1	Soil moisture control on sap-flow response to biophysical factors in a desert-shrub
2	species, Artemisia ordosica
3	Authors: Tianshan Zha ^{1,3*#} , Duo Qian ^{2#} , Xin Jia ^{1,3} , Yujie Bai ¹ , Yun Tian ¹ , Charles PA.
4	Bourque ⁴ , Wei Feng ¹ , Bin Wu ¹ , Heli Peltola ⁵
5	^{1.} Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry
6	University, Beijing 100083, China
7	^{2.} Beijing Vocational College of Agriculture, Beijing 102442, China
8	^{3.} Key Laboratory of State Forestry Administration on Soil and Water Conservation,
9	Beijing Forestry University, Beijing, China
10	^{4.} Faculty of Forestry and Environmental Management, 28 Dineen Drive, PO Box 4400,
11	University of New Brunswick, New Brunswick, E3B5A3, Canada
12	^{5.} Faculty of Science and Forestry, School of Forest Sciences, University of Eastern
13	Finland, Joensuu, FI-80101, Finland
14	*These authors contributed equally to this work.
15	
16	
17	Short title: Sap flow in Artemisia ordosica
18	
19	
20	Correspondence to: T. Zha (tianshanzha@bjfu.edu.cn),
21	

22 Author Contribution Statement:

23	Dr.'s Duo Qian and Tianshan Zha contributed equally to the design and implementation of
24	the field experiment, data collection and analysis, and writing the first draft of the manuscript.
25	Dr. Xin Jia gave helpful suggestions concerning the analysis of the field data and contributed
26	to the scientific revision and editing of the manuscript.
27	Prof. Bin Wu contributed to the design of the experiment.
28	Dr.'s Charles PA. Bourque and Heli Peltola contributed to the scientific revision and editing
29	of the manuscript.
30	Yujie Bai, Wei Feng, and Yun Tian were involved in the implementation of the experiment
31	and in the revision of the manuscript.
32	
33	Key Message: This study provides a significant contribution to the understanding of
34	acclimation processes in desert-shrub species to drought-associated stress in dryland
35	ecosystems
36	
37	Conflict of Interest:
38	This research was financially supported by grants from the National Natural Science
39	Foundation of China (NSFC No. 31670710), the National Basic Research Program of China

40 (Grant No. 2013CB429901), and by the Academy of Finland (Project No. 14921). The
41 project is related to the Finnish-Chinese collaborative research project, EXTREME (201342 2016), between Beijing Forestry University and the University of Eastern Finland, and
43 USCCC. We appreciate Dr. Ben Wang, Sijing Li, Qiang Yang, and others for their help with

44 the fieldwork. The authors declare that they have no conflict of interest.

46	Abstract: Current understanding of acclimation processes in desert-shrub species to drought
47	stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in
48	Artemisia ordosica and associated environmental variables throughout the growing seasons
49	of 2013-2014 (May-September period of each year) to better understand the environmental
50	controls on the temporal dynamics of sap flow. We found that the occurrence of drought in
51	the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow
52	per leaf area (J_s) to decline significantly, resulting in a sizable drop in transpiration. Sap flow
53	per leaf area correlated positively with radiation (R_s) , air temperature (T) , and vapor pressure
54	deficit (VPD), when volumetric soil water content (VWC) was > 0.10 m ³ m ⁻³ . Diurnal J_s was
55	generally ahead of R_s by as much as 6 hours. This lag time, however, decreased with
56	increasing VWC. Relative response of J_s to the environmental variables (i.e., R_s , T , and VPD)
57	varied with VWC, J_s being more biologically-controlled with a low decoupling coefficient
58	and less sensitivity to the environmental variables during periods of dryness. According to
59	this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration)
60	response in Artemisia ordosica to diurnal variations in biophysical factors. The findings of
61	this study add to the knowledge of acclimation processes in desert-shrub species under
62	drought-associated stress. This knowledge is essential to model desert-shrub-ecosystem
63	functioning under changing climatic conditions.

Keywords: sap flow; transpiration; cold-desert shrubs; environmental stress; volumetric soil
 water content

68 **1. Introduction**

Due to the low amount of precipitation and high potential evapotranspiration in desert 69 ecosystems, low soil water availability limits both plant water- and gas-exchange and, as a 70 consequence, limits vegetation productivity (Razzaghi et al., 2011). Therefore, it is important 71 to understand the mechanisms controlling the vegetation-water dynamics under rapidly 72 changing environments (Jacobsen et al., 2007). Grass species are gradually being replaced 73 by shrub and semi-shrub species in arid and semi-arid areas of northwestern China (Yu et al., 74 75 2004). This progression is predicted to continue under a changing climate (Asner et al., 2003; Houghton et al., 1999; Pacala et al., 2001). This is mostly because desert shrubs are able to 76 adapt to hot-dry environments by modifying their morphological characteristics, e.g., by (1) 77 minimizing plant-surface area directly exposed to sun and hot air, (2) producing thick 78 epidermal hairs, (3) thickening cuticle, (4) recessing stomata into leaves (Yang and Zhu, 79 2011), and (5) increasing root-to-shoot ratios (Eberbach and Burrows, 2006; Forner et al., 80 81 2014). Also, acclimation of physiological characteristics of plants under water stress, by way of e.g., water potential, osmotic regulation, anti-oxidation, and photosynthetic characteristics, 82 83 assist the plants to maintain a hydrological balance (Huang et al., 2011a). Changes in stomatal conductance and, thus, transpiration may likewise affect plant water use efficiency (Pacala 84 et al., 2001; Vilagrosa et al., 2003). 85

Sap flow can accurately reflect water consumption during plant transpiration. It maintains ecosystem balance through the soil-plant-atmosphere continuum, but is often affected by environment factors (Huang *et al.*, 2010; Zhao et al., 2016). In recent studies, sap flow in *Tamarix elongate* has been observed to be controlled by solar radiation and air temperature, whereas in *Caragana korshinskii* vapor pressure deficit and solar radiation

appear to be more important (Jacobsen et al., 2007; Xia et al., 2008). In Elaeagnus 91 angustifolia, transpiration is observed to peak at noon, i.e., just before stomatal closure at 92 mid-day under water-deficit conditions (Liu et al., 2011). In contrast, transpiration in 93 94 Hedysarum scoparium peaks multiple times during the day (Xia et al., 2007). Sap flow has been observed to decrease rapidly when the volumetric soil water content (VWC) is lower 95 than the water loss through evapotranspiration (Buzkova et al., 2015). In general, desert 96 97 shrubs can close their stomata to reduce transpiration when exposed to dehydration stress around mid-day. However, differences exist among shrub species with respect to their 98 stomatal response to changes in soil and air moisture deficits (Pacala et al., 2001). For some 99 100 shrubs, sap-flow response to precipitation varies from an immediate decline after a heavy 101 rainfall to no observable change after a small rainfall event (Asner et al., 2003; Zheng and Wang, 2014). Sap flow has been found to increase with increasing rainfall intensity (Jian et 102 103 al., 2016). Drought-insensitive shrubs have relatively strong stomatal regulation and, therefore, tend to be insensitive to soil water deficits and rainfall unlike their drought-104 sensitive counterparts (Du et al., 2011). In general, understanding of the relationship between 105 106 sap-flow rates in plants and environmental factors is highly inconsistent, varying with plant habitat (Liu et al., 2011). 107

Artemisia ordosica, a shallow-rooted desert shrub, is the dominant plant species in the Mu Us Desert of northwestern China. The shrubs have an important role in combating desertification and in stabilizing sand dunes (Li et al., 2010). Increases in air temperature and precipitation variability and associated shorter wet periods and longer intervals of periodic drought are expected to ensue with projected climate change (Lioubimtseva and Henebry, 2009). During dry periods of the year, sap flow in *Artemisia ordosica* has been observed to
be controlled by VWC at about 30-cm depth in the soil (Li et al., 2014). Sap-flow rate is
known to be affected by variation in precipitation patterns. Soil water content, in combination
with other environmental factors, may have a significant influence on sap-flow rate (Li et al.,
2014; Zheng and Wang, 2014). Thus, understanding the controlling mechanisms of sap flow
in desert shrubs as a function of variations in biotic and abiotic factors is greatly needed (Gao
et al., 2013; Xu et al., 2007).

In this study, we measured stem sap flow in *Artemisia ordosica* and associated environmental variables throughout the growing seasons of 2013-2014 (May-September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We believe that our findings will provide further understanding of acclimation processes in desert-shrub species under stress of dehydration.

125

126 **2. Materials and Methods**

127 **2.1 Experimental site**

Continuous sap-flow measurements were made at the Yanchi Research Station $(37^{\circ}42'$ 31" N, 107°13' 47" E, 1530 m above mean sea level), Ningxia, northwestern China. The research station is located between the arid and semi-arid climatic zones along the southern edge of the Mu Us Desert. The sandy soil in the upper 10 cm of the soil profile has a bulk density of 1.54 ± 0.08 g cm⁻³ (mean \pm standard deviation, n=16). Mean annual precipitation in the region is about 287 mm, of which 62% falls between July and September. Mean annual potential evapotranspiration and air temperature are about 2,024 mm and 8.1°C based on meteorological data (1954-2004) from the Yanchi County weather station. Normally, shrub
leaf-expansion, leaf-expanded, and leaf-coloration stages begin in April, June, and
September (Chen et al., 2015), respectively.

138

139 **2.2 Measurements of sap flow, leaf area and stomatal conductance**

The experimental plot $(10 \text{ m} \times 10 \text{ m})$ was located on the western side of Yanchi Research 140Station in an Artemisia ordosica-dominated area. Mean age of the Artemisia ordosica was 141 10-years old. Maximum monthly mean leaf area index (LAI) for plant specimens with full 142 leaf expansion was about 0.1 m² m⁻² (Table 1). Over 60% of their roots were 143 distributed in soil depths of 0-60 cm (Zhao et al., 2010; Jia et al., 2016). Five stems of 144 145 Artemisia ordosica were randomly selected within the plot as replicates for sap-flow measurement. Mean height and sapwood area of sampled shrubs were 84 cm and 0.17 cm², 146 147 respectively. Sampled stems represented the average size of stems in the plot. A heat balance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cm above the 148 ground surface on each of the five stems (Dynamax, 2005). Sap-flow measurements were 149 taken once per minute for each stem. Half-hourly data were recorded by a Campbell CR1000 150 data logger from May 1 to September 30, 2013-2014 (Campbell Scientific, Logan, UT, USA). 151 Leaf area was estimated for each stem every 7-10 days by sampling about 50-70 leaves 152 153 from five randomly sampled neighbouring shrubs with similar characteristics to the shrubs 154 used for sap-flow measurements. Leaf area was measured immediately at the station laboratory with a portable leaf-area meter (LI-3000, Li-Cor, Lincoln, NE, USA). Leaf area 155 index (LAI) was measured at roughly weekly intervals on a 4×4 grid of 16 quadrats (10 m 156

×10 m each) within a 100 m × 100 m plot centered on the flux tower using measurements of sampled leaves and allometric equations (Jia et al., 2014). Stomatal conductance (g_s) was measured *in situ* for three to four leaves on each of the sampled shrubs with a LI-6400 portable photosynthesis analyzer (Li-Cor Inc., Lincoln, USA). The g_s measurements were made every two hours from 7:00 to 19:00 h every ten days from May to September, 2013-2014.

163 The degree of coupling between the ecosystem surface and the atmospheric boundary 164 layer was estimated with the decoupling coefficient (Ω). The decoupling coefficient varies 165 from 0 (i.e., leaf transpiration is mostly controlled by g_s) to 1 (i.e., leaf transpiration is mostly 166 controlled by radiation). The Ω was calculated as described by Jarvis and McNaughton 167 (1986):

168
$$\Omega = \frac{\Delta + \gamma}{\Delta + \gamma \left(1 + \frac{g_a}{g_s}\right)},$$
 (1)

where Δ is the rate of change of saturation vapor pressure *vs*. temperature (kPa K⁻¹), γ is the psychrometric constant (kPa K⁻¹), and g_a is the aerodynamic conductance (m s⁻¹; Monteith and Unsworth, 1990):

172
$$g_a = \left(\frac{u}{u^{*2}} + 6.2u^{*-0.67}\right)^{-1},$$
 (2)

where *u* is the wind speed (m s⁻¹) at 6 m above the ground, and u^* is the friction velocity (m s⁻¹).

175

176 **2.3 Environmental measurements**

177 Shortwave radiation (R_s in W m⁻²; CMP3, Kipp & Zonen, Netherland), air temperature (T in

¹⁷⁸ °C), wind speed (*u* in m s⁻¹, 034B, Met One Instruments Inc., USA), and relative humidity ¹⁷⁹ (*RH* in %; HMP155A, Väisälä, Finland) were measured simultaneously near the sap-flow ¹⁸⁰ measurement plot. Half-hourly data were recorded by data logger (CR3000 data logger, ¹⁸¹ Campbell Scientific Inc., USA). VWC at 30-cm depths were monitored with three ECH₂O-¹⁸² 5TE soil moisture probes (Decagon Devices, USA). In the analysis, we used half-hourly ¹⁸³ averages of VWC from the three soil moisture probes. Vapor pressure deficit (VPD in kPa) ¹⁸⁴ was calculated from recorded *RH* and *T*.

185

186 **2.4 Data analysis**

187 In our analysis, March-May represented spring, June-August summer, and September-188 November autumn (Chen et al., 2015). Drought days were defined as those days with daily mean VWC < 0.1 m³ m⁻³. This is based on a VWC threshold of 0.1 m³ m⁻³ for J_s (Fig. 1), 189 with J_s increasing as VWC increased, saturating at VWC of 0.1 m³ m⁻³, and decreasing as 190 VWC continued to increase. The VWC threshold of 0.1 m³ m⁻³ is equivalent to a relative 191 extractable soil water (REW) of 0.4 for drought conditions (Granier et al., 1999 and 2007; 192 Zeppel et al., 2004 and 2008; Fig. 2d, e). Duration and severity of 'drought' were defined 193 based on a VWC threshold and REW of 0.4. REW was calculated as according to equation 194 (3): 195

196
$$REW = \frac{VWC - VWC_{\min}}{VWC_{\max} - VWC_{\min}}$$
(3)

where VWC is the specific daily soil water content (m³ m⁻³), VWC_{min} and VWC_{max} are the
 minimum and maximum VWC during the measurement period in each year, respectively.
 Sap-flow analysis was conducted using mean data from five sensors. Sap flow per leaf

area (J_s) was used in this study, i.e.,

201
$$J_s = \left(\sum_{i=1}^n E_i / A_{li}\right) / n$$
(4)

where, J_s is the sap flow per leaf area (kg m⁻² h⁻¹) or (kg m⁻² d⁻¹), *E* is the measured sap flow of a stem (g h⁻¹), A_l is the leaf area of the sap-flow stem, and "*n*" is the number of stems used (n = 5).

Transpiration per ground area (T_r) was estimated in this study according to:

206
$$T_r = \left(\sum_{i=1}^n J_s \times LAI\right) / n$$
 (5)

where, T_r is transpiration per ground area (mm d⁻¹), and LAI is the leaf area index (m² m⁻²).

Linear and non-linear regression were used to analyze abiotic control on sap-flow rate. 209 In order to minimize the effects of different phenophases and rainfall, we used data only from 210 mid-growing season, non-rainy days, and daytime measurements (8:00-20:00), i.e., from 211 June 1 to August 31, with hourly shortwave radiation $> 10 \text{ W m}^{-2}$. Relations between mean 212 sap-flow rates at specific times over a period of 8:00-20:00 and corresponding environmental 213 factors from June 1 to August 31 were derived with linear regression (p<0.05; Fig. 3). 214 Regression slopes were used as indicators of sap-flow sensitivity (degree of response) to the 215 various environmental variables (see e.g., Zha et al., 2013). All statistical analyses were 216 performed with SPSS v. 17.0 for Windows software (SPSS Inc., USA). Significance level 217 was set at 0.05. 218

219

221 **3.1 Seasonal variations in environmental factors and sap flow**

Range of daily means (24-hour mean) for R_s , T, VPD, and VWC during the 2013 growing 222 season (May-September) were 31.1-364.9 W m⁻², 8.8-24.4°C, 0.05-2.3 kPa, and 0.06-0.17 223 m³ m⁻³ (Fig. 2a, b, c, d), respectively, annual means being 224.8 W m⁻², 17.7°C, 1.03 kPa, 224 225 and 0.08 m³ m⁻³. Corresponding range of daily means for 2014 were 31.0-369.9 W m⁻², 7.1- 25.8° C, 0.08-2.5 kPa, and 0.06-0.16 m³ m⁻³ (Fig. 2a, b, c, d), respectively, annual means being 226 234.9 W m⁻², 17.2°C, 1.05 kPa, and 0.09 m³ m⁻³. 227 228 Total precipitation and number of rainfall events during the 2013 measurement period (257.2 mm and 46 days) were about 5.6% and 9.8% lower than those during 2014 (272.4 mm 229 and 51 days; Fig. 2d), respectively. In 2013, more irregular rainfall events occurred than in 230 231 2014, with 45.2% of rainfall falling in July and 8.8% in August. 232 Drought mainly occurred in May, June, and August of 2013 and in May and June of 2014 (Fig. 2d,e). Both years had dry springs. Over one-month period of summer drought 233 234 occurred in 2013. Range of daily J_s during the growing season was 0.01-4.36 kg m⁻² d⁻¹ in 2013 and 0.01-235 2.91 kg m⁻² d⁻¹ in 2014 (Fig. 2f), with annual means of 0.89 kg m⁻² d⁻¹ in 2013 and 1.31 kg m⁻ 236 2 d⁻¹ in 2014. Mean daily J_s over the growing season of 2013 was 32%, lower than that of 237 2014. Mean daily T_r were 0.05 mm d⁻¹ and 0.07 mm d⁻¹ over the growing season in 2013 and 238 2014 (Fig. 2f), respectively, being 34% lower in 2013 than in 2014. The total T_r over growing 239 240 season (May 1-September 30) in 2013 and 2014 were 7.3 mm and 10.9 mm, respectively. Seasonal fluctuations in J_s and T_r corresponded with the seasonal pattern in VWC (Fig. 2d, 241 f). Daily mean J_s and T_r decreased or remained nearly constant during dry-soil periods (Fig. 242 2d, f), with the lowest J_s and T_r observed in spring and mid-summer (August) of 2013. 243

3.2 Sap flow response to environmental factors

In summer, J_s increased with increasing VWC (Fig. 2d, f; Fig. 3d).Soil water was shown to modify the response of J_s to environmental factors (Fig. 4). Sap flow increased more rapidly with increases in R_s , T, and VPD under high VWC (i.e., VWC > 0.1 m³ m⁻³ in both 2013 and 2014) compared with periods with lower VWC (i.e., VWC < 0.1 m³ m⁻³ in both 2013 and 2014). Sap flow J_s was more sensitive to R_s , T, and VPD under high VWC (Fig. 4), which coincided with a larger regression slope under high VWC conditions. Sensitivity of J_s to environmental variables (in particular, R_s , T, VPD, and VWC) varied

depending on the time of a day (Fig. 5). Regression slopes for the relations of J_s - R_s , J_s -T, and J_s -VPD were greater in the morning before 11:00 h, and lower during mid-day and early afternoon (12:00-16:00 h). In contrast, regression slopes of the relation of J_s -VWC were lower in the morning (Fig. 5), increasing thereafter, peaking at ~13:00 h, and subsequently decreasing in late afternoon. Regression slopes of the response of J_s to R_s , T, and VPD in 2014 were greater than those in 2013.

3.3 Diurnal changes and hysteresis between sap flow and environmental factors

Diurnal patterns of J_s were similar in both years (Fig. 6), initiating at 7:00 h and increasing thereafter, peaking before noon (12:00 h), and subsequently decreasing thereafter and remaining near zero from 20:00 to 6:00 h. Diurnal changes in g_s were similar to J_s , but peaking about 2 and 1 h earlier than J_s in July and August, respectively (Fig. 6).

There were pronounced time lags between J_s and R_s over the two years (Fig. 7), J_s peaking earlier than R_s and, thus, earlier than either VPD or *T*. These time lags differed seasonally. For example, mean time lag between J_s and R_s was 2 h during July, 5 h during May, and 3 h during June, August, and September of 2013. However, the time lags in 2014 were generally shorter than those observed in 2013 (Table 2).

Use of normalized variables may remove the influence of J_s and R_s from the data. As a result, clockwise hysteresis loops between J_s and R_s during the growing period were observed (Fig. 7). As R_s increased in the morning, J_s increased until it peaked at ~10:00 h. Sap-flow rate declined with decreasing R_s during the afternoon. Sap flow J_s was higher in the morning than in the afternoon, forming a clockwise hysteresis loop.

Diurnal time lag in the relation of J_s - R_s were influenced by VWC (Fig. 8, 9). For 274 example, J_s peaked about 2 h earlier than R_s on days with low VWC (Fig. 8a), 1 h earlier than 275 276 R_s on days with moderate VWC (Fig. 8b), and at the same time as R_s on days with high VWC 277 (Fig. 8c). Lag hours between J_s and R_s over the growing season were negatively and linearly related to VWC (Fig. 9: Lag (h) =-133.5×VWC+12.24, R^2 =0.41). Effect of VWC on time 278 279 lags between J_s and R_s was smaller in 2014, with evenly distributed rainfall during the growing season, than in 2013, with a pronounced summer drought (Fig. 9). State variables g_s 280 and Ω showed a significantly increasing trend with increasing VWC in 2013 and 2014, 281 282 respectively (Fig. 10).

283

4. Discussion and conclusions

4.1 Sap flow response to environmental factors

Drought tolerance of some plants may be related to lower overall sensitivity of plant physiological attributes to environmental stress and/or stomatal regulation (Huang et al., 2011b; Naithani et al., 2012). In this study, large regression slopes between J_s and the

environmental variables (R_s , VPD, and T) in the morning indicated that sap flow was more 289 sensitive to variations in R_s , VPD, and T during the less dry and hot period of the day (Fig. 290 291 5). Stomatal conductances were the largest in the morning (Fig. 6), which led to increases in 292 water fluxes to the atmosphere as a result of increased R_s , T, and VPD. When R_s peaked during mid-day (13:00-14:00 h), there was often insufficient soil water to meet the 293 atmospheric demand for water, causing g_s to be limited by available soil moisture and making 294 295 J_s more responsive to VWC at noon, but less responsive to R_s and T. Similarly, Hedysarum mongolicum in a nearby region positively correlated with VWC at noon (Qian et al., 2015), 296 and the evapotranspiration of a Scots pine stand showed higher sensitivity to surface 297 298 conductance, temperature, vapor pressure deficit, and radiation in the morning than in the 299 afternoon (Zha et al., 2013).

Synergistic interactions among environmental factors influencing sap flow are complex. 300 301 In general, VWC has an influence on physiological processes of plants in water-limited ecosystems (Lei et al., 2010; She et al., 2013). Our finding regarding lower sensitivity in J_s 302 to environmental factors (R_s , T and VPD) during dry periods was consistent with an earlier 303 study of boreal grasslands (Zha et al., 2010). Also our finding that VWC is the most important 304 factor modifying responses in sap flow in Artemisia ordosica to other environmental factors, 305 is in contrast to other shrub species. For example, it has been found that sap flow in Haloxylon 306 307 ammodendron in northwest China, where annual precipitation is 37.9 mm and mean annual temperature is 8.2 °C, was mainly controlled by T (Zhang et al., 2003), while sap flow in 308 Cyclobalanopsis glauca in south China, where annual precipitation is 1900 mm and mean 309 annual temperature is 19.3 °C, was controlled by R_s and T, when VWC was not limiting 310

311 (Huang et al., 2009).

Precipitation, being the main source of VWC at our site, affected transpiration directly. 312 313 In this sense, frequent small rainfall events (< 5 mm) were important to the survival and 314 growth of the desert plants (Sala and Lauenroth, 1982; Zhao and Liu, 2010). Variations in J_s were clearly associated with the intermittent supply of water to the soil during rainfall events, 315 as indicated at our site (Fig. 2d, f). Reduced J_s during rainy days can be explained by a 316 317 reduction in incident R_s and water-induced saturation on the leaf surface, which led to a decrease in leaf turgor and stomatal closure. After each rainfall event, J_s increased quickly 318 when soil water was replenished. Schwinning and Sala (2004) showed previously for similar 319 320 research sites that VWC contributed the most to the response in plant transpiration to post-321 rainfall events. We showed in this study that Artemisia ordosica responded in a different way to wet and dry conditions. In the mid-growing season, high J_s in July were related to rainfall-322 fed VWC, which increased the rate of transpiration. However, dry soil conditions combined 323 with high T and R_s , led to a reduction in J_s in August of 2013 (Fig. 2). In some desert shrubs, 324 groundwater may replenish water lost by transpiration by having deep roots (Yin et al., 2014). 325 326 Artemisia ordosica roots are generally distributed in the upper 60 cm of the soil (Zhao et al., 2010; Wang et al., 2016), and as a result the plant usually depends on water directly supplied 327 by precipitation because groundwater levels in drylands can be well below the rooting zone, 328 329 typically, at depths ≥ 10 m at our site.

330

4.2 Hysteresis between sap flow and environmental factors

332 Diurnal patterns in J_s corresponded with those of R_s from sunrise until diverging later in the

day (Fig. 7), suggesting that R_s was a primary controlling factor of diurnal variation in J_s . According to O'Brien et al. (2004), diurnal variation in R_s could cause change in the diurnal variation in the consumption of water. As an initial energy source, R_s can force T and VPD to increase, causing a phase difference in time lags among the relations J_s - R_s , J_s -T, and J_s -VPD.

We found a consistent clockwise hysteresis loop between J_s and R_s over a diurnal cycle 338 (Fig. 7), indicating that R_s lagged J_s , and the response of J_s to R_s varied both diurnally and 339 seasonally. A large g_s in the morning promoted higher rates of transpiration (Fig. 6). In dry 340 and hot conditions, g_s decreased, causing the control of the stomata on J_s to increase relative 341 342 to changes in environmental factors. Diurnal trends in J_s and g_s occurred together, both 343 peaking earlier than R_s . The g_s peaked 3-4 h earlier than R_s , leading to a reduction in J_s and an increase in R_s and a clockwise hysteresis loop. Contrary to our findings, counterclockwise 344 345 hysteresis has been observed to occur between transpiration (J_s) and R_s in tropical and temperate forests (Meinzer et al., 1997; O'Brien et al., 2004; Zeppel et al., 2004). A possible 346 reason for this difference may be due to differences in VWC associated with the different 347 348 regions. According to Zheng and Wang (2014) favorable water conditions after rainfall could render clockwise hysteresis loops between J_s and R_s under dry conditions to counterclockwise 349 loops. In this study, due to a large incidence of small rainfall events, soil water supply by 350 351 rainfall pulses could not meet the transpiration demand under high mid-day R_s , resulting in clockwise loops even though rainfall had occurred. 352

In semi-arid regions, low VWC restricts plant transpiration more than VPD. Water vapor deficits tend to restrict transpiration in forest species in wet regions to a greater extent. 355 According to Zheng et al. (2014), high water availability in alpine shrubland meadows may contribute to weakened hysteresis between evapotranspiration and the environmental 356 357 variables. Our results showed that hysteresis between J_s and R_s decreased as VWC increased 358 (Fig. 8, 9). The result that g_s increased with increasing VWC (Fig. 10a), along with the synchronization of J_s and g_s , suggests that J_s is less sensitive to g_s in high VWC and more so 359 to R_s . Temporal patterns in J_s became more consistent with those in R_s as VWC increased, 360 361 leading to a weakened hysteresis between the two variables. This is further supported by a large decoupling coefficient, when VWC is high (Fig. 10b). The larger the decoupling 362 coefficient is, the greater is the influence of R_s on J_s . The effect of VWC on time lag varied 363 364 between 2013 and 2014.

4.3. Conclusions

366 Drought during the leaf-expansion and leaf-expanded periods led to a greater decline in J_s , causing J_s to be lower in 2013 than in 2014. The relative influence of R_s , T, and VPD on J_s in 367 Artemisia ordosica was modified by soil water content, indicating J_s 's lower sensitivity to 368 environmental variables (R_s , T and VPD) during dry periods. Sap flow J_s was constrained by 369 soil water deficiency, causing J_s to peak several hours prior to R_s . Diurnal hysteresis between 370 371 $J_{\rm s}$ and $R_{\rm s}$ varied seasonally, because of the control by stomatal conductance under low VWC and R_s under high VWC. According to this study, soil moisture controlled sap-flow response 372 in Artemisia ordosica. This species is capable to tolerate and adapt to soil water deficiencies 373 and drought conditions during the growing season. Altogether, our findings add to our 374 understanding of acclimation in desert-shrub species under stress of dehydration. The 375 knowledge gain can assist in modeling desert-shrub-ecosystem functioning under changing 376

377 climatic conditions.

378	Acknowledgments: This research was financially supported by grants from the National
379	Natural Science Foundation of China (NSFC No. 31670710, 31670708, 31361130340,
380	31270755), the National Basic Research Program of China (Grant No. 2013CB429901), and
381	the Academy of Finland (Project No. 14921). Xin Jia and Wei Feng are also grateful to
382	financial support from the Fundamental Research Funds for the Central Universities (Proj.
383	No. 2015ZCQ-SB-02). This work is related to the Finnish-Chinese collaborative research
384	project EXTREME (2013-2016), between Beijing Forestry University (team led by Prof.
385	Tianshan Zha) and the University of Eastern Finland (team led by Prof. Heli Peltola), and the
386	U.S. China Carbon Consortium (USCCC). We thank Ben Wang, Sijing Li, Qiang Yang, and
387	others for their assistance in the field.
388	
389	References
389 390	References Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody
390	Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody
390 391	Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9, 316-
390 391 392	Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9, 316-335, 2003.
390 391 392 393	 Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9, 316-335, 2003. Buzkova, R., Acosta, M., Darenova, E., Pokorny, R., and Pavelka, M.: Environmental factors influencing
 390 391 392 393 394 	 Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9, 316-335, 2003. Buzkova, R., Acosta, M., Darenova, E., Pokorny, R., and Pavelka, M.: Environmental factors influencing the relationship between stem CO2 efflux and sap flow, Trees-Struct. Funct., 29, 333-343, 2015.
 390 391 392 393 394 395 	 Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.: Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999, Global Change Biol., 9, 316-335, 2003. Buzkova, R., Acosta, M., Darenova, E., Pokorny, R., and Pavelka, M.: Environmental factors influencing the relationship between stem CO2 efflux and sap flow, Trees-Struct. Funct., 29, 333-343, 2015. Chen, Z., Zha, T. S., Jia, X., Wu, Y., Wu, B., Zhang, Y., Guo, J., Qin, S., Chen, G., Peltola, H.: Leaf

399	Plateau region of	China, Agr. Fore	est Meteorol., 151	, 1-10, 2011.
				, ,

- 400 Dynamax: Dynagage® Installation and Operation Manual, Dynamax, Houston, TX, 2005.
- 401 Eberbach, P. L. and Burrows, G. E.: The transpiration response by four topographically distributed
- 402 Eucalyptus species, to rainfall occurring during drought in south eastern Australia, Physiol. Plant.,
- 403 127, 483-493, 2006.
- Forner, A., Aranda, I., Granier, A., and Valladares, F.: Differential impact of the most extreme drought
 event over the last half century on growth and sap flow in two coexisting Mediterranean trees, Plant
- 406 Ecol., 215, 703-719, 2014.
- 407 Gao, Q., Yu, M., and Zhou, C.: Detecting the Differences in Responses of Stomatal Conductance to
- 408 Moisture Stresses between Deciduous Shrubs and Artemisia Subshrubs, Plos One, 8, e84200, 2013.
- 409 Granier, A., Bréda, N., Biron, P., and Villette, S.: A lumped water balance model to evaluate duration and
- intensity of drought constraints in forest stands. Ecol. Model., 116, 269–283, 1999.
- 411 Granier, A., Reichstein M., Bréda N., Janssens I. A., Falge E., Ciais P., Grünwald T., Aubinet M.,
- 412 Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G., Heinesch B., Ilvesniemi H., Kerone
- 413 P., Knohl A., Köstner B., Lagergren F., Lindroth A., Longdoz B., Loustau D., Mateus J., Montagnani
- 414 L., Nys C., Moors E., Papale D., Peiffer M., Pilegaard K., Pita G., Pumpanen J., Rambal S., Rebmann
- 415 C., Rodrigues A., Seufert G., Tenhunen J., Vesala T., and Wang Q.: Evidence for soil water control
- 416 on carbon and water dynamics in European forests during the extremely dry year: 2003. Agr. Forest
- 417 Meteorol., 143, 123-145, 2007.
- Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: The U.S. Carbon Budget: Contributions from Land-
- 419 Use Change, Science, 285, 574-578, 1999.
- 420 Huang, L., Zhang, Z. S., and Li, X. R.: Sap flow of Artemisia ordosica and the influence of environmental

- factors in a revegetated desert area: Tengger Desert, China. Hydrol. Process., 24, 1248–1253, 2010.
- 422 Huang, H., Gang, W., and NianLai, C.: Advanced studies on adaptation of desert shrubs to environmental
- 423 stress, Sci. Cold Arid Regions, 3, 0455–0462, 2011a.
- Huang, Y., Li, X., Zhang, Z., He, C., Zhao, P., You, Y., and Mo, L.: Seasonal changes in Cyclobalanopsis
- 425 glauca transpiration and canopy stomatal conductance and their dependence on subterranean water

426 and climatic factors in rocky karst terrain, J. Hydrol., 402, 135-143, 2011b.

- 427 Huang, Y., Zhao, P., Zhang, Z., Li, X., He, C., and Zhang, R.: Transpiration of Cyclobalanopsis glauca
- 428 (syn. Quercus glauca) stand measured by sap-flow method in a karst rocky terrain during dry season,
- 429 Ecol. Res., 24, 791-801, 2009.
- 430 Jacobsen, A. L., Agenbag, L., Esler, K. J., Pratt, R. B., Ewers, F. W., and Davis, S. D.: Xylem density,
- biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the
 Mediterranean-type climate region of South Africa, J. Ecol., 95, 171-183, 2007.
- 433 Jarvis, P. G. and McNaughton, K. G.: Stomatal Control of Transpiration: Scaling Up from Leaf to Region.
- 434 In: Advances in Ecological Research, MacFadyen, A. and Ford, E. D. (Eds.), Academic Press, 1986.
- Jia, X., Zha, T.S., Wu, B., Zhang, Y., Gong, J., Qin, S., Chen, G., Kellomki, S. & Peltola, H.: Biophysical
- 436 controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China.
- 437 Biogeosciences, 11, 4679-4693, 2014.
- Jia, X., Zha, T. S, Gong, J., Wang, B., Zhang Y., Wu B., Qin S., and Peltola H.: Carbon and water exchange
- 439 over a temperate semi-arid shrubland during three years of contrasting precipitation and soil
 440 moisturepatterns. Agr. Forest Meteorol., 228, 120-129, 2016.
- Jian, S. Q., Wu, Z. N., Hu, C. H., and Zhang, X. L.: Sap flow in response to rainfall pulses for two shrub
- species in the semiarid Chinese Loess Plateau, J. Hydrol. Hydromech., 64, 121-132, 2016.

443	Lei, H., Zhi-Shan, Z., and Xin-Rong, L.: Sap flow of Artemisia ordosica and the influence of
444	environmental factors in a revegetated desert area: Tengger Desert, China, Hydrol. Process., 24,
445	1248-1253, 2010.

- Li, S., Werger, M. A., Zuidema, P., Yu, F., and Dong, M.: Seedlings of the semi-shrub Artemisia ordosica
- 447 are resistant to moderate wind denudation and sand burial in Mu Us sandland, China, Trees, 24, 515448 521, 2010.
- Li, S., Zha, T., Qin, S., Qian, D., and Jia, X.: Temporal patterns and environmental controls of sap flow in
- 450 Artemisia ordosica, Chinese J. Ecol., 33, 1-7, 2014.
- Lioubimtseva, E. and Henebry, G. M.: Climate and environmental change in arid Central Asia: Impacts,
- vulnerability, and adaptations, J. Arid Environ., 73, 963-977, 2009.
- Liu, B., Zhao, W., and Jin, B.: The response of sap flow in desert shrubs to environmental variables in an
 arid region of China, Ecohydrology, 4, 448-457, 2011.
- 455 Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M., Cavelier, J., and Jackson, P.: Control of
- transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and

457 hydraulic architecture components, Plant Cell Environ., 20, 1242-1252, 1997.

458 Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics. Butterworth-Heinemann:

459 Oxford, 1990.

- 460 Naithani, K. J., Ewers, B. E., and Pendall, E.: Sap flux-scaled transpiration and stomatal conductance
- response to soil and atmospheric drought in a semi-arid sagebrush ecosystem, J. Hydrol., 464, 176185, 2012.
- 463 O'Brien, J. J., Oberbauer, S. F., and Clark, D. B.: Whole tree xylem sap flow responses to multiple
- 464 environmental variables in a wet tropical forest, Plant Cell Environ., 27, 551-567, 2004.

465	Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist,
466	E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier,
467	G., Holland, E., Gloor, M., Harmon, M. E., Fan, SM., Sarmiento, J. L., Goodale, C. L., Schimel, D.,
468	and Field, C. B.: Consistent Land- and Atmosphere-Based U.S. Carbon Sink Estimates, Science, 292,
469	2316-2320, 2001.
470	Qian, D., Zha, T. S., Jia, X., Wu, B., Zhang, Y., Bourque C. P. A., Qin, S., and Peltola, H.: Adaptive,
471	water-conserving strategies in Hedysarum mongolicum endemic to a desert shrubland ecosystem,
472	Environ. Earth. Sci., 74, 6039–6046, 2015.
473	Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., and Andersen, M. N.: Water
474	Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying,
475	J. Agron. Crop Sci., 197, 348-360, 2011.
476	Sala, O. E., and Lauenroth, W. K.: Small rainfall events: an ecological role in semi-arid regions, Oecologia,
477	53 (3), 301-304, 1982.
478	Schwinning, S. and Sala, O. E.: Hierarchy of responses to resource pulses in arid and semi-arid ecosystems,
479	Oecologia, 141, 211-220, 2004.
480	She, D., Xia, Y., Shao, M., Peng, S., and Yu, S.: Transpiration and canopy conductance of Caragana
481	korshinskii trees in response to soil moisture in sand land of China, Agroforest. syst., 87, 667-678,
482	2013.
483	Vilagrosa, A., Bellot, J., Vallejo, V. R., and Gil- Pelegrín, E.: Cavitation, stomatal conductance, and leaf
484	dieback in seedlings of two co- occurring Mediterranean shrubs during an intense drought, J. Exp.
485	Bot., 54, 2015-2024, 2003.
486	Wang, B., Zha, T. S., Jia, X., Gong, J.N., Wu, B., Bourque, C. P. A., Zhang, Y., Qin, S., Chen, G., Peltola,

487	H.: Microtopographic variation in soil respiration and its controlling factors vary with plant
488	phenophases in a desert-shrub ecosystem. Biogeosciences, 12, 5705-5714, 2015.
489	Xia, G., Kang, S., Du, T., Yang, X., and Zhang, J.: Transpiration of Hedysarum scoparium in arid desert
490	region of Shiyang River basin, Gansu Province, Chinese J. Appl. Ecol., 18, 1194-1202, 2007.
491	Xia, G., Kang, S., Li, F., Zhang, J., and Zhou, Q.: Diurnal and seasonal variations of sap flow of Caragana
492	korshinskii in the arid desert region of north-west China, Hydrol. Process., 22, 1197-1205, 2008.
493	Xu, D. H., Li, J. H., Fang, X. W., and Wang, G.: Changes in soil water content in the rhizosphere of
494	Artemisia ordosica: Evidence for hydraulic lift, J. Arid Environ., 69, 545-553, 2007.
495	Yang, Y. and Zhu, Y.: Plant Ecology (Second Edition), Higher Education Press, Beijing, 2011.
496	Yin, L., Zhou, Y., Huang, J., Wenninger, J., Hou, G., Zhang, E., Wang, X., Dong, J., Zhang, J., and
497	Uhlenbrook, S.: Dynamics of willow tree (Salix matsudana) water use and its response to
498	environmental factors in the semi-arid Hailiutu River catchment, Northwest China, Environ. earth
499	sci., 71, 4997-5006, 2014.
500	Yu, M., , Ellis, J. E., and Epstein, H. E.: Regional analysis of climate, primary production, and livestock
501	density in Inner Mongolia. J. Environ. Qual., 33(5), 1675-1681, 2004.
502	Zeppel, M. J. B., Murray, B. R., Barton, C., and Eamus, D.: Seasonal responses of xylem sap velocity to
503	VPD and solar radiation during drought in a stand of native trees in temperate Australia, Funct. Plant
504	Biol., 31, 461-470, 2004.
505	Zeppel, M. J. B., Macinnis-Ng, C. M. O., Yunusa, I. A. M., Whitley, R. J., and Eamus, D. Long term
506	trends of stand transpiration in a remnant forest during wet and dry years, J. Hydrol., 349, 200-213,
507	2008.
508	Zha, T. S., Barr, A. G., Kamp, G. V. D., Black, T.A., McCaughey, J. H., and Flanagan, L.B.: Interannual

- 509 variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation
- ⁵¹⁰ to drought, Agr. Forest Meteorol., 150, 1476-1484, 2010.
- 511 Zha, T. S., Li, C., Kellomäki, S., Peltola, H., Wang, K.-Y., and Zhang, Y.: Controls of Evapotranspiration
- and CO2 Fluxes from Scots Pine by Surface Conductance and Abiotic Factors, Plos One, 8, e69027,
- 513 2013.
- ⁵¹⁴ Zhang, X., Gong, J., Zhou, M., and Si, J.: A study on the stem sap flow of Populus euphrtaicr and Tamaris
- spp. By heat pulse technique, J. Glaciol. Geocryol., 25, 584-590, 2003.
- 516 Zhao, W. and Liu, B.: The response of sap flow in shrubs to rainfall pulses in the desert region of China,
- 517 Agr. Forest Meteorol., 150, 1297-1306, 2010.
- 518 Zhao, Y., Yuan, W., Sun, B., Yang, Y., Li, J., Li, J., Cao, B., and Zhong, H.: Root Distribution of Three
- 519 Desert Shrubs and Soil Moisture in Mu Us Sand Land. Res. Soil Water Conserv., 17, 129-133, 2010.
- 520 Zhao, W., Liu, B., Chang, X., Yang, Q., Yang, Y., Liu Z., Cleverly, J., and Eamus, D.: Evapotranspiration
- 521 partitioning, stomatal conductance, and components of the water balance: A special case of a desert
- 522 ecosystem in China. J. Hydrol., 538, 374-386, 2016.
- 523 Zheng, C. and Wang, Q.: Water-use response to climate factors at whole tree and branch scale for a
- dominant desert species in central Asia: Haloxylon ammodendron, Ecohydrology, 7, 56-63, 2014.
- 525 Zheng, H., Wang, Q., Zhu, X., Li, Y., and Yu, G.: Hysteresis Responses of Evapotranspiration to
- 526 Meteorological Factors at a Diel Timescale: Patterns and Causes, Plos One, 9, e98857, 2014.
- 527
- 528
- 529

Table 1 Seasonal changes in monthly transpiration (T_r), leaf area index (LAI), and stomatal

conductance (g_s) of *Artemisia ordosica* from 2013 to 2014.

	T_r (mm	mon^{-1})	LAI $(m^2 m^{-2})$		$g_s \pmod{m^{-2} s^{-1}}$	
	2013	2014	2013	2014	2013	2014
May	0.57	1.59	0.02	0.04	0.07	0.18
June	1.03	2.28	0.05	0.06	0.08	0.13
July	3.36	3.46	0.10	0.06	0.09	0.14
August	1.04	2.45	0.08	0.06	0.10	0.08
September	1.23	1.13	0.05	0.04	0.15	0.05

Table 2 Mean monthly diurnal cycles of sap-flow rate (J_s) response to shortwave radiation

536 (R_s), air temperature (T), and vapor pressure deficit (VPD), including time lags (h) in J_s as a

537 function of R_s , T, and VPD.

Pattern	May		June		July		August		September	
Fattern	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
$J_{s}-R_{s}$	5	2	3	0	2	1	3	1	3	2
J_{s} - T	8	6	7	4	4	4	6	5	6	6
$J_{\rm s}$ -VPD	8	5	7	4	6	4	6	5	6	5

542 **Figure captions:**

Fig. 1 Sap-flow rate per leaf area (J_s) as a function of soil water content (VWC) at 30 cm depth in non-rainy, daytime hours during the mid-growing period from June 1-August 31 over 2013-2014. Data points are binned values from pooled data over two years at a VWC increment of 0.003 m³ m⁻³. Dotted line represents the VWC threshold for J_s .

Fig. 2 Seasonal changes in daily (24-hour) mean shortwave radiation (R_s ; a), air temperature (T; b), vapor pressure deficit (VPD; c), volumetric soil water content (VWC; d), relative extractable water (REW; e), daily total precipitation (PPT; d), and daily sap-flow per leaf area (J_s ; f), and daily transpiration (T_r , mm d⁻¹; f) from May to September for both 2013 and 2014. Horizontal dash lines (d, e) represent VWC and REW threshold of 0.1 m³ m⁻³ and 0.4, respectively. Shaded bands indicate periods of drought.

Fig. 3 Relationships between sap-flow rate per leaf area (J_s) and environmental factors [shortwave radiation (R_s), air temperature (T), vapor pressure deficit (VPD), and soil water content at 30-cm depth (VWC)] in non-rainy days between 8:00-20:00 h during the midgrowing season of June 1-August 31 for 2013 and 2014. Data points are binned values from pooled data over two years at increments of 40 W m⁻², 1.2 °C, 0.3 kPa, and 0.005 m³ m⁻³ for R_s , T, VPD and VWC, respectively.

Fig. 4 Sap-flow rate per leaf area (J_s) in non-rainy, daytime hours during the mid-growing season of June 1-August 31 for both 2013 and 2014 as a function of shortwave radiation (R_s), air temperature (T), vapor pressure deficit (VPD) under high volumetric soil water content (VWC > 0.10 m³ m⁻³ both in 2013 and 2014) and low VWC (< 0.10 m³ m⁻³,2013 and 2014). J_s is given as binned averages according to R_s , T, and VPD, based on increments of 100 W m^{-2} , 1°C, and 0.2 kPa, respectively. Bars indicate standard error.

Fig. 5 Regression slopes of linear fits between sap-flow rate per leaf area (J_s) in non-rainy days and shortwave radiation (R_s), vapor pressure deficit (VPD), air temperature (T), and volumetric soil water content (VWC) between 8:00-20:00 h during the mid-growing season of June 1-August 31 for 2013 and 2014.

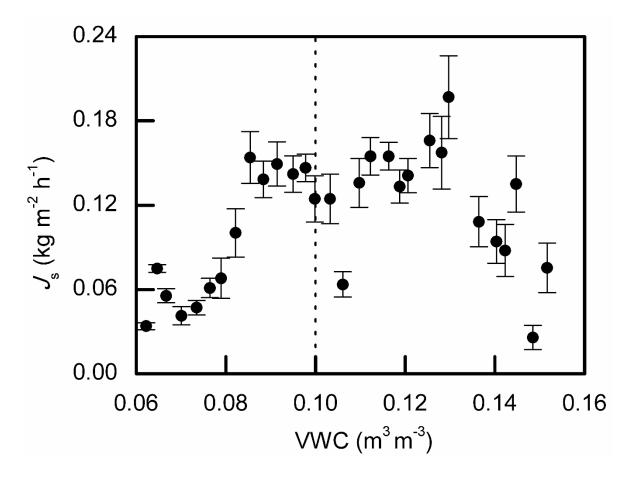
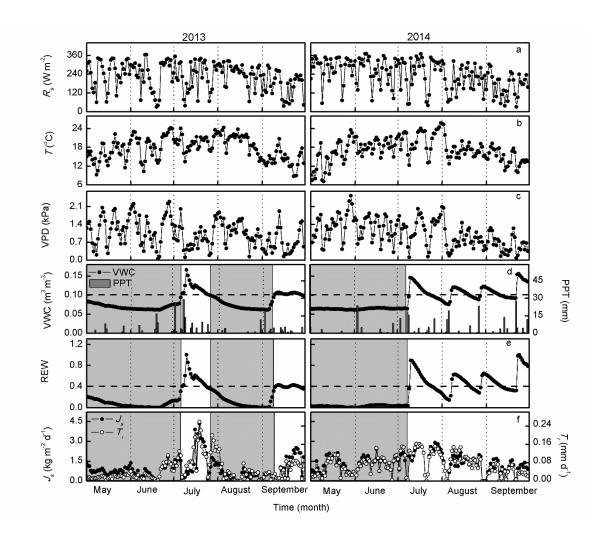

Fig. 6 Mean monthly diurnal changes in sap-flow rate per leaf area (J_s) and stomatal conductance (g_s) in *Artemisia ordosica* during the growing season (May-September) for both 2013 and 2014. Each point is given as the mean at specific times during each month.

Fig. 7 Seasonal variation in hysteresis loops between sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) using normalized plots for both 2013 and 2014. The y-axis represents the proportion of maximum J_s (dimensionless), and the x-axis represents the proportion of maximum R_s (dimensionless). The curved arrows indicate the clockwise direction of response during the day.

Fig. 8 Sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) over consecutive three days in 2013, i.e., (a) under low volumetric soil water content (VWC) and high vapor pressure deficit (VPD; DOY 153-155, VWC=0.064 m³ m⁻³, REW=0.025, VPD=2.11 kPa), (b) moderate VWC and VPD (DOY 212-214, VWC=0.092 m³ m⁻³, REW=0.292, VPD=1.72 kPa), and (c) high VWC and low VPD (DOY 192-194, VWC=0.152 m³ m⁻³, REW=0.865, VPD= 0.46 kPa). REW is the relative extractable soil water. VWC, REW, and VPD are the mean value of the three days.


Fig. 9 Time lag between sap-flow rate per leaf area (J_s) and short wave radiation (R_s) in relation to volumetric soil water content (VWC). Hourly data in non-rainy days during the

586	mid-growing season of June 1-August 31 for 2013 and 2014. The lag hours were calculated
587	by a cross-correlation analysis using a three-day moving window with a one-day time step.
588	Rainy days were excluded. The solid line is based on exponential regression ($p < 0.05$).
589	Fig. 10 Relationship between volumetric soil water content (VWC) and (a) stomatal
590	conductance (g_s) in Artemisia ordosica, and (b) decoupling coefficient (Ω) for 2013 and 2014.
591	Hourly values are given as binned averages based on a VWC-increment of 0.005 $m^3 m^{-3}$.
592	Bars indicate standard error. Only regressions with p -values < 0.05 are shown.

595

Fig. 1 Sap-flow rate per leaf area (J_s) as a function of soil water content (VWC) at 30 cm depth in non-rainy, daytime hours during the mid-growing period from June 1-August 31 over 2013-2014. Data points are binned values from pooled data over two years at a VWC increment of 0.003 m³ m⁻³. Dotted line represents the VWC threshold for J_s .

602

604

Fig. 2 Seasonal changes in daily (24-hour) mean shortwave radiation (R_s ; a), air temperature (T; b), vapor pressure deficit (VPD; c), volumetric soil water content (VWC; d), relative extractable water (REW; e), daily total precipitation (PPT; d), and daily sap-flow per leaf area (J_s ; f), and daily transpiration (T_r , mm d⁻¹; f) from May to September for both 2013 and 2014. Horizontal dash lines (d, e) represent VWC and REW threshold of 0.1 m³ m⁻³ and 0.4, respectively. Shaded bands indicate periods of drought.

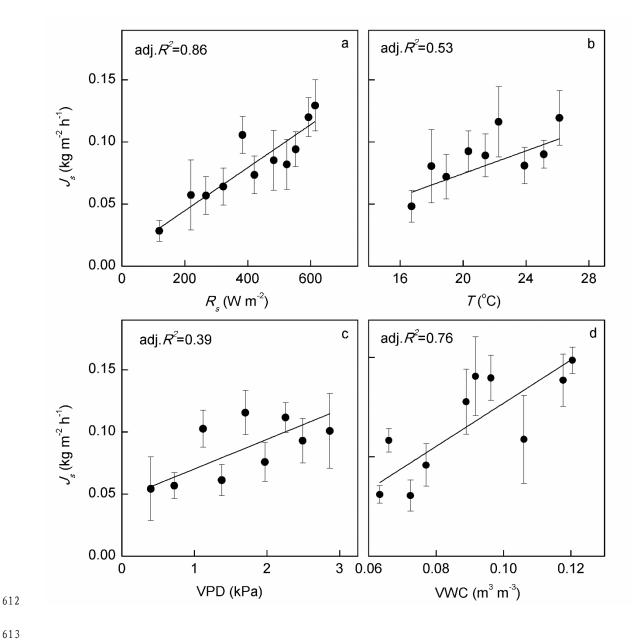


Fig. 3 Relationships between sap-flow rate per leaf area (J_s) and environmental factors [shortwave radiation (R_s) , air temperature (T), vapor pressure deficit (VPD), and soil water content at 30-cm depth (VWC)] in non-rainy days between 8:00-20:00 h during the mid-growing season of June 1-August 31 for 2013 and 2014. Data points are binned values from pooled data over two years at increments of 40 W m⁻², 1.2 °C, 0.3 kPa, and 0.005 m³ m⁻³ for R_s , T, VPD and VWC, respectively.

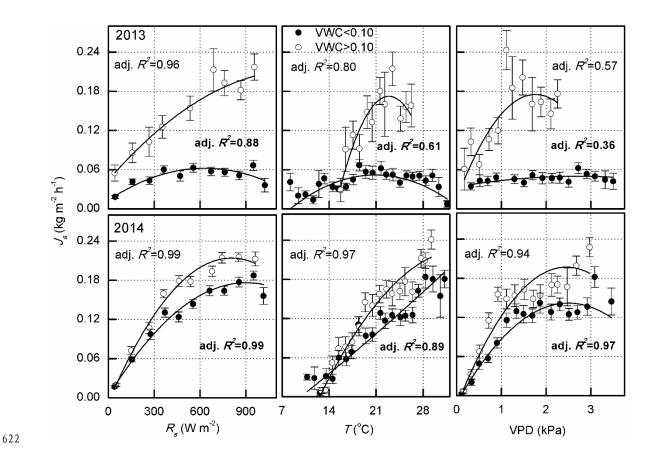
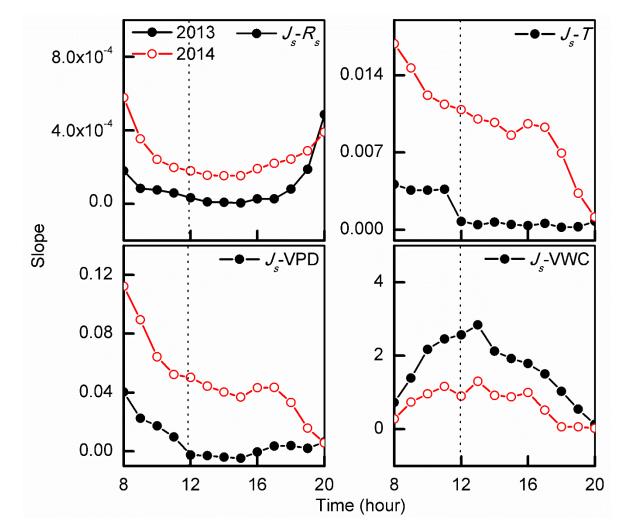



Fig. 4 Sap-flow rate per leaf area (J_s) in non-rainy, daytime hours during the mid-growing season of June 1-August 31 for both 2013 and 2014 as a function of shortwave radiation (R_s), air temperature (T), vapor pressure deficit (VPD) under high volumetric soil water content (VWC > 0.10 m³ m⁻³ both in 2013 and 2014) and low VWC (< 0.10 m³ m⁻³, 2013 and 2014). J_s is given as binned averages according to R_s , T, and VPD, based on increments of 100 W m⁻², 1°C, and 0.2 kPa, respectively. Bars indicate standard error.

632

Fig. 5 Regression slopes of linear fits between sap-flow rate per leaf area (J_s) in non-rainy days and shortwave radiation (R_s), vapor pressure deficit (VPD), air temperature (T), and volumetric soil water content (VWC) between 8:00-20:00 h during the mid-growing season of June 1-August 31 for 2013 and 2014.

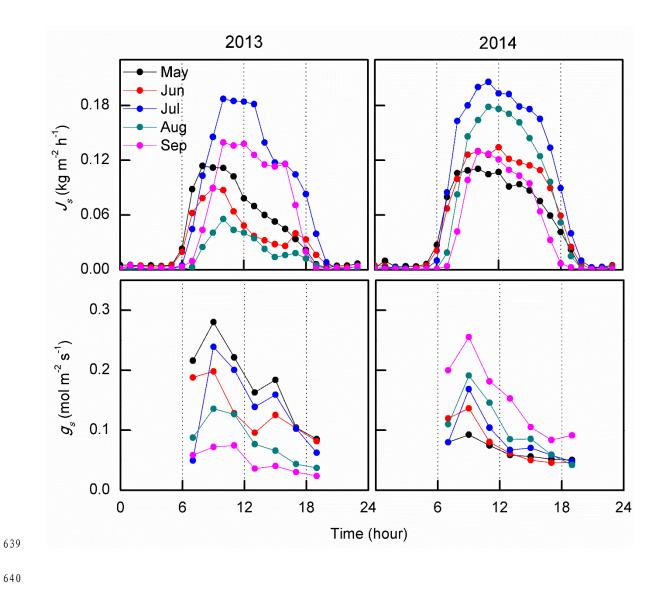


Fig. 6 Mean monthly diurnal changes in sap-flow rate per leaf area (J_s) and stomatal conductance (g_s) in *Artemisia ordosica* during the growing season (May-September) for both 2013 and 2014. Each point is given as the mean at specific times during each month.

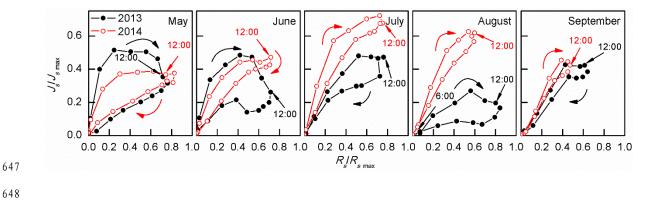


Fig. 7 Seasonal variation in hysteresis loops between sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) using normalized plots for both 2013 and 2014. The y-axis represents the proportion of maximum J_s (dimensionless), and the x-axis represents the proportion of maximum R_s (dimensionless). The curved arrows indicate the clockwise direction of response during the day.

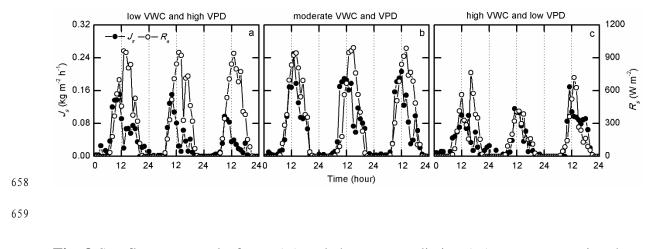


Fig. 8 Sap-flow rate per leaf area (J_s) and shortwave radiation (R_s) over consecutive three days in 2013, i.e., (a) under low volumetric soil water content (VWC) and high vapor pressure deficit (VPD; DOY 153-155, VWC=0.064 m³ m⁻³, REW=0.025, VPD=2.11 kPa), (b) moderate VWC and VPD (DOY 212-214, VWC=0.092 m³ m⁻³, REW=0.292, VPD=1.72 kPa), and (c) high VWC and low VPD (DOY 192-194, VWC=0.152 m³ m⁻³, REW=0.865, VPD= 0.46 kPa). REW is the relative extractable soil water. VWC, REW, and VPD are the mean value of the three days.

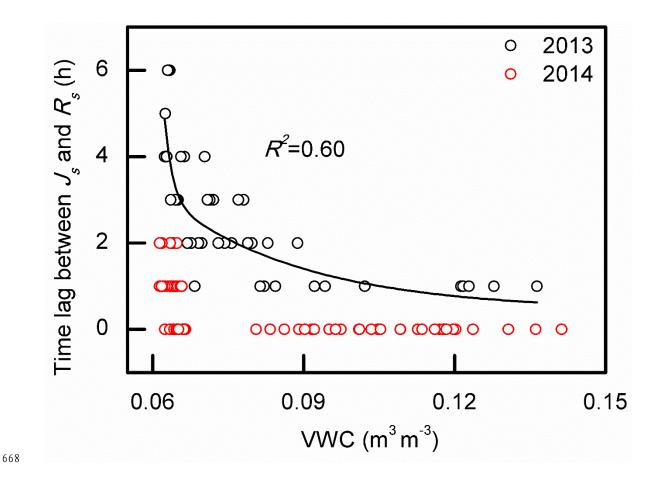


Fig. 9 Time lag between sap-flow rate per leaf area (J_s) and short wave radiation (R_s) in relation to volumetric soil water content (VWC). Hourly data in non-rainy days during the mid-growing season of June 1-August 31 for 2013 and 2014. The lag hours were calculated by a cross-correlation analysis using a three-day moving window with a one-day time step. Rainy days were excluded. The solid line is based on exponential regression (p<0.05).

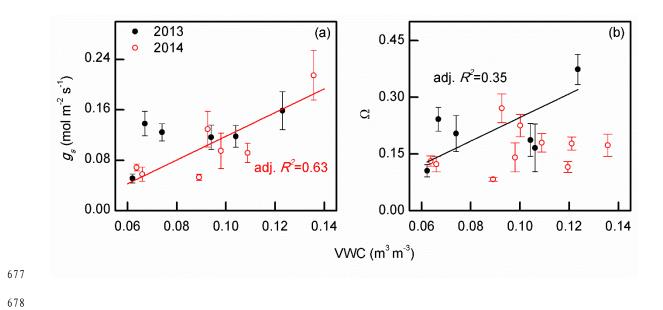


Fig. 10 Relationship between volumetric soil water content (VWC) and (a) stomatal conductance (g_s) in *Artemisia ordosica*, and (b) decoupling coefficient (Ω) for 2013 and 2014. Hourly values are given as binned averages based on a VWC-increment of 0.005 m³ m⁻³. Bars indicate standard error. Only regressions with *p*-values < 0.05 are shown.