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Abstract 

Soil coarseness decreases ecosystem productivity, ecosystem carbon and nitrogen 

stocks, and soil nutrient contents in sandy grasslands. To gain insight into changes in 

soil carbon and nitrogen pools, microbial biomass, and enzyme activities in response 

to soil coarseness, a field experiment of sand addition was conducted to coarsen soil 5 

with different intensities: 0% sand addition, 10%, 30%, 50%, and 70%. Soil organic 

carbon and total nitrogen decreased with the intensification of soil coarseness across 

three depths (0-10 cm, 10-20 cm, and 20-40 cm) by up to 43.9% and 53.7%, 

respectively. At 0-10 cm, soil microbial biomass carbon (MBC) and nitrogen (MBN) 

declined with soil coarseness by up to 44.1% and 51.9%, respectively, while microbial 10 

biomass phosphorus (MBP) increased by as much as 73.9%. Soil coarseness 

significantly decreased the activities of β-glucosidase, N-acetyl-glucosaminidase, and 

acid phosphomonoesterase by 20.2%-57.5%, 24.5%-53.0%, and 22.2%-88.7%, 

respectively. Soil coarseness enhanced microbial C and N limitation relative to P, 

indicated by the ratios of β-glucosidase and N-acetyl-glucosaminidase to acid 15 

phosphomonoesterase (and MBC:MBP and MBN:MBP ratios). As compared to 

laboratory measurement, values of soil parameters from theoretical sand dilution was 

significantly lower for soil organic carbon, total nitrogen, dissolved organic carbon, 

total dissolved nitrogen, available phosphorus, MBC, MBN, and MBP. Phosphorus 

immobilization in microbial biomass might aggravate plant P limitation in 20 

nutrient-poor grassland ecosystems as affected by soil coarseness. We conclude that 

microbial C:N:P and enzyme activities might be good indicators for nutrient limitation 
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of microorganisms and plants. 

 

Key words sandy grassland, grassland degradation, microbial biomass, microbial 

nutrient limitation, soil carbon stocks 
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1 Introduction 

Soil coarseness is one of the principle constrains to terrestrial net primary 

productivity (NPP), ecosystem health, and regional economy (Lal, 2014; Lü et al., 

2016). Desertification and wind erosion processes are main contributors of soil 

coarseness in arid and semi-arid grasslands (Su et al., 2004; Lü et al., 2016). By the 5 

1990s, more than 74% of world total dryland area, 100 countries, and 0.85 billion 

people have been influenced by desertification and soil coarseness (Chang et al., 

2015). Abundant evidence has confirmed that desertification and soil coarseness 

decreases NPP (Peters et al., 2012), soil organic carbon (SOC) storage in both soil and 

plant components (Zhou et al., 2008), and soil nutrient retention (Delgado-Baquerizo 10 

et al., 2013). In response to desertification and soil coarseness, the decrease of NPP 

would pose threat to world food security (Zhao et al., 2006); loss of SOC would 

enhance carbon-climate feedback (Lal, 2014); and decline in soil nutrient retention 

would cause soil deterioration and loss of soil structure (Su et al., 2004). Therefore, it 

is important to characterize impacts of soil coarseness on ecosystem processes in 15 

order to understand the mechanisms that cause desertification. 

Microbes play a particularly important role in regulating plant nutrient 

availability in nutrient-poor environments (van der Heijden et al., 2008). Microbial 

biomass is less than 4% of soil organic C, but it makes substantial contributions to 

stable soil C formation and major nutrient supply (Brookes, 2001; Liang and Balser, 20 

2011). For instance, microbial biomass phosphorus (MBP) has been regarded as a 

central feature in P cycling and plays an essential role in soil organic P mineralization 
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(Richardson and Simpson, 2011). Soil nutrient supply is predominately controlled by 

microbial decomposition of soil organic matter (SOM) (excepting P which can be 

supplied by rock weathering) (Balota et al., 2014) and this process mainly relies on 

extracellular enzymes secreted by microorganisms and plants (Tabatabai, 1994; Wang 

et al., 2015). However, C and nutrient availabilities in soil environments can constrain 5 

this kind of essential microbial function (Cleveland et al., 2002) and be reflected by 

enzymatic stoichiometry and kinetics (Sinsabaugh et al., 2008, 2014; Wang et al., 

2015). For instance, microbial P limitation decreased soil microbial respiration and 

SOM decomposition, which could profoundly influence C cycling in tropical forests 

(Cleveland et al., 2002). Lower ratios of soil β-glucosidase (BG) to acid phosphatase 10 

(PME) and N-acetyl-glucosaminidase (NAG) to PME illustrated greater microbial P 

demand relative to C and N, respectively (Waring et al., 2014; Wang et al., 2015). 

Though a spate of studies have investigated desertification and soil coarseness effects 

on plant productivity (Zhao et al., 2006), composition of soil particle sizes (Su et al., 

2004; Zhao et al., 2006), soil C and N dynamics (Zhou et al., 2008), and soil nutrient 15 

availabilities to plants (Zhao et al., 2006; Li et al., 2013), researches concerning 

microbial biomass C, N and P contents, soil enzyme activities, and microbial nutrient 

limitations are still rarely seen. Under soil coarseness conditions, stoichiometry of soil 

microbial biomass C:N:P and extracellular enzymes remain largely unknown 

(Cleveland and Liptzin, 2007; Sinsabaugh et al., 2008). 20 

The Horqin Sandy Grassland is one of the main parts of Inner Mongolia grassland 

belonging to Eurasian steppe. At the southeastern edge of Horqin Sandy Grassland, 
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Zhangwu County used to be productive steppe grassland until 1950s when 

overgrazing and over-cultivation happened to support rapidly growing human 

population (Li et al., 2004). After decades of over-utilization, the natural grassland has 

turned into an agro-pastoral zone and has undergone severe desertification and 

ecosystem retrogression (Yu et al., 2008). Soil coarseness is common in this area 5 

resulting from significant decreases in plant coverage and high annual wind speed 

(varying from 3.4 to 4.1 m s
-1

) with frequent occurrence of gales (wind speed > 20 m 

s
-1

) (Lü et al., 2016). In previous work we showed that soil pH, soil fine particles (< 

250 μm), soil exchangeable Ca and Mg, and soil available Fe was significantly 

decreased by soil coarseness (Lü et al., 2016). In this study, we hypothesized that 1) 10 

soil coarseness would decrease both soil C and N contents as well as their stocks 

across soil depths; 2) soil coarseness would decrease microbial C, N, and P as well as 

the activities of C-, N-, and P-cycling enzymes because of the significant decrease in 

SOM; 3) soil coarseness would increase soil microbial C and N limitation relative to P 

as P could be supplied through abiotic processes. 15 

 

2 Materials and methods 

2.1 Study site and experimental design 

The field experiment was located in Zhanggutai Town (42º43′N, 122º22′E, 

elevation 226.5 m a.s.l.) at the southeast of Horqin Sandy Land of northern China. 20 

The mean annual temperature is 6.3 ºC and the mean annual precipitation is 450 mm. 

The soil is an Aeolic Eutric Arenosol in the FAO classification (IUSS Working Group 
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WRB, 2014). 

 In 2011, treatments were established on 4 m × 4 m plots arranged in a complete 

randomized design with five treatments and six replicates. Original plants were 

removed before preparing the soil. To simulated different soil coarseness degrees, 

soils from three soil depths (0-20 cm, 20-40 cm, and 40-60 cm) were dug out and 5 

mixed with 2 mm-sieved river sand in different mass proportions evenly and then 

refilled back. The mixing proportions are 0 (C0), 10% (C10), 30% (C30), 50% (C50), 

and 70% (C70) of soil mass. The river sand contains 1.29±0.04 g kg
-1

 C and 

0.15±0.03 g kg
-1

 N with a pH of 7.5±0.2. In August 2012, soils of 0-5 cm depth were 

taken out from all plots and sterilized at 105 ºC for 3h to deactivate the seeds and 10 

prevent plant growth. The 0-5 cm soils were filled back and treatment plots were 

equilibrated for 1 year until July 2013. After 1-year equilibration, native plants were 

transplanted from local grassland according to native community composition. The 

purpose of deactivation of seeds and transplantation were to build the same plant 

community as native grassland. Since 2014, a permanent quadrat of 1 m × 1 m was set 15 

up within each plot to investigate plant community composition at August. 

 

2.2 Soil sampling and chemical analysis 

In October 2015, soil samples (0-10 cm, 10-20 cm, and 20-40 cm) were taken by 

compositing three randomly placed soil cores within each plot. Fresh samples were 20 

passed through a 2 mm sieve, sealed in plastic bags, and stored at 4 ºC until further 

processing. 
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 For three soil layers, the contents of SOC and TN were determined on air-dried 

and ground soils using an elemental analyzer (Vario MACRO Cube, Elementar, 

Germany). Sulfanilamide (C = 41.81%, N = 16.25%) was used as the internal 

standard. The SOC or TN stocks of three soil layers were calculated by multiplying 

SOC or TN contents with soil bulk density. The soil dissolved organic carbon (DOC) 5 

and total dissolved nitrogen (TDN) were extracted from 15 g fresh soils by 60 ml of 

0.5 M K2SO4 and filtered through 0.45 μm acetate filter paper after shaking at 120 

rpm for 1 h (Wang et al. 2015). The contents of DOC and TDN in filtrate were 

determined by a TOC analyzer (Multi N/C 3100, Analytikjena, Germany).  

Soil pH was measured in a 1:2.5 (w/v) soil-to-water slurry using a PHS-3G 10 

digital pH meter (Precision and Scientific Crop., Shanghai, China). Soil particle size 

distribution was measured according to Zhao et al. (2006) by the pipette method. Soil 

fine particle in the size of < 250 μm was used in this study and calculated by the sum 

of fine sand, silt and clay. Soil exchangeable Ca and Mg were extracted by 1 M 

CH3COONH4 solution (Ochoa-Hueso et al. 2014). Available Fe was extracted by 15 

diethylenetriaminepentaacetic acid (DTPA) (Lindsay and Norvell 1978). Soil 

exchangeable Ca and Mg contents and Fe availability were analyzed by atomic 

absorption spectrometer (AAS, Shimazu, Japan). 

 

2.3 Microbial biomass and enzyme activities 20 

Microbial biomass C (MBC) and N (MBN) were measured using the 

fumigation-extraction method (Brooks et al., 1985). Soil subsamples of 15 g were 
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fumigated with chloroform (CHCl3) at 25 ºC for 24 h and non-fumigated subsamples 

were kept at the same conditions. After fumigation, both fumigated and 

non-fumigated samples were extracted with 0.5 M K2SO4 in a 1:4 (w/v) 

soil-to-extractant ratio and shaken at 150 rpm for 1 h. After filtration, the soil extracts 

were analyzed by a TOC analyzer (Multi N/C 3100, Analytikjena, Germany) for 5 

extractable C and N contents. Microbial biomass P was determined by extracting 

fumigated (also by CHCl3) and non-fumigated soils with 0.5 M NaHCO3 (pH 8.5) 

(Brookes et al., 1982). Briefly, 15 g of both fumigated and non-fumigated soil samples 

were mixed with 60 ml 0.5 M NaHCO3 and shaken at 150 rpm for 1 h. After filtration, 

the extractable P content in filtrate was determined by the molybdenum blue 10 

colorimetric method (Murphy and Riley, 1962). The measured P conctent in 

unfumigated soil samples was soil Olsen-P (Wang et al., 2016). To correct for 

incomplete extraction, we used efficiency factor of 0.45, 0.54, and 0.40 to calculate 

the actual contents of MBC, MBN and MBP, respectively (Dijkstra et al., 2012). 

 Enzyme assays for β-glucosidase (BG), N-acetyl-glucosaminidase (NAG) and 15 

acid phosphomonoesterase (PME) were performed on frozen and fresh sieved soil 

samples. For BG activity, 1.0 g of soil sample was mixed with a pH 6.0 modified 

universal buffer (0.1 M trihydroxymethyl aminomethane + 0.067 M citric acid 

monohydrate compound + 0.1 M boric acid). The p-nitrophenyl-β-D-glucopyranoside 

(0.05 M) was added as indicator substrate to the mixture and then incubated for 1 h. 20 

After the reaction was stopped by 0.5 M CaCl2 and 0.1 M trihydroxymethyl 

aminomethane (pH 12), the product was filtered and analyzed by an UV-VIS 
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spectrophotometer (UV-1700, Shimazu) at 410 nm (Tabatabai, 1994). The 

measurements of NAG and PME activities were the similar to the assay of BG 

activity but utilized p-nitrophenyl-N-acetyl-β-D-glucosaminidine and 

p-nitrophenyl-phosphate as the substrates and the pH values of reaction systems were 

adjusted to 5.5 (Wang et al., 2015) and 6.5 (Tabatabai, 1994), respectively. The unit of 5 

BG, NAG and PME activities was express as the production of p-nitrophenol (PNP) 

per hour as catalyzed by 1g dry soil (mg PNP kg soil
-1

 h
-1

). 

 

2.4  Statistical analyses 

The values of theoretical dilution were calculated based on 90%, 70%, 50%, and 10 

30% of the measured parameters in C0 treatment (without sand addition) for C10, 

C30, C50, and C70 treatments, respectively. Two-way ANOVAs were conducted to 

determine the effects of soil coarseness and soil depth on SOC and TN contents and 

stocks. One-way ANOVA was executed to determine the soil coarseness effect on 

DOC, TDN, Olsen-P, enzyme activities, and stoichiometry of microbial biomass and 15 

enzyme activities. Multiple comparisons of Duncan’s test were conducted to compare 

the significant difference among treatments for SOC and TN contents and stocks (run 

separately for each soil depth), DOC, DON, Olsen-P, enzyme activities, and 

stoichiometry of microbial biomass and enzyme activities. Pearson correlation 

analysis was executed to determine relationships between microbial biomass as well 20 

as enzyme activities and soil physicochemical properties. Multivariate linear 

regression analyses (stepwise removal) were used to determine parameters that made 
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significant contributions to the variation of microbial biomass and enzyme activities. 

All statistical analyses were performed in SPSS 16.0 (SPSS, Inc., Chicago, IL, U.S.A) 

with α < 0.05. 

 

3 Results 5 

3.1 Soil C and N pools decreased with soil coarseness and soil depth 

The contents and stocks of both SOC and TN significantly decreased with soil 

coarseness intensities. At 0-10 cm, SOC content decreased significantly from 4.0 to 

2.7 g kg soil
-1

 from no river sand addition to 70% sand addition (Fig. 1a). The TN 

content ranged from 0.48 to 0.22 g kg soil
-1

 and decreased significantly with soil 10 

coarseness (Fig. 1b). Both SOC and TN stocks (ranging from 6.9 to 4.4 kg m
-3

 and 

0.84 to 0.38 kg m
-3

, respectively) significantly declined with the increase of soil 

coarseness (Fig. 1c,d). Across all soil coarseness intensities in surface soils, soil C and 

N stocks decreased by as much as 31.8% and 54.0 %, respectively. At the 0-10 cm soil 

layer, the ratio of SOC to TN (soil C:N) varied from 8.5 to 13.1 and significantly 15 

increased with soil coarseness (Fig. S1a). For both 10-20 cm and 20-40 cm soil layers, 

soil coarseness significantly decreased SOC and TN contents (Fig. 1a,b). Similar 

trends were found for SOC and TN stocks at 10-20 cm and 20-40 cm (Fig. 1c,d). For 

the 10-20 cm layer, SOC and TN stocks decreased from 5.9 to 3.4 kg m
-3

 (by up to 

38.2%) and 0.51 to 0.34 kg m
-3 

(by up to 25.6%) with soil coarseness (Fig. 1c). At 20 

20-40 cm, SOC and TN stocks decreased from 4.8 to 3.3 kg m
-3

 (31.5%) and 0.52 to 

0.31 kg m
-3 

(31.2%), respectively, with increasing levels of soil coarseness (Fig. 1d).  
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The contents and stocks of both SOC and TN varied through soil depths (Fig. 1). 

Averaging all degrees of soil coarseness, SOC content, ranging from 4.0 to 1.9 mg kg 

soil
-1

, was the highest at 0-10 cm and the lowest at 20-40 cm (Fig. 1a). Both TN 

content (Fig. 1b) and SOC stocks (Fig. 1c) followed the same trend as SOC content 

across the three soil depths. Surface soil (0-10 cm) retained the highest TN stocks, 5 

while no difference was detected between 10-20 cm and 20-40 cm soils (Fig. 1d). 

The DOC, TDN and Olsen-P contents were analyzed in 0-10 cm soil only. The 

DOC content decreased significantly with increased soil coarseness from C0 (66.3 mg 

kg soil
-1

) to C70 (53.9 mg kg soil
-1

) (Fig. 2a). The TDN content was significantly 

lower in C50 (13.1 mg kg soil
-1

) and C70 (12.9 mg kg soil
-1

) as compared to C0 (14.8 10 

mg kg soil
-1

) (Fig. 2b). However, soil Olsen-P content was not influenced by soil 

coarseness (Fig. 2c).  

 

3.2 Changes in soil microbial biomass under soil coarseness 

The MBC content significantly decreased from 97.4 (in C0) to 54.5 (in C70) mg 15 

kg soil
-1

 with soil coarseness (Fig. 2d). Similarly, MBN content declined from 11.3 (in 

C0) to 5.4 (in C70) mg kg soil
-1

 under soil coarseness (Fig. 2e). However, MBP, 

ranging from 5.1 to 2.9 mg kg soil
-1

 was significantly higher in coarsened soils than 

that of C0 (Fig. 2f). 

 Soil coarseness showed no effect on the ratio of MBC to MBN (microbial C:N) 20 

(Fig. S1b). Microbial C:P significantly decreased under soil coarseness with the 

highest ratio of 37.8 in C0 treatment (Fig. S1c). Ranging from 4.1 (in C0) to 1.4 (in 
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Same as above: too detailed description and too much text/numbers. Enough to say that addition of sand decreased SOC content and stocks as well as TN by these many percent from the control (initial?).



13 

C50), microbial N:P ratio was also decreased significantly with soil coarseness (Fig. 

S1d). 

 

3.3 Soil extracellular enzyme activities as affected by soil coarseness 

The activities of BG, NAG, and PME decreased significantly with progressive 5 

soil coarseness. The BG activity decreased significantly under soil coarseness by 20.2% 

- 57.5% (Fig. 3a). The NAG activity varied from 6.4 mg PNP kg soil
-1

 to 13.6 mg 

PNP kg soil
-1

 and decreased significantly under soil coarseness by 24.5% - 53.0% (Fig. 

3b). The activity of acid PME significantly decreased from 109.1 mg PNP kg soil
-1

 to 

12.3 mg PNP kg soil
-1 

by 22.2% - 88.7% under soil coarseness (Fig. 3c). The 10 

BG:NAG ratio was not affected by soil coarseness (Fig. 3d). Both BG:PME and 

NAG:PME ratios were significantly increased in the C70 treatment (Fig. 3e,f). 

 

3.4 Correlation between soil parameters 

Soil pH significantly increased from 6.7 (C0) to 7.3 (C70) in 0-10 cm soil layer 15 

(Lü et al. 2016). The proportion of soil fine particles of < 250 µm significantly 

decreased from 83.1% to 39.1% with soil coarseness in 0-10 cm soil layer (Lü et al. 

2016). Both MBC and MBN were significantly and positively correlated with SOC, 

TN, fine particles (< 250 µm), and DOC, but they were negatively correlated with soil 

pH (Table 1). As suggested by multiple regression models, soil fine particles 20 

accounted for 57.8% of the variation in MBC, and soil pH explained 53.3% of the 

variation in MBN (Table 1). A significant negative correlation was detected between 
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MBP and Olsen-P, and Olsen-P explained 16% of variation in MBP (Table 1). The 

three enzyme activities (BG, NAG and PME) were significantly positively correlated 

with SOC, TN, soil fine particles, DOC, and TDN (Table 1). According to multiple 

regression models, TN explained 64.0% variation in BG activity, and 51.8% of 

variation in NAG activity (Table 1). For PME activity, 90.3% of its variation was 5 

explained by SOC, soil fine particles, and soil pH (Table 1). Soil pH was negatively 

correlated with SOC, TN, DOC, TDN, exchangeable Ca and Mg, and available Fe 

(Table 2). 

3.5 The differences between theoretical dilution and the measured parameters 

 For SOC content, the measured values was significantly higher than the 10 

theoretical values for C30, C50, and C70 treatments in 0-10 cm soil, for C70 in 10-20 

cm, and for C50 and C70 in 20-40 cm (Fig. 1a vs. Fig. 4a). As compared to theoretical 

dilution, significantly higher TN content values were detected in C50 and C70 

treatments of 0-10 cm soil, in C30, C50, and C70 of 10-20 cm, and in C10, C30, C50, 

and C70 of 20-40 cm for measured parameter (Fig. 1b vs. Fig. 4b). 15 

 The DOC content was less decreased in C30, C50, and C70 treatments of field 

plots than that of theoretical dilution (Fig. 2a). Similarly, the TDN values of 

theoretical dilution group were significantly lower than that of measurement group in 

C10, C30, C50, and C70 treatments (Fig. 2b). The Olsen-P content significantly 

decreased with sand addition under theoretical dilution but not for field measurement 20 

(Fig. 2c). For microbial biomass C, N, and P, theoretical dilution showed faster 

decrease of these parameters (Fig. 2d,e,f). No difference was detected between 
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theoretical dilution and measured parameter for both BG and NAG activities (Fig. 

3a,b). However, the acid PME activity decreased faster in field plots than that of 

theoretical dilution in C50 and C70 treatments (Fig. 3c). 

 

4 Discussion 5 

4.1 The difference in values between theoretical dilution and laboratory 

measurements 

 Compared to theoretical dilution, higher measured values of SOC and TN content 

might be due to incorporation of external C and N sources through sand addition. 

Moreover, litter decomposition in field conditions might also increase SOC and TN 10 

contents as plan C input was commonly recognized as one of the main controllers of 

SOM content (Xiao et al., 2007). Under field condition, higher values of DOC, TDN, 

and Olsen-P contents could be influenced by various factors as their mobility. In this 

dryland ecosystem, stronger evaporation than precipitation (Nielsen and Ball, 2014) 

could bring these mobile C, N and P fractions from subsoil to surface soil (Luo et al., 15 

2016) which resulted in higher measured values than theoretical dilution. Moreover, 

higher soil extractable C, N and P contents could be derived from plant residues in the 

field conditions (Halvorson et al., 2016) which was not the case for theoretical 

dilution. Microbial biomass and activity could be affected by plant growth (Sanaullah 

et al., 2011; Zhang et al., 2010) and soil physiochemical properties (Sinsabaugh et al., 20 

2008). At presence of plant community, soil microorganisms could benefit from 

rhizosphere exudates or root turnover (Sanaullah et al., 2011; Wang et al., 2010), but 
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might also suffer nutrient limitation from plant-microbe competitions (Dunn et al., 

2006). Thus, it would be reasonable to detect higher microbial biomass C, N and P 

under field conditions as compared to theoretical dilution (Fig. 2d,e,f). In this study 

site, sand addition increased soil pH from 6.7 to 7.3 (Lü et al., 2016). Soil pH is a 

fundamental controller on both microbial biomass and activity (Rousk et al., 2009). 5 

Previous studies suggested that bacterial growth increased with higher soil pHs (Bååth, 

1998; Rousk et al., 2009). Proliferation of soil bacteria with the increase of soil pH 

might be the reason of significantly higher microbial biomass C, N, and P in field 

condition than that of theoretical dilution (Fig. 2d,e,f). Increase of soil pH might be 

the reason of sharper decrease of acid PME activity in field condition as compared to 10 

theoretical dilution (Fig. 3c) with the fact that the optimal pH for acid PME activity is 

6.5 (Tabatabai, 1994).  

 

4.2 Negative effect of soil coarseness on soil C and N pools 

Consistent with our hypothesis, soil C and N contents and stocks were 15 

significantly decreased by soil coarseness (Fig. 1). Soil fine particles (size of < 250 

μm) are usually nutrient-rich and associated with SOM, but they are erodible during 

desertification (Li et al., 2004). We previously found the decline of soil fine particles 

during simulated soil coarseness in this field plot (Lü et al., 2016). Removal of soil 

fine particles by wind erosion could result in a decline of soil structure and loss of 20 

SOC and nutrients (Su et al., 2004; Lal, 2014). Our results are consistent with those of 

Lal (2014) and Su et al. (2004), as indicated by a significant positive correlation 
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between SOC content and proportions of soil fine particles (Fig. S2). Moreover, loss 

of SOM could result from deterioration in soil structure (or decrease in 

microaggregation) and limited stabilizing effects of mineral associations after soil 

coarseness (Su et al., 2004). Consistent with our findings, previous studies have 

suggested the negative responses of soil fine particles and SOM to desertification and 5 

soil coarseness (Zhao et al., 2006; Zhou et al., 2008). Our findings of linear decrease 

in soil C and N under soil coarseness were in contrast to Zhou et al. (2008) who found 

the declines in soil C and N content was greater in light and moderate desertification 

stages by sampling along different natural desertification gradients. The discrepancy 

might be due to the differences between field manipulations and field investigations 10 

along natural gradient. Field manipulation experiments are usually precisely 

controlled and the results from them show clear trends, while results from 

investigations along natural gradient might be confounded by an array of 

environmental factors. The decrease of soil C and N pools from topsoils to subsoils is 

well-known and should be mainly due to lower C and N inputs from plant biomass 15 

and microbial residues (Wang et al., 2014). 

Soil C pool is the largest terrestrial C pool and even small changes of this pool 

can cause significant change in atmospheric CO2 content (Houghton et al., 1999). The 

reduction of soil C stocks with soil coarseness (by up to 38.2% in this study) would 

transfer C from soil to atmosphere which in turn would enhance the carbon-climate 20 

feedback and worsen the greenhouse effect (Duan et al., 2001; Yang et al., 2005). Our 

results indicated that soil N stocks of surface soil decreased faster than that of soil C 
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(Fig. 1c,d). This contradicted with findings of Zhou et al. (2008) who found a greater 

effect of desertification on ecosystem C storage than N storage. Greater losses of 

ecosystem C stock relative to N resulted from decrease in soil C stock but also from 

decrease in grassland productivity in the study of Zhou et al. (2008). However, in this 

study, only soil C and N stocks were determined and thus showed greater N decrease 5 

under soil coarseness relative to C. As N constrains the productivity of most terrestrial 

ecosystems (Vitousek et al., 1997), soil coarseness might aggravate plant N limitation 

in dryland ecosystems. In this case, dryland ecosystems, which cover 41% of world 

land area and are prone to soil coarseness, should be better protected from further 

degradation.  10 

 

4.3 Soil coarseness decreased soil microbial biomass and enzyme activities 

Significant decrease of MBC (Fig. 2d), MBN (Fig. 2e), and extracellular enzyme 

activities (Fig. 3a,b,c) supported our second hypothesis, while the increase of MBP 

under soil coarseness (Fig. 2f) was not expected. As suggested by the correlation and 15 

regression analyses, soil physicochemical properties contribute to the changes in 

microbial parameters (Table 1). Given the earlier findings that enzyme activities 

positively correlated with soil microbial biomass, factors directly or indirectly 

inhibiting MBC and MBN would also suppress extracellular enzyme activities of BG, 

NAG and PME (Wang et al., 2014, 2015; Wolińska and Stępniewska, 2012). 20 

Soil C is the essential element for microbial biomass production and the vital 

source of energetic expansion (Kemmitt et al., 2006). In this study, we observed 


Replace


Replace
the


Highlight
The sentence is confusing: "this" means the mentioned study of Zhou et al., or the current study? Next, the explanation of the difference between C and N stocks decrease is not clear at all. Clarify!


Highlight
this means such a probability is very low, so maybe no need to pay attention to this problem?


Highlight
Flawy statement: it is not possible to inhibit MBC (MBN). Inhibition occurs for the living organisms. If they die then MBC (MBN) may decrease.


Highlight
Do authors mean the "synthesis" or properties of enzymes as chemical compounds/molecules? This difference is important.


Replace


Replace
microorganisms


Strikeout


Highlight
Please, add here "discussed below (section 4.4)". Otherwise, there is an impression authors "forgot" about P while discussing C and N in microbial biomass. 



19 

positive relationships between MBC (or MBN, or enzyme activities) and SOC as well 

as DOC (Table 1). Based on our results, soil coarseness could possibly decrease soil 

microbial biomass and enzyme secretion through reduction of soil C pools (both SOC 

and DOC). The build-up of soil microbial biomass and secretion of enzymes (N-rich 

proteins) were also controlled by soil N pools (both TN and DON), especially BG and 5 

NAG activities were mostly constrained by soil TN as suggested by multiple 

regression models (Table 1). These findings are consistent with large-scales surveys in 

grassland, agricultural and forest ecosystems (Waldrop et al., 2000; Kemmitt et al., 

2006; Sinsabaugh et al., 2008). 

 Significant correlations between soil fine particles and microbial parameters of 10 

MBC, MBN, BG, NAG and PME were found in our study (Table 1). The reduction in 

soil fine particles during soil coarseness might contribute to the decline in MBC and 

MBN. Soil coarseness, coincident with desertification and decrease of soil fine 

particles would provide less specific surface where microbial cells could be attached 

and proliferate (Van Gestel et al., 1996). At the same time, decreases in soil fine 15 

particles and smaller pore sizes expose microorganisms to predation by protozoa 

(Zhang et al., 2013) or to desiccation (Wang et al., 2015). With the coarseness of soil 

developed under desertification, fewer extracellular enzyme would be stabilized by 

soil minerals (Dilly and Nannipieri, 1998) resulting in decreasing of enzyme activities. 

Our results are in line with previous studies which showed positive relationships 20 

between microbial biomass (as well as soil enzyme activities) and the size of mineral 

soil particles (Kanazawa and Filip, 1986; Van Gestel et al., 1996; Wang et al., 2015).  
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 Soil pH is closely linked to biogeochemical processes in ecosystems and reflects 

the long-term plant-soil interactions and climatic variations (Kemmitt et al., 2006; 

Sinsabaugh et al., 2008; Rousk et al., 2009). Soil pH can strongly affect microbial 

growth, community composition, and activity through direct (i.e. deformation of 

enzyme folding and deactivation of enzyme active center) (Frankenberger and 5 

Johanson, 1982) and indirect pathways (C and nutrient availabilities and metal 

solubility) (Kemmitt et al., 2006). Caused by the increase of salinity from sand 

addition, the pH of surface soil increased nearly 0.6 units from C0 to C70 (Lü et al., 

2016). As previous studies suggest that the optimal pH value for fungal growth is 

around pH 4.5 but above pH 7 for bacteria (Bååth, 1998; Rousk et al., 2009), the 10 

decrease of MBC as affected by soil pH might mainly result from the inhibition of 

fungal growth instead of bacteria (Rousk et al., 2009). Furthermore, soil pH could 

decrease MBC by indirectly influencing soil C and nutrient availability (Kemmitt et 

al., 2005, 2006), which was further indicated by the negative correlations of soil pH 

with SOC, TN, DOC, DON, exchangeable Ca and Mg, and available Fe contents 15 

(Table 2).  

 The optimal pH value for BG, NAG and PME activities are 6.0, 5.5 and 6.5, 

respectively (Tabatabai, 1994). Thus, the increase of soil pH from 6.7 to 7.3 with soil 

coarseness could reduce measured enzyme activity because the higher than optimal 

pH could alter functional groups of amino acids and active center of proteinic 20 

enzymes (Dick et al., 2000).  
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4.4 Soil coarseness increased soil microbial C and N limitation relative to P 

Soil coarseness increased the soil C:N ratio which would decrease soil nutrient 

(such as N and P) availability through microbial immobilization (Marschner et al., 

2015). Microbial growth or activities might be constrained by C limitation as 

suggested by significant decrease of DOC under soil coarseness (Fig. 2a). Similarly, 5 

lower soil N availability, as partially confirmed by lower DON in this study (Fig. 2b) 

might result in microbial N limitation. As soil P is supplied by both biotic (SOM 

decomposition) and abiotic processes, unchanged Olsen-P could be balanced by the 

decrease of biotic release and suppression of P fixation due to decreases in clay 

content with increasing soil coarseness (Wang et al., 2016). This could alleviate 10 

microbial P limitation and even promote microbial P immobilization in the condition 

of lowering soil C:N during desertification (Marschner et al., 2015). Previous studies 

also suggested that soil microorganisms were capable of accumulate P in biomass 

even in P-depleted conditions (Chapin et al., 2002; Paul, 2014).  

In this study, significant lower ratios of microbial C:P (Fig. S1c) and N:P (Fig. 15 

S1d) could possibly due to microbial accumulation of P which indicated relatively 

higher P availabilities relative to C and N in soils (Cleveland and Liptzin, 2007). 

Indeed, significant increases of BG:PME and NAG:PME ratios (Fig. 3f) suggested 

higher microbial C and N limitations relative to P under C70 treatment (Wang et al., 

2015). In this case, plant P limitation might be enhanced due to microbial P 20 

immobilization (Xu et al., 2013). Our findings of altered microbial stoichiometry, 

however, suggested microorganisms did not necessarily maintain constrained element 
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ratios or homeostasis like plants in response to external disturbances (Makino et al., 

2003; Xu et al., 2013). These results were contrast to findings from Cleveland et al. 

(2007) who suggested C:N:P ratios of both soils and microorganisms were 

well-constrained at the global scale; while they were consistent with Sinsabaugh et al. 

(2008) who found ratios of microbial C-, N-, and P-acquisition enzymes were variable 5 

and depended more on environmental parameters, such as substrate availability, soil 

pH and the stoichiometry of microbial nutrient demand. Our work sheds light on the 

essential role of microbial C, N, and P ratios and enzyme ratios in understanding 

nutrient limitation of microbial and ecosystem processes in terrestrial ecosystem. 

 10 

5 Conclusions 

The significant decrease in both soil C and N pools was attributed to declines in 

soil fine particles during soil coarseness. For surface soils, soil TN stocks and contents 

decreased faster than SOC, which might increase plant N limitation in this dryland 

ecosystem. Soil coarseness significantly decreased soil MBC, MBN, and activities of 15 

BG, NAG and PME resulting from the decreases of soil C pools and fine particles and 

increases in soil pH. Enzymatic ratios, as well as microbial biomass C:N:P indicated 

higher microbial C and N limitation relative to P. This reflected the decrease in DOC 

and DON and unchanged Olsen-P content. These findings suggested microbial 

biomass C, N, and P and activities of C-, N-, and P-acquiring enzymes could serve as 20 

good indicators for nutrient acquisition of microorganisms and plants. Our results also 

imply that expansion of desertified grassland ecosystems in dry regions of the world 
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due to overgrazing and climate change might weaken the soil C sequestration 

potential and N retention capability, which in turn lead to changes in grassland 

productivity and biodiversity in a long run. 
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Tables 

Table 1 Regression statistics relating soil physicochemical properties and microbial 

parameters. 

  SOC TN < 250 μm pH DOC TDN Olsen-P Multiple 

MBC 0.59 0.65 0.76** -0.67 0.52 −  −  0.76 

MBN 0.50 0.56 0.58 -0.73** 0.43 −  −  -0.73 

MBP −  −  −  −  −  −  -0.40* -0.40 

BG 0.79 0.80** 0.74 -0.73 0.73 0.54 −  0.80 

NAG 0.69 0.72** 0.70 -0.68 0.60 0.45 −  0.72 

PME 0.86** 0.90 0.90** -0.88** 0.86 0.60 −  0.95 

Values are R statistics for significant (P < 0.05) linear regressions. Multiple is R 

values for multiple regressions (stepwise removal) of soil physicochemical properties 5 

and microbial parameters. * and ** indicate variables that make significant 

contributions to the multiple linear regressions at significance level of P < 0.05 and 

0.01, respectively. 

Table 2 Relationships between soil pH and soil organic carbon (SOC), total nitrogen 

(TN), dissolved organic carbon (DOC), total dissolved nitrogen (TDN), exchangeable 10 

Ca (Ca
2+

), exchangeable Mg (Mg
2+

) and available Fe (Fe
2+

). ** indicates significant 

correlation between soil parameters at P < 0.01. 

  SOC TN DOC TDN Ca
2+

 Mg
2+

 Fe
2+

 

pH -0.77** -0.85** -0.76** -0.43** -0.67** -0.75** -0.87** 

 

  


Note
The actual data on soil moisture in treatments are lacking.
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Figures 

 

Fig. 1 Soil organic carbon (SOC) and total nitrogen (TN) contents (a and b, 

respectively) and stocks (c and d, respectively) as affected by different degrees of soil 

coarseness: 0% sand addition, (C0), 10% (C10), 30% (C30), 50% (C50), and 70% 5 

(C70) across three soil depths of 0-10 cm, 10-20 cm, and 20-40 cm. Data represent 

mean ± standard error (n=6). Letters indicate significant differences among treatments 

for each soil depth (lowercase letters) and differences among soil depths averaged 

across desertification degrees (capital letters). 

  10 


Note
As the information on depth-dependent mechanisms was not fully used/implemented in the manuscript, these data look excessive. Authors could leave the topsoil and add "theoretical dilution" for consistency.
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Fig. 2 Changes in soil (a) dissolved organic carbon (DOC), (b) total dissolved 

nitrogen (TDN), (c) Olsen phosphorus (Olsen-P), (d) microbial biomass carbon 

(MBC), (e) microbial biomass nitrogen (MBN), and (f) microbial biomass phosphorus 

(MBP) under different degrees of soil coarseness: 0% sand addition, (C0), 10% (C10), 5 

30% (C30), 50% (C50), and 70% (C70) for 0-10 cm soil depth. Dashed bars represent 

values obtained from laboratory measurement, while shaded bars are values calculated 

from theoretical dilution. Data represent mean ± standard error (n=6). Letters indicate 

significant differences among treatments (lowercase letters). Asterisks indicate 

significance between values of laboratory measurement and theoretical dilution within 10 

one treatment. 
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Fig. 3 Changes in (a) activities of soil β-glucosidase (BG), (b) N-acetyl-glucosaminidase 

(NAG), (c) acid phosphomonoesterase (PME), (d) the ratio of BG:NAG, (e) BG:PME, and (f) 

NAG:PME under different degrees of soil coarseness: 0% sand addition, (C0), 10% (C10), 30% 

(C30), 50% (C50), and 70% (C70) for 0-10 cm soil layer. Dashed bars represent values 5 

obtained from laboratory measurement, while shaded bars are values calculated from 

theoretical dilution. Data represent mean ± standard error (n=6). Letters indicate significant 

differences among treatments (lowercase letters). Asterisks indicate significance between 

values of laboratory measurement and theoretical dilution within one treatment. 
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Fig. 4 Soil organic carbon (SOC) (a) and total nitrogen (TN) contents (b) as calculated 

from theoretical dilution for different degrees of soil coarseness: 0% sand addition, 

(C0), 10% (C10), 30% (C30), 50% (C50), and 70% (C70) across three soil depths of 

0-10 cm, 10-20 cm, and 20-40 cm. Data represent mean ± standard error (n=6). 5 

Asterisks indicate significance between values of laboratory measurement and 

theoretical dilution within one treatment.
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Fig. S1 Changes in the ratio of (a) soil organic carbon to total nitrogen (soil C:N), (b) 

microbial biomass carbon to microbial biomass nitrogen (microbial C:N), (c) 

microbial biomass carbon to microbial biomass phosphorus (microbial C:P), (d) 

microbial biomass nitrogen to microbial biomass phosphorus (microbial N:P) under 5 

different degrees of soil coarseness: 0% sand addition, (C0), 10% (C10), 30% (C30), 

50% (C50), and 70% (C70) for 0-10 cm soil layer. Data represent mean ± standard 

error (n=6). Letters indicate significant differences among treatments (lowercase 

letters).  

  10 
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Fig. S2 Correlation between soil particle size of < 250 μm (%) and soil organic carbon 

(SOC) content. 




