
1	带格式的:	字体: 倾斜

带格式的: 字体: 倾斜

带格式的: 字体: 倾斜

7	79	variables. Our results showed that hysteresis between J_s and R_s decreased as VWC increased
7	80	(Fig. 6Fig. 8, 79). The result that grant state conductance increased with increasing VWC
7	81	(Fig. 8Fig. 10a), along with the synchronization harmonization of J_s and g_s , suggests that J_s
7	82	is less sensitive to stomatal conductance (g_s) in high VWC and more so to R_s . Temporal
7	83	patterns in J_s became more consistent coherent with those in R_s as VWC increased, leading
7	84	to a weakened hysteresis between the two variables. This is further supported by a large
7	85	decoupling coefficient when VWC is high (Fig. 8Fig. 10b). The larger the decoupling
7	02	coefficient is the greater is the influence of P on L . The effect of VWC on time lag varied
'	00	between 2012 and 2014
/	ð /	Detween 2013 and 2014.

带格式的: 字体: 倾斜 带格式的: 字体: 倾斜, 突出显示 带格式的:突出显示 带格式的:字体:倾斜 带格式的:突出显示 带格式的:字体:倾斜,突出显示 带格式的:突出显示 带格式的: 字体: 倾斜 带格式的: 字体: 倾斜

带格式的: 字体: 倾斜

789 4.3. Conclusions

788

I

Drought during the leaf-expansion and leaf-expanded periods led to a greater decline in J_s , 790 causing J_s to be lower in 2013 than in 2014. The relative influence of $\frac{R_s}{R_s}$, $\frac{T}{T}$, and VPD on J_s in 791 Artemisia ordosica was modified by soil water content, indicating J_s 's lower sensitivity to 792 793 environmental variables (R_s , T and VPD) during dry periods. Sap flow J_s was constrained by soil water deficiency, causing J_s to peak several hours prior to R_s . Diurnal hysteresis between 794 J_s and R_s varied seasonally, because of the control by stomatal conductance under low VWC 795 796 and R_s under high VWC. According to this study, soil moisture controlled sap-flow response 797 in Artemisia ordosica. This species is capable to tolerate and adapt to soil water deficiencies and drought conditions during the growing season. Altogether, our findings add to our 798 understanding of acclimation in desert-shrub species under stress of dehydration. The 799 knowledge gain can assist in modeling desert-shrub-ecosystem functioning under changing 800

带格式的:字体:倾斜,突出显示
 带格式的:字体:倾斜,突出显示
 带格式的:字体:倾斜
 带格式的:字体:倾斜

带格式的:	字体:	倾斜	

带格式的: 字体: 倾斜

801 climatic conditions.

802	Acknowledgments: This research was financially supported by grants from the National
803	Natural Science Foundation of China (NSFC No. 31670710, 31670708, 31361130340,
804	31270755), the National Basic Research Program of China (Grant No. 2013CB429901), and
805	the Academy of Finland (Project No. 14921). Xin Jia and Wei Feng are also grateful to
806	financial support from the Fundamental Research Funds for the Central Universities (Proj.
807	No. 2015ZCQ-SB-02). This work is related to the Finnish-Chinese collaborative research
808	project EXTREME (2013-2016), between Beijing Forestry University (team led by Prof.
809	Tianshan Zha) and the University of Eastern Finland (team led by Prof. Heli Peltola), and the
810	U.S. China Carbon Consortium (USCCC). We thank Ben Wang, Sijing Li, Qiang Yang, and
811	others for their assistance in the field.

812

813 References

814	-Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional
815	woody vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9,
816	316-335, 2003.

821 <u>120, 33-41, 2015.</u>

822 Du, S., Wang, Y._-L., Kume, T., Zhang, J._-G., Otsuki, K., Yamanaka, N., and Liu, G._-B.: Sapflow

<sup>Buzkova, R., Acosta, M., Darenova, E., Pokorny, R., and Pavelka, M.: Environmental factors influencing
the relationship between stem CO2 efflux and sap flow, Trees-Struct. Funct., 29, 333-343, 2015.
<u>Chen, Z., Zha, T. S., Jia, X., Wu, Y., Wu, B., Zhang, Y., Guo, J., Qin, S., Chen, G., Peltola, H.: Leaf</u>
<u>nitrogen is closely coupled to phenophases in a desert shrub ecosystem in China</u>, J. Arid Environ.,</sup>

823	characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of				
824	China, Agr. Forest Meteorol., 151, 1-10, 2011.				
825	Dynamax: Dynagage® Installation and Operation Manual, Dynamax, Houston, TX, 2005.				
826	Eberbach, P. L. and Burrows, G. E.: The transpiration response by four topographically distributed				
827	Eucalyptus species, to rainfall occurring during drought in south eastern Australia, Physiol. Plant.,				
828	127, 483-493, 2006.				
829	Forner, A., Aranda, I., Granier, A., and Valladares, F.: Differential impact of the most extreme drought				
830	event over the last half century on growth and sap flow in two coexisting Mediterranean trees, Plant				
831	Ecol., 215, 703-719, 2014.				
832	Gao, Q., Yu, M., and Zhou, C.: Detecting the Differences in Responses of Stomatal Conductance to				
833	Moisture Stresses between Deciduous Shrubs and Artemisia Subshrubs, PLos One, 8, e84200, 2013.				
834	Granier, A., Bréda, N., Biron, P., and Villette, S.: A lumped water balance model to evaluate duration and		带格式的:	非突出显示	
835	intensity of drought constraints in forest stands. Ecol. Model., 116, 269-283, 1999.				
836	Granier, A., Reichstein M., Bréda N., Janssens I. A., Falge E., Ciais P., Grünwald T., Aubinet M.,	\times	带格式的: 带格式的:	不检查拼写或语法, 正文	非突出显示
837	Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G., Heinesch B., Ilvesniemi H., Kerone				
838	P., Knohl A., Köstner B., Lagergren F., Lindroth A., Longdoz B., Loustau D., Mateus J., Montagnani		带格式的:	不检查拼写或语法,	非突出显示
839	L., Nys C., Moors E., Papale D., Peiffer M., Pilegaard K., Pita G., Pumpanen J., Rambal S., Rebmann				
840	C., Rodrigues A., Seufert G., Tenhunen J., Vesala T., and Wang Q.: Evidence for soil water control				
841	on carbon and water dynamics in European forests during the extremely dry year: 2003. Agr. Forest				
842	Meteorol., 143, 123-145, 2007.				
843	Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: The U.S. Carbon Budget: Contributions from Land-				
844	Use Change, Science, 285, 574-578, 1999.				

845	Huang, L., Zhang, Z. S., and Li, X. R.: Sap flow of Artemisia ordosica and the influence of environmental	带格式的:字体:非倾斜,不检查拼写或语
846	factors in a revegetated desert area: Tengger Desert, Chinge, Hydrol, Process., 24, 1248–1253, 2010.	
847	Huang, H., Gang, W., and NianLai, C.: Advanced studies on adaptation of desert shrubs to environmental	
848	stress, Sci <u>ences in</u> Cold and Arid Regions, 3, 0455–0462, 2011a.	
849	Huang, Y., Li, X., Zhang, Z., He, C., Zhao, P., You, Y., and Mo, L.: Seasonal changes in Cyclobalanopsis	
850	glauca transpiration and canopy stomatal conductance and their dependence on subterranean water	
851	and climatic factors in rocky karst terrain, J. Hydrol., 402, 135-143, 2011b.	
852	Huang, Y., Zhao, P., Zhang, Z., Li, X., He, C., and Zhang, R.: Transpiration of Cyclobalanopsis glauca	
853	(syn. Quercus glauca) stand measured by sap-flow method in a karst rocky terrain during dry season,	
854	Ecol <u>.ogical</u> Res <u>earch</u> , 24, 791-801, 2009.	
855	Jacobsen, A. L., Agenbag, L., Esler, K. J., Pratt, R. B., Ewers, F. W., and Davis, S. D.: Xylem density,	
856	biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the	
857	Mediterranean-type climate region of South Africa, J.ournal of Ecol.ogy, 95, 171-183, 2007.	
858	Jarvis, P. G. and McNaughton, K. G.: Stomatal Control of Transpiration: Scaling Up from Leaf to Region.	
859	In: Advances in Ecological Research, MacFadyen, A. and Ford, E. D. (Eds.), Academic Press, 1986.	
860	Jia, X., Zha, T.S., Wu, B., Zhang, Y., Gong, J., Qin, S., Chen, G., Kellomki, S. & Peltola, H.: Biophysical	
861	controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China.	
862	Biogeosciences, 11, 4679-4693, 2014.	
863	Jia, X., Zha, T. S, Gong, J., Wang, B., Zhang Y., Wu B., Qin S., and Peltola H.: Carbon and water exchange	带格式的:不检查拼写或语法,非突出显示 带格式的:正文
864	over a temperate semi-arid shrubland during three years of contrasting precipitation and soil	带格式的:不检查拼写或语法,非突出显示
865	moisturepatterns. Agr. Forest Meteorol., 228, 120-129, 2016.	

Jian, S. Q., Wu, Z. N., Hu, C. H., and Zhang, X. L.: Sap flow in response to rainfall pulses for two shrub 866

867	species in the semiarid Chinese Loess Plateau, J. Hydrol. Hydromech., 64, 121-132, 2016.
868	Lei, H., Zhi-Shan, Z., and Xin-Rong, L.: Sap flow of Artemisia ordosica and the influence of
869	environmental factors in a revegetated desert area: Tengger Desert, China, Hydrol. Process., 24,
870	1248-1253, 2010.
871	Li, S., Werger, M. A., Zuidema, P., Yu, F., and Dong, M.: Seedlings of the semi-shrub Artemisia ordosica
872	are resistant to moderate wind denudation and sand burial in Mu Us sandland, China, Trees, 24, 515-
873	521, 2010.
874	Li, S., Zha, T., Qin, S., Qian, D., and Jia, X.: Temporal patterns and environmental controls of sap flow in
875	Artemisia ordosica, Chinese J <u>ournal of</u> Ecol <u>ogy</u> , 33, 1-7, 2014.
876	Lioubimtseva, E. and Henebry, G. M.: Climate and environmental change in arid Central Asia: Impacts,
877	vulnerability, and adaptations, J.ournal of Arid Environ.ments, 73, 963-977, 2009.
878	Liu, B., Zhao, W., and Jin, B.: The response of sap flow in desert shrubs to environmental variables in an
879	arid region of China, Ecohydrology, 4, 448-457, 2011.
880	Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M., Cavelier, J., and Jackson, P.: Control of
881	transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and
882	hydraulic architecture components, Plant, Cell-& Environ.ment, 20, 1242-1252, 1997.
883	Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics. Butterworth-Heinemann:
884	Oxford, 1990.
885	Naithani, K. J., Ewers, B. E., and Pendall, E.: Sap flux-scaled transpiration and stomatal conductance
886	response to soil and atmospheric drought in a semi-arid sagebrush ecosystem, J. Hydrol., 464, 176-
887	185, 2012.
888	O'Brien, J. J., Oberbauer, S. F., and Clark, D. B.: Whole tree xylem sap flow responses to multiple

889	environmental variables in a wet tropical forest, Plant, Cell-& Environ.ment, 27, 551-567, 2004.							
890	Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist,							
891	E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier,							
892	G., Holland, E., Gloor, M., Harmon, M. E., Fan, SM., Sarmiento, J. L., Goodale, C. L., Schimel, D.,							
893	and Field, C. B.: Consistent Land- and Atmosphere-Based U.S. Carbon Sink Estimates, Science, 292,							
894	2316-2320, 2001.							
895	Qian, D., Zha, T. S., Jia, X., Wu, B., Zhang, Y., Bourque C. P. A., Qin, S., and Peltola, H.: Adaptive,		带格式的 法	1: 字体:	(中文)	仿宋_GB2312,	不检查拼写	 司 或 语
896	water-conserving strategies in Hedvarum mongolicum endemic to a desert shrubland ecosystem		带格式的法	:字体:	(中文)	仿宋_GB2312,	不检查拼写	 司 或 语
070	water conserving strategies in freeystram mongoneam enderne to a desert sindoland ecosystem,		带格式的	: 字体:	非倾斜	()) 		7 1. 17
897	Environ. Earth. Sci., 74, 6039–6046, 2015.		带格式的法	: 字体:	(中文)	仿宋_GB2312,	不检查拼 ^上	与或语
898	Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., and Andersen, M. N.: Water							
899	Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying,							
900	J_ournal of Agron_omy and Crop Sci_ence, 197, 348-360, 2011.							
901	Sala O.F. and Lauenroth W.K. Small rainfall events: an ecological role in semi-arid regions. Oecologia		带格式的	: 字体:	五号,	不检查拼写或i	吾法	
701	para, O. L., and Eadenrout, W. K., Sman fannan events, an ecological fold in semi-and regions, occologia,		带格式的	: 字体:	五号,	不检查拼写或i	吾法	
902	<u>53 (3), 301-304, 1982</u>	/	带格式的	I: 字体:	五号,	不检查拼写或i	吾法	
903	Schwinning, S. and Sala, O. E.: Hierarchy of responses to resource pulses in arid and semi-arid ecosystems,							
904	Oecologia, 141, 211-220, 2004.							
905	She, D., Xia, Y., Shao, M., Peng, S., and Yu, S.: Transpiration and canopy conductance of Caragana							
906	korshinskii trees in response to soil moisture in sand land of China, Agroforest_ry syst_ems, 87, 667-							
907	678, 2013.							
908	Vilagrosa, A., Bellot, J., Vallejo, V. R., and Gil- Pelegrín, E.: Cavitation, stomatal conductance, and leaf		带格式的 宋_GB231	: 字体: 2	(默认)	Times New Ro	oman, (中文)仿
909	dieback in seedlings of two co- occurring Mediterranean shrubs during an intense drought, Journal		带格式的 宋_GB231	: 字体: 2	(默认)	Times New Ro	oman, (中文)仿
910	of Exp <u>erimental</u> Bot <u>any</u> , 54, 2015-2024, 2003.							

912	H.: Microtopographic variation in soil respiration and its controlling factors vary with plant	
913	phenophases in a desert-shrub ecosystem. Biogeosciences, 12, 5705-5714, 2015.	
914	Xia, G., Kang, S., Du, T., Yang, X., and Zhang, J.: Transpiration of Hedysarum scoparium in arid desert	
915	region of Shiyang River basin, Gansu Province, Chinese J.ournal ofAppl.ied Ecol.og, 18, 1194-	
916	1202, 2007.	
917	Xia, G., Kang, S., Li, F., Zhang, J., and Zhou, Q.: Diurnal and seasonal variations of sap flow of Caragana	
918	korshinskii in the arid desert region of north-west China, Hydrol. Process., 22, 1197-1205, 2008.	
919	Xu, D. H., Li, J. H., Fang, X. W., and Wang, G.: Changes in soil water content in the rhizosphere of	
920	Artemisia ordosica: Evidence for hydraulic lift, J.ournal of Arid Environ.ments, 69, 545-553, 2007.	
921	Yang, Y. and Zhu, Y.: Plant Ecology (Second Edition), Higher Education Press, Beijing, 2011.	
922	Yin, L., Zhou, Y., Huang, J., Wenninger, J., Hou, G., Zhang, E., Wang, X., Dong, J., Zhang, J., and	
923	Uhlenbrook, S.: Dynamics of willow tree (Salix matsudana) water use and its response to	
924	environmental factors in the semi-arid Hailiutu River catchment, Northwest China, Environ.mental	
925	earth sci <u>ences</u> , 71, 4997-5006, 2014.	
926	Yu, M., , Ellis, J. E., and Epstein, H. E.: Regional analysis of climate, primary production, and livestock	
927	density in Inner Mongolia. J <u>ournal of Environ.mental</u> Qual.ity, 33(5), 1675-1681, 2004.	
928	Zeppel, M. J. B., Murray, B. R., Barton, C., and Eamus, D.: Seasonal responses of xylem sap velocity to	
929	VPD and solar radiation during drought in a stand of native trees in temperate Australia, Funct.ional	

Wang, B., Zha, T. S., Jia, X., Gong, J.N., Wu, B., Bourque, C. P. A., Zhang, Y., Qin, S., Chen, G., Peltola,

930 Plant Biol<u>.ogy</u>, 31, 461-470, 2004.

911

Zeppel, M. J. B., Macinnis-Ng, C. M. O., Yunusa, I. A. M., Whitley, R. J., and Eamus, D. Long term
trends of stand transpiration in a remnant forest during wet and dry years, J. Hydrol., 349, 200-213,

带格式的: 字体: (默认) Times New Roman, (中文) 仿 宋-GB2312

带格式的: 字体: Times New Roman, 五号 **带格式的:** 字体: Times New Roman, 五号 **带格式的:** 字体: Times New Roman, 五号

933	2008.	
934	Zha, T. S., Barr, A. G., Kamp, G. V. D., Black, T.A., McCaughey, J. H., and Flanagan, L.B.: Interannual	
935	variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation	
936	to drought, Agr. Forest Meteorol., 150, 1476-1484, 2010.	
937	Zha, T. S., Li, C., Kellomäki, S., Peltola, H., Wang, KY., and Zhang, Y.: Controls of Evapotranspiration	
938	and CO2 Fluxes from Scots Pine by Surface Conductance and Abiotic Factors, Plos One, 8, e69027,	
939	2013.	
940	Zhang, X., Gong, J., Zhou, M., and Si, J.: A study on the stem sap flow of Populus euphrtaicr and Tamaris	
941	spp. By heat pulse technique, J. Glaciol. Geocryol., 25, 584-590, 2003(in Chinese)	
942	Zhao, W. and Liu, B.: The response of sap flow in shrubs to rainfall pulses in the desert region of China,	
943	Agr. Forest Meteorol., 150, 1297-1306, 2010.	
944	Zhao, Y., Yuan, W., Sun, B., Yang, Y., Li, J., Li, J., Cao, B., and Zhong, H.: Root Distribution of Three	
945	Desert Shrubs and Soil Moisture in Mu Us Sand Land. Res <u>earch of</u> _Soil-and Water Conserv_ation,	
946	17, 129-133, 2010.	
947	Zhao, W., Liu, B., Chang, X., Yang, Q., Yang, Y., Liu Z., Cleverly, J., and Eamus, Derek .:	带格式的:非突出显示
948	Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A	
949	special case of a desert ecosystem in China. J. Hydrol., 538, 374-386, 2016.	
950	4-	带格式的: 缩进:左侧: 0 厘米,首行缩进: 0 字符
951	Zheng, C. and Wang, Q.: Water-use response to climate factors at whole tree and branch scale for a	
952	dominant desert species in central Asia: Haloxylon ammodendron, Ecohydrology, 7, 56-63, 2014.	
953	Zheng, H., Wang, Q., Zhu, X., Li, Y., and Yu, G.: Hysteresis Responses of Evapotranspiration to	带格式的: EndNote Bibliography, 缩进: 左侧: 0 厘 米, 悬挂缩进: 2 字符, 首行缩进: -2 字符
954	Meteorological Factors at a Diel Timescale: Patterns and Causes, Plos One, 9, e98857, 2014	带格式的: 字体: Times New Roman, 五号

957	
958	Table 1 Seasonal changes in monthly transpiration (T_r) , leaf area index (LAI), and stomatal
959	conductance (g_s) of Artemisia ordosica in the plot from 2013 to 2014.

_	T_r (mm	mon^{-1})	LAI $(m^2 m^{-2})$		g_s (mol	m ⁻² s ⁻¹)
	2013	2014	2013	2014	2013	2014
May	0.57	1.59	0.02	0.04	0.07	0.18
June	1.03	2.28	0.05	0.06	0.08	0.13
July	3.36	3.46	0.10	0.06	0.09	0.14
August	1.04	2.45	0.08	0.06	0.10	0.08
September	1.23	1.13	0.05	0.04	0.15	0.05
	May	June	Iuly	August	September	-
---	--	------	------	--------	-----------	---
6						
5	function of \hat{R}_s , T , and VPD.			C	0	

963	Table 2 Mean monthly	diurnal cycles of sap-flow	w rate (J_s) response to shortw	ave radiation
-----	----------------------	----------------------------	-----------------------------------	---------------

 (R_s) , air temperature (T), and vapor pressure deficit (VPD), including time lags (h) in J_s as a

Dottorn	М	lay	Ju	ne	July		August		September	
Pattern	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
J_s-R_s	5	2	3	0	2	1	3	1	3	2
J_{s} - T	8	6	7	4	4	4	6	5	6	6
J _s -VPD	8	5	7	4	6	4	6	5	6	5

971	Fig. 1 Sap-flow rate per leaf area (J_s) as a function of soil water content (VWC) at 30 cm	带格式的:	突出显示
972	depth in non-rainy, daytime hours during the mid-growing period from June 1-August 31		
973	over 2013-2014. Data points are binned values from pooled data over two years at a VWC		
974	increment of 0.003 m ³ m ⁻³ . Dotted line represents the VWC threshold for J_{s} .	带格式的:	突出显示
975	Fig. 2 Seasonal changes in daily (24-hour) mean shortwave radiation (R_s ; a), air temperature		
976	(<i>T</i> ; b), vapor pressure deficit (VPD; c), volumetric soil water content (VWC; d), relative		
977	extractable water (REW; e), daily total precipitation (PPT; d), and daily sap-flow per leaf		
978	area (J _s ; f), and daily transpiration (T_r , mm d ⁻¹ ; f) from May to September for both 2013 and		
979	2014 Horizontal dash lines (d, e) represent VWC and REW threshold of $0.1 \text{ m}^3 \text{ m}^{-3}$ and 0.4		
080	respectively. Shaded hands indicate periods of drought		
980	Fig. 3 Deletionships between can flow rate non-leaf area (L) and environmental factors	带格式的:	突出显示
981	Fig. 5 Relationships between sap-now rate per real area (J_s) and environmental factors	34 14 h H	
982	[(shortwave radiation (R_s), air temperature (T), vapor pressure deficit (VPD), and soil water	带格式的: 带格式的:	突出显示
		带格式的:	突出显示
983	content at 30-30- cm depth (VWC))]_in non-rainy days between 8:00-20:00 h during the	带格式的:	突出显示
		带格式的:	突出显示
984	mid-growing period-season of June 1-August 31 for over 2013- and 2014. Data points are	带格式的:	突出显示
0.9.5	binned values from peopled data over two vectors at increments of 40 W m ⁻² 1.2 %C 0.2 kPe	带格式的:	突出显示
985	billied values from pooled data over two years at increments of 40 w in , 1.2, C, 0.5 kFa,	带格式的:	突出显示
986	and 0.005 m ³ m ⁻³ for R_s , T , VPD and VWC, respectively.		
987	Fig. 4 Sap-flow rate per leaf area (J_s) in non-rainy, daytime hours during the mid-growing	带格式的:	非突出显示
988	period_season_of June 1-August 31 for both 2013 and 2014 as a function of shortwave	带格式的:	非突出显示
989	radiation (R_s), air temperature (T), vapor pressure deficit (VPD) under high volumetric soil		
990	water content ($VWC > 0.10 \text{ m}^3 \text{ m}^{-3}$ both in 2013 and 2014) and low VWC (< 0.10 m ³ m ⁻³ ,		
		带格式的:	非突出显示
991	both in-2013 and 2014), J_s is given as binned averages according to R_s , $T_{-,and}$ VPD, based	带格式的:	非突出显示

Figure captions:

970

带格式的:	突出显示
带格式的:	突出显示

带格式的:	非突出显示

1	带格式的:	非突出显示
	带格式的:	非突出显示

992	on increments of 100 W m ⁻² , 1°C, and 0.2 kPa, respectively. Bars indicate standard error.
993	Fig. 5 Regression slopes of linear fits between sap-flow rate per leaf area (J_s) in non-rainy
994	days and shortwave radiation (R_s) , vapor pressure deficit (VPD), air temperature (T) , and
995	volumetric soil water content (VWC) between 8:00-20:00 h during the mid-growing period
996	season of June 1-August 31 for both-2013 and 2014.
997	Fig. 6 Mean monthly diurnal changes in sap-flow rate per leaf area (J_s) and stomatal
998	conductance (g_s) in Artemisia ordosica during the growing season (May-September) for both
999	2013 and 2014. Each point is given as the mean at specific times during each month.
1000	Fig. 7 Seasonal variation in hysteresis loops between sap-flow rate per leaf area (J_s) and
1001	shortwave radiation (R_s) using normalized plots for both 2013 and 2014. The y-axis
1002	represents the proportion of maximum J_s (dimensionless), and the x-axis represents the
1003	proportion of maximum R_s (dimensionless). The curved arrows indicate the clockwise
1004	direction of response during the day.
1005	Fig. 8 Sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) over consecutive three
1006	days in 2013, i.e., (a) under low volumetric soil water content (VWC) and high vapor pressure
1007	deficit (VPD)(;_ DOY 153-155, VWC=0.064 m ³ m ⁻³ , REW=0.025, VPD=2.11 kPa), (b)
1008	moderate VWC and VPD (DOY 212-214, VWC=0.092 m ³ m ⁻³ , REW=0.292, VPD=1.72
1009	kPa), and (c) high VWC and low VPD (DOY 192-194, VWC=0.152 m ³ m ⁻³ , REW=0.865,
1010	VPD= 0.46 kPa). REW is the relative extractable soil water. VWC, REW, and VPD are the
1011	mean value of the three days.
1012	Fig. 9 Time lag between sap-flow rate per leaf area (J_s) and short wave radiation (R_s) in

- relation to volumetric soil water content (VWC). Hourly data in non-rainy days during the
 - 39

1014	mid-growing period season of June 1-August 31 for both 2013 and 2014. The lag hours were
1015	calculated by a cross-correlation analysis using a three-day moving window with a one-day
1016	time step. Rainy days were excluded. The solid line is based on exponential regression
1017	(p<0.05) .
1018	Fig. 10 Relationship between volumetric soil water content (VWC) and (a) stomatal
1019	conductance (g_s) in Artemisia ordosica, and (b) decoupling coefficient (Ω) for both 2013 and
1020	2014. Hourly values are given as binned averages based on a VWC-increment of 0.005 m^3
1021	m ⁻³ . Bars indicate standard error. Only regressions line-with $\frac{p-p}{p-v}$ values < 0.05 was are
1022	showedshown.

i i	
1036	Fig. 2 Seasonal changes in daily (24-hour) mean shortwave radiation (R_s ; a), air temperature
1037	(T; b), vapor pressure deficit (VPD; c), volumetric soil water content (VWC; d), relative
1038	extractable water (REW; e), daily total precipitation (PPT; d), and daily sap-flow per leaf
1039	area $(J_{s}; f)$, and daily transpiration $(T_r, \text{ mm } d^{-1}; f)$ from May to September for both 2013 and
1040	2014. Horizontal dash lines (d, e) represent VWC and REW threshold of 0.1 m ³ m ⁻³ and 0.4,
1041	respectively. Shaded bands indicate periods of drought.
1042	

Fig. 6 Mean monthly diurnal changes in sap-flow rate per leaf area (J_s) and stomatal conductance (g_s) in *Artemisia ordosica* during the growing season (May-September) for both 2013 and 2014. Each point is given as the mean at specific times during each month.

1076

¹¹⁰⁵ by a cross-correlation analysis using a three-day moving window with a one-day time step.

1106 Rainy days were excluded. The solid line is based on exponential regression (p < 0.05).

1116	Marked-up manuscript version
1117	Soil moisture control on sap-flow response to biophysical factors in a desert-shrub
1118	species, Artemisia ordosica
1119	Authors: Tianshan Zha ^{1,3*#} , Duo Qian ^{2#} , Xin Jia ^{1,3} , Yujie Bai ¹ , Yun Tian ¹ , Charles PA.
1120	Bourque ⁴ , Wei Feng ¹ , Bin Wu ¹ , Heli Peltola ⁵
1121	^{1.} Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry
1122	University, Beijing 100083, China
1123	² ·Beijing Vocational College of Agriculture, Beijing 102442, China
1124	^{3.} Key Laboratory of State Forestry Administration on Soil and Water Conservation,
1125	Beijing Forestry University, Beijing, China
1126	^{4.} Faculty of Forestry and Environmental Management, 28 Dineen Drive, PO Box 4400,
1127	University of New Brunswick, New Brunswick, E3B5A3, Canada
1128	^{5.} Faculty of Science and Forestry, School of Forest Sciences, University of Eastern
1129	Finland, Joensuu, FI-80101, Finland
1130	*These authors contributed equally to this work.
1131	
1132	
1133	Short title: Sap flow in Artemisia ordosica
1134	
1135	
1136	Correspondence to: T. Zha (tianshanzha@bjfu.edu.cn),
1137	

1138 Author Contribution Statement:

- 1139 Dr.'s Duo Qian and Tianshan Zha contributed equally to the design and implementation of
- 1140 the field experiment, data collection and analysis, and writing the first draft of the manuscript.
- 1141 Dr. Xin Jia gave helpful suggestions concerning the analysis of the field data and contributed
- 1142 to the scientific revision and editing of the manuscript.
- ¹¹⁴³ Prof. Bin Wu contributed to the design of the experiment.

1144 Dr.'s Charles P.-A. Bourque and Heli Peltola contributed to the scientific revision and editing

- 1145 of the manuscript.
- 1146 Yujie Bai, Wei Feng, and Yun Tian were involved in the implementation of the experiment

1147 and in the revision of the manuscript.

1148

1149 Key Message: This study provides a significant contribution to the understanding of

1150 acclimation processes in desert-shrub species to drought-associated stress in dryland

- 1151 ecosystems
- 1152

1153 Conflict of Interest:

This research was financially supported by grants from the National Natural Science Foundation of China (NSFC No. 31670710), the National Basic Research Program of China (Grant No. 2013CB429901), and by the Academy of Finland (Project No. 14921). The project is related to the Finnish-Chinese collaborative research project, EXTREME (2013-2016), between Beijing Forestry University and the University of Eastern Finland, and USCCC. We appreciate Dr. Ben Wang, Sijing Li, Qiang Yang, and others for their help with the fieldwork. **The authors declare that they have no conflict of interest.**

1162	Abstract: Current understanding of acclimation processes in desert-shrub species to drought
1163	stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in
1164	Artemisia ordosica and associated environmental variables throughout the growing seasons
1165	of 2013-2014 (May-September period of each year) to better understand the environmental
1166	controls on the temporal dynamics of sap flow. We found that the occurrence of drought in
1167	the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow
1168	per leaf area (J_s) to decline significantly, resulting in a sizable drop in transpiration. Sap flow
1169	per leaf area correlated positively with radiation $(\frac{R_s}{R_s})$, air temperature $(\frac{T}{T})$, and vapor pressure
1170	deficit (VPD), when volumetric soil water content (VWC) was $> 0.10 \text{ m}^3 \text{ m}^{-3}$. Diurnal J_s was
1171	generally ahead of R_s by as much as 6 hours. This lag time, however, decreased with
1172	increasing VWC. Relative response of J_s to the environmental variables (i.e., R_s, T , and VPD)
1173	varied with VWC, J_s being more biologically-controlled with a low decoupling coefficient
1174	and less sensitivity to the environmental variables during periods of dryness. According to
1175	this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration)
1176	response in Artemisia ordosica to diurnal variations in biophysical factors. The findings of
1177	this study add to the knowledge of acclimation processes in desert-shrub species under
1178	drought-associated stress. This knowledge is essential to model desert-shrub-ecosystem
1179	functioning under changing climatic conditions.

- Keywords: sap flow; transpiration; cold-desert shrubs; environmental stress; volumetric soil water content

1184 **2. Introduction**

1185 Due to the low amount of precipitation and high potential evapotranspiration in desert ecosystems, low soil water availability limits both plant water- and gas-exchange and, as a 1186 consequence, limits vegetation productivity (Razzaghi et al., 2011). Therefore, it is important 1187 to understand the mechanisms controlling the vegetation-water dynamics under rapidly 1188 changing environments (Jacobsen et al., 2007). Grass species are gradually being replaced 1189 by shrub and semi-shrub species in arid and semi-arid areas of northwestern China (Yu et al., 1190 2004). This progression is predicted to continue under a changing climate (Asner et al., 2003; 1191 1192 Houghton et al., 1999; Pacala et al., 2001). This is mostly because desert shrubs are able to adapt to hot-dry environments by modifying their morphological characteristics, e.g., by (1) 1193 1194 minimizing plant-surface area directly exposed to sun and hot air, (2) producing thick 1195 epidermal hairs, (3) thickening cuticle, (4) recessing stomata into leaves (Yang and Zhu, 2011), and (5) increasing root-to-shoot ratios (Eberbach and Burrows, 2006; Forner et al., 1196 1197 2014). Also, acclimation of physiological characteristics of plants under water stress, by way of e.g., water potential, osmotic regulation, anti-oxidation, and photosynthetic characteristics, 1198 assist the plants to maintain a hydrological balance (Huang et al., 2011a). Changes in stomatal 1199 conductance and, thus, transpiration may likewise affect plant water use efficiency (Pacala 1200 1201 et al., 2001; Vilagrosa et al., 2003).

Sap flow can accurately reflect water consumption during plant transpiration. It maintains ecosystem balance through the soil-plant-atmosphere continuum, but is often affected by environment factors (Huang *et al.*, 2010; Zhao et al., 2016). In recent studies, sap flow in *Tamarix elongate* has been observed to be controlled by solar radiation and air temperature, whereas in *Caragana korshinskii* vapor pressure deficit and solar radiation 54 1207 appear to be more important (Jacobsen et al., 2007; Xia et al., 2008). In Elaeagnus 1208 angustifolia, transpiration is observed to peak at noon, i.e., just before stomatal closure at mid-day under water-deficit conditions (Liu et al., 2011). In contrast, transpiration in 1209 Hedysarum scoparium peaks multiple times during the day (Xia et al., 2007). Sap flow has 1210 been observed to decrease rapidly when the volumetric soil water content (VWC) is lower 1211 1212 than the water loss through evapotranspiration (Buzkova et al., 2015). In general, desert shrubs can close their stomata to reduce transpiration when exposed to dehydration stress 1213 1214 around mid-day. However, differences exist among shrub species with respect to their 1215 stomatal response to changes in soil and air moisture deficits (Pacala et al., 2001). For some shrubs, sap-flow response to precipitation varies from an immediate decline after a heavy 1216 1217 rainfall to no observable change after a small rainfall event (Asner et al., 2003; Zheng and Wang, 2014). Sap flow has been found to increase with increasing rainfall intensity (Jian et 1218 1219 al., 2016). Drought-insensitive shrubs have relatively strong stomatal regulation and, therefore, tend to be insensitive to soil water deficits and rainfall unlike their drought-1220 sensitive counterparts (Du et al., 2011). In general, understanding of the relationship between 1221 sap-flow rates in plants and environmental factors is highly inconsistent, varying with plant 1222 habitat (Liu et al., 2011). 1223

Artemisia ordosica, a shallow-rooted desert shrub, is the dominant plant species in the Mu Us Desert of northwestern China. The shrubs have an important role in combating desertification and in stabilizing sand dunes (Li et al., 2010). Increases in air temperature and precipitation variability and associated shorter wet periods and longer intervals of periodic drought are expected to ensue with projected climate change (Lioubimtseva and Henebry,

1229	2009). During dry periods of the year, sap flow in Artemisia ordosica has been observed to
1230	be controlled by VWC at about 30-cm depth in the soil (Li et al., 2014). Sap-flow rate is
1231	known to be affected by variation in precipitation patterns. Soil water content, in combination
1232	with other environmental factors, may have a significant influence on sap-flow rate (Li et al.,
1233	2014; Zheng and Wang, 2014). Thus, understanding the controlling mechanisms of sap flow
1234	in desert shrubs as a function of variations in biotic and abiotic factors is greatly needed (Gao
1235	et al., 2013; Xu et al., 2007).

In this study, we measured stem sap flow in *Artemisia ordosica* and associated environmental variables throughout the growing seasons of 2013-2014 (May-September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We believe that our findings will provide further understanding of acclimation processes in desert-shrub species under stress of dehydration.

1241

1242 2. Materials and Methods

1243 **2.1 Experimental site**

Continuous sap-flow measurements were made at the Yanchi Research Station $(37^{\circ}42'$ 31″ N, 107°13′ 47″ E, 1530 m above mean sea level), Ningxia, northwestern China. The research station is located between the arid and semi-arid climatic zones along the southern edge of the Mu Us Desert. The sandy soil in the upper 10 cm of the soil profile has a bulk density of 1.54±0.08 g cm⁻³ (mean ± standard deviation, n=16). Mean annual precipitation in the region is about 287 mm, of which 62% falls between July and September. Mean annual potential evapotranspiration and air temperature are about 2,024 mm and 8.1°C based on

1251	ineteorological data (1954-2004) from the Fanchi County weather station. Normany, sinuo
1252	leaf-expansion, leaf-expanded, and leaf-coloration stages begin in April, June, and
1253	September (Chen et al., 2015), respectively.
1254	
1255	2.2 Measurements of sap flow, leaf area and stomatal conductance
1256	The experimental plot (10 m \times 10 m) was located on the western side of Yanchi Research
1257	Station in an Artemisia ordosica-dominated area. Mean age of the Artemisia ordosica was
1258	10-years old. Maximum monthly mean leaf area index (LAI) for plant specimens with full
1259	leaf expansion was about $0.1 \text{ m}^2 \text{ m}^{-2}$ (Table 1). Over 60% of their roots were
1260	distributed in soil depths of 0-60 cm (Zhao et al., 2010; Jia et al., 2016). Five stems of
1261	Artemisia ordosica were randomly selected within the plot as replicates for sap-flow
1262	measurement. Mean height and sapwood area of sampled shrubs were 84 cm and 0.17 cm ² ,
1263	respectively. Sampled stems represented the average size of stems in the plot. A heat balance
1264	sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cm above the
1265	ground surface on each of the five stems (Dynamax, 2005). Sap-flow measurements were
1266	taken once per minute for each stem. Half-hourly data were recorded by a Campbell CR1000
1267	data logger from May 1 to September 30, 2013-2014 (Campbell Scientific, Logan, UT, USA).
1268	Leaf area was estimated for each stem every 7-10 days by sampling about 50-70 leaves
1269	from five randomly sampled neighbouring shrubs with similar characteristics to the shrubs
1270	used for sap-flow measurements. Leaf area was measured immediately at the station
1271	laboratory with a portable leaf-area meter (LI-3000, Li-Cor, Lincoln, NE, USA). Leaf area
1272	index (LAI) was measured at roughly weekly intervals on a 4×4 grid of 16 quadrats (10 m

1.0

1273	imes 10 m each) within a 100 m $ imes 100$ m plot centered on the flux tower using measurements of
1274	sampled leaves and allometric equations (Jia et al., 2014). Stomatal conductance (g_s) was
1275	measured in situ for three to four leaves on each of the sampled shrubs with a LI-6400
1276	portable photosynthesis analyzer (Li-Cor Inc., Lincoln, USA). The g _s measurements were
1277	made every two hours from 7:00 to 19:00 h every ten days from May to September, 2013-
1278	2014.

1279 The degree of coupling between the ecosystem surface and the atmospheric boundary 1280 layer was estimated with the decoupling coefficient (Ω). The decoupling coefficient varies 1281 from 0 (i.e., leaf transpiration is mostly controlled by g_s) to 1 (i.e., leaf transpiration is mostly 1282 controlled by radiation). The Ω was calculated as described by Jarvis and McNaughton 1283 (1986):

1284
$$\Omega = \frac{\Delta + \gamma}{\Delta + \gamma \left(1 + \frac{g_a}{g_s}\right)},$$
 (1)

where Δ is the rate of change of saturation vapor pressure *vs.* temperature (kPa K⁻¹), γ is the psychrometric constant (kPa K⁻¹), and g_a is the aerodynamic conductance (m s⁻¹; Monteith and Unsworth, 1990):

1288
$$g_a = \left(\frac{u}{u^{*2}} + 6.2u^{*-0.67}\right)^{-1},$$
 (2)

where *u* is the wind speed (m s⁻¹) at 6 m above the ground, and u^* is the friction velocity (m s⁻¹).

1291

1292 **2.3 Environmental measurements**

1293 Shortwave radiation (R_s in W m⁻²; CMP3, Kipp & Zonen, Netherland), air temperature (T in

1294	°C), wind speed (<i>u</i> in m s ⁻¹ , 034B, Met One Instruments Inc., USA), and relative humidity
1295	(RH in %; HMP155A, Väisälä, Finland) were measured simultaneously near the sap-flow
1296	measurement plot. Half-hourly data were recorded by data logger (CR3000 data logger,
1297	Campbell Scientific Inc., USA). VWC at 30-cm depths were monitored with three ECH ₂ O-
1298	5TE soil moisture probes (Decagon Devices, USA). In the analysis, we used half-hourly
1299	averages of VWC from the three soil moisture probes. Vapor pressure deficit (VPD in kPa)
1300	was calculated from recorded <i>RH</i> and <i>T</i> .
1301	
1302	2.4 Data analysis
1303	In our analysis, March-May represented spring, June-August summer, and September-
1304	November autumn (Chen et al., 2015). Drought days were defined as those days with daily
1305	mean VWC < 0.1 m ³ m ⁻³ . This is based on a VWC threshold of 0.1 m ³ m ⁻³ for J_s (Fig. 1),
1306	with J_s increasing as VWC increased, saturating at VWC of 0.1 m ³ m ⁻³ , and decreasing as
1307	VWC continued to increase. The VWC threshold of 0.1 $m^3 m^{-3}$ is equivalent to a relative
1308	extractable soil water (REW) of 0.4 for drought conditions (Granier et al., 1999 and 2007;
1309	Zeppel et al., 2004 and 2008; Fig. 2d, e). Duration and severity of 'drought' were defined
1310	based on a VWC threshold and REW of 0.4. REW was calculated as according to equation
1311	(3):
1312	$REW = \frac{VWC - VWC_{\min}}{VWC_{\max} - VWC_{\min}} $ (3)
1313	where VWC is the specific daily soil water content ($m^3 m^{-3}$), VWC _{min} and VWC _{max} are the
1314	minimum and maximum VWC during the measurement period in each year, respectively.
1315	Sap-flow analysis was conducted using mean data from five sensors. Sap flow per leaf
	59

1316	area (J_s) was used in this study, i.e.,
1317	$J_{s} = \left(\sum_{i=1}^{n} E_{i} / A_{ii}\right) / n \tag{4}$
1318	where, J_s is the sap flow per leaf area (kg m ⁻² h ⁻¹) or (kg m ⁻² d ⁻¹), E is the measured sap flow
1319	of a stem (g h ⁻¹), A_l is the leaf area of the sap-flow stem, and " <i>n</i> " is the number of stems used
1320	(n = 5).
1321	Transpiration per ground area (T_r) was estimated in this study according to:
1322	$T_r = \left(\sum_{i=1}^n J_s \times LAI\right) / n \tag{5}$
1323	where, T_r is transpiration per ground area (mm d ⁻¹), and LAI is the leaf area index (m ²
1324	<mark>m⁻²).</mark>
1325	Linear and non-linear regression were used to analyze abiotic control on sap-flow rate.
1326	In order to minimize the effects of different phenophases and rainfall, we used data only from
1327	mid-growing season, non-rainy days, and daytime measurements (8:00-20:00), i.e., from
1328	June 1 to August 31, with hourly shortwave radiation $> 10 \text{ W m}^{-2}$. Relations between mean
1329	sap-flow rates at specific times over a period of 8:00-20:00 and corresponding environmental
1330	factors from June 1 to August 31 were derived with linear regression (p<0.05; Fig. 3).
1331	Regression slopes were used as indicators of sap-flow sensitivity (degree of response) to the
1332	various environmental variables (see e.g., Zha et al., 2013). All statistical analyses were
1333	performed with SPSS v. 17.0 for Windows software (SPSS Inc., USA). Significance level
1334	was set at 0.05.
1335	
1336	3. Results

3.1 Seasonal variations in environmental factors and sap flow

1338	Range of daily means (24-hour mean) for R_s , T , VPD, and VWC during the 2013 growing
1339	season (May-September) were 31.1-364.9 W m ⁻² , 8.8-24.4°C, 0.05-2.3 kPa, and 0.06-0.17
1340	m ³ m ⁻³ (Fig. 2a, b, c, d), respectively, annual means being 224.8 W m ⁻² , 17.7°C, 1.03 kPa,
1341	and 0.08 $m^3m^{-3}.$ Corresponding range of daily means for 2014 were 31.0-369.9 W $m^{-2},$ 7.1-
1342	25.8°C, 0.08-2.5 kPa, and 0.06-0.16 m ³ m ⁻³ (Fig. 2a, b, c, d), respectively, annual means being
1343	234.9 W m ⁻² , 17.2°C, 1.05 kPa, and 0.09 m ³ m ⁻³ .
1344	Total precipitation and number of rainfall events during the 2013 measurement period
1345	(257.2 mm and 46 days) were about 5.6% and 9.8% lower than those during 2014 (272.4 mm
1346	and 51 days; Fig. 2d), respectively. In 2013, more irregular rainfall events occurred than in
1347	2014, with 45.2% of rainfall falling in July and 8.8% in August.
1348	Drought mainly occurred in May, June, and August of 2013 and in May and June of
1349	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought
1349 1350	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013.
1349 1350 1351	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01-
1349 1350 1351 1352	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily <i>J</i> _s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01-2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻¹
1349 1350 1351 1352 1353	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J _s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01-2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻² d ⁻¹ in 2014. Mean daily J _s over the growing season of 2013 was 32%, lower than that of
1349 1350 1351 1352 1353 1354	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01-2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻² d ⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 2014. Mean daily T_r were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the growing season in 2013 and
1349 1350 1351 1352 1353 1354 1355	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01-2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻² d ⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 2014. Mean daily T_r were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the growing season in 2013 and 2014 (Fig. 2f), respectively, being 34% lower in 2013 than in 2014. The total T_r over growing
1349 1350 1351 1352 1353 1354 1355 1356	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01-2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻² d ⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 2014. Mean daily T_r were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the growing season in 2013 and 2014 (Fig. 2f), respectively, being 34% lower in 2013 than in 2014. The total T_r over growing season (May 1-September 30) in 2013 and 2014 were 7.3 mm and 10.9 mm, respectively.
1349 1350 1351 1352 1353 1354 1355 1356 1357	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013, Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01- 2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻¹ ² d ⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 2014. Mean daily T_r were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the growing season in 2013 and 2014 (Fig. 2f), respectively, being 34% lower in 2013 than in 2014. The total T_r over growing season (May 1-September 30) in 2013 and 2014 were 7.3 mm and 10.9 mm, respectively. Seasonal fluctuations in J_s and T_r corresponded with the seasonal pattern in VWC (Fig. 2d,
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01- 2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻ ² d ⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 2014. Mean daily T_r were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the growing season in 2013 and 2014 (Fig. 2f), respectively, being 34% lower in 2013 than in 2014. The total T_r over growing season (May 1-September 30) in 2013 and 2014 were 7.3 mm and 10.9 mm, respectively. Seasonal fluctuations in J_s and T_r corresponded with the seasonal pattern in VWC (Fig. 2d, f). Daily mean J_s and T_r decreased or remained nearly constant during dry-soil periods (Fig.
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359	2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m ⁻² d ⁻¹ in 2013 and 0.01- 2.91 kg m ⁻² d ⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m ⁻² d ⁻¹ in 2013 and 1.31 kg m ⁻¹ ² d ⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 2014. Mean daily T_r were 0.05 mm d ⁻¹ and 0.07 mm d ⁻¹ over the growing season in 2013 and 2014 (Fig. 2f), respectively, being 34% lower in 2013 than in 2014. The total T_r over growing season (May 1-September 30) in 2013 and 2014 were 7.3 mm and 10.9 mm, respectively. Seasonal fluctuations in J_s and T_r corresponded with the seasonal pattern in VWC (Fig. 2d, f). Daily mean J_s and T_r observed in spring and mid-summer (August) of 2013.

1361 **3.2 Sap flow response to environmental factors**

1362	In summer, J_s increased with increasing VWC (Fig. 2d, f; Fig. 3d). Soil water was shown to
1363	modify the response of J_s to environmental factors (Fig. 4). Sap flow increased more rapidly
1364	with increases in R_s , T , and VPD under high VWC (i.e., VWC > 0.1 m ³ m ⁻³ in both 2013 and
1365	2014) compared with periods with lower VWC (i.e., VWC < 0.1 m ³ m ⁻³ in both 2013 and
1366	2014). Sap flow J_s was more sensitive to R_s , T , and VPD under high VWC (Fig. 4), which
1367	coincided with a larger regression slope under high VWC conditions.
1368	Sensitivity of J_s to environmental variables (in particular, R_s , T , VPD, and VWC) varied

depending on the time of a day (Fig. 5). Regression slopes for the relations of J_s - R_s , J_s -T, and J_s -VPD were greater in the morning before 11:00 h, and lower during mid-day and early afternoon (12:00-16:00 h). In contrast, regression slopes of the relation of J_s -VWC were lower in the morning (Fig. 5), increasing thereafter, peaking at ~13:00 h, and subsequently decreasing in late afternoon. Regression slopes of the response of J_s to R_s , T, and VPD in 2014 were greater than those in 2013.

1375 **3.3 Diurnal changes and hysteresis between sap flow and environmental factors**

Diurnal patterns of J_s were similar in both years (Fig. 6), initiating at 7:00 h and increasing thereafter, peaking before noon (12:00 h), and subsequently decreasing thereafter and remaining near zero from 20:00 to 6:00 h. Diurnal changes in g_s were similar to J_s , but peaking about 2 and 1 h earlier than J_s in July and August, respectively (Fig. 6).

There were pronounced time lags between J_s and R_s over the two years (Fig. 7), J_s peaking earlier than R_s and, thus, earlier than either VPD or T. These time lags differed seasonally. For example, mean time lag between J_s and R_s was 2 h during July, 5 h during

1383	May, and 3 h during June, August, and September of 2013. However, the time lags in 2014
1384	were generally shorter than those observed in 2013 (Table 2).
1385	Use of normalized variables may remove the influence of J_s and $\frac{R_s}{R_s}$ from the data. As a
1386	result, clockwise hysteresis loops between J_s and R_s during the growing period were observed
1387	(Fig. 7). As R_s increased in the morning, J_s increased until it peaked at ~10:00 h. Sap-flow
1388	rate declined with decreasing $\frac{1}{R_s}$ during the afternoon. Sap flow J_s was higher in the morning
1389	than in the afternoon, forming a clockwise hysteresis loop.
1390	Diurnal time lag in the relation of J_s - R_s were influenced by VWC (Fig. 8, 9). For
1391	example, J_s peaked about 2 h earlier than R_s on days with low VWC (Fig. 8a), 1 h earlier than
1392	R_s on days with moderate VWC (Fig. 8b), and at the same time as R_s on days with high VWC
1393	(Fig. 8c). Lag hours between J_s and R_s over the growing season were negatively and linearly
1394	related to VWC (Fig. 9: Lag (h) =-133.5×VWC+12.24, R^2 =0.41). Effect of VWC on time
1395	lags between J_s and R_s was smaller in 2014, with evenly distributed rainfall during the
1396	growing season, than in 2013, with a pronounced summer drought (Fig. 9). State variables g_s
1397	and Ω showed a significantly increasing trend with increasing VWC in 2013 and 2014,
1398	respectively (Fig. 10).

1400 **4. Discussion and conclusions**

1401 **4.1 Sap flow response to environmental factors**

Drought tolerance of some plants may be related to lower overall sensitivity of plant physiological attributes to environmental stress and/or stomatal regulation (Huang et al., 2011b; Naithani et al., 2012). In this study, large regression slopes between J_s and the

1405	environmental variables (R_s , VPD, and T) in the morning indicated that sap flow was more
1406	sensitive to variations in R_s , VPD, and T during the less dry and hot period of the day (Fig.
1407	5). Stomatal conductances were the largest in the morning (Fig. 6), which led to increases in
1408	water fluxes to the atmosphere as a result of increased R_s , T , and VPD. When R_s peaked
1409	during mid-day (13:00-14:00 h), there was often insufficient soil water to meet the
1410	atmospheric demand for water, causing g_s to be limited by available soil moisture and making
1411	J_s more responsive to VWC at noon, but less responsive to R_s and T . Similarly, <i>Hedysarum</i>
1412	mongolicum in a nearby region positively correlated with VWC at noon (Qian et al., 2015),
1413	and the evapotranspiration of a Scots pine stand showed higher sensitivity to surface
1414	conductance, temperature, vapor pressure deficit, and radiation in the morning than in the
1415	afternoon (Zha et al., 2013).
1416	Synergistic interactions among environmental factors influencing sap flow are complex.
1417	In general, VWC has an influence on physiological processes of plants in water-limited
1418	ecosystems (Lei et al., 2010; She et al., 2013). Our finding regarding lower sensitivity in J_s
1419	to environmental factors $(\frac{R_s}{R_s}, \frac{T}{T}$ and VPD) during dry periods was consistent with an earlier
1420	study of boreal grasslands (Zha et al., 2010). Also our finding that VWC is the most important
1421	factor modifying responses in sap flow in Artemisia ordosica to other environmental factors,
1422	is in contrast to other shrub species. For example, it has been found that sap flow in Haloxylon
1423	ammodendron in northwest China, where annual precipitation is 37.9 mm and mean annual
1424	temperature is 8.2 °C, was mainly controlled by T (Zhang et al., 2003), while sap flow in
1425	Cyclobalanopsis glauca in south China, where annual precipitation is 1900 mm and mean
1426	annual temperature is 19.3 °C, was controlled by R_s and T, when VWC was not limiting

1427 (Huang et al., 2009).

1428 Precipitation, being the main source of VWC at our site, affected transpiration directly. In this sense, frequent small rainfall events (< 5 mm) were important to the survival and 1429 growth of the desert plants (Sala and Lauenroth, 1982; Zhao and Liu, 2010). Variations in J_s 1430 were clearly associated with the intermittent supply of water to the soil during rainfall events, 1431 1432 as indicated at our site (Fig. 2d, f). Reduced J_s during rainy days can be explained by a reduction in incident R_s and water-induced saturation on the leaf surface, which led to a 1433 1434 decrease in leaf turgor and stomatal closure. After each rainfall event, J_s increased quickly when soil water was replenished. Schwinning and Sala (2004) showed previously for similar 1435 research sites that VWC contributed the most to the response in plant transpiration to post-1436 1437 rainfall events. We showed in this study that Artemisia ordosica responded in a different way to wet and dry conditions. In the mid-growing season, high J_s in July were related to rainfall-1438 1439 fed VWC, which increased the rate of transpiration. However, dry soil conditions combined with high T and R_s , led to a reduction in J_s in August of 2013 (Fig. 2). In some desert shrubs, 1440 groundwater may replenish water lost by transpiration by having deep roots (Yin et al., 2014). 1441 Artemisia ordosica roots are generally distributed in the upper 60 cm of the soil (Zhao et al., 1442 1443 2010; Wang et al., 2016), and as a result the plant usually depends on water directly supplied by precipitation because groundwater levels in drylands can be well below the rooting zone, 1444 typically, at depths ≥ 10 m at our site. 1445

1446

1447 **4.2 Hysteresis between sap flow and environmental factors**

1448 Diurnal patterns in J_s corresponded with those of $\frac{R_s}{R_s}$ from sunrise until diverging later in the

day (Fig. 7), suggesting that R_s was a primary controlling factor of diurnal variation in J_s . According to O'Brien et al. (2004), diurnal variation in R_s could cause change in the diurnal variation in the consumption of water. As an initial energy source, R_s can force T and VPD to increase, causing a phase difference in time lags among the relations J_s - R_s , J_s -T, and J_s -VPD.

1454	We found a consistent clockwise hysteresis loop between J_s and R_s over a diurnal cycle
1455	(Fig. 7), indicating that R_s lagged J_s , and the response of J_s to R_s varied both diurnally and
1456	seasonally. A large g_s in the morning promoted higher rates of transpiration (Fig. 6). In dry
1457	and hot conditions, g_s decreased, causing the control of the stomata on J_s to increase relative
1458	to changes in environmental factors. Diurnal trends in J_s and g_s occurred together, both
1459	peaking earlier than R_s . The g_s peaked 3-4 h earlier than R_s , leading to a reduction in J_s and
1460	an increase in R_s and a clockwise hysteresis loop. Contrary to our findings, counterclockwise
1461	hysteresis has been observed to occur between transpiration (J_s) and R_s in tropical and
1462	temperate forests (Meinzer et al., 1997; O'Brien et al., 2004; Zeppel et al., 2004). A possible
1463	reason for this difference may be due to differences in VWC associated with the different
1464	regions. According to Zheng and Wang (2014) favorable water conditions after rainfall could
1465	render clockwise hysteresis loops between J_s and R_s under dry conditions to counterclockwise
1466	loops. In this study, due to a large incidence of small rainfall events, soil water supply by
1467	rainfall pulses could not meet the transpiration demand under high mid-day R_s , resulting in
1468	clockwise loops even though rainfall had occurred.

1469	In semi-arid regions, low VWC restricts plant transpiration more than VPD. Water
1470	vapor deficits tend to restrict transpiration in forest species in wet regions to a greater extent.

1471 According to Zheng et al. (2014), high water availability in alpine shrubland meadows may 1472 contribute to weakened hysteresis between evapotranspiration and the environmental variables. Our results showed that hysteresis between J_s and R_s decreased as VWC increased 1473 (Fig. 8, 9). The result that g_s increased with increasing VWC (Fig. 10a), along with the 1474 synchronization of J_s and g_s , suggests that J_s is less sensitive to g_s in high VWC and more so 1475 1476 to R_s . Temporal patterns in J_s became more consistent with those in R_s as VWC increased, leading to a weakened hysteresis between the two variables. This is further supported by a 1477 1478 large decoupling coefficient, when VWC is high (Fig. 10b). The larger the decoupling coefficient is, the greater is the influence of R_s on J_s . The effect of VWC on time lag varied 1479 between 2013 and 2014. 1480

1481 **4.3. Conclusions**

Drought during the leaf-expansion and leaf-expanded periods led to a greater decline in J_s , 1482 causing J_s to be lower in 2013 than in 2014. The relative influence of $\frac{R_s}{R_s}$, $\frac{T}{R_s}$, and VPD on J_s in 1483 1484 Artemisia ordosica was modified by soil water content, indicating J_s 's lower sensitivity to environmental variables (R_s , T and VPD) during dry periods. Sap flow J_s was constrained by 1485 soil water deficiency, causing J_s to peak several hours prior to R_s . Diurnal hysteresis between 1486 1487 J_s and R_s varied seasonally, because of the control by stomatal conductance under low VWC and R_s under high VWC. According to this study, soil moisture controlled sap-flow response 1488 1489 in Artemisia ordosica. This species is capable to tolerate and adapt to soil water deficiencies and drought conditions during the growing season. Altogether, our findings add to our 1490 understanding of acclimation in desert-shrub species under stress of dehydration. The 1491 knowledge gain can assist in modeling desert-shrub-ecosystem functioning under changing 1492

1493 climatic conditions.

1494	Acknowledgments: This research was financially supported by grants from the National
1495	Natural Science Foundation of China (NSFC No. 31670710, 31670708, 31361130340,
1496	31270755), the National Basic Research Program of China (Grant No. 2013CB429901), and
1497	the Academy of Finland (Project No. 14921). Xin Jia and Wei Feng are also grateful to
1498	financial support from the Fundamental Research Funds for the Central Universities (Proj.
1499	No. 2015ZCQ-SB-02). This work is related to the Finnish-Chinese collaborative research
1500	project EXTREME (2013-2016), between Beijing Forestry University (team led by Prof.
1501	Tianshan Zha) and the University of Eastern Finland (team led by Prof. Heli Peltola), and the
1502	U.S. China Carbon Consortium (USCCC). We thank Ben Wang, Sijing Li, Qiang Yang, and
1503	others for their assistance in the field.

1504

1505 References

1506	Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody
1507	vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9, 316-
1508	335, 2003.

1509	Buzkova, R., Acosta, M., Darenova, E., Pokorny, R., and Pavelka, M.: Environmental factors influencing
1510	the relationship between stem CO2 efflux and sap flow, Trees-Struct. Funct., 29, 333-343, 2015.
1511	Chen, Z., Zha, T. S., Jia, X., Wu, Y., Wu, B., Zhang, Y., Guo, J., Qin, S., Chen, G., Peltola, H.: Leaf
1512	nitrogen is closely coupled to phenophases in a desert shrub ecosystem in China, J. Arid Environ.,
1513	120, 33-41, 2015.Du, S., Wang, Y. L., Kume, T., Zhang, J. G., Otsuki, K., Yamanaka, N., and Liu,
1514	G. B.: Sapflow characteristics and climatic responses in three forest species in the semiarid Loess

1515 Plateau region of China, Agr. Forest Meteorol., 151, 1-10, 2011.

1517	Eberbach, P. L. and Burrows, G. E.: The transpiration response by four topographically distributed
1518	Eucalyptus species, to rainfall occurring during drought in south eastern Australia, Physiol. Plant.
1519	127, 483-493, 2006.
1520	Forner, A., Aranda, I., Granier, A., and Valladares, F.: Differential impact of the most extreme drought
1521	event over the last half century on growth and sap flow in two coexisting Mediterranean trees, Plant

Dynamax: Dynagage® Installation and Operation Manual, Dynamax, Houston, TX, 2005.

1522 Ecol., 215, 703-719, 2014.

1516

1523 Gao, Q., Yu, M., and Zhou, C.: Detecting the Differences in Responses of Stomatal Conductance to

1524 Moisture Stresses between Deciduous Shrubs and Artemisia Subshrubs, Plos One, 8, e84200, 2013.

- Granier, A., Bréda, N., Biron, P., and Villette, S.: A lumped water balance model to evaluate duration and
 intensity of drought constraints in forest stands. Ecol. Model., 116, 269–283, 1999.
- 1527 Granier, A., Reichstein M., Bréda N., Janssens I. A., Falge E., Ciais P., Grünwald T., Aubinet M.,
- 1528 Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G., Heinesch B., Ilvesniemi H., Kerone
- 1529 P., Knohl A., Köstner B., Lagergren F., Lindroth A., Longdoz B., Loustau D., Mateus J., Montagnani
- 1530 L., Nys C., Moors E., Papale D., Peiffer M., Pilegaard K., Pita G., Pumpanen J., Rambal S., Rebmann
- 1531 C., Rodrigues A., Seufert G., Tenhunen J., Vesala T., and Wang Q.: Evidence for soil water control
- 1532 on carbon and water dynamics in European forests during the extremely dry year: 2003. Agr. Forest
- 1533 Meteorol., 143, 123-145, 2007.
- Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: The U.S. Carbon Budget: Contributions from Land Use Change, Science, 285, 574-578, 1999.
- 1536 Huang, L., Zhang, Z. S., and Li, X. R.: Sap flow of Artemisia ordosica and the influence of environmental

1537	factors in a revegetated	desert area. T	engger Desert	China Hy	drol Process	24	1248-1253	2010
1337	raciors in a revegerated	desert area. 1	engger Desert,	China. Hy	yulul. Flocess.,	24,	1240-1255	, 2010.

- 1538 Huang, H., Gang, W., and NianLai, C.: Advanced studies on adaptation of desert shrubs to environmental
- 1539 stress, Sci. Cold Arid Regions, 3, 0455–0462, 2011a.
- Huang, Y., Li, X., Zhang, Z., He, C., Zhao, P., You, Y., and Mo, L.: Seasonal changes in Cyclobalanopsis
- glauca transpiration and canopy stomatal conductance and their dependence on subterranean water
 and climatic factors in rocky karst terrain, J. Hydrol., 402, 135-143, 2011b.
- 1543 Huang, Y., Zhao, P., Zhang, Z., Li, X., He, C., and Zhang, R.: Transpiration of Cyclobalanopsis glauca
- 1544 (syn. Quercus glauca) stand measured by sap-flow method in a karst rocky terrain during dry season,
- 1545 Ecol. Res., 24, 791-801, 2009.
- 1546 Jacobsen, A. L., Agenbag, L., Esler, K. J., Pratt, R. B., Ewers, F. W., and Davis, S. D.: Xylem density,
- biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the
 Mediterranean-type climate region of South Africa, J. Ecol., 95, 171-183, 2007.
- 1549 Jarvis, P. G. and McNaughton, K. G.: Stomatal Control of Transpiration: Scaling Up from Leaf to Region.
- 1550 In: Advances in Ecological Research, MacFadyen, A. and Ford, E. D. (Eds.), Academic Press, 1986.
- 1551 Jia, X., Zha, T.S., Wu, B., Zhang, Y., Gong, J., Qin, S., Chen, G., Kellomki, S. & Peltola, H.: Biophysical
- 1552 controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China.
- 1553 Biogeosciences, 11, 4679-4693, 2014.
- 1554 Jia, X., Zha, T. S, Gong, J., Wang, B., Zhang Y., Wu B., Qin S., and Peltola H.: Carbon and water exchange
- 1555 over a temperate semi-arid shrubland during three years of contrasting precipitation and soil
- 1556 moisturepatterns. Agr. Forest Meteorol., 228, 120-129, 2016.
- 1557 Jian, S. Q., Wu, Z. N., Hu, C. H., and Zhang, X. L.: Sap flow in response to rainfall pulses for two shrub
- 1558 species in the semiarid Chinese Loess Plateau, J. Hydrol. Hydromech., 64, 121-132, 2016.

1559	Lei, H., Zhi-Shan, Z., and Xin-Rong, L.: Sap flow of Artemisia ordosica and the influence of
1560	environmental factors in a revegetated desert area: Tengger Desert, China, Hydrol. Process., 24,

- 1561 1248-1253, 2010.
- Li, S., Werger, M. A., Zuidema, P., Yu, F., and Dong, M.: Seedlings of the semi-shrub Artemisia ordosica
 are resistant to moderate wind denudation and sand burial in Mu Us sandland, China, Trees, 24, 515-
- 1564 521, 2010.
- Li, S., Zha, T., Qin, S., Qian, D., and Jia, X.: Temporal patterns and environmental controls of sap flow in
 Artemisia ordosica, Chinese J. Ecol., 33, 1-7, 2014.
- 1567 Lioubimtseva, E. and Henebry, G. M.: Climate and environmental change in arid Central Asia: Impacts,
- vulnerability, and adaptations, J. Arid Environ., 73, 963-977, 2009.
- Liu, B., Zhao, W., and Jin, B.: The response of sap flow in desert shrubs to environmental variables in an
 arid region of China, Ecohydrology, 4, 448-457, 2011.
- 1571 Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M., Cavelier, J., and Jackson, P.: Control of
- 1572 transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and
- 1573 hydraulic architecture components, Plant Cell Environ., 20, 1242-1252, 1997.
- Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics. Butterworth-Heinemann:
 Oxford, 1990.
- 1576 Naithani, K. J., Ewers, B. E., and Pendall, E.: Sap flux-scaled transpiration and stomatal conductance
- 1577 response to soil and atmospheric drought in a semi-arid sagebrush ecosystem, J. Hydrol., 464, 176-
- 1578 185, 2012.
- 1579 O'Brien, J. J., Oberbauer, S. F., and Clark, D. B.: Whole tree xylem sap flow responses to multiple
- 1580 environmental variables in a wet tropical forest, Plant Cell Environ., 27, 551-567, 2004.

1581	Pacala, S. W.	. Hurtt. G. C.	. Baker, D., Pevlir	. P., Houghton, R. A	A., Birdsev, R. A.,	Heath, L., Sundquist,
	,	.,,	,,,,	-,,,,		

- 1582 E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier,
- 1583 G., Holland, E., Gloor, M., Harmon, M. E., Fan, S.-M., Sarmiento, J. L., Goodale, C. L., Schimel, D.,
- and Field, C. B.: Consistent Land- and Atmosphere-Based U.S. Carbon Sink Estimates, Science, 292,
 2316-2320, 2001.
- 1586 Qian, D., Zha, T. S., Jia, X., Wu, B., Zhang, Y., Bourque C. P. A., Qin, S., and Peltola, H.: Adaptive,
- 1587 water-conserving strategies in Hedysarum mongolicum endemic to a desert shrubland ecosystem,
- 1588 Environ. Earth. Sci., 74, 6039–6046, 2015.
- 1589 Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., and Andersen, M. N.: Water
- 1590 Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying,
- 1591 J. Agron. Crop Sci., 197, 348-360, 2011.
- Sala, O. E., and Lauenroth, W. K.: Small rainfall events: an ecological role in semi-arid regions, Oecologia,
 53 (3), 301-304, 1982.
- 1594 Schwinning, S. and Sala, O. E.: Hierarchy of responses to resource pulses in arid and semi-arid ecosystems,
- 1595 Oecologia, 141, 211-220, 2004.
- 1596 She, D., Xia, Y., Shao, M., Peng, S., and Yu, S.: Transpiration and canopy conductance of Caragana
- korshinskii trees in response to soil moisture in sand land of China, Agroforest. syst., 87, 667-678,
 2013.
- 1599 Vilagrosa, A., Bellot, J., Vallejo, V. R., and Gil-Pelegrín, E.: Cavitation, stomatal conductance, and leaf
- dieback in seedlings of two co- occurring Mediterranean shrubs during an intense drought, J. Exp.
 Bot., 54, 2015-2024, 2003.
- 1602 Wang, B., Zha, T. S., Jia, X., Gong, J.N., Wu, B., Bourque, C. P. A., Zhang, Y., Qin, S., Chen, G., Peltola,
| 1603 | H.: | Microtopographic | variation | in | soil | respiration | and | its | controlling | factors | vary | with | plant |
|------|-----|------------------|-----------|----|------|-------------|-----|-----|-------------|---------|------|------|-------|
| | | | | | | | | | | | | | |

- 1604 phenophases in a desert-shrub ecosystem. Biogeosciences, 12, 5705-5714, 2015.
- Xia, G., Kang, S., Du, T., Yang, X., and Zhang, J.: Transpiration of Hedysarum scoparium in arid desert 1605

1606 region of Shiyang River basin, Gansu Province, Chinese J. Appl. Ecol., 18, 1194-1202, 2007.

- Xia, G., Kang, S., Li, F., Zhang, J., and Zhou, Q.: Diurnal and seasonal variations of sap flow of Caragana 1607 1608 korshinskii in the arid desert region of north-west China, Hydrol. Process., 22, 1197-1205, 2008.
- Xu, D. H., Li, J. H., Fang, X. W., and Wang, G.: Changes in soil water content in the rhizosphere of
- 1610 Artemisia ordosica: Evidence for hydraulic lift, J. Arid Environ., 69, 545-553, 2007.
- 1611 Yang, Y. and Zhu, Y.: Plant Ecology (Second Edition), Higher Education Press, Beijing, 2011.
- Yin, L., Zhou, Y., Huang, J., Wenninger, J., Hou, G., Zhang, E., Wang, X., Dong, J., Zhang, J., and 1612
- 1613 Uhlenbrook, S.: Dynamics of willow tree (Salix matsudana) water use and its response to
- environmental factors in the semi-arid Hailiutu River catchment, Northwest China, Environ. earth 1614
- 1615 sci., 71, 4997-5006, 2014.

- Yu, M., , Ellis, J. E., and Epstein, H. E.: Regional analysis of climate, primary production, and livestock 1616 1617 density in Inner Mongolia. J. Environ. Qual., 33(5), 1675-1681, 2004.
- 1618 Zeppel, M. J. B., Murray, B. R., Barton, C., and Eamus, D.: Seasonal responses of xylem sap velocity to
- 1619 VPD and solar radiation during drought in a stand of native trees in temperate Australia, Funct. Plant 1620 Biol., 31, 461-470, 2004.
- Zeppel, M. J. B., Macinnis-Ng, C. M. O., Yunusa, I. A. M., Whitley, R. J., and Eamus, D. Long term 1621
- 1622 trends of stand transpiration in a remnant forest during wet and dry years, J. Hydrol., 349, 200-213,
- 1623 2008.
- 1624 Zha, T. S., Barr, A. G., Kamp, G. V. D., Black, T.A., McCaughey, J. H., and Flanagan, L.B.: Interannual

- 1625 variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation
- 1626 to drought, Agr. Forest Meteorol., 150, 1476-1484, 2010.
- 1627 Zha, T. S., Li, C., Kellomäki, S., Peltola, H., Wang, K.-Y., and Zhang, Y.: Controls of Evapotranspiration
- and CO2 Fluxes from Scots Pine by Surface Conductance and Abiotic Factors, Plos One, 8, e69027,
 2013.
- 1630 Zhang, X., Gong, J., Zhou, M., and Si, J.: A study on the stem sap flow of Populus euphrtaicr and Tamaris
- spp. By heat pulse technique, J. Glaciol. Geocryol., 25, 584-590, 2003.
- 1632 Zhao, W. and Liu, B.: The response of sap flow in shrubs to rainfall pulses in the desert region of China,
- 1633 Agr. Forest Meteorol., 150, 1297-1306, 2010.
- 1634 Zhao, Y., Yuan, W., Sun, B., Yang, Y., Li, J., Li, J., Cao, B., and Zhong, H.: Root Distribution of Three
- 1635 Desert Shrubs and Soil Moisture in Mu Us Sand Land. Res. Soil Water Conserv., 17, 129-133, 2010.
- 1636 Zhao, W., Liu, B., Chang, X., Yang, Q., Yang, Y., Liu Z., Cleverly, J., and Eamus, D.: Evapotranspiration
- 1637 partitioning, stomatal conductance, and components of the water balance: A special case of a desert
- 1638 ecosystem in China. J. Hydrol., 538, 374-386, 2016.
- 1639 Zheng, C. and Wang, Q.: Water-use response to climate factors at whole tree and branch scale for a
- dominant desert species in central Asia: Haloxylon ammodendron, Ecohydrology, 7, 56-63, 2014.
- 1641 Zheng, H., Wang, Q., Zhu, X., Li, Y., and Yu, G.: Hysteresis Responses of Evapotranspiration to
- 1642 Meteorological Factors at a Diel Timescale: Patterns and Causes, Plos One, 9, e98857, 2014.
- 1643
- 1644
- 1645

	T_r (mm mon ⁻¹)		LAI (r	$m^2 m^{-2}$)	$g_s \pmod{m^{-2} s^{-1}}$		
	2013	2014	2013	2014	2013	2014	
May	0.57	1.59	0.02	0.04	0.07	0.18	
June	1.03	2.28	0.05	0.06	0.08	0.13	
July	3.36	3.46	0.10	0.06	0.09	0.14	
August	1.04	2.45	0.08	0.06	0.10	0.08	
September	1.23	1.13	0.05	0.04	0.15	0.05	

1646	Table 1 Seasonal changes in monthly transpiration (T_r) , leaf area index (LAI), and stomatal
1647	conductance (g _s) of Artemisia ordosica from 2013 to 2014.

1651	Table 2 Mean monthly diurnal cycles of sap-flow rate (J_s) response to shortwave radiation
1652	(R_s) , air temperature (T), and vapor pressure deficit (VPD), including time lags (h) in J_s as a
1653	function of R T and VPD

function of R_s , T, and VPD.

Dottom	М	lay	June		Ju	ıly	Aug	gust	September	
Pattern	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
J_s-R_s	5	2	3	0	2	1	3	1	3	2
J_{s} - T	8	6	7	4	4	4	6	5	6	6
J_{s} -VPD	8	5	7	4	6	4	6	5	6	5

1658 Figure captions:

- 1659 **Fig. 1** Sap-flow rate per leaf area (J_s) as a function of soil water content (VWC) at 30 cm
- 1660 depth in non-rainy, daytime hours during the mid-growing period from June 1-August 31
- 1661 over 2013-2014. Data points are binned values from pooled data over two years at a VWC
- 1662 increment of 0.003 m³ m⁻³. Dotted line represents the VWC threshold for J_{s} .
- 1663 **Fig. 2** Seasonal changes in daily (24-hour) mean shortwave radiation (R_s ; a), air temperature
- 1664 (*T*; b), vapor pressure deficit (VPD; c), volumetric soil water content (VWC; d), relative
- 1665 extractable water (REW; e), daily total precipitation (PPT; d), and daily sap-flow per leaf
- area $(J_s; f)$, and daily transpiration $(T_r, \text{ mm d}^{-1}; f)$ from May to September for both 2013 and
- ¹⁶⁶⁷ 2014. Horizontal dash lines (d, e) represent VWC and REW threshold of 0.1 m³ m⁻³ and 0.4,
- 1668 respectively. Shaded bands indicate periods of drought.
- 1669 Fig. 3 Relationships between sap-flow rate per leaf area (J_s) and environmental factors
- 1670 [shortwave radiation (R_s) , air temperature (T), vapor pressure deficit (VPD), and soil water
- 1671 content at 30-cm depth (VWC)] in non-rainy days between 8:00-20:00 h during the mid-
- 1672 growing season of June 1-August 31 for 2013 and 2014. Data points are binned values from
- ¹⁶⁷³ pooled data over two years at increments of 40 W m⁻², 1.2 °C, 0.3 kPa, and 0.005 m³ m⁻³ for
- 1674 R_s , T, VPD and VWC, respectively.
- 1675 **Fig. 4** Sap-flow rate per leaf area (J_s) in non-rainy, daytime hours during the mid-growing
- season of June 1-August 31 for both 2013 and 2014 as a function of shortwave radiation (R_s),
- air temperature (T), vapor pressure deficit (VPD) under high volumetric soil water content
- 1678 (VWC > 0.10 m³ m⁻³ both in 2013 and 2014) and low VWC (< 0.10 m³ m⁻³,2013 and 2014).
- 1679 J_s is given as binned averages according to R_s , T, and VPD, based on increments of 100 W

 1680 m^{-2} , 1°C, and 0.2 kPa, respectively. Bars indicate standard error.

1681	Fig. 5 Regression slopes of linear fits between sap-flow rate per leaf area (J_s) in non-rainy
1682	days and shortwave radiation (R_s) , vapor pressure deficit (VPD), air temperature (T) , and
1683	volumetric soil water content (VWC) between 8:00-20:00 h during the mid-growing season
1684	of June 1-August 31 for 2013 and 2014.
1685	Fig. 6 Mean monthly diurnal changes in sap-flow rate per leaf area (J_s) and stomatal
1686	conductance (g_s) in Artemisia ordosica during the growing season (May-September) for both
1687	2013 and 2014. Each point is given as the mean at specific times during each month.

Fig. 7 Seasonal variation in hysteresis loops between sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) using normalized plots for both 2013 and 2014. The y-axis represents the proportion of maximum J_s (dimensionless), and the x-axis represents the proportion of maximum R_s (dimensionless). The curved arrows indicate the clockwise

- 1692 direction of response during the day.
- 1693 **Fig. 8** Sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) over consecutive three
- days in 2013, i.e., (a) under low volumetric soil water content (VWC) and high vapor pressure
- ¹⁶⁹⁵ deficit (VPD; DOY 153-155, VWC=0.064 m³ m⁻³, REW=0.025, VPD=2.11 kPa), (b)
- ¹⁶⁹⁶ moderate VWC and VPD (DOY 212-214, VWC=0.092 m³ m⁻³, REW=0.292, VPD=1.72
- 1697 kPa), and (c) high VWC and low VPD (DOY 192-194, VWC=0.152 m³ m⁻³, REW=0.865,
- ¹⁶⁹⁸ VPD= 0.46 kPa). REW is the relative extractable soil water. VWC, REW, and VPD are the

1699 mean value of the three days.

Fig. 9 Time lag between sap-flow rate per leaf area (J_s) and short wave radiation (R_s) in relation to volumetric soil water content (VWC). Hourly data in non-rainy days during the

1702	mid-growing season of June 1-August 31 for 2013 and 2014. The lag hours were calculated
1703	by a cross-correlation analysis using a three-day moving window with a one-day time step.
1704	Rainy days were excluded. The solid line is based on exponential regression ($p < 0.05$).
1705	Fig. 10 Relationship between volumetric soil water content (VWC) and (a) stomatal
1706	conductance (g_s) in Artemisia ordosica, and (b) decoupling coefficient (Ω) for 2013 and 2014.
1707	Hourly values are given as binned averages based on a VWC-increment of 0.005 $m^3 m^{-3}$.
1708	Bars indicate standard error. Only regressions with <i>p</i> -values < 0.05 are shown.

1721Fig. 2 Seasonal changes in daily (24-hour) mean shortwave radiation (R_s ; a), air temperature1722(T; b), vapor pressure deficit (VPD; c), volumetric soil water content (VWC; d), relative1723extractable water (REW; e), daily total precipitation (PPT; d), and daily sap-flow per leaf1724area (J_s ; f), and daily transpiration (T_r , mm d⁻¹; f) from May to September for both 2013 and17252014. Horizontal dash lines (d, e) represent VWC and REW threshold of 0.1 m³ m⁻³ and 0.4,1726respectively. Shaded bands indicate periods of drought.

Fig. 4 Sap-flow rate per leaf area (J_s) in non-rainy, daytime hours during the mid-growing 17401741 season of June 1-August 31 for both 2013 and 2014 as a function of shortwave radiation (R_s), air temperature (T), vapor pressure deficit (VPD) under high volumetric soil water content 1742 (VWC > 0.10 m³ m⁻³ both in 2013 and 2014) and low VWC (< 0.10 m³ m⁻³, 2013 and 2014). 1743

- J_s is given as binned averages according to R_s , T, and VPD, based on increments of 100 W 1744
- m⁻², 1°C, and 0.2 kPa, respectively. Bars indicate standard error. 1745
- 1746

1748

Fig. 5 Regression slopes of linear fits between sap-flow rate per leaf area (J_s) in non-rainy days and shortwave radiation (R_s) , vapor pressure deficit (VPD), air temperature (T), and volumetric soil water content (VWC) between 8:00-20:00 h during the mid-growing season of June 1-August 31 for 2013 and 2014.

Fig. 6 Mean monthly diurnal changes in sap-flow rate per leaf area (J_s) and stomatal conductance (g_s) in *Artemisia ordosica* during the growing season (May-September) for both

- 1759 2013 and 2014. Each point is given as the mean at specific times during each month.

Fig. 7 Seasonal variation in hysteresis loops between sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) using normalized plots for both 2013 and 2014. The y-axis represents the proportion of maximum J_s (dimensionless), and the x-axis represents the proportion of maximum R_s (dimensionless). The curved arrows indicate the clockwise direction of response during the day.

Fig. 9 Time lag between sap-flow rate per leaf area (J_s) and short wave radiation (R_s) in relation to volumetric soil water content (VWC). Hourly data in non-rainy days during the mid-growing season of June 1-August 31 for 2013 and 2014. The lag hours were calculated by a cross-correlation analysis using a three-day moving window with a one-day time step. Rainy days were excluded. The solid line is based on exponential regression (p<0.05).

