Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

Plankton-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

Raphael Morard¹, Franck Lejzerowicz², Kate F. Darling^{3,4}, Béatrice Lecroq-Bennet⁵, Mikkel Winther Pedersen⁶, Ludovic Orlando⁶, Jan Pawlowski², Stefan Mulitza¹, Colomban de Vargas^{7,8}

5 and Michal Kucera¹

¹MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany

²Department of Genetics and Evolution, University of Geneva, Geneva, CH1211, Switzerland

³School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK

10 ⁴School of Geography and GeoSciences, University of St Andrews, Fife KY16 9AL, UK

⁵Okinawa Institute of Sciences and Technology Graduate University, 1919-1 Tancha, Onna-son 904-0495, Japan

⁶Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7,

Copenhagen 1350K, Denmark

⁷Centre National de la Recherche Scientifique, UMR 7144, EPEP, Station Biologique de Roscoff, 29680 Roscoff,

15 France

⁸Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, 29680 Roscoff, France **Keywords:** Planktonic foraminifera, metabarcoding, DNA preservation, eDNA, protists.

Corresponding author: Raphaël Morard, MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany, Phone: +49 (0) 421 218 -65973, Fax: +49 (0) 421 218 -

20 9865974, email: rmorard@marum.de.

Abstract

Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of *e*DNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the *e*DNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the *in-situ* community, but a small portion (< 10%) of the metabarcode can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous "foreign" component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcode to establish to what extent

the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that the planktonic DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and

that both the similarity structure and the diversity pattern of the pelagic environment are preserved. These observations pave the way for surveys of seafloor sedimentary eDNA covering the entire spectrum of pelagic biodiversity and its

information from taxa leaving fossils. In theory, environmental DNA (eDNA) in the sediment has the potential to

interaction with the climatic history of the oceans.

1 Introduction

With over two thirds of the planet covered by oceans, deep sea deposits form the most extensive archive of the Earth's recent history. These deposits preserve mineralized skeletons of marine nano- and micro-plankton, which serve as an record of past climate (e. g., Hillaire-Marcel and de Vernal, 2007) and biodiversity (Yasuhara et al., 2015) changes. However, planktonic groups leaving fossilized remains only represent a small fraction of the marine diversity (de Vargas et al., 2015). In theory, environmental DNA (eDNA) buried in marine sediments can provide information on the history of marine organisms that do not produce fossils (Pedersen et al., 2015). Deep sea sediments are rich in DNA with 0.31 \pm 0.18 g of DNA per m² in the surface layer, and more than 90% of this DNA is extracellular (Dell'Anno, 2005). This means that DNA from many organisms is preserved after their death in the sediment and the high abundance of the DNA indicate that at least a part of the DNA pool derives from organisms living in the water

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

Biogeosciences

Discussions

column above the sediment (Lejzerowicz et al., 2013). Part of this DNA pool remains preserved in ancient sediments,

and can be extracted and analyzed using metabarcoding to reveal the molecular diversity of past ecosystems

(Lejzerowicz et al., 2013; Pawłowska et al., 2014). This potential has been demonstrated in a range of other

depositional environments, such as cave sediments, lake and ice cores where the dynamics of plant and animal

5 communities could be followed over 50 ka (Pedersen et al., 2015).

In marine sediments, the presence of eDNA sequences has been reported from organic-rich layers in the Mediterranean

dating back to 217 ka (Coolen and Overmann, 2007) and 125 ka (Boere et al., 2011), in sediments covering the last

11.4 ka in the Black Sea (Coolen et al., 2013), and in up to 32.5 ka old deposits in the Atlantic (Lejzerowicz et al.,

2013; Pawłowska et al., 2014). Direct comparison with co-occurring fossils showed that the sequenced eDNA pool

exceeds the taxonomic spectrum of the fossils, but many of the taxa preserved as fossils were not identified in the

eDNA (Pawłowska et al., 2014; Pedersen et al., 2013). This raises the question of how well the sedimentary DNA

pool reflects the autochthonous (in situ origin) or allochthonous (foreign origin) community composition, whether

there is any differential DNA preservation across taxa and whether the metabarcode marker selected is fully

representative of the entire taxonomical diversity, regardless of its origin.

The primary difficulty in the analysis of the sedimentary DNA pool is to separate the local and foreign origin of the

sequenced material (Torti et al., 2015). This can be done with certainty only when the ecological origin of the

sequenced eDNA is unambiguously resolved. Potential bias could arise from a range of factors including preferential

amplification (Taberlet et al., 2012), inconsistent taxonomic resolution of the sequenced barcodes (Pawlowski et al.,

2012) and insufficient coverage of the barcode reference database (Pawlowski et al., 2014b). In addition, the extensive

fragmentation of eDNA (Pedersen et al., 2015) makes incompatible the amplification of sequences longer than ~100

bp, preventing the alleviation of bias by targeting longer, more informative barcodes.

Here we take advantage of the possibility to unambiguously ascribe sequences of foraminifera to benthic and

planktonic lineages. By analyzing the planktonic portion of foraminiferal metabarcodes from deep sea sediments, we

provide evidence that the structure and diversity of surface ocean communities is preserved in e DNA molecules and

that the preservation is not limited to specific depositional environments. We focus our analysis on the Foraminifera

because of access to highly resolving short barcodes (Pawlowski and Lecroq, 2010) and the availability of a

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

Biogeosciences

Discussions

taxonomically well resolved barcode database for the planktonic taxa (Morard et al., 2015). It allows the unambiguous

separation of the benthic (autochthonous) component of the dataset from its planktonic (allochthonous) component.

Foraminifera are single-cell eukaryotes (protists) belonging to the phylum Rhizaria (Adl et al., 2012). Most

Foraminifera lineages occupy benthic ecological niches. Their ~ 5000 morphospecies inhabit the bottom of shallow

coastal environment to deep abyssal plains. In contrast, the planktonic lineages only include 50 morphospecies, living

mostly in the photic part of the water column and spend their entire life cycle in the plankton (Hemleben et al., 1989).

Foraminifera are known for their unusually high rate of evolution (de Vargas et al., 1997) resulting in highly resolving

barcodes even in fragments shorter than ~100 bp (Pawlowski and Lecroq, 2010). This circumstance facilitates

identification of short, potentially degraded, extracellular eDNA sequences. In addition planktonic foraminifera harbor

considerable cryptic diversity (Darling and Wade, 2008; Morard et al., 2016), which offers an additional layer of

taxonomic information that can be exploited in eDNA studies.

In the present study we perform new analysis on eDNA libraries generated by Lecroq et al. (2011), which comprise

metabarcodes from 31 abyssal sediment samples containing ~ 78 million foraminiferal sequences derived from the

37f foraminiferal specific barcode of the 18S rDNA. The main part (>99%) of the sequences could be assigned to

benthic taxa and their composition was analyzed to unravel patterns of benthic diversity on the sea floor. However, a

tiny portion of the barcodes (<1 %) could be assigned to planktonic foraminifera. These sequences represent eDNA

exported to the seafloor from the plankton. With the recent development of the Planktonic Foraminifera Ribosomal

Reference Database (PFR², (Morard et al., 2015)), the environmental sequences belonging to planktonic foraminifera

in the eDNA libraries generated by Lecroq et al. (2011) can now be for the first time thoroughly analyzed and assigned

to the morphological and cryptic species taxonomic levels

The extensive knowledge on the distribution and abundance of planktonic foraminiferal shells in surface sediments

(Kucera et al., 2005b), enabled the eDNA data to be directly compared with data derived from classical taxonomy.

We thus assess to what extent the eDNA originating from plankton is representative of the source community which

is an essential prerequisite for interpretation of the eDNA archive in the sediment.

25

2 Material and Methods

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

Biogeosciences

Discussions

The 31 surface sediment samples analyzed were taken at water depths ranging from 1,745 to 5,338 m and cover

sediment types from calcareous ooze in the Caribbean Sea to fine clastic sediments in the Arctic Ocean (Fig. 1a,

Supplement 1). All analyses are based on the Illumina Solexa GAII datasets generated by Lecroq et al. (2011) and

registered at the NCBI's Short Read Archive under the BioProject number PRJEB2682. The original sequencing data

include 78,613,888 reads covering the 36 positions starting 3' of the "GACAG" motif delimitating the foraminifera-

specific hypervariable region 37f region (Pawlowski and Lecroq, 2010).

We used the unique sequences obtained for each library in Lecroq et al. (2011) after the strict dereplication step and

the removal of singletons associated with only one read occurrence in a library. For each DNA library, we parsed

sequencing reads passing the default base calling of GAPipeline v 1.0 and reads showing a single base quality or

averaged base qualities inferior to 10 and 20, respectively as well as sequencing reads presenting ambiguities (N) or

homopolymers over 30 positions. This resulted in a total of 204,704 unique and filtered 36 bp-long reads.

 $We compared the \ retained \ reads \ to \ the \ \textit{Planktonic For a minifera Ribosomal Reference} \ database \ (PFR^2, (Morard \ et \ al., not \ al.))$

2015)), which represents a compilation of 3,322 partial SSU rDNA sequences of planktonic foraminifera groups

associated with a 6-ranks taxonomy. The first three basal ranks correspond to the level of assignation comparable to

that achievable using morphological data, and is thus analogous to fossil data. The three terminal levels correspond to

the molecular taxonomy accessible using molecular data only. Of these, 2,418 sequences covered the fragment of the

region 37f. These sequences were downloaded from the PFR2 database (http://pfr2.sb-roscoff.fr/) and trimmed to the

36-nt fragment corresponding to the environmental sequences, which resulted in a total of 463 unique homologous

reference sequences (Supplement 2). Initially, we evaluated the taxonomic resolution of the 36 nt barcoding region

and found that it was variable enough to discriminate the genetic types (cryptic species) within morphological species

of almost all planktonic foraminifera taxa referenced in PFR². We observed taxonomic conflicts for only two species

pairs belonging to Globorotalia (tumida and ungulata) and Globigerinella (calida and siphonifera) and three pairs of

 $genetic\ types\ among\ \textit{Globorotalia}\ truncatulinoides\ (type\ III\ and\ IV), \textit{Pulleniatina}\ obliquiloculata\ (types\ I\ and\ II)\ and\ III)$

Globigerinita glutinata (types III and IV).

We then individually aligned the 4,466 to 27,578 unique sequences obtained for each of the 31 samples against the

461 reference sequences using the Needleman-Wunsch global sequence alignment algorithm (Needleman and

Wunsch, 1970), to separate the portion of the dataset belonging to the planktonic foraminifera (allochthonous origin)

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

from the portion belonging to the benthic foraminifera (autochthonous origin). Pairwise genetic distances were calculated as the number of differences (counting successive indels and terminal gaps as one difference), and an iterative clustering of the unique environmental sequences with the reference sequences was performed, allowing 1, 2, 3, 5 and 10 differences as thresholds for the average linkage algorithm. We then extracted all environmental sequences found within each cluster containing a planktonic reference sequence in an iterative manner, by screening from the most stringent (1 difference threshold) to the most permissive (10 differences threshold) clusters. As a post hoc verification, we compared these sequences with the extensive benthic foraminifera sequence database used in Pawlowski et al. (2014a) together with the sequences of the Protist Ribosomal Reference Database (PR2, Version based on Release 203 of Genbank (Guillou et al., 2013)) and additional undescribed benthic specimen sequences to ensure that the extracted sequences do not belong to benthic foraminifera. No match was found. We assigned to each extracted environmental sequence the taxonomy of the planktonic reference sequences in the cluster. Finally, we retained only the sequences occurring in at least 2 samples or having a minimal abundance of 10 for downstream analysis. The final product was then considered an individual e-ribotype (Supplement 3). E-ribotypes are unique environmental sequences (not cluster) originating from planktonic foraminifera and thus transferred from surface ocean to the bottom (allochthonous origin). The relative proportions between e-ribotypes (planktonic reads) and the benthic reads of each sample are shown on Fig. 1B. We calculated the rarefaction curves of each individual samples using PAST v 2.17 (Hammer et al., 2001) to estimate to what degree the full taxonomic spectrum of each sample was recovered by eDNA (Fig. 2).

Genuine sequences of planktonic foraminifera representing species not yet registered in the reference database may have been omitted. We therefore structured our analyses to account for the detection of possibly unknown genetic types. To this end, we used the phylogenetic signal contained in the 36bp-reads to build a taxonomic framework within each morphospecies. In contrast to strict annotation approaches using arbitrary similarity thresholds, a phylogenetic approach can identify novel genetic type, not represented in the reference comparative database. The retained eribotypes were automatically aligned using MAFFT v.7 (Katoh and Standley, 2013), with reference sequences of the complete 37f region. The complete 37f region was used at this step instead of the 36-bp fragment to avoid possible read alignment shifts caused by artificial mismatches with trimmed 36-bp sequences during the assignment process. A single alignment was produced per morphospecies. For each resulting alignment, a phylogenetic tree was inferred using PhyML (Guindon et al., 2010) implemented in SEAVIEW 4 (Gouy et al., 2010) with default option using aLRT

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

Biogeosciences

Discussions

for branch support estimation. The resulting trees were visualized with ITOL (Letunic and Bork, 2011) and all visually

distinct clusters were considered as unique genotypes (Supplement 4). The reads clustering with reference sequences

were assigned at the genetic type level, the sequences clustering without a close reference received an artificial genetic

type attribution (Supplement 3). These assignments were used to prepare three datasets with different degrees of

taxonomic resolution (at the level of e-ribotype, genetic types and morphological species). The occurrences of the

defined genetic types in the samples are shown on the Figure 3.

In order to compare the taxonomic richness and structure of the dataset, Non-Metric Distribution Scaling (NMDS) as

implemented in PAST v 2.17 (Hammer et al., 2001) was applied on the dataset at the different taxonomic resolution.

We used the Dice distance to consider only the presence/absence data and the Bray-Curtis distance to compare absolute

and relative abundances of reads among the samples (Fig. 4). To compare the similarity structure and diversity in the

samples based on the $e\mathrm{DNA}$ reads with census counts of microfossils, we used the MARGO database (Kucera et al.,

2005a) and calculated fossils-based diversity (Shannon-Wiener) and similarity (Dice and Bray-Curtis) matrices using

PAST v 2.17 for all surface samples within the regions outlined in Fig 1A (between 6 and 13 per region, Fig. 5 and

6).

10

15

20

3 Results

After quality filtering and collapsing of identical reads into single sequences, the comparison of the entire dataset with

reference databases (Supplement 2) allowed to ascribed with certainty 1,373 unique sequence patterns representing

488,291 reads to planktonic foraminifera (Supplement 1, 3). Because we required reads to be present in a minimum

of two samples or to show a minimal abundance of 10 in the entire dataset, the retained dataset was reduced to 697

unique sequences of planktonic foraminifera (e-ribotypes), which are representing a total of 486,435 reads (~0.63%

of the total dataset, Supplement 1). Diversity was then assessed using a phylogenetic approach and the 697 e-ribotypes

were found to represent 37 genotypes (Fig. 3, Supplement 4). Of these, 675 e-ribotypes (representing ~ 99 % of the

reads) were attributed to 24 known genotypes assigned to 17 morphological species (Supplement 3, 4).

After this filtering, between 48 (Library #SFA-17) and 124,355 (Library #SFA-15) reads were retained in 28 samples

(Supplement 1, Fig. 2), representing between 0.003 and 9.412% of the total foraminifera reads in the libraries from

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

these samples (Fig. 1b). Three Arctic samples did not yield any sequences that could be assigned to planktonic

foraminifera (Fig. 1b, 3). The total number of reads per sample is a function of sequencing effort and is therefore not

related to initial community density. However, the relative abundance of reads assigned to planktonic foraminifera in

the DNA accumulated on the sea floor should reflect the relative proportion of the foraminiferal DNA produced by

planktonic communities and the DNA produced by the in-situ benthic community. Whilst the absolute number of

reads varied among the samples and replicates, we did indeed observe a higher reproducibility of the relative number

of planktonic reads recovered from replicates at the same location (Fig. 1b). No obvious correlation is observable

between the relative number of planktonic reads and the latitudinal position of the samples. The samples with the

highest relative proportions originate from Japan (0.790% to 9,412%) whilst the lowest abundances are observed in

the Caribbean samples (0.003 to 0.032%). The high latitude samples (Arctic, North Atlantic and South Atlantic) show

relative abundances ranging from 0.011 to 1.204% when excluding samples without planktonic reads. In contrast,

there appears to be a trend of increasing abundance of planktonic reads with depth (Fig. 1b), suggesting that the organic

matter flux delivering planktonic DNA becomes relatively more abundant compared to DNA from in-situ community

with depth. This trend is relatively weak and influenced by outliers, but it clearly appears to be the case that the

proportion of planktonic DNA reads does not decrease with depth.

Rarefaction analysis has been used to assess the degree to which the retained planktonic reads cover the diversity they

contain (Fig. 2). As expected, the general trend indicates a higher degree of saturation in samples with more reads.

For example, samples with the highest number of reads (Japan) had saturated diversity (Fig. 2a), whereas the

Caribbean samples representing a similar geographical province but with fewer reads are clearly under-saturated (Fig.

2c). However, we observe that samples from high latitude regions are also saturated (Fig 2b,c), despite having a lower

number of reads than the samples from Japan, implying lower diversity.

With respect to the composition of the reads, we observed that e-ribotypes attributed to the microperforate species

Globigerinita glutinata dominated the dataset (~77% of the reads) and were particularly abundant in subtropical

communities (Fig. 3). E-ribotypes of common subtropical species Orbulina universa, Globorotalia menardii,

Globorotalia hirsuta, Hastigerina pelagica Neogloquadrina dutertrei, Globigerina falconensis, Globigerinella

siphonifera, Pulleniatina obliquiloculata, Galitellia vivans and Candeina nitida were found in subtropical samples,

whereas e-ribotypes assigned to the species Globigerinita uvula and Neogloboquadrina pachyderma appeared to

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

dominate subpolar and polar samples. Among these, e-ribotypes belonging to the genotype IV of *N. pachyderma* were mostly found in the Southern Ocean (>99.99%) whereas e-ribotypes of the genotype I were only observed in the subpolar samples from the northern hemisphere. Additionally, different *Globigerina bulloides* e-ribotypes were detected either in subtropical samples (type I) or in subpolar assemblages (type II). Similarly, type II e-ribotypes of *Globigerinita uvula* were found more frequently in subpolar samples from both hemispheres, whereas e-ribotypes of

type I were also abundant in low-latitude samples (Fig. 3).

Next, we calculated similarity matrices among samples at the level of morphological species, genotypes and eribotypes in order to identify patterns of community structure in the planktonic reads in each sample. Visualization was based on Nonlinear Multi-Dimensional Scaling (NMDS, Fig. 4) with either Dice (Presence/absence) or Bray-Curtis similarity metrics computed from relative as well as absolute read abundances. Calculation performed on absolute number with Bray-Curtis (Fig 4a-c) showed high reproducibility for samples from the same regions, best expressed at the e-ribotype taxonomic level. The high latitude communities are more similar (Fig 4c), whilst we observe a strong separation between Caribbean and Japan samples, probably reflecting the substantially different number of reads between localities (Fig. 2). Indeed, this difference vanishes when relative proportions are considered (Fig 4d-f). This shows that despite the enormous differences in read numbers between the Caribbean (48 to 212 reads per sample) and Japan (3,630 to 124,355 reads per sample) samples, the relative proportions of the major taxa are the same between these regions (Fig. 3). We also observe a clear separation between low and high latitude samples (Fig 4f) at morphospecies level, which is analogous to the structure represented by fossil assemblages in nearby samples (Fig 4g). Calculation performed on Dice indices (Fig 4i-k) tends to reproduce the same structure as the calculation performed with Bray-Curtis calculated on absolute read number, but the patterns are noisier (Fig 4a-c). This is most likely due to the different level of taxonomic saturation between the samples (Fig. 2). For example, less than 15 eribotype have been observed in every Caribbean samples whilst more than 200 were detected for 5 of the 6 Japan samples, thus maintaining the separation between these regions. Remarkably, despite the different numbers of reads and the associated different level of taxonomic saturation, the recovered pattern of taxonomic composition of the reads is so strong that the opposition between the high and low latitude samples, clearly observed with fossil assemblages, remains even in the eDNA assemblages when considering the morphospecies level (Fig 4k-l). The signal in the eDNA data is noisier because only a fraction of the morphospecies have been detected by the eDNA (1 to 11 morphospecies per sample, Supplement 1), whilst 1 to 24 morphospecies are observed in the census counts. This means that the

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

Biogeosciences

Discussions

relative proportions of the reads carry enough information to reproduce identical patterns between eDNA and fossil

record despite only a partial coverage of the morphological diversity (Fig 4f-g).

These observations taken together imply that the relative abundance of planktonic eDNA reads in the sediment

samples contains exploitable information at all three taxonomic levels. To further explore the diversity patterns

implied by eDNA data, we calculated the Shannon-Wiener diversity index within each sample (Fig. 5a). Despite

differences in sediment type and sequencing depth, eDNA in the analyzed samples reproduces the latitudinal diversity

gradient based on morphospecies abundances in surface sediment samples (Rutherford et al., 1999). The latitudinal

diversity gradient is present at all three taxonomic levels, but is most pronounced at the e-ribotype level (Fig. 5b).

Finally, since census counts of planktonic foraminifera morphospecies in surface sediments are available from the

same regions as those analyzed for eDNA (Fig. 1a), we assessed whether the e-ribotype abundances reflect the same

community turnover pattern as that indicated by fossil assemblages (Fig. 6). To this end, we compared pairwise

distances between $e\mathrm{DNA}$ MOTU assemblages with pairwise distances between fossil assemblages. This comparison

 $reveals\ that\ eDNA\ and\ morphospecies\ community\ turnover\ rates\ are\ correlated\ (Fig.\ 6),\ with\ highest\ similarity\ among$

samples from the same region and lowest similarity among samples from different climatic regimes. This pattern

emerges both when relative abundances and presence/absence data are considered. This implies that the

proportionality of eDNA reads abundance is consistently scaled with the proportionality of plankton flux to the

seafloor. The analysis based on relative abundances yields a pattern with highly consistent results for comparisons

between climatic zones and more scatter when comparing samples within a region or within one climatic zone. This

is likely due to the fact that the eDNA data only cover a part of the morphological diversity of the foraminifera

combined with differential distortion of the original abundance signal due to variation in gene copy number (Weber

and Pawlowski, 2013) and primer bias (Bradley et al., 2016).

4 Discussion

Here, we provide evidence that eDNA originating from planktonic foraminifera is indeed preserved in the DNA pool

of abyssal marine sediments irrespective of water depth, geographic region and sediment type. Earlier eDNA studies

on marine sediments assumed that DNA preservation is proportional to the preservation of organic matter and, thus,

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

prioritized sampling in organic-rich sediment layers (Coolen et al., 2009). Yet, recent experimental research and field studies suggest that the primary structure of DNA molecules is adsorbed to solid particles and molecules preserved in

this way may form an archive of extracellular DNA regardless to the organic content of the sediment (Corinaldesi et

al., 2007, 2011, 2014; Torti et al., 2015). We also show that the eDNA composition consistently reflects the

composition of the pelagic planktonic communities from which it was derived. The high reproducibility of reads

diversity (Dice index) and relative abundance (Bray-Curtis index) within a single region (Fig. 4) suggests that the

taphonomic process governing the transfer and preservation of extracellular DNA from surface to bottom ocean are

similar at regional scale and do not differentially impact DNA from species within different ecological groups.

Although the number of planktonic foraminifera reads recovered differed by three orders of magnitude between the

Caribbean (62 to 212 reads per samples, representing ~0.003 to 0.03 % of the dataset) and Japan (3,620 to 124,355

reads per sample, representing 0.8 to 9.4 % of the dataset), the information recovered was sufficient to unveil the

structure of foraminifera communities across the whole range of environments investigated (Figs. 3-6). However,

since the taxonomic richness in eDNA data increased with sequencing efforts (Fig. 2), the recovery of the full

taxonomic diversity requires a certain minimum sequencing effort. From the analyzed dataset, it is not possible to

explain the large variation in the numbers of reads ascribed to planktonic foraminifera among regions (Fig. 2). This

could represent DNA differential preservation conditions, or an imbalance between flux from the surface

(allochthonous) community and the abundance of DNA from the autochthonous benthic community. The latter is a

likely explanation because the analyzed $e\mathrm{DNA}$ material was amplified by PCR primers annealing to all foraminiferal

sequences (Lecroq et al., 2011). During the PCR, the DNA of planktonic foraminifera might well be outcompeted by

the autochthonous DNA of benthic foraminifera, which is potentially more abundant, less damaged and more easily extracted from cells than when tightly absorbed to sediment particles (Ceccherini et al., 2009; Torti et al., 2015).

Consistent with earlier studies (Capo et al., 2015; Lejzerowicz et al., 2013; Pawłowska et al., 2014; Pedersen et al.,

2013), the taxonomic diversity revealed by the analyzed eDNA barcodes overlaps only partly with the diversity based

on fossils present in the sediment. One part of the observed difference could be ascribed to the limited coverage of the

reference database. Because of the way we assigned reads to planktonic foraminifera, we cannot assess the portion of

the planktonic foraminifera diversity not represented in the reference database, although all major planktonic

foraminifera taxa making >90% of tests larger than 150 µm are present in the reference database (Morard et al., 2015).

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

Biogeosciences

Discussions

We note, however, that our method allowed the discovery of unknown e-ribotypes clustering within e-ribotypes of

known morphological species. Despite the discovery of the new e-ribotypes, the vast majority (99 %) of the retained

reads could be associated with known genetic types. This exemplifies that the overlap of the eDNA reads library is

large for well-studied taxa.

However, there might be a PCR bias that impairs the discovery of some species. Indeed, none of the recovered

barcodes could be attributed to four common species well represented in the reference database: Globorotalia

truncatulinoides, Turborotalita quinqueloba, Trilobatus sacculifer and Globigerinoides ruber. This observation is

consistent with preferential PCR amplification. The rDNA of planktonic foraminifera is characterized by high and

variable substitution rates (de Vargas et al., 1997), and two of the four above species exhibit some of the highest

mutation rates (Aurahs et al., 2009). The manual inspection of a multiple sequence alignment containing the reference

database sequences (Morard et al., 2015) revealed the presence of up to 5 mismatches between these species sequences

and the primer sequences used to generate the dataset. Hence, such mutations in the conserved regions of the gene

where the primers anneal may be responsible for detection failures. Another preferential PCR amplification could also

explain the strong skew dataset towards microperforate species sequences, which represent 55 to 99% of the reads

(Fig. 3), but only 0 to 30% of the morphological assemblages (Kucera et al., 2005b). The microperforate clade appears

to have significantly lower rDNA substitution rates (Aurahs et al., 2009) and here we observe no mismatch between

the primer and the reference sequences within this clade.

Alternatively, the higher abundance of reads assigned to microperforate taxa could represent a genuine pattern,

questioning the representativeness of census counts of fossil foraminifera, which ignore specimens smaller than 150

μm (Kucera et al., 2005b). Microperforate species tend to be small and are disproportionately abundant in the size

fraction smaller than 150 µm (Brummer et al., 1986). This is significant because the eDNA archive comprises

information on all planktonic foraminifera irrespective of size and is thus potentially a more comprehensive recorder

of species proportions in the plankton.

Overall, our results indicate PCR/primer bias as the most important limitation of foraminiferal community surveys

based on metabarcoding. Alleviating them will allow detection of the full taxonomic spectrum, provided that sufficient

sequencing effort is achieved, as recently discussed for fungi (Adams et al., 2013a, 2013b). To our knowledge, the

dataset we re-analyzed represents the largest sequencing data for a given taxonomic group. Yet, it seems to indicate

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

Biogeosciences

Discussions

that the main ecological pattern can be extracted even from metabarcodes found at relatively modest frequencies (<

1000 reads, Figs. 3, 4: Caribbean samples). This conclusion underlines the importance of comprehensive reference

datasets and barcoding efforts to facilitate the development of specific and effective probing techniques to recover the

signal of individual key groups (Pawlowski et al., 2012).

Metabarcoding surveys of marine sediments offer a powerful alternative to study marine plankton ecology and

biogeography. Plankton eDNA diversity observed in sea floor sediments represents a continuous flux of biomass,

averaged over seasons and throughout the entire water column. Unlike plankton sampling, sea-floor deposits are not

affected by the seasonality, reproductive cycle or habitat depth of the plankton at the time of sampling. They offer a

spatiotemporally archive of the overlying water column, which contains an integrated record of the maximum range

of taxa that is realized at least at some point during the seasonal cycle. In this way, it is possible to constrain

biogeographical patterns like endemism or ecological exclusion across oceanic gradients, without the need for highly

time-resolved sampling. Importantly, eDNA data can be used to test the stability of biotic interactions inferred from

the plankton (Lima-Mendez et al., 2015) simultaneously across a large range of environmental conditions represented

in the sediment.

15 5 Conclusion

10

20

25

Assuming that eDNA deposited on the sea floor is also preserved through time, marine sediments should contain a

remarkable ancient DNA (aDNA) archive of the history of plankton communities. There is growing evidence that

eDNA is preserved in marine sediments old enough to cover the previous ice age (Lejzerowicz et al., 2013). Until

now, the interpretation of aDNA datasets from marine sediments suffered from insufficient sequencing depth (Coolen

et al., 2009) or insufficient coverage of the reference database (Pawlowski et al., 2014a). As a result, to which degree

the observed aDNA patterns reflect genuine past ecological shifts remained contentious. If sedimentary DNA is

incorporated into marine sediments without taxonomic bias, as is the case in other environments (Pedersen et al.,

2015), our data would support previous claims of DNA survival in deep-sea sediments, even where the sequencing

depth was limited (Coolen et al., 2009). We hypothesize that if the molecular imprint of foraminifera is preserved in

surface sediments, the same should apply to the rest of the pelagic community. If confirmed, this, together with the

latest developments in sequencing technologies, would open new avenues for paleoceanography and paleoecology,

including the investigation of the impact of major past climate crises on oceanic communities, and the genetic

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

Biogeosciences

Discussions

detection of organisms not preserved in the fossil record. This is extremely important, now that the Tara-Oceans global

metabarcoding survey has shown that the largest portion of plankton biodiversity is composed of heterotrophic

protists, parasites and symbionts that do not fossilize (de Vargas et al., 2015). In these regards, the information

potentially preserved in deep sea sedimentary aDNA will likely revolutionize our understanding of the past ecology

5 of marine plankton.

6 Data availability

Raw sequence data generated by Lecroq et al. (2010) and used in the present study are registered at the NCBI's

Short Read Archive under the BioProject number PRJEB2682.

7 Supplements

10 Supplement 1

Detailed information on environmental samples and sequence data.

Supplement 2

Fasta files of the reference database and of the e-ribotypes attributed to planktonic foraminifera.

Supplement 3

15 Occurrences and taxonomic assignation of the e-ribotypes. Field explanations are given in the file.

Supplement 4

20

Individual alignments, phylogenetic trees and interpretation used to cluster the e-ribotype into genotypes.

7 Author contribution

R.M., F.L., M.K., L.O, J.P., S.M., and C.d.V conceived the project. B. L-B generated the original data. R.M., K. F.

D., C.d.V. and M.K generated the reference database. F.L, R.M and M.K analyzed the dataset. R.M., F.L and M. K.

wrote the manuscript and M.P., C.d.V., L.O., J.P., S.M., K.F.D., B. L-B., provided critical discussions and editions

to the manuscript.

25 8 Competing interests

The authors declare no competing interests.

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

9 Acknowledgements

The study was supported by Swiss National Science Foundation grants 31003A-140766 and 313003A-159709 and by the DFG-Research Center/Cluster of Excellence "The Ocean in the Earth System".

5

10 References

Adams, R. I., Amend, A. S., Taylor, J. W. and Bruns, T. D.: A Unique Signal Distorts the Perception of Species Richness and Composition in High-Throughput Sequencing Surveys of Microbial Communities: A Case Study of Fungi in Indoor Dust, Microb. Ecol., 66(4), 735–741, doi:10.1007/s00248-013-0266-4, 2013a.

Adams, R. I., Miletto, M., Taylor, J. W. and Bruns, T. D.: Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances, ISME J., 7(7), 1262–1273, doi:10.1038/ismej.2013.28, 2013b.

Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., Le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. a D.,

Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, R. S., Shadwick, L., Schoch, C. L., Smirnov, A. and Spiegel, F. W.: The revised classification of eukaryotes., J. Eukaryot. Microbiol., 59(5), 429–93, doi:10.1111/j.1550-7408.2012.00644.x, 2012.

Aurahs, R., Göker, M., Grimm, G. W., Hemleben, V., Hemleben, C., Schiebel, R. and Kucera, M.: Using the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly

20 Divergent and Length-polymorphic SSU rDNA Sequences., Bioinform. Biol. Insights, 3, 155–177, 2009.

Boere, a C., Rijpstra, W. I. C., De Lange, G. J., Sinninghe Damsté, J. S. and Coolen, M. J. L.: Preservation potential of ancient plankton DNA in Pleistocene marine sediments, Geobiology, 9(5), 377–393, doi:10.1111/j.1472-4669.2011.00290.x, 2011.

Bradley, I. M., Pinto, A. J. and Guest, J. S.: Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA

25 Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities, edited by G. Voordouw, Appl. Environ. Microbiol., 82(19), 5878–5891, doi:10.1128/AEM.01630-16, 2016.

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

5

Brummer, G. A., Hemleben, C. and Michael, S.: Planktonic foraminiferal ontogeny and new perspectives for micropalaeontology, Nature, 319, 50–52, 1986.

Capo, E., Debroas, D., Arnaud, F. and Domaizon, I.: Is Planktonic Diversity Well Recorded in Sedimentary DNA? Toward the Reconstruction of Past Protistan Diversity, Microb. Ecol., 70(4), 865–875, doi:10.1007/s00248-015-0627-2, 2015.

Ceccherini, M. T., Ascher, J., Agnelli, A., Borgogni, F., Pantani, O. L. and Pietramellara, G.: Experimental discrimination and molecular characterization of the extracellular soil DNA fraction, Antonie Van Leeuwenhoek, 96(4), 653–657, doi:10.1007/s10482-009-9354-3, 2009.

Coolen, M. J. L. and Overmann, J.: 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean

sapropels and their implications for the reconstruction of the paleoenvironment, Environ. Microbiol., 9(1), 238–249, doi:10.1111/j.1462-2920.2006.01134.x, 2007.

Coolen, M. J. L., Saenz, J. P., Giosan, L., Trowbridge, N. Y., Dimitrov, P., Dimitrov, D. and Eglinton, T. I.: DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene, Earth Planet. Sci. Lett., 284(3–4), 610–621, doi:10.1016/j.epsl.2009.05.029, 2009.

Coolen, M. J. L., Orsi, W. D., Balkema, C., Quince, C., Harris, K., Sylva, S. P., Filipova-Marinova, M. and Giosan, L.: Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene., Proc. Natl. Acad. Sci. U. S. A., 110(21), 8609–14, doi:10.1073/pnas.1219283110, 2013.

Corinaldesi, C., Dell'Anno, A. and Danovaro, R.: Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems, Limnol. Oceanogr., 52(2), 508–516, doi:10.4319/lo.2007.52.2.0508, 2007.

20 Corinaldesi, C., Barucca, M., Luna, G. M. and Dell'Anno, A.: Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments., Mol. Ecol., 20(3), 642–54, doi:10.1111/j.1365-294X.2010.04958.x, 2011.

Corinaldesi, C., Tangherlini, M., Luna, G. M. and Anno, A. D.: Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins, Proc. R. Soc. B Biol. Sci.,

25 doi:10.1098/rspb.2013.3299, 2014.

Darling, K. F. and Wade, C. M.: The genetic diversity of planktic foraminifera and the global distribution of

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

ribosomal RNA genotypes, Mar. Micropaleontol., 67(3-4), 216-238, doi:10.1016/j.marmicro.2008.01.009, 2008.

Dell'Anno, A.: Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning, Science (80-.)., 309(5744), 2179–2179, doi:10.1126/science.1117475, 2005.

Gouy, M., Guindon, S. and Gascuel, O.: SeaView version 4: A multiplatform graphical user interface for sequence

alignment and phylogenetic tree building., Mol. Biol. Evol., 27(2), 221–4, doi:10.1093/molbev/msp259, 2010.

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle,

J., del Campo, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W. H. C. F., Lara, E., Le

Bescot, N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I.,

Sauvadet, A.-L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P. and Christen, R.: The Protist Ribosomal

Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy, Nucleic Acids Res., 41(D1), D597–D604, doi:10.1093/nar/gks1160, 2013.

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0, Syst. Biol., 59(3), 307–321, doi:10.1093/sysbio/syq010, 2010.

Hammer, Ø., Harper, D. a. T. and Ryan, P. D.: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4(1), 9–18, doi:10.1016/j.bcp.2008.05.025, 2001.

Hemleben, C., Michael, S. and Anderson, O. R.: Modern Planktonic Foraminifera, Springer-Verlarg, New York., 1989.

Hillaire-Marcel, C. and de Vernal, A.: Proxies in Late Cenozoic Paleoceanography, Elsevier., 2007.

Katoh, K. and Standley, D. M.: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability, Mol. Biol. Evol., 30(4), 772–780, doi:10.1093/molbev/mst010, 2013.

Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. and Weinelt, M.: Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO), Quat. Sci. Rev., 24(7–9), 813–819, doi:10.1016/j.quascirev.2004.07.017, 2005a.

Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T.
 T., Cortijo, E., Duprat, J., Juggins, S. and Waelbroeck, C.: Reconstruction of sea-surface temperatures from

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quat. Sci. Rev., 24(7–9), 951–998, doi:10.1016/j.quascirev.2004.07.014, 2005b.

Lecroq, B., Lejzerowicz, F., Bachar, D., Christen, R., Esling, P., Baerlocher, L., Osterås, M., Farinelli, L. and

Pawlowski, J.: Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments., Proc. Natl. Acad. Sci. U. S. A., 108(32), 13177–13182, doi:10.1073/pnas.1018426108, 2011.

Lejzerowicz, F., Esling, P., Majewski, W., Szczucinski, W., Decelle, J., Obadia, C., Arbizu, P. M. and Pawlowski, J.: Ancient DNA complements microfossil record in deep-sea subsurface sediments, Biol. Lett., 9(4), 20130283–20130283, doi:10.1098/rsbl.2013.0283, 2013.

Letunic, I. and Bork, P.: Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy, Nucleic Acids Res., 39(suppl), W475–W478, doi:10.1093/nar/gkr201, 2011.

Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J. C., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A. M.,

- Coppola, L., Cornejo-Castillo, F. M., D'Ovidio, F., De Meester, L., Ferrera, I., Garet-Delmas, M.-J., Guidi, L., Lara, E., Pesant, S., Royo-Llonch, M., Salazar, G., Sanchez, P., Sebastian, M., Souffreau, C., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Gorsky, G., Not, F., Ogata, H., Speich, S., Stemmann, L., Weissenbach, J., Wincker, P., Acinas, S. G., Sunagawa, S., Bork, P., Sullivan, M. B., Karsenti, E., Bowler, C., de Vargas, C. and Raes, J.: Determinants of community structure in the global plankton interactome, Science (80-.)., 348(6237), 1262073-
- 20 1262073, doi:10.1126/science.1262073, 2015.
 - Morard, R., Darling, K. F., Mahé, F., Audic, S., Ujiié, Y., Weiner, A. K. M., André, A., Seears, H. a., Wade, C. M., Quillévéré, F., Douady, C. J., Escarguel, G., de Garidel-Thoron, T., Siccha, M., Kucera, M. and de Vargas, C.: PFR²: a curated database of planktonic Foraminifera18S ribosomal DNA as a resource for studies of plankton ecology, biogeography, and evolution, Mol. Ecol. Resour., 49, 1–14, doi:10.1111/1755-0998.12410, 2015.
- Morard, R., Escarguel, G., Weiner, A. K. M., André, A., Douady, C. J., Wade, C. M., Darling, K. F., Ujiié, Y., Seears, H. A., Quillévéré, F., de Garidel-Thoron, T., de Vargas, C. and Kucera, M.: Nomenclature for the Nameless: A Proposal for an Integrative Molecular Taxonomy of Cryptic Diversity Exemplified by Planktonic Foraminifera,

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

15

Syst. Biol., 65(5), 925–940, doi:10.1093/sysbio/syw031, 2016.

Needleman, S. B. and Wunsch, C. D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins., J. Mol. Biol., 48(3), 443–453 [online] Available from: http://www.ncbi.nlm.nih.gov/pubmed/5420325, 1970.

- Pawłowska, J., Lejzerowicz, F., Esling, P., Szczuciński, W., Zajączkowski, M. and Pawlowski, J.: Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium., Geobiology, 12(4), 277–88, doi:10.1111/gbi.12087, 2014.
 - Pawlowski, J. and Lecroq, B.: Short rDNA barcodes for species identification in foraminifera., J. Eukaryot. Microbiol., 57(2), 197–205, doi:10.1111/j.1550-7408.2009.00468.x, 2010.
- Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J., Dunthorn, M., Fiore-Donno, A. M., Gile, G. H., Holzmann, M., Jahn, R., Jirků, M., Keeling, P. J., Kostka, M., Kudryavtsev, A., Lara, E., Lukeš, J., Mann, D. G., Mitchell, E. a D., Nitsche, F., Romeralo, M., Saunders, G. W., Simpson, A. G. B., Smirnov, A. V, Spouge, J. L., Stern, R. F., Stoeck, T., Zimmermann, J., Schindel, D. and de Vargas, C.: CBOL Protist Working Group: Barcoding Eukaryotic richness beyond the Animal, Plant, and Fungal

Kingdoms, PLoS Biol., 10(11), e1001419, doi:10.1371/journal.pbio.1001419, 2012.

- Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. and Wilding, T. A.: Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities, Mol. Ecol. Resour., 14(6), 1129–1140, doi:10.1111/1755-0998.12261, 2014a.
- $Pawlowski, J., Lejzerowicz, F.\ and\ Esling, P.:\ Next-Generation\ Environmental\ Diversity\ Surveys\ of\ For a minifera:$
- 20 Preparing the Future, Biol. Bull., 227, 93–106, 2014b.
 - Pedersen, M. W., Ginolhac, A., Orlando, L., Olsen, J., Andersen, K., Holm, J., Funder, S., Willerslev, E. and Kjær, K. H.: A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa, Quat. Sci. Rev., 75, 161–168, doi:10.1016/j.quascirev.2013.06.006, 2013.
- Pedersen, M. W., Overballe-Petersen, S., Ermini, L., Sarkissian, C. Der, Haile, J., Hellstrom, M., Spens, J.,
 Thomsen, P. F., Bohmann, K., Cappellini, E., Schnell, I. B., Wales, N. A., Caroe, C., Campos, P. F., Schmidt, A. M.

Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

10

15

25

Z., Gilbert, M. T. P., Hansen, A. J., Orlando, L. and Willerslev, E.: Ancient and modern environmental DNA, Philos. Trans. R. Soc. B Biol. Sci., 370(1660), 20130383–20130383, doi:10.1098/rstb.2013.0383, 2015.

Rutherford, S., D'Hondt, S. and Prell, W.: Environmental controls on the geographic distribution of zooplankton diversity, Nature, 400, 749–753, doi:10.1038/23449, 1999.

Taberlet, P., Prud'Homme, S. M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., Clément, J.-C., Melodelima, C., Pompanon, F. and Coissac, E.: Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies, Mol. Ecol., 21(8), 1816–1820, doi:10.1111/j.1365-294X.2011.05317.x, 2012.

Torti, A., Lever, M. A. and Jørgensen, B. B.: Origin, dynamics, and implications of extracellular DNA pools in marine sediments, Mar. Genomics, 24, 185–196, doi:10.1016/j.margen.2015.08.007, 2015.

de Vargas, C., Zaninetti, L., Hilbrecht, H. and Pawlowski, J.: Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences compared to the fossil record., J. Mol. Evol., 45(3), 285–294, 1997.

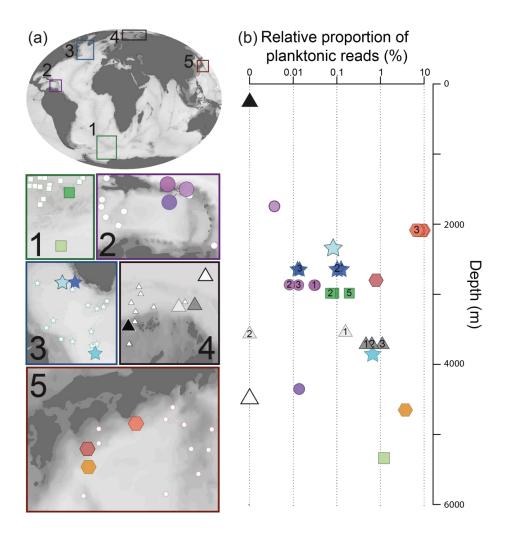
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.-M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen,

S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., Lima-Mendez, G., Luke, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S. G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M. E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., Karsenti, E., Boss, E., Follows, M., Karp-Boss, L., Krzic, U., Reynaud, E. G., Sardet, C., Sullivan, M. B. and Velayoudon, D.: Eukaryotic

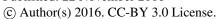
20 plankton diversity in the sunlit ocean, Science (80-.)., 348(6237), 1261605–1261605, doi:10.1126/science.1261605, 2015.

Weber, A. A. T. and Pawlowski, J.: Can Abundance of Protists Be Inferred from Sequence Data: A Case Study of Foraminifera, PLoS One, 8(2), 1–8, doi:10.1371/journal.pone.0056739, 2013.

Yasuhara, M., Tittensor, D. P., Hillebrand, H. and Worm, B.: Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model, Biol. Rev., doi:10.1111/brv.12223, 2015.


© Author(s) 2016. CC-BY 3.0 License.

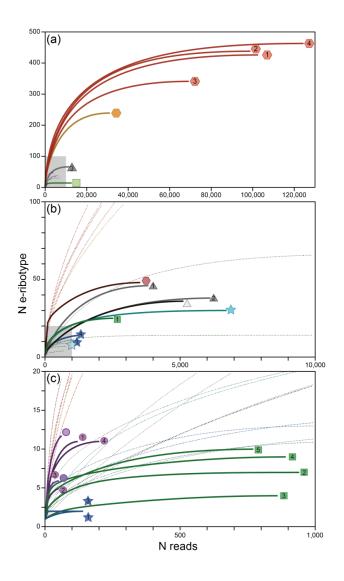
5

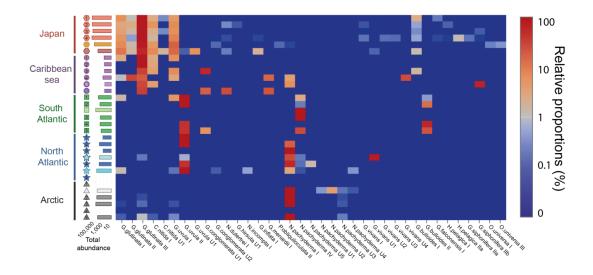


Figures

Figure 1. Occurrences of planktonic foraminifera in abyssal sedimentary *e*DNA. (a) Geographic location of the samples. The boxes indicate the location the core top samples in the 5 sampled regions. The larger symbols indicate the location of the samples used for *e*DNA analysis generated by Lecroq et al. (2011) and the smaller open symbol the location of the census count from the MARGO database (Kucera et al., 2005b). (b) Relative proportions of planktonic reads in the individual samples in logged values plotted against depth. The symbols with numbers correspond to the replicates of a single location shown on (a).

Biogeosciences Discuss., doi:10.5194/bg-2016-486, 2016 Manuscript under review for journal Biogeosciences Published: 22 November 2016




Figure 2. Rarefaction curves. e-ribotypes rarefaction curves of each of the 28 samples containing planktonic foraminifera sequences. The three boxes show the same rarefaction curves at 3 different scales highlighted by grey rectangles. The symbols with numbers correspond to the replicates of a single location shown on Fig. 1. For each magnification, the curves which are out of range are drawn in dashed lines to ease the reading to the figure.

Biogeosciences Discuss., doi:10.5194/bg-2016-486, 2016 Manuscript under review for journal Biogeosciences Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

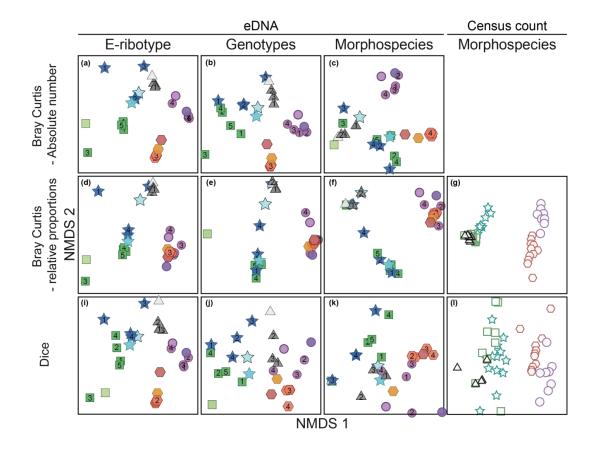


Figure 3. Heat Map of the relative proportions of the genotypes detected in the 31 samples. The histogram on the left side of the heat map indicates the total abundance in log-value of the reads belonging to planktonic foraminifera. Symbols as on Figs 1-2.

Figure 4. Community structuring of planktonic foraminifera in sedimentary *e*DNA. Grouping of *e*DNA and census count samples according to their taxonomic composition using Non-linear Multi-Dimensional Scaling based on Bray-Curtis (Absolute number (a-c) and relative abundances (d-g)) and Dice distances (i-l). The NMDS are provided for the three different degrees of taxonomic resolution (ribotypes, genotypes and morphospecies) for the *e*DNA samples. As the census count are relative abundances, the Bray-Curtis on absolute value is not provided for the census count assemblages. Symbols as in Fig. 1b and Fig. 2.

Biogeosciences Discuss., doi:10.5194/bg-2016-486, 2016 Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

5

10

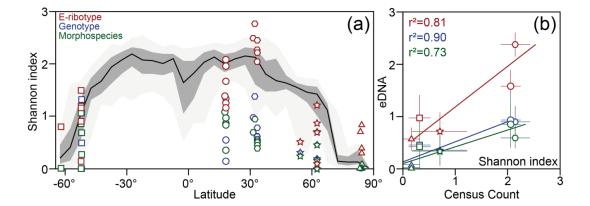
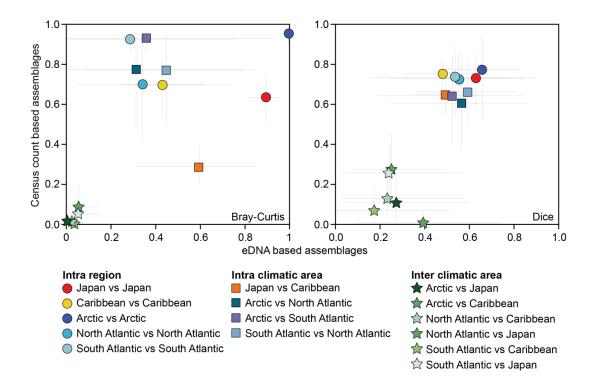


Figure 5. Macro ecological pattern of spatial diversity known as the mid-domain effect. (a) The grey areas represent the distribution of the Shannon index calculated on the census count of planktonic foraminifera in core top samples from the MARGO database (Kucera et al., 2005b) against latitude. The dark grey area represents the 1st-3rd quartiles (50% confidence interval), light grey the 5th-95th percentile (90 % confidence interval), and the black line is the median. The same similarity measure has been calculated at each location for the *e*DNA samples based on the relative abundances with the three levels of taxonomic resolution. (b) Relationships between mean Shannon index calculated at regional levels (symbols as on Figure 1) for census count and *e*DNA assemblages, vertical and horizontal lines indicate the standard deviation. Coefficient of correlation are provided for the three taxonomic levels but are only indicative because the number of data point is too low to draw definitive conclusion.


Biogeosciences Discuss., doi:10.5194/bg-2016-486, 2016 Manuscript under review for journal Biogeosciences

Published: 22 November 2016

© Author(s) 2016. CC-BY 3.0 License.

Figure 6. *e***DNA vs census counts**. Similarity pairwise comparison of the community composition inferred from relative abundances of morphospecies based on *e*DNA and census counts among and between the five sampled regions. Each symbol corresponds to the average between all pairwise distances of each category and the lines represent the standard deviation. The distances are based on the Bray-Curtis and Dice indices.