
Response to Referee 1 

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A 

statistically-based estimate of global surface turbulent fluxes using solar-

induced fluorescence (Manuscript # bg-2016-495) 

 

Comments Responses/Actions 

The authors proposed a new global product of 
GPP, ET and H by using ANN. The manuscript is 
well written and the topic falls on to the scope of 
the journal. I do have several concerns. 
  

We thank the referee for his/her positive comments. 

First, the authors highlighted the use of SiF as 
input data. I see SiF was the only input data 
related to vegetation. Therefore, with/without 
SiF in WECANN must give different flux estimates. 
What happens if the authors use EVI or NDVI 
instead of SiF? Any significant difference in 
WECANN performance? 

We agree with the referee's point on the evaluation of no-
SIF retrieval. Therefore, in the revised manuscript we 
included comparisons with an artificial neural networks 
retrieval that has either NDVI or EVI as input instead of SIF. 
We comment on the differences and similarities, and why 
SIF is a better input for this retrieval, in particular 
highlighting the differences in terms of vegetation structure 
impact on SIF and the impact of saturation of vegetation 
indices (especially in forested areas and agricultural 
regions). Results are summarized in section 4.5 and Tables 
S1-S3 in the supplementary materials. 

Second, what is the significant contribution from 
this work? Spatial (1 degree) and temporal 
(monthly) resolutions are too coarse. The 
approach is on the similar family of other 
machine learning methods (e.g. see Tramontana  
et al 2016 Biogeosciences). Stress the novelty of 
this manuscript. If there is any new discovery, 
then highlight it. 

There are two major new contributions in this study: 
1- Using remotely-sensed SIF to estimate surface 

fluxes. 
2- Using a machine learning algorithm (in this case 

artificial neural networks) to estimate fluxes from 
remote sensing observations at global scale. 

The Tramontana et al 2016 paper uses a regression model 
to upscale fluxes from FLUXNET observations. However, we 
use remote sensing observations to estimate fluxes rather 
than relying on the representativeness of spatially limited 
FLUXNET eddy-covariance data like the Tramontana et al 
approach and its predecessors. Most importantly we use l 
SIF as an indicator of vegetation activity. Therefore, the 
strategy is pretty different compared to the Tramontana et 
al retrieval. In addition, our main objective is to show that 
SIF provides useful information on the rates of 
photosynthesis and evapotranspiration. To our knowledge, 
this is the first direct estimate of fluxes based on SIF data. 
We revised portions of the text in the introduction section 
(Page 2, Lines 30-33) to make sure the novelty of our 
approach is clearly stated. 



Third, the authors used MPI-BGC product as a 
training dataset while testing the product against 
FLUXNET data. As MPI-BGC product was trained 
against FLUXNET dataset, the approach is self-
correlated. Why not evaluating the product 
against independent datasets from MPI-BGC? E.g. 
water balance derived ET in basin scale. 

We do not share the referee’s perspective. While we 
acknowledge that there is some information carried from 
FLUXNET tower data into the FLUXNET-MTE dataset and 
therefore in some part of the training data, we believe this 
cross-correlation is likely to be small. 
We train our algorithm against a target dataset which is 
derived from three products (including MPI-BGC) by using 
the Triple Collocation method and assigning a priori weights 
to every product in each pixel. This means that our target 
dataset has collective information from all three products 
and not just MPI-BGC.  Furthermore, the correlation 
between FLUXNET and FLUXNET-MTE data is also imperfect 
(cfg. Figure 2 in Tramontana et al 2016). 
Interestingly, WECANN typically outperforms other 
products (including FLUXNET-ME, which is expected to have 
a stronger correlation to FLUXNET data) especially in terms 
of seasonal cycle. This further emphasizes the information 
content provided by remote sensing data which are used as 
additional inputs 
This is consistent with previous work (see Jimenez et al. 
2009 for instance) that the spatial and temporal 
correlations of a global artificial neural network are not due 
to the initial training dataset but to the remote sensing 
observations used as input. 
  
Jimenez, C., Prigent, C., Aires, F. (2009). Toward an 
estimation of global land surface heat fluxes from multi-
satellite observations. Journal of Geophysical Research-
Atmospheres, 114(D6), D06305. 
  
Conducting a water balance analysis is an interesting idea 
that might be informative, but it has its own challenges 
because multiple sources of information need to be used to 
close the water budget, each of which has its own 
uncertainties. Furthermore, such an approach would only 
be useful for validating the ET data but would not provide 
information about the GPP and H performance. In view of 
these reasons, and because the other referee asked us to 
reduce the length of the manuscript, we have chosen not to 
include this analysis.  
Nevertheless, to provide an additional line of evidence 
investigating the WECANN quality, we have now added a 
new section 4.4 with an uncertainty analysis (which is much 
briefer than would be required for a full discussion of a 
water budget comparison). 

Fourth, the spatial domain should be clearly 
defined. The authors said it is global product, but 
it did not include Antarctica and Greenland. 

Thank you for the comments. We have now revised the 
description in the introduction section to clearly note what 



Given the coarse resolution (100 km), most 
islands are likely uncovered but the global map 
(Fig 2) showed fluxes in some islands. How did it 
happen? Also, how to treat with water fraction 
for each 1-degree pixel? 

the coverage of the new product is (Page 2, Lines 26-29), 
and provided a land mask in Figure S1. 

Fifth, I recommend showing global uncertainty 
maps for GPP, LE, H. I think one of strengths in 
WECANN is its ability to quantify uncertainty. 
Show the uncertainty map and discuss where and 
why uncertainties are high. Also quantify 
uncertainties in global values (e.g. XXX PgC yr-1 +- 
Y PgC yr-1). 

In the revised manuscript, we now include uncertainty 
estimates based on errors in the input data propagated into 
the network. We report a global average value as error is 
spatially and temporally variable. The new section 4.4 in the 
revised manuscript provides details on our uncertainty 
analysis and the results that are provided in Figure 14. 

Sixth, test global more carefully. When I look at 
Fig 2, I found higher ET in mid to south east South 
America (e.g. cerrado) compared to other global 
ET products. Also, your ET in this region is 
relatively very high compared to your GPP map. 
So, water use efficiency will be very low in this 
region, which is unlikely. See global distribution 
of C4 maps. Higher proportion in C4 in this area is 
likely to lead higher water use efficiency. It is 
notable that your ANN did not consider C4 
information. 

The referee's point is an important one. The SIF relationship 
with GPP will likely change in C4 plants. However, we 
explicitly did not want to impose the C4/C3 (or even CAM) 
delimitation in the artificial neural network as it would be 
highly dependent on the quality of the classification map 
used. Given that we do not have partitioning of 
transpiration to total ET, it would be impossible to say 
whether the water use efficiency is indeed low or if rain re-
evaporation and soil evaporation is the main process 
explaining the difference. We note that all training products 
include C3/C4 delimitation and therefore the C3/C4 
delimitation is implicit in the training dataset and therefore 
can be learnt by the network. 
We have added a comment in the text emphasizing the 
referee's points (Page 9, Lines 17-19). 

Specific comments 

P6: why only 21 FLUXNET sites were used? More 
than 150 sites data are open to public 

We had selected these 21 sites to represent a range of 
climatic conditions along a geographical gradient for 
validation of our retrieval. Presenting evaluation metrics 
and temporal time series for 150 sites would lengthen the 
manuscript and make it now hard to read. However, in the 
revised manuscript we present summary statistics from a 
comparison of WECANN retrievals against a much larger 
number of tower data (97) from the FLUXNET 2015 and the 
La Thuile synthesis dataset in the supplementary tables S1-
S3. We also comment on the results in Section 4.4. 

P6 L23-24: The authors explained that target data 
is used for training, validation, and testing. I am 
confused with the terminology of validation and 
testing. How do they differ? Also, in L36, “after 
training, . . ... was evaluated”. Here, does 
“evaluation” indicate validation or testing? I 
recommend clearly defining each term, and use 
them consistently across the whole manuscript. 

We apologize for the confusion. The training, validation and 
testing proportions are related to the training phase of the 
retrieval. The back propagation algorithm uses a portion of 
the training data for training (basically estimating the 
weights of each neuron), and other portions of the training 
data for validation and testing that aims at checking the 
convergence of the training step. While after the training is 
done, we use a subset of data that were not used in the 



training process for evaluation. We revised the text in the 
new version of the manuscript to clarify these 
terminologies. (Page 7, Lines 5-10) 

P6 L30: NN -> ANN (?) Our apologies, this has been corrected in the revised 
manuscript. 

P7 L9: Please define “multiple datasets.” Is this 
training dataset?} 

This refers to the three products that we use (together with 
error weights from Triple Collocation) to define a target 
dataset for training. We revised the text in the new version 
of the manuscript to clarify this. 

P7 L12: What is “this” in “this prior distribution”? It refers to the pseudo Bayesian training mentioned in the 
lines before. We revised the text in the new version and 
clarified the point. 

P8 L20: Is this “target estimate” from 3.2? Yes, this is the same. We made changes to section 3 and 4 
of the manuscript in the new version to clarify all these 
terminologies. 

P8 L22: Add another unit for GPP as PgC yr-1, 
which could be easily compared to the other 
studies. Same for LE (km3).} 

Thanks for noting this. We included the new units along 
with previous ones in the new version of the manuscript. 

P9 L29: I was surprised to see the reduction of 
GPP in the Saharan Desert after removing SiF. 
How to interpret this as we know there must be 
zero GPP? Also, exclusion of SiF in LE made mixed 
tendencies in this region. As we are confident LE 
and GPP are close to nil in this area, it will be 
interesting to test the impacts of 
inclusion/exclusion in SiF on LE and GPP here.} 

This observation is true, and is caused by noise in the SIF 
data in deserts. As noted correctly by the referee, LE and 
GPP are close to zero in this region; therefore, the 
difference between the two retrievals (with and without 
SIF) divided by the small amount of flux in this region is on 
the order of the noise level in the retrievals. While the 
percentages of change are notable, the absolute values of 
difference between the two retrievals are less than 2 w m-2 
for LE and less than 0.7 gC m-2 day-1 for GPP. In addition, the 
noisy pattern does not show up in the H retrievals in this 
region. This is also another sign that the change patterns in 
LE and GPP are due to noise. However, due to the request 
of both referees we have revised our section on the impact 
of SIF, and our analysis now focuses on the differences 
between a retrieval with SIF or with NDIV/EVI (the new 
Section 4.5). Therefore, this figure was removed from the 
manuscript. 

P10 L3: All three R2 looks too similar, so it is hard 
to tell 0.96 is higher than 0.94.} 

Yes, we agree and have typically highlighted with bold fonts 
all comparable products for a fair comparison. This is 
further emphasized in the text of the revised version of the 
manuscript. 

P10: The authors compared WECANN to 
FLUXNET-MTE, ECMWF, GLEAM and MODIS-GPP 
which were the training data for WECANN. I feel 
there should be self-correlation, so I am curious 
whether this is a reasonable approach. 

The focus of this comparison is not validation. Since we 
used the three training products to generate the target 
dataset, we compare WECANN to these three to examine 
how similar is it to each of those training datasets. And we 
show that spatially WECANN is more similar to the product 
that has the lower RMSE in our TC estimates.  

P10 L8: I know there are few eddy flux tower data 
in India, so FLUXNET-MTE might involve higher 

It is true that there are few towers in India, but our retrieval 
does not rely solely on regional towers to estimate surface 



uncertainty. However, this is the same situation 
for WECANN as it used FLUXNET-MTE and others, 
which are all uncertain as training dataset. 

fluxes. Indeed this is a major advantage over FLUXNET-MTE 
and others. We train an artificial neural network algorithm 
using the three training products (two of which are not 
based on flux towers, and so do not necessary have higher 
uncertainty in certain areas because there are few towers 
there) mentioned in the manuscript for all the pixels 
However, the actual time-scale retrieval is mostly informed 
by the remote sensing observations (see discussion in 
Jimenez et al. 2009). That means we use the information 
from all the pixels over the globe to train one retrieval 
algorithm. This algorithm uses remote sensing observation 
at each point in time and space to retrieve surface fluxes. 
Therefore, lack of FLUXNET towers in any part of the globe 
would not impact the accuracy of WECANN retrievals, while 
this would expected to be more be an issue for products 
that upscale tower-based observations to estimate fluxes 
across the globe. 

P10 L4: Be quantitative. Report bias. Thanks for noting this. The point we have raised in this line 
(on the spread of scatter plots) can be quantitatively 
compared using the RMSD value that are provided in the 
figures. In the revised manuscript, we report this in the 
text. 

P10 L20: Define “G” Corrected in the revised manuscript. 

P11: Many contents in this page should move to 
Methods. 

In the revised manuscript, we re-organized the text and 
moved these contents to section 2.3. 

P12 L5-6: Then why not removing this site given 
obvious deficiencies? 

We believe that it is informative to include this comparison, 
as it illustrates that the representativeness area can be a 
challenge in comparing large-scale remote sensing based 
retrievals to point based tower data. In this case, we have 
good knowledge of the site and its surrounding region so it 
is possible to investigate if the tower data is representative 
of the larger scale fluxes. 

P12- : As the authors well recognized, I feel it is 
odd to compare 1 degree WECANN to several 
hundred meters in flux towers. All discussion 
from this comparison seems too subjective. I 
think “validation” of 0.5-degree product is 
unlikely possible. As your products are too 
coarse, I would recommend evaluating at larger 
scales. For example, look interannual variability 
of global GPP (PgC yr-1), ET (W m-2), and H (W m-
2) and compare to atmospheric inversion 
estimates. Test whether your product could 
capture big climate extreme events such as 
Russian heatwave, Texas drought etc. Compare 
to other existing global land surface products 

While there is some caveat in validation against point based 
tower data, these are the only ground based observations 
available for such a validation. Moreover, in the comparison 
against tower data many large scale variabilities, including 
but not limited to the seasonal cycle are comparable to 
pixel based retrievals. This is also the case for interannual 
variability, and we have discussed them in detail, in section 
4.4 of the original manuscript (section 4.3 of the revised 
manuscript). For instance the phenology has a strong 
impact on the seasonal cycle of the fluxes and is here 
clearly highlighted when comparing the different products 
to flux tower estimates.   
In the revised manuscript, we highlighted this limitation 
clearly in section 4.3, while noting that comparison against 
ground-based tower observations is common practice and 



which were not used as input/training dataset in 
WECANN. 
 

is what the community indeed looks for when a new 
retrieval algorithm is developed. We believe that specific 
drought or flood events would lack the generality provided 
here when comparing all years/months. Moreover, such a 
comparison needs detailed analysis that would further 
lengthen the manuscript (Indeed, the other referee asked 
us to reduce the length of the manuscript). 
In addition, in the new section 4.4 we provide uncertainty 
estimates of the retrievals along with interannual variability 
of surface fluxes at global scale to provide an additional line 
of evidence on the quality of the WECANN dataset. 

 



Response to Referee 2 

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A 

statistically-based estimate of global surface turbulent fluxes using solar-

induced fluorescence (Manuscript # bg-2016-495) 

 

Comments Responses/Actions 

This manuscript is well written and deserves 
consideration for publication in this journal. 
However, I have the following issues that need to 
be addressed.  

We appreciate the referee’s positive feedback and provide 
responses to his/her comments below. 

The paper proposes an empirical machine 
learning ‘meta-model’ to try to learn from 
different existing datasets to combine their 
strengths and factor out their limitations. On one 
hand, I appreciate this effort to bring together 
different datastreams and somehow harmonize 
them through this new consolidated product, but 
on the other, I am wary of this approach of 
blindly adding further algorithmic layers without 
really trying to understand mechanistically why 
the initial datasets have shortcomings. If all 
products are equally off in some parts, combining 
them just gives the false impression we are going 
in the right direction while reality is still off. Also, 
the FLUXNET-MTE used as training is already a 
machine learning product driven by various input 
variables, very much like WECANN is. 
Furthermore, there is quite some circularity in 
the work since the FLUXNET-MTE and MODIS GPP 
are both strongly based on the same fluxtowers 
used here for validation. I deem that all these 
points need to be acknowledged clearly and 
discussed thoroughly. 

We acknowledge this concern, and would like to bring the 
following points to the referee’s attention: 

1- The WECANN machine learning retrieval is quite 
different from FLUXNET-MTE in the sense that we 
use remote sensing observations as inputs while 
FLUXNET-MTE upscales tower-based observations 
to estimate surface fluxes at global scale. Although 
both approaches use machine learning techniques 
(artificial neural networks in the case of WECANN 
and regression in the case of FLUXNET-MTE) their 
retrieval algorithms are quite different and directly 
informed by only remote sensing observations in 
WECANN, which we believe is an important means 
of better constraining the retrievals.  

2- Moreover, our training approach uses all the spatial 
and temporal observations during the training 
period (2008-2010) to develop one single neural 
network for the global retrievals. This network is 
then used with remote sensing observations as 
input to retrieve surface fluxes. Therefore, if a few 
percentage of times and pixels, all the three 
training products are equally off this will be 
mitigated by the larger number of pixel/time data 
points that have more accurate estimates in other 
places and other times. In addition, the network 
can even correct the seasonal cycle when learning 
from an incorrect seasonal cycle training data, as 
the remote sensing inputs provide the information 
on the seasonal cycle directly.  This has already 
been demonstrated previously, cfg. Jimenez et al. 
(2009).  
Jimenez, C., Prigent, C., Aires, F. (2009). Toward an 
estimation of global land surface heat fluxes from 



multisatellite observations. Journal of Geophysical 
Research-Atmospheres, 114(D6), D06305. 

3-  On the issue of validation against FLUXNET tower 
data, we acknowledge that two of the training 
products use FLUXNET data for their calibration or 
as input. However, virtually all products have been 
calibrated in some ways or tested against eddy-flux 
tower, so implicit circularity is hard to avoid; there 
simply isn’t another high quality data-set available. 
This does not however mean that the products are 
not independent: indeed the training products we 
use are typically calibrated to reproduce either the 
annual mean or are adjusted per season at very few 
sites (but not the exact temporal structures of the 
eddy-covariance observations except for FLUXNET-
MTE). In addition the specific years of observations 
used here were not used in the calibration of 
MODIS and FLUXNET-MTE.  
Here, we use the three training products together 
with a priori weights calculated from Triple 
Collocation to define a target dataset that has 
collective information from all three of them. And 
then we train our network on the target dataset. 
Finally, we validate the retrievals of WECANN 
against FLUXNET tower data and compare its 
performance with the performance of the three 
training products. While some information from 
FLUXNET observations propagates through the 
training products to WECANN training, the 
comparison results against FLUXNET observations 
show that WECANN learns from the three products 
collectively and performs better than any of them 
individually, emphasizing that our strategy works 
well. In addition, it is clear that WECANN does not 
have the seasonal biases seen in most retrievals 
(see e.g. FI-Hyy site where WECANN correctly 
captures this cold region's photosynthesis and 
evapotranspiration compared to the other 
products). Nevertheless, we have tried to also 
provide alternative lines of evidence to support the 
WECANN data quality, including an entirely new 
uncertainty analysis in section 4.5  

We also made changes to sections 3 and 4 of the 
manuscript in the revised version to better reflect on these 
points. Moreover, in the new section 4.4 we now provide 
uncertainty estimates on WECANN retrievals to provide an 
additional line of evidence on the quality of the WECANN 
dataset. 



Could you specify why you use the SYN products 
(Level 3) from CERES instead of the EBAF ones 
(Level 3B)? The later have been energy balanced 
according to the product specifications. Wouldn’t 
this be an advantage in your case? 

Our goal here, as also mentioned in section 1 of the 
manuscript, is to only use remotely-sensed observations as 
input. The EBAF product is based on a model with some 
remote sensing observations; therefore, we decided to use 
the SYN product to avoid any model addition. 

In the construction of the ANN, I would welcome 
to have some justification of why tangent sigmoid 
transfer functions are used instead of linear ones. 
I know this is often done, but it seems very 
arbitrary. 

In this case, we tried the tangent sigmoid (the common 
choice) as well as linear, and did not see any notable 
changes in the performance of the network. Therefore, we 
chose to use the typical tangent sigmoid function. This has 
been added to the text (Page 6, Line 36 – Page7, Line 2). 

Also, I did not quite understand how the 20% of 
‘testing’ data is used. I clearly see that 60% are 
used for training and 20% for validation, but how 
exactly do you use the other 20%? Perhaps this 
just needs some rephrasing in the text for 
clarification. 

We apologize for the confusion on this matter. In the 
revised manuscript, we explained this in more detail (Page 
7, Lines 5-10). In summary, these percentages are for the 
data that are used in the training process. This is standard 
practice in artificial neural networks training. The back-
propagation algorithm uses the training portion of the data 
for estimating the weights of the neuron in the network, 
and the validation and test data are used to evaluate 
convergence of the training. These are separate than the 
data that we used for validation later on. Our validation, 
uses a subset of data that are not used in the training, to 
make sure the network is not over-fitted to the training 
data. We revised the text in the new version of the 
manuscript and clarified the definitions. 

Comparison with fluxtower measurements is not 
appropriate as the difference in spatial support is 
just too different (1 squared degree vs <1km2). 
Saying that WECANN performs better that other 
products based on individual towers while all 
these products cover such a larger area (by 
several orders of magnitude) just does not make 
much sense (even if it has been done in other 
studies). The authors would need to do some 
filtering of the towers to select only those that 
can be considered representative (e.g. 
http://doi.org/10.1016/j.rse.2016.04.027), 
although I doubt this would leave many valid 
towers for pixels of 1 squared degree. Another 
option that may be more feasible would be to 
make an evaluation at a larger aggregation scale, 
such as for clusters of similar climates and plant 
functional types. Making such averages from the 
fluxtowers on one side and from all pixels that 
are comparable in this respect on the other 
would reduce the number of measurements for 
validation, but would render them more credible. 
I would also suggest to exploit more of the 

We acknowledge that comparison against point based 
tower data has its own limitation (as we also have noted in 
the manuscript), but these are the only ground based 
validation data that is available for evaluating a new global 
product. For this reason, we used a selection of sites 
spanning a geographical gradient and provided detail 
explanation on the comparison results in each site based on 
the knowledge of the land cover / land use around the site 
to make sure the differences, if any, can be explained either 
by uncertainties in WECANN retrieval or representativeness 
of the of towers. As the referee notes, filtering the towers 
based on representativeness might not leave us with any 
tower to use.  
In the original manuscript, we only used 21 towers that 
were selected to represent a wide range of climatic 
conditions and we would be able to explain the results of 
each one of them, including the time series plots in detail. 
However, due to the request of both referees in the revised 
manuscript we include summary statistics from comparison 
of WECANN against 97 FLUXNET sites from three datasets: 
FLUXNET2015, La Thuile Synthesis Dataset and the Large-
scale Biosphere-Atmosphere (LBA) experiment in Brazil. 
Results are provided in Tables S1 – S3 and discussed in 
Section 4.3 of the revised manuscript. We also want to 



available towers in the Fluxnet2015 dataset 
instead of only 21. 

emphasize that some features of the flux towers such as 
phenology, seasonality are correctly picked up by our 
retrieval compared to other products and are only 
moderately affected by the heterogeneity within the pixels 
(except if there would be a very different even composition 
of deciduous and conifers for instance).  

The part pretending to demonstrate the value of 
SIF is also inadequate as the authors only test the 
effect of removing this one input. By doing so, 
any information of the actual vegetation 
phenology is lost, which would necessarily reduce 
the performance. What would be interesting 
would be to show that SIF provides better 
information that the classical vegetation indices 
like NDVI or EVI. To do so, the SIF input of the 
ANN should be replaced by one of these and then 
a judgement on the pertinence of SIF can be 
made. 

We appreciate the referee's comment on this point. We 
have now included comparisons with retrievals that have 
only NDVI or EVI instead of SIF in the revised manuscript. 
This better shows the value of having SIF as an input in 
retrieving surface fluxes. Thank you for this important 
comment. The results further emphasize the difference 
between SIF and purely vegetation structure and phenology 
(as well as saturation effects of vegetation indices). Section 
4.5 in the revised manuscript provides the detailed 
comparison of these retrievals. 

Finally, the manuscript is often too long and too 
descriptive in several parts describing the graphs 
and maps. This needs to be reduced drastically. 
Most of what is being said can be easily inferred 
from the reader by looking at the graphs, while 
deeper discussion on why discrepancies occur 
between products and fluxtowers would be more 
welcome. Also, please remove the extensive 
references to different parts of the text and the 
description of the structure of the paper (e.g. 
page 3 lines 10-20), I think they are lengthening 
the text needlessly. 

Given the novelty of the approach we feel that it is 
important to correctly describe the different steps of the 
analysis as many are relatively new such as the machine 
learning and the triple collocation. We had received the 
opposite comments before that we were not sufficiently 
describing the details; hence, the reason why the article 
goes into the details of the retrievals. We have edited he 
manuscript throughout and shortened it where possible.  
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Abstract. A new global estimate of surface turbulent fluxes, including latent heat flux (LE), sensible heat flux (H), and gross 

primary production (GPP) is developed using a machine learning approach informed by remotely sensed Solar-Induced 

Fluorescence (SIF) and other radiative and meteorological variables. The approach uses an artificial neural network (ANN) with a 20 

Bayesian perspective to learn from thethree training datasets: a. The combined target input dataset is generated using three 

independent data sources and a triple collocation (TC) algorithm to define a prior distribution. The new retrieval, named Water, 

Energy, and Carbon with Artificial Neural Networks (WECANN), provides surface turbulent fluxes from 2007 to 2015 at 1° × 1° 

spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN 

retrievals are validated using FLUXNET tower measurements across various climates and conditions. WECANN performs well 25 

in most cases and is strongly constrained by SIF information. The impact of SIF on WECANN retrievals is evaluated by removing 

it from the input dataset of the ANN, and it shows that SIF has significant influence, especially in regions of high vegetation cover 

and in humid conditions.constrained by the SIF information. When compared to in situ eddy covariance observations, WECANN 

typically outperforms other estimates, particularly for sensible and latent heat fluxes. Uncertainty estimates of the retrievals are 

analysed and the inter-annual variability in average global and regional fluxes show distinct climatic events such as the impact of 30 

El Niño on surface turbulent fluxes. 

1 Introduction 

Turbulent fluxes from the land surface to the atmosphere, particularly sensible heat flux (H), latent heat flux (LE), gross primary 

production (GPP) and net primary production (NPP) are key to understanding ecosystem response to climate and the feedback on 

the overlying atmosphere, as well as constraining the global carbon, water and energy cycles. In recent years, there has been 35 

substantial effort towards estimating these surface fluxes from remote sensing observations at a global scale (see e.g. Fisher et al., 

2008; Jiang and Ryu, 2016; Jiménez et al., 2009, 2011; Jung et al., 2009; Miralles et al., 2011a; Mu et al., 2007; Mueller et al., 

2011). Two differenttypical approaches have been used to estimate these surface fluxes from remote sensing information. The first 

approach uses physically-based or semi-empirical models (e.g. the Priestley-Taylor or Penman-Monteith equations in the case of 
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ET, or a light use efficiency model in the case of GPP) informed by remote sensing information (e.g. vegetation indices, infrared 

temperature, microwave soil moisture), often in combination with reanalysis meteorological forcing data (Fisher et al., 2008; 

Miralles et al., 2011a; Mu et al., 2007; Zhang et al., 2016b; Zhao et al., 2005; Zhao and Running, 2010). These approaches are 

sensitive to the assumptions and imperfections of the underlying flux models. The second approach, employed by the Max Planck 

Institute for Biogeochemistry model (MPI-BGC) uses machine learning (e.g. a model tree ensemble) to determine fluxes (LE, H, 5 

and GPP) from meteorological drivers and optical remote sensing data. Like all supervised machine learning models, the MPI-

BGC method relies on a training dataset to determine the non-linear statistical relationships. In this case, in situ turbulent flux 

measurements from eddy-covariance towers are used (Beer et al., 2010; Jung et al., 2011). Such an approach relies implicitly on 

an assumption that a long temporal record of fluxes at a small number of sites captures the full range of behavior and sensitivities 

of terrestrial ecosystems around the globe. In addition, extreme and therefore rare events may be difficult to capture based on the 10 

limited data availability. 

Alternatively, one can use a machine learning approach, such as an Artificial Neural Network (ANN) approach), trained on globally-

representative but noisyimperfect estimates of the fluxes (such as those from models) to parameterize the non-linear statistical 

relationships between remote sensing observations and surface fluxes. This approach has been successfully used for global soil 

moisture retrieval (Aires et al., 2012; Kolassa et al., 2013, 2016; Rodríguez-Fernández et al., 2015)(Aires et al., 2012; Kolassa et 15 

al., 2013, 2016; Rodríguez-Fernández et al., 2015) and surface heat flux retrieval (Jiménez et al., 2009). Such ANNs require a 

target dataset for training. Climate model simulations of the relevant geophysical variable are usually used as the training dataset 

to facilitate thesubsequent data assimilation of retrievals into the modelefforts (Aires et al., 2012; Kolassa et al., 2013, 2016)(Aires 

et al., 2012; Kolassa et al., 2013, 2016).  However, the downside of this approach is that the resulting fluxes estimated by the ANN 

often showexhibit some of the same biases as the simulations used to train the network (Rodríguez-Fernández et al., 2015), even 20 

if improvements can be achieved such as a more realistic seasonal cycle as it is informed by the seasonal cycle of the remote 

sensing data (Jiménez et al., 2009). 

In this study, we develop an ANN approach to retrieve monthly surface fluxes at the global scale. The network uses remotely sensed 

solar-induced fluorescence (SIF) estimates in addition to other data including precipitation, temperature, soil moisture, snow cover, 

and net radiation as inputs (predictor). To reduce any biases, we introduce a Bayesian perspective to generate the trainingtarget 25 

dataset for the ANN. Multiple estimates of each of the fluxes are selected according to a prior probability that reflects the quality 

and information content of the dataset at the particular pixel of interest (details are provided in Section 3.2). This approach enables 

us, for the first time, to generate a robust trainingtarget dataset along with a statistical algorithm for the retrieval, while bypassing 

the need for a land surface model and radiative transfer scheme. This new global product of surface turbulent fluxes is named 

WECANN (Water, Energy, and Carbon Cycle fluxes with Artificial Neural Networks). WECANN monthly flux estimates for the 30 

period 2007 – 2015 are provided on a 1° × 1° resolution grid and with units of W m-2 for LE and H, and gC m-2 day-1 for GPP. The 

spatial coverage of WECANN is presented in Figure S1. It includes all the land areas, except for Greenland, Antarctica, and any 

1° × 1° pixel that has more than 75% water, snow or ice permanently. To estimate the fraction of water, snow and ice in each pixel 

we used the 0.05° × 0.05° MODIS-based Land Cover Type product (MCD12C1 v051) (NASA LP DAAC, 2016).  

A second key innovation of the WECANN methodology is that it uses the new remotely sensed SIF measurement as input. To our 35 

knowledge, this is the first time that remotely-sensed SIF estimates are used at the global scale to retrieve surface turbulent fluxes 

(LE, H, and GPP). Previous studies show a strong relationship between the rate of photosynthesis and SIF  observations and indicate 

that the plant fluorescence measurements can be a useful proxy for photosynthesis estimation (Flexas et al., 2002; Govindjee et al., 

1981; Havaux and Lannoye, 1983; van Kooten and Snel, 1990; Krause and Weis, 1991; McFarlane et al., 1980; Toivonen and 

Vidaver, 1988; van der Tol et al., 2009). Recently, satellite observations of SIF have become available, opening new possibilities 40 
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for the global monitoring of photosynthesis (Frankenberg et al., 2011, 2012, 2014; Guanter et al., 2012; Joiner et al., 2013; Schimel 

et al., 2015; Xu et al., 2015).  

SIF observations from the Global Ozone Monitoring Experiment–2 (GOME-2) instrument are shown to be more sensitive to plant 

photosynthesis (both seasonal variability and intensity) compared to typical optical-based vegetation index estimates (such as the 

Enhanced Vegetation Index - EVI) (Joiner et al., 2011). Another SIF product retrieved from the Greenhouse gases Observing 5 

SATellite (GOSAT) has been used to study the impact of seasonal variability on vegetation productivity in Amazon rainforest and 

shows that SIF isSIF observations from the Global Ozone Monitoring Experiment–2 (GOME-2) instrument are shown to better 

track the seasonal cycle of GPP compared to typical high-resolution optically-based vegetation index estimates (Guanter et al., 

2012, 2014; Joiner et al., 2014; Walther et al., 2016). SIF has also been shown to be a pertinent indicator of vegetation water stress 

(Lee et al., 2013). Moreover, a strong near-linear relationship between GOSAT-basedmonthly SIF retrievals and GPP is found for 10 

different vegetation types which suggests that SIF estimates can be combined with plant physiological fluorescence models for 

future global carbon cycle researchstrongly constrain GPP retrievals (Frankenberg et al., 2011). 

Recently, a new SIF product was developed from observations of the GOME-2 satellite using a new retrieval algorithm that 

disentangles three components from  multispectral observations (Joiner et al., 2013). SIF retrievals are shown not to be strongly 

affected by cloud contamination and seasonal variabilities in aerosol optical depth (Frankenberg et al., 2014). More recently, 15 

remotely sensed SIF retrievals have been used to successfully provide estimates of GPP in cropland and grassland ecosystems 

(Guanter et al., 2014; Zhang et al., 2016a). SIF retrievals are also integrated with photosynthesis estimates from National Center 

for Atmospheric Research Community Land Model version 4 (NCAR CLM4) which result in significant improvement of the 

photosynthesis simulation (Lee et al., 2015). As GPP directly relates to plant transpiration through stomata regulation (Damour et 

al., 2010; DeLucia and Heckathorn, 1989; Dewar, 2002), and transpiration water fluxes dominate continental ET (Jasechko et al., 20 

2013), the use of remotely sensed SIF has the potential to also better constrain estimates of the continental water (LE), and energy 

(H) cycles, in addition to carbon (GPP) cycle. Using our machine learning approach we further demonstrate the usefulness of SIF 

for constraining surface evaporation. 

The rest of the paper is organized as follows. The datasets used as input and target are introduced in Section 2. The ANN retrieval 

and Bayesian characterization methods are explained in Section 3. Section 4 provides the results of flux retrievals, validation of 25 

results, uncertainty analysis of the retrievals and discussions on the impact of SIF on the retrievals. Conclusions are presented in 

Section 5. 

2 Data 

This section provides details of each of the remote sensing and/or model-based estimates of the variables used as input or target 

data in the ANN framework, as well as the tower data used to validate the retrievals. The inputs toof WECANN include six 30 

remotely sensed variables introduced in Section 2.2: SIF, net radiation, air temperature, soil moisture, precipitation, and snow 

water equivalent. These are used to retrieve the three surface fluxes (LE, H, and GPP). Different observation and/or model based 

datasets are used as the training dataset, and are explained in Section 2.1. All the data presented here are projected and gridded on 

a 1° × 1° geographic grid and averaged at monthly temporal resolution. The ocean and ice covered pixels were masked using the 

land mask data from National Snow and Ice Data Center (NSIDC) (Brodzik and Armstrong, 2013). Finally, the FLUXNET tower 35 

data used for validation of the ANN retrievals are presented in Section 2.3. 
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2.1 Training Datasets 

Four products are introduced in this section, and a triplet of them is used for training of each of the LE, H, and GPP (Section 3.2). 

For LE and H, training is performed based on GLEAM, FLUXNET-MTE, and ECWMF ERA HTESSEL. For GPP, training is 

performed on FLUXNET-MTE, ECWMF ERA HTESSEL, and MODIS-GPP. Table 1 summarizes the characteristics of the 

training datasets used here.  5 

2.1.1 GLEAM 

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms to estimate terrestrial evapotranspiration using 

satellite observations (Martens et al., 2016; Miralles et al., 2011a). GLEAM is a physically-based model composed of 1) a rainfall 

interception scheme, driven by rainfall and vegetation cover observations; 2) a potential evaporation scheme, calculated from the 

Priestley and Taylor (1972) equation and driven by satellite observations; and 3) a stress factor attenuating potential evaporation, 10 

based on a semi-empirical relationship between microwave VOD observations and root-zone soil moisture estimates (based on a 

running water balance for rainfall and assimilating satellite soil moisture). The data is provided on a 0.25° × 0.25° spatial resolution 

and daily temporal resolution and starts in 1980. GLEAM data have been used for studying land-atmosphere interactions, and the 

global water cycle (Guillod et al., 2014, 2015, Miralles et al., 2011a, 2014a, 2014b). In this study, we use LE and H estimates from 

the latest version v3.0a (Martens et al., 2016). 15 

2.1.2 FLUXNET-MTE 

The FLUXNET-MTE (Multi-Tree Ensemble) provides global surface fluxes at 0.5° × 0.5° spatial resolution derived from empirical 

upscaling of eddy-covariance measurements from the FLUXNET global network (Baldocchi et al., 2001). The MTE method used 

is an ensemble learning algorithm that enables learning diverse sequence of different model trees by perturbing the base learning 

algorithm (Jung et al., 2009, 2010, 2011). The data covers the period from January 1982 to December 2012 and can be used for 20 

benchmarking land surface models and assessment of biosphere gas exchange. We use LE, H, and GPP estimates from FLUXNET-

MTE. 

2.1.3 ECMWF ERA HTESSEL 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) is a global 3D variational data 

assimilation (3DVAR) product that uses the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) in 25 

the forecast system. HTESSEL has a surface runoff component and accounts for a global non-uniform soil texture unlike the old 

TESSEL model (Balsamo et al., 2009). This is an offline model simulation, and HTESSEL is driven by meteorological forcing 

output from the forecast runs. Photosynthesis in the model is computed independently (i.e. with its own canopy conductance) from 

LE, so that the carbon cycle does not interact with the water cycle at the stomata level, adding errors.  We use LE, H, and GPP 

estimates from ERA HTESSEL provided on a 0.25° × 0.25° geographic grid with daily temporal resolution.  30 

2.1.4 MODIS-GPP 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is onboard the sun-synchronous NASA satellites Terra 

(10:30 AM/PM overpasses) and Aqua (1:30 AM/PM overpasses). It provides 44 global data products (Justice et al., 2002) from 36 

spectral bands including visible, infrared and thermal infrared spectrums to monitor and understand Earth surface: atmosphere, 

land and ocean processes. The MODIS GPP/NPP project (MOD17) provides gross/net primary production estimates covering the 35 

whole land surface and is useful for analyzing the global carbon cycle and monitoring environmental change. The MOD17 
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algorithm is based on a light-use efficiency approach proposed by (Monteith and Moss, 1977)(Monteith and Moss, 1977), which 

states that GPP is proportional to the product of incoming Photosynthetically Active Radiation (PAR), fraction of Absorbed PAR 

(fAPAR) and efficiency of radiation absorption in photosynthesis. We use the monthly MOD17A2 GPP product (Running et al., 

2004; Zhao et al., 2005; Zhao and Running, 2010). MOD17A2 is available from 2000 until 2015, and provided on a 0.05° × 0.05° 

spatial resolution.  5 

2.2 Input Datasets  

Six sets of observations are used as input to the WECANN retrieval algorithm. These are selected in a way to provide necessary 

physical constraints on the estimates from the ANN. Table 2 lists the characteristics of each of the datasets, and they are briefly 

introduced in the following. 

2.2.1 Solar-Induced Fluorescence 10 

The GOME-2 instrument is an optical spectrometer onboard Meteorological Operational Satellite Program, MetOp-A and MetOp-

B satellites, which were launched by the European Space Agency (ESA). GOME-2 was designed to monitor atmospheric ozone 

profile as wells as other trace gases and water vapor content. It senses Earth backscatter radiance and solar irradiance at a 40×8040 

km spatial resolution. (prior to July 2013 the spatial resolution was 40×80 km). Recently, the retrieval of Solar-Induced chlorophyll 

Fluorescence (SIF) using GOME-2 observations in the 650-800 nm spectrum has been investigated (Frankenberg et al., 2011; 15 

Joiner et al., 2011).(Joiner et al., 2013, 2016). We use version 26 of the daily SIF product that uses the MetOp-A GOME-2 channel 

4 with a ~0.5 nm spectral resolution and wavelengths between 734 and 758 nm. SIF estimates are provided on a geographic grid 

with 0.5° × 0.5° grid spacing.  

2.2.2 Net Radiation 

Net radiation is the main control of the rates of sensible and latent heat in wet environments and is closely related to PAR. The 20 

Clouds and Earth’s Radiation Energy System (CERES) is a suite of instruments which measure radiometric properties of solar 

reflected and Earth emitted radiation from the Top Of Atmosphere (TOA) to Earth surface, from three broadband channels at 0.3 

– 100 𝜇𝑚. The CERES sensors are on board the Earth Observation Satellites (EOS) including Terra, Aqua and TRMM (Kato et 

al., 2013; Loeb et al., 2009). We use the net radiation estimates from Synoptic Radiative Fluxes and Clouds (SYN) product of 

CERES which are provided on a 1° × 1° geographic grid with monthly time resolution. 25 

2.2.3 Air Temperature  

The Atmospheric Infrared Sounder (AIRS) is a high- spectral resolution spectrometer onboard the NASA Aqua satellite launched 

in 2002. It provides hyperspectral (visible and thermal infrared) observations for monitoring process changes in the Earth’s 

atmosphere and land surface, as well as for improving weather prediction. The AIRS instrument was designed to obtain 

atmospheric temperature and humidity profiles of every 1 km layer of the atmosphere. The accuracy of AIRS temperature 30 

observations is typically better than 1°C in the lower troposphere under clear sky condition (Aumann et al., 2003). We use daily 

temperature estimates from the lowest layer of AIRS level-3 standard product that is provided on a 0.5° × 0.5° geographic grid. 

2.2.4 Surface Soil Moisture 

The European Space Agency (ESA) Climate Change Initiative (CCI) program soil moisture (ESA CCI SM) is a multi-decadal 

(1980–2015) global satellite-observed surface soil moisture product. It merges observations from passive sensors (e.g., Scanning 35 
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Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), AMSR-E) and active ones (e.g., the 

European Remote Sensing (ERS), Advanced Scatterometer (ASCAT)), based on a triple collocation error characterization (Dorigo,  

et al., in reivew; Liu, Parinussa, et al., 2011; Liu et al., 2012; Wagner et al., 2012). Here, we use daily data from the latest version, 

v2.3. ESA CCI SM is provided on a 0.25° × 0.25° geographic grid. 

2.2.5 Precipitation 5 

The Global Precipitation Climatology Project (GPCP) provides global daily precipitation estimates at 1° × 1° spatial resolution 

from Oct. 1996 to near present (Huffman et al., 2001). Global precipitation estimates from infrared and microwave instruments 

are combined with monthly gauge measurements to produce the daily estimates.  In this study, v1.2 of the one-Degree Daily (1DD) 

product of GPCP is used and daily estimates are aggregated to monthly scales. Several studies have evaluated the GPCP 1DD 

product at global or regional scales, and results show that it has high accuracy and good agreement with independent in situ 10 

measurements and other global precipitation estimates (Gebremichael et al., 2005; Joshi et al., 2012; McPhee et al., 2005; Rubel 

et al., 2002).  

2.2.6 Snow Water Equivalent  

The GlobSnow project is developed by ESA, and provides long-term snow-related variables: Snow Water Equivalent (SWE) and 

areal Snow Extent (SE). It combines microwave-based retrievals of snow information (including Nimbus-7 SMMR, DMSP 15 

F8/F11/F13/F17 SSM/I(S) observations) and ground based station data through a data assimilation process and provides the SWE 

and SE products at different temporal resolutions: daily, weekly and monthly (Pulliainen, 2006). Here, we use v2 of the daily L3A 

SWE product which is posted on a 25 km × 25 km EASE grid. 

2.3 Validation Dataset: Eddy-Covariance Flux Observations 

FLUXNET is a network of regional micrometeorological tower sites, which measure turbulent flux exchanges (water vapor, energy 20 

fluxes and carbon dioxide) between ecosystems and atmosphere (Baldocchi et al., 2001). FLUXNET comprises over 750 sites 

covering five continents. Measurements from the FLUXNET towers provide valuable information for validating satellite based 

retrievals of surface fluxes. In this study, FLUXNET measurements from the FLUXNET2015FLUXNET 2015, the La Thuile 

Synthesis dataset for 21 stationsand the Large-scale Biosphere-Atmosphere (LBA) experiment in Brazil are used for validation 

(details are provided in section 4.4).  25 

FLUXNET 2015 tier 1 and tier 2 data were retrieved from (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The data have 

been systematically quality controlled with a standard format throughout the dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-

dataset/data-processing/, (Pastorello et al., 2014)) and gap-filled using ERA meteorological forcing downscaling.  

From the Large-scale Biosphere-Atmosphere (LBA) experiment in Brazil, we use data from sites in Rondônia at the edge of a 

deforested region (BR-Ji1 and BR-Ji2) and near São-Paulo (BR-Sp1). As the data did not span recent years, we instead use a 30 

climatology of the fluxes for comparison. We note that, of course, the inter-annual variability in the region (such as El Niño and 

La Niña) could alter the seasonality and magnitude of the fluxes in the region. 

to validate the We also use data from the La Thuile Synthesis Dataset (http://fluxnet.fluxdata.org/data/la-thuile-dataset/) covering 

24 sites. These data are part of the free-fair use version of the dataset.  

A total of 97 sites from the three datasets are selected for validation of WECANN retrievals. These sites are selected to span  35 

spanning a large climatic and biome gradient (details are provided in section 4.4).Fig. S2). For AmeriFlux towers, if measurements 

from both the FLUXNET 2015 dataset and the La Thuile dataset were available, we have used the FLUXNET 2015 data. We have 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
http://www.saopaulofc.net/spfc
http://fluxnet.fluxdata.org/data/la-thuile-dataset/
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only selected sites that had at least 24 month of continuous measurements during 2007-2015 years. Any site that would have fallen 

outside of the WECANN land mask (Fig. S1) is excluded (several sites in coastal regions).  

3. Methodology 

3.1 Artificial Neural Network Setup 

We developed an ANN retrieval algorithm to estimate the surface fluxes (LE, H, and GPP) based on our six sets of input 5 

observations: SIF, net radiation, air temperature, soil moisture, precipitation, and SWE (as described in Section 2.2). The ANN 

used here is a feedforward network consisting of three layers: (1) an input layer that directly connects to the input data, (2) one 

hidden layer and (3) an output layer that produces the 3 output estimates. The number of neurons in the input and output layer is 

determined by the number of input and output variables, whereas for the hidden layer it has to be chosen according to the 

complexity of the problem (see below). The neuron output from each layer is fed to neurons in the subsequent layer through 10 

weighted connections. Each neuron output is the weighted sum of its inputs plus a bias, which is then subjected to a transfer 

function. In this study, we chose a tangent sigmoid transfer function for neurons in the hidden layer and a linear transfer function 

in the output layer. The change of the transfer function for the hidden layer (log sigmoid or tangent sigmoid) did not produce any 

significant changes in the retrievals (not shown), so we used the more common method.  A schematic of the ANN architecture is 

provided in Fig. 1.  15 

The training step of the ANN aims at estimating the weights for each of the neuron connections, such that the mismatch between 

the ANN outputs and target estimates is minimized. For this, we used the mean squared error (MSE) as the cost function and a 

backpropagation algorithm to adjust the ANN weights. During training, the target data is divided into three subsets: training, 

validation and testing constituting 60%, 20% and 20% of the target data, respectively. In each iteration, the training subset is used 

to estimates the weights in the network, and the convergence of the training and validation estimates towards the target data is 20 

checked using the validation subset. When overfitting of the network weights to the training data occurs, the validation estimates 

start diverging from the target data and the training is stopped (early stopping). The weights from the last iteration before the 

occurrence of the divergence represent the final solution. The test datatesting subset are used to assess the ANN performance after 

the training phase. 

As an additional measure to avoid overfitting, we repeated the training for several ANNANNs with an increasing number of 25 

neurons in the hidden layer (1 to 15). For 1 to 5 neurons, the R2 value between the target data and NNthe ANN estimates increased 

with an increasing number of neurons. For more than 5 neurons, little change in the skill was observed when increasing the number 

of hidden layer neurons (Fig. S1S3). Thus an ANN with 5 hidden layer neurons represents the simplest ANN that can converge to 

a solution and model the non-linear relationship between the satellite inputs and the surface flux estimates. 

To train the ANN, we used LE, H and GPP estimates from the years 2008-2010. The target dataset was generated through a triple 30 

collocation based merging of triplets of the flux estimates introduced in Section 2.1 (details are discussed in Section 3.2). After 

completion of the training, the performance of the ANN and its ability to generalize was evaluated using the LE, H and GPP target 

data from 2011. Finally, WECANN retrievals are validated against other global products and eddy covariance tower data. Results 

of these comparisons are presented in section 4. 

3.2 Target Dataset: A Bayesian prior using Triple Collocation 35 

One of the key issues in the design of an ANN to retrieve any geophysical variable is defining a good trainingtarget dataset. One 

practice has been to use outputs from a land surface model as the target (Aires et al., 2005; Jiménez et al., 2013; Kolassa et al., 
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2013; Rodríguez-Fernández et al., 2015). However, all observations and models contain random errors and biases. Therefore, the 

retrieval based on the ANN exhibits mostsome of the biases of the original trainingtarget dataset even if the ANN is able to make 

corrections to its original training target data (e.g. correction of an imperfect seasonal cycle, as demonstrated by Jiménez et al., 

2009). To address this issue, we use multiplethree datasets, which are sufficiently independent so that the training can learn from 

each dataset and benefit from all of them, synergistically. We implement a pseudo Bayesian training by probabilistically weighting 5 

the occurrence of each training dataset by its likelihood, and define a target dataset. The three datasets are listed in Table 1 for each 

variable.  

To define this prior distribution, we use the triple collocation (TC) technique. TC is a method to estimate the Root Mean Square 

Errors (RMSE) (and, if desired, correlation coefficients) of three spatially and temporally collocated measurements by assuming a 

linear error model between the measurements (McColl et al., 2014; Stoffelen, 1998). This methodology has been widely used in 10 

error estimation of land and ocean parameters, such as wind speed, sea surface temperature, soil moisture, evaporation, 

precipitation, fAPAR, and in the rescaling of measurement systems to reference system for data assimilation purposes 

(Alemohammad et al., 2015; D’Odorico et al., 2014; Gruber et al., 2016; Hain et al., 2011; Lei et al., 2015; Miralles et al., 2010, 

2011b; Parinussa et al., 2011), as well as in validating categorical variables such as the soil freeze/thaw state (McColl et al., 2016). 

The relationship between each measurement and the true value is assumed to follow a linear model: 15 

 

     𝑋𝑖 = 𝛼𝑖 + 𝛽𝑖𝑡 + 𝜀𝑖           𝑖 = 1,2,3      (1) 

 

where 𝑋𝑖′𝑠 are the measurements from the collocated system 𝑖 (e.g. remote sensing observation, model output, etc), 𝑡 is the true 

value, 𝛼𝑖  and 𝛽𝑖  are the intercept and slope of the linear model, respectively. 𝜀𝑖  is the random error in measurement 𝑖 and TC 20 

estimates the variance of this random variables in each measurement. By further assuming that the errors from the three 

measurements are uncorrelated (𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗) =  0,  for 𝑖 ≠ 𝑗) and the errors are uncorrelated with the truth (𝐶𝑜𝑣(𝜀𝑖 , 𝑡) =  0), the 

RMSE of each measurement error can be calculated as (McColl et al., 2014): 
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in which 𝑄𝑖𝑗 is the (𝑖𝑡ℎ, 𝑗𝑡ℎ) element of the covariance matrix between the three measurements. Since the triplet of datasets used 

for training each of the fluxes (see Table 1) is derived through different semi-empirical approaches with different sources of errors, 

the assumption of uncorrelated errors is more likely to be met.  

The TC errors from the surface fluxes are shown in Figs. S2-S4-S6. The white regions represent missing retrievals or discarded 30 

negative estimates due to insufficient data record. For LE, high TC errors are found in the Amazon rainforest and tropical Africa 

for GLEAM, in Amazon rainforest and the Sahel for ECMWF, in Indian peninsula for FLUXNET-MTE and in U.S. Great Plains 

for ECMWF and FLUXNET-MTE. For H, beside the aforementioned regions, high TC errors are also found in Southeast Asia for 

GLEAM and ECMWF, and in northern Canada for FLUXNET-MTE. For GPP, MODIS and ECMWF have the highest errors in 

Amazon rainforest, ECMWF and FLUXNET-MTE have relatively higher errors in US Great Plains, and all three products have 35 

similar errors in Tropical Africa. 
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There are several likely causes for these errors. For the FLUXNET-MTE data, the regions which are not covered by (many) 

FLUXNET eddy-covariance stations may result in larger uncertainties, and those regions for which interception is a large 

component of the LE flux as well (Michel et al., 2016). For the GLEAM and ECMWF data thick vegetation generally induces 

biases compared to the satellite observations, especially in tropical regions (Anber et al., 2015).  

Finally, we use the TC-based RMSE estimates at each pixel to compute the a priori probability (𝑃𝑖) of selecting a particular dataset 5 

in each pixel, if that pixel is used as part of the training dataset: 

      𝑃𝑖 =

1

𝜎𝜀𝑖
2

∑
1

𝜎𝜀𝑖
2

3
𝑖=1

       (3) 

in which 𝑃𝑖 is the probability of selecting dataset i when sampling from three measurements. We assume that these probabilities 

are time independent as we are limited by the currently available duration of the input data; however, future versions will explore 

the use of seasonally varying probabilities.  10 

4. Results and Discussion 

4.1 Global Magnitude and Variability of Surface Fluxes 

In this section, we present and compare the retrievals of LE, H and GPP fluxes for the year 2011, which was not included in the 

training step of WECANN, thus. Thus, it is used here to evaluate the ANN fit to the target values.  

Figure 2 illustrates the global average annual retrieved fluxes and scatterplots of flux retrievals vs target estimates. The spatial 15 

patterns of the WECANN retrievals are similar to expectations. The average global fluxes in 2011 are 36.2638.33 W m-2 for LE, 

34.8239.44 W m-2 for H, and 2.2034 gC m-2 day -1 (or 123.16 PgC yr-1) for GPP. LE has the best R2 (0.95) comparing to the other 

threetwo flux variables H (R2=0.89), and GPP (R2=0.90). The Root Mean Squared Difference (RMSD) of each of the retrievals 

with respect to the target estimates is as following: for LE, RMSD = 11.1306 W m-2; for H, RMSD = 13.3513 W m-2; and for GPP, 

RMSD=1.2322 gC m-2 day -1.  20 

The seasonal variability and spatial pattern of the surface flux retrievals from 2011 (LE, H, GPP) are shown in Figs. 3 - 5. LE does 

not exhibit any variability over deserts, such as the Sahara and Arabian Peninsula, as expected (Fig. 3). Tropical regionsWet 

tropical forests exhibit subtle seasonal variability in LE, such as in the Amazon rainforest, Congo basin and Southeast Asia. These 

spatial variabilities in the seasonal cycle reflect changes in the radiation, temperature, water availability during the dry season, soil 

nutrient, soil type conditions as well as leaf flushing (Anber et al., 2015; Morton et al., 2014, 2016; Restrepo-Coupe et al., 2013; 25 

da Rocha et al., 2009; Saleska et al., 2016). In contrast, seasonal variability dominated by radiation availability are noticeable in 

wet mid-latitude regions for both Northern and Southern Hemisphere, i.e., East Asia, Eastern U.S. and Australian North and East 

Coast with over 60 W m-2 difference between winter and summer months. One exceptional case is South Asia, where LE does not 

significantly rise in spring, likely due to the effects of the monsoonal climate. In Eastern South America, the ET estimates are 

relatively high compared to GPP estimates. This difference can be caused by either low water use efficiency or significant rain re-30 

evaporation and soil evaporation. 

Seasonal variabilities in H (Fig. 4) are distributed in opposite pattern to LE, as expected. Deserts and dry regions i.e., the Sahara, 

Southwestern U.S. and Western Australia demonstrate much more seasonal variability than the rest of the world,  -given the strong 

water limitations there, the available energy converted into H becomes dictated by the seasonal cycle of solar radiation. In contrast, 

tropical rainforests (Amazon, Congo, Indonesia) exhibit limited seasonal variability. In mid-latitude energy-limited regions 35 

(Central/Eastern Europe, Easter US), H also reflects the course of available energy, and in more water-limited regimes (e.g. 



 

  10  

Western US and Mediterranean Europe), it reflects the interplay between soil dryness and available energy, with a peak between 

spring and summer for dry regions. 

The seasonal variability of GPP (Fig. 5) in Northern latitudes followfollows the availability of radiation in wet regions with a peak 

in summer and another in spring for dry regions, corresponding to both soil water availability and high incoming radiation. A clear 

East-West transition conditioned by water availability is observed in continental U.S. In tropics and subtropics, the response is 5 

diverse. The Amazon rainforest exhibits high GPP throughout the year with a peak between September and February in the wetter 

part of the basin, following the dry season, consistent with the observations at eddy-covariance towers near Manaus and Santarem 

(Restrepo-Coupe et al., 2013; da Rocha et al., 2009). Compared to LE, substantial geographical variability areis observed in the 

Amazon, because of the strong variabilities in soil type, green up, biodiversity and soil water availability.rooting depth. In the drier 

part of the basin, water availability controls the seasonal cycle of photosynthesis and the peak in GPP is observed in the wet season 10 

(DJFMA). In the Congo rainforest, GPP exhibits four seasons, with two wet and two dry ones, with substantial decrease in GPP 

during those dry spells. In Indonesia, GPP is steadier throughout the year, exhibiting high values year -round. Monsoonal climates 

over India, South-East Asia, Northern Australia and Central-Northern America are well captured with rapid rise in GPP following 

water availability. The highest GPP are observed in rainforests and the US agricultural Great Plains, in JJA for the latter. Northern 

latitude regions mainly exhibit substantial GPP in the summer and late spring, and small values throughout the rest of the year. 15 

4.2 Impact of SIF on the retrieval of surface fluxes 

Satellite SIF observations are relatively new, and have not been used to estimate LE and H at global scales before. Therefore, we 

assess the information content of SIF observations in the WECANN retrievals by excluding them from the ANN inputs. We trained 

an ANN without SIF data on each of the three fluxes and evaluated the difference between the retrieved fluxes. Figure 6 shows the 

percentage difference maps between flux retrievals trained with SIF and without SIF for the year 2011 as well as the scatter plots 20 

with respect to target dataset. Including SIF decreases LE estimates in parts of Australia, Central Asia, Tibetan plateau and Southern 

Africa. In Indian peninsula, the Sahel, Eastern US and Southeastern Asia LE tends to reduce by adding the SIF information. 

Comparison of the ANN retrieval without SIF compared to the target data shows that the overall statistics of the ANN retrieval are 

comparable to WECANN retrievals, and inclusion of SIF slightly improves R2 and lowers RMSD (Fig. 6d, and Table 3). Including 

SIF decreases H in the Sahel, Arabian Peninsula, Europe, Eastern US and in most of South America. In most of the other regions 25 

H is increased when SIF is added. The global ANN fits against the target H are relatively similar with and without SIF (Fig. 6e, 

Table 3).  

Including SIF increases GPP in Central US, as well as in Europe, Northern India, and Southern Brazil capturing intense cropping 

regions. In Northern Canada, Central Asia, Australia, Southern Africa and the Tibetan Plateau GPP is strongly reduced by adding 

SIF into the ANN retrieval. In the Congo and Amazon, photosynthesis is slightly increased locally by the inclusion of SIF. Similarly 30 

to the other retrievals the global statistics of the retrieval with and without SIF compared to the target are relatively similar (Fig. 

6f, and Table 3), hiding some of the changes in the spatial structure.  

This comparison shows the significant role that SIF estimates play in the flux retrievals from WECANN. Given that GOME-2 

instrument was originally designed to measure ozone in the atmosphere and not SIF, the future estimates of SIF from designated 

missions such as Fluorescence Explorer (FLEX) will have higher accuracy and finer spatial and temporal resolution (Kraft et al., 35 

2012). Those SIF estimates will further enhance the retrievals of surface fluxes. 
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4.34.2 Comparison against other remote-sensing based products 

In this section, we compare the WECANN-based estimates to other datasets. used in the training to better understand how 

WECANN differs from those training data. Figure 6 shows the comparisons for LE, and indicates that our product has highera 

relatively similar R2 with the three products (R2 = 0.96 with FLUXNET-MTE (R2 = 0.96) and ECMWF (, and R2 = 0.96) than94 

with GLEAM (R2 = 0.94). However, the scatterplot with FLUXNET-MTE is more concentrated and aligned along the 1:1 line, 5 

further emphasizing the consistency between the two datasets. Difference (RMSD of 6.42 W m-2 for FLUXNET MTE versus 8.47 

W m-2 and 9.72 W m-2 for GLEAM and ECMWF, respectively). Differences in spatial patterns shown in Fig. 6a-c reflect that 

WECANN exhibits smaller spatial differences with FLUXNET-MTE than GLEAM or ECMWF and such differences exhibit a 

narrower range between -10 and 10 W m-2. FLUXNET-MTE overestimates LE compared to our productWECANN in transitional 

tropical and subtropical regions and particularly over India, which are regions with few eddy-covariance towers. GLEAM exhibits 10 

substantial differences with our product particularly in regions dominated by seasonal water stress such as Brazilian savannas, the 

Horn of Africa, Central America, India and the subtropical humid part of Africa south of the Congo. In the Sahel, GLEAM LE is 

higher than our estimate and FLUXNET-MTE. The LE estimate of ECMWF is nearly always higher than our estimate with much 

higher values in the Congo, the Amazon, Southern Brazil, and Northern Canada. In Europe, where the ECMWF estimate should 

be best because of the frequent weather operational forecast checks and model adjustment in the region, the estimates are more 15 

similar. The differences and similarities of WECANN retrievals with the three target datasets is consistent with the error estimates 

from TC. For example, Fig. S2S4 shows that FLUXNET-MTE has the smallest error in LE estimates globally compared to GLEAM 

and ECMWF, other than across India. WECANN retrievals also have better agreement with FLUXNEWT-MTE. 

The differences in H estimates are more complex (Fig. 7). First, the R2 between WECANN and the other datasets is alwaysare 

slightly lower than for LE. ECMWF and FLUXNET-MTE again yield higher R2 with WECANN (0.85 and 0.84, respectively92) 20 

while GLEAM has an R2 of 0.8087. GLEAM exhibits lower H in most of the Northern hemisphere, especially in seasonally dry 

regions, potentially due to its simple formulation of G.ground heat flux (G). H estimates are relatively higher over the Amazon and 

Congo but lower over Indonesia for GLEAM. In the Southern Sahara and northern Sahel as well as in Eastern Asia and Canada 

GLEAM has lower H compared to WECANN and FLUXNET -MTE. ECMWF exhibits higher values in seasonal dry regions such 

as Western US, Brazilian Savannas, Southern Congo, the Sahel compared to WECANN and smaller values in the Amazon, 25 

Indonesia, and over desert areas of the Sahara and Arabic peninsula as well as South East Asia. The GLEAM and ECMWF H 

difference maps show many similar patterns: the Sahara, Eastern Europe, East Asia are underestimated, while Southern Africa and 

Eastern part of Amazon are overestimated. Similarly the errors patterns estimated from TC (Fig. S3S5) are consistent with the 

comparison of WECANN and target datasets. Figure S3S5 shows that ECMWF has higher errors in the Sahel, Southern Congo, 

and Brazilian Savana and GLEAM has higher errors in the Amazon, East Asia and Central Africa. 30 

The comparison between the GPP estimates shows significant differences (Fig. 8). WECANN compares the best against 

FLUXNET-MTE (R2 = 0.9293), with MODIS (R2 = 0.9091) and ECMWF (R2 = 0.8790) following. While FLUXNET-MTE and 

MODISall three products have similar R2, their spatial differences are distinct. In the Amazon, ECMWF and FLUXNET-MTE 

have larger GPP estimates compared to WECANN, while MODIS estimates are much smaller. In cold northern latitude regions of 

Siberia and Northern Canada, all three products have higher GPP than WECANN. In Congo, MODIS and FLUXNET-MTE have 35 

higher GPP, while ECMWF has a lower one. In Central and Southwestern US, all three products tend to yield lower GPP. 

Comparison of these findings with the error estimates from TC (Fig. S4S6) shows that FLUXNET-MTE has the lowest errors 

globally, while ECMWF has the largest errors in the Amazon.  
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4.43 Validation with FLUXNET Data 

Direct validation of the WECANN fluxes is made more challenging by the fact that no global, error-free flux estimates are available. 

Remote sensing or model products such as those used for training have their own errors. In situ estimates from eddy covariance 

towers with a footprint of a few 100 m may not be representative of the entire 1° × 1° pixel, and are known to have problems with 

energy closure. When three datasets with uncorrelated errors (commonly assumed to be true if the sources of error in each dataset 5 

have no common physical origin) are available, triple collocation provides a valuable technique to validate large-scale datasets in 

the absence of a known truth. However, WECANN’s use of different noisy training datasets may cause the presence of some 

correlated errors between WECANN fluxes and other possible large-scale triple collocation inputs. Instead, we validate the fluxes 

by comparing them to data from severala set of FLUXNET eddy-covariance towers. HoweverNevertheless, it is important to keep 

in mind that these flux estimates may themselves have errors relative to the true 1-degree scale fluxes and their footprint not be 10 

representative of the WECANN 1° × 1° pixels. However, in the comparison against tower data the impact of large-scale climate 

variability such as the seasonal cycle or interannual variability are comparable to pixel based retrievals. For instance, the phenology 

has a strong impact on the seasonal cycle of the fluxes and in the following examples, it is clearly highlighted when comparing the 

different products to flux tower estimates. 

 We compare the model outputs to eddy-covariance towers from the FLUXNET 2015 database (tier 1 and tier 2, 15 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) spanning a large climatic and biome gradient (Fig. 10).Summary The data 

have been systematically quality controlled with a standard format throughout the dataset 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/, (Pastorello et al., 2014)) and gap-filled using ERA 

meteorological forcing downscaling. The NEE is partitioned as the sum of Gross Primary Production (GPP) and Ecosystem 

Respiration (RECO) using one of two methods. The first method is based on the extrapolation of nighttime data (Reichstein et al., 20 

2005), which is used to parameterize a respiration model that is then applied over the daytime NEE to estimate RECO. GPP is then 

calculated as the difference between RECO and NEE. The second method uses daytime data to parameterize a model of both GPP 

and RECO (Lasslop et al., 2010). The partitioning method used varies from site to site.  

In addition to the FLUXNET 2015 dataset, we use data from the Large-scale Biosphere-Atmosphere (LBA) experiment in Brazil. 

Specifically, we use data from sites near Santarem, Pará (Site code BR-Sa3), in Rondônia at the edge of a deforested region (BR-25 

Ji1 and BR-Ji2) and near São-Paulo (BR-Sp1). As the data did not span recent years we instead use a climatology of the fluxes for 

comparison. We note that, of course, the inter-annual variability in the region (such as El Niño and La Niña) could alter the 

seasonality and magnitude of the fluxes in the region. 

A summary of statistics across the different sites combining the FLUXNET 2015 tier 1 database is97 sites are provided in Table 

4-Table 6.Tables S1 – S3. Overall, WECANN performs better than the alternative global products. In particular, WECANN has 30 

the highest correlation for 6176% of sites for LE, 6054% of sites for H, and 5653% of sites for GPP. This high R2 reflects the 

capacity of WECANN to correctly capture the seasonal cycle and interannual variability. One of the reasons for this is the presence 

of the SIF information in the ANN retrieval, which is directly related to GPP and plant transpiration, contrary to optical vegetation 

indices that are sensitive to vegetation greenness and canopy cover - factors which can lag fluxes or be out of phase (see e.g. the 

lower correlation with NDVI in Frankenberg et al., 2011). The RMSE of WECANN is lower than all other products at 5671% of 35 

sites for LE, 5046% of sites for H, and 4451% of the sites for GPP. The bias is also reduced compared to other retrievals, even if 

some variability can be seen from site to site. In the following, we analyze the retrievals across 17 select sites that span a range of 

climatic and vegetation coverage conditions. We provide interpretations of similarities and differences between the retrievals, flux 

tower measurements as well the three training datasets.  

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
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Figure 9 shows the comparison of monthly WECANN retrievals with the tower estimates across 5 European sites. At the AT-Neu 

site, Neusflit, Stubai Valley, Austria (Fig. 9a), the seasonal cycle is correctly captured for both LE and GPP. All flux retrievals 

perform relatively well at this site dominated by radiation and temperature. The GPP based on the eddy covariance has a sharper 

and earlier rise in the spring than LE, which seems unrealistic and may be an artifact of the GPP retrieval method. WECANN is 

slightly delayed compared to the observed LE, possibly a reflection of the larger footprint encapsulating various conditions in this 5 

steep topography region. All flux retrievals overestimate the H observations, even though they capture some of the seasonality. 

The observed H lags the observed LE, which seems unrealistic given that the region is mostly radiation limited so that a spring 

increase in radiation and temperature should affect both fluxes. The large footprint of the retrieval could be another source of error, 

as it would sample multiple environmental conditions. Nonetheless, the ECMWF and GLEAM retrievals are the closest to the 

observed H and FLUXNET-MTE strongly overestimates the observed flux, similarly to WECANN, even though the bias is not as 10 

high. 

At the Brasschaat site, BE-Bra, Belgium (Fig. 9b), all retrievals strongly underestimate the reported eddy-covariance H. At this 

humid site though, the magnitude of the measured H is often higher or on the same order in the summer as LE. Given the high 

degree of urbanization around the site, it is most likely a reflection of the footprint of the eddy-covariance and the fact that it 

observes urbanized surfaces with high H. Indeed the surface energy budget is not locally balanced and turbulent fluxes are higher 15 

than the observed net radiation minus ground heat flux. LE is very well captured by WECANN, which captures the seasonal cycle 

well, yet misses some of the interannual variability. WECANN outperforms the other retrievals of LE and GPP. WECANN captures 

the GPP seasonal cycle compared to other products, which display too early GPP rise and overestimate the summer GPP. Again, 

the SIF data provides independent useful data compared to other environmental information (radiation, temperature, vegetation 

indices) used by the other retrieval schemes. 20 

At another seasonally cold site, in Switzerland, CH-Fru (Fig. 9c), WECANN again performs very well, correctly reproducing the 

seasonality of all fluxes, especially compared to the other products, which tend to rise too early in the spring. The magnitude of H 

and LE is very similar to the observations, yet GPP seems to be overestimated by WECANN, yet much less so than other products. 

At the Mediterranean, Spanish site, ES-LgS (Fig. 9d) WECANN correctly reproduces H and LE yet overestimates the magnitude 

of GPP, even though it correctly captures its seasonal dynamics. We note; however, that the region is highly heterogeneous both 25 

in terms of topography and vegetation coverage and that the site is located at some of the driest location of the region.  

At the cold Finland site (FI-Hyy), WECANN very well captures the seasonal cycle of GPP and LE, as well as to a less extent of 

H. WECANN better reproduces the seasonality, amplitude and interannual variability compared to other retrievals (Fig. 9e).  

At the Brazilian sites, spanning the Savanna region to the Amazonian rainforest (Fig. 10), we only consider the climatology of the 

results, as most the data (ending in 2006) was not available during the GOME-2 satellite period. We acknowledge potential 30 

differences when considering the climatology of the fluxes, as interannual variability could modify the derived climatological 

seasonality. At the Rondônia sites Ji1, all flux retrievals tend to overestimate LE and GPP. This is most likely a reflection of the 

large landscape fragmentation with deforested and non-deforested patches. Similarly, the dryness perceived at the flux tower is not 

seen by most of the retrievals as forests can sustain photosynthesis during the dry season through deeper roots (da Rocha et al., 

2009). At the nearby Ji2 site, on the other hand, most flux retrievals perform much better and correspondingly report a maintained 35 

GPP and LE in the dry season. GLEAM as well as ECMWF exaggerate the seasonal cycle of LE and H. WECANN is positively 

biased in H but correctly reproduces LE. FLUXNET-MTE better reproduces GPP than WECANN and both products outperform 

MODIS and the ECMWF retrievals. Relatively similar results are obtained at the wet Santarem site, Sa3, where both WECANN 

and FLUXNET-MTE perform well in reproducing all fluxes. ECMWF and MODIS show the incorrect seasonality of the fluxes at 

the site, as GPP at the site reflects subtle leaf aging and flushing (Lopes et al., 2016; Saleska et al., 2016; Wehr et al., 2016), and 40 
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radiation structure not captured by those models (Anber et al., 2015; Morton et al., 2014, 2016). At the other site near Sao Paulo, 

with dry winter savanna, most flux retrievals correctly capture the seasonal cycle, yet most retrievals and especially WECANN are 

in seasonal advance over the observed eddy covariance with a too early increase in GPP and LE. The site is located in a highly 

heterogeneous agricultural landscape yet observes an evergreen broadleaf forest, which is not representative of the heterogeneous 

landscape seen by the remote sensing products. 5 

In Canada, (Fig. 11), WECANN very well reproduces the seasonal cycle of LE, especially compared to the other products that 

produce a too early rise in LE during the spring season. WECANN also better reproduces the seasonal cycle of GPP compared to 

other products. Nonetheless, all GPP retrievals underestimate the reported eddy covariance GPP. This is true of both sites Qfo and 

Qcu. The reported eddy-covariance GPP appears very small though, especially given the LE magnitude in the summer, pointing 

to potential problem in the magnitude of the surface fluxes, which is drastically impacted by the high-frequency corrections of the 10 

turbulent co-spectrum and its parameterization (Mamadou et al., 2016). H is well reproduced by WECANN at the Qcu site, but the 

Qfo site exhibits nearly twice the H magnitude of the Qcu site in the summer. This does not appear realistic given that the radiative 

and LE conditions are relatively similar at the two sites. WECANN again better reproduces the seasonal cycle compared to the 

other products.  

Across the continental US Ameriflux sites (Fig. 12), WECANN performs well in terms of seasonal and interannual dynamics. At 15 

the Oklahoma agricultural site (US-ARM), H and LE are well reproduced, yet dry year H is underestimated (Fig. 12a). The GPP 

reported at the site very rapidly decays at the end of the spring whereas the region is highly agricultural with sustained agriculture 

in the summer. The difference between the reported GPP and WECANN retrievals might be again due to the difference in the 

footprint of the two estimates, At the Illinois site, US-Ib2, the dynamics of LE is relatively well reproduced by most products 

except for ECMWF (Fig. 12b). All retrievals overestimate GPP, especially FLUXNET-MTE. WECANN exhibits a late delay in 20 

the GPP decay. The measured H is very noisy yet exhibits a summer decay which is only partially captured by the different products. 

At the evergreen needleleaf Maine site, US-Me2, WECANN reproduces the dynamics of H, LE and GPP well, even if it 

underestimates the peak fluxes (Fig. 12c). Over the irrigated maize site in Nebraska (US-Ne1), the retrievals underestimate the 

peak LE and GPP, as well as overestimate the H in the peak summer season (Fig. 12d). This is most likely a reflection of the larger 

area observed or modeled by the flux retrievals which do not include similar intensive irrigation practices, leading to lower peak 25 

LE (and correspondingly higher H) and GPP. Only FLUXNET-MTE reproduces the magnitude of this irrigated site (but US-Ne1 

was included in the FLUXNET-MTE training database). Finally, at the monsoonal grassland site of Santa Rita, AZ, WECANN 

correctly captures the complex dynamics of H and LE at the site with sometimes rain periods preceding the Monsoon period (Fig. 

12e). Yet, WECANN slightly underestimates LE and overestimates GPP. In fact, most flux retrieval overestimate GPP in the dry 

and cold seasons. The landscape in the region is highly heterogeneous with denser vegetation in riparian zones, away from the 30 

tower location, which may explain the lower GPP value at the site compared to estimates of the larger-scale values. 

Figure 13 shows the comparison of retrievals at two other sites. At the Daly River pasture, AU-DaP, Australia (Fig. 13a), 

WECANN reproduces very well the observed LE in terms of both seasonal and interannual variability. Compared to other products, 

WECANN better reproduces the seasonal cycle of this Monsoonal site, with a rapid rise in LE and lagged drying. Most retrievals 

fail to correctly reproduce the exact H seasonality, which is in opposite phase with LE, at this water limited site. All retrievals tend 35 

to overestimate the retrieved eddy-covariance GPP and fail to correctly capture the rapid rise in GPP, except for WECANN. The 

eddy-covariance GPP decay occurs significantly in advance over the LE decay. It seems unlikely that during the drying phase soil 

evaporation would explain nearly all of the LE and that transpiration would be so small (as indicated by the drop in GPP before 

LE). It is most likely due to an artifact in the model fitting of the respiration component, which implicitly assumes some stationarity. 

Nonetheless, all remote sensing retrievals seem to overestimate the dry season GPP. 40 
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At the South African Mediterranean site, ZA-Kru, WECANN reproduces some of the dynamics of the observed H, yet is typically 

smoother (Fig. 13b). Similarly, it reasonably captures the LE dynamics, except for the suspect cold season increase reported at the 

tower in 2013 (like other products). All products overestimate the reported GPP, though WECANN is closest to the observations 

and better captures the seasonal dynamics.  

Overall, across the different sites, the WECANN retrieval performs better than other products, especially in terms of the seasonality 5 

of the fluxes. Several factors contribute to the capability of WECANN in having a better retrieval compared to other products. The 

ANN approach in WECANN uses a novel training technique to remove highly uncertain and outlier estimates from its target 

dataset. Therefore, WECANN retrievals are closer to the truth than each of the single target datasets. Moreover, the SIF 

measurements that are directly correlated with GPP provide a better constraint on flux estimates.  

4.4 Uncertainty Analysis of WECANN Retrievals 10 

One of the advantages of a statistical retrieval algorithm, in particular of ANNs, is that the run time is extremely fast, after the 

training step. This enables us to characterize the uncertainty of the retrievals by propagating the uncertainties in the input variables 

through the network. For this purpose, we set up a 10,000 bootstrap experiment and run the WECANN retrieval by adding error 

to input variables. The errors are normally distributed with mean zero and a standard deviation that depends on the input variable. 

For SIF, air temperature and soil moisture, we use the error estimates or standard deviations reported in their associated products. 15 

These errors are spatially and temporally varying and we used the associated value for each time and space data point. For net 

radiation, we use a constant standard deviation of 34.58 W m-2 based on the analysis by (Pan et al., 2015). For precipitation and 

SWE estimates, we use a conservative 10% of the estimates themselves as a standard deviation for error. For each bootstrap 

replicate, we sample from the error distribution of each input variable and add that to the input.  

Figure 14 shows the results of the bootstrap for each of the three fluxes globally and in different climatic zones. The zones are 20 

defined as Polar (90° N - 60° N), Northern Hemisphere (NH) mid-latitude (60° N - 10° N), Tropics (10° N - 15° S), and Southern 

Hemisphere (SH) mid-latitude (15° S - 60° S). Each panel in Figure 14 shows the uncertainty derived from the bootstrap experiment, 

relative to the interannual variability of the fluxes. GPP estimates are provided in units of PgC yr-1 as total productivity in each 

region. LE and H are provided in units of W m-2 as an average rate of flux in each region. 

At global scale the GPP ranges between a minimum of 117.15 ± 2.379 PgC yr-1 in 2015 to a maximum of 124.82 ± 2.482 PgC yr-25 

1 in 2007. Similarly, LE has a minimum of 37.40 ± 0.54 W m-2 in 2015 and a maximum of 38.33 ± 0.53 W m-2 in 2011. H has a 

maximum of 41.00 ± 0.54 W m-2 in 2015 and a minimum of 39.43 ± 0.52 W m-2 in 2011. 

The inter-annual variations of surface fluxes show distinct patterns. For example, in year 2015, which was an El Niño year, LE 

and GPP have reduced notably, and H increased to an extreme value in the 9 years of WECANN product. Moreover, from 2011 to 

2015 both LE and GPP have a consistent decreasing trend at global scale. The inter-annual variability of GPP and LE are similar 30 

at global scale while their regional patterns are different. For example, in year 2015 GPP at global scale and in all regions has 

decreased with respect to 2014, while LE in Polar and NH mid-latitudes have increased and LE at global scale has decreased. As 

expected, the variability of LE and H are anti-correlated.  

4.5 Impact of SIF on the retrieval of surface fluxes 

Satellite SIF observations are relatively new, and have not been used to estimate LE and H at the global scale previously. Therefore, 35 

we want to assess the information content of SIF observations in the WECANN retrievals by replacing them with more typical 

optical/near-infrared indices of vegetation (NDVI or EVI).  
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To do so, we trained two different ANNs with NDVI and EVI instead of SIF data on each of the three fluxes and evaluated the 

retrievals against the same FLUXNET tower measurements used in Section 4.3 for validating WECANN retrievals.  Tables S4 - 

S6 show the results of validations of these three retrievals against the tower measurements for LE, H and GPP, respectively. In 

terms of correlation coefficient, on average all three retrievals have relatively similar performance except in regions where 

phenology (and incident radiation) is not the main contributor to the flux variability such as in Spain (ES-LgS). Indeed, in such 5 

regions changes in canopy structure is more limited and changes in response to water stress (through changes in light and water 

use efficiency) are the primary reason for the seasonal variability. This emphasizes, similarly to current thinking on the SIF signal, 

that the monthly SIF signal is dominated by incident radiation and canopy structure but that in some conditions light use efficiency 

changes are detected by SIF, but not optical vegetation indices (Lee et al., 2013).  We also point out that current SIF retrievals 

(such as those from GOME-2 used here) are still noisy as they were not obtained by satellites designed to measure SIF. Future SIF 10 

designated missions such as Fluorescence Explorer (FLEX) will have higher accuracy and finer spatial and temporal resolution 

(Drusch et al., 2016). We expect they will further enhance the retrievals of surface fluxes such as those from WECANN. 

5 Conclusion  

This study introduces a new statistical approach to retrieve global surface latent and sensible heat fluxes as well as gross primary 

productivity using remotely sensed observations at a monthly time scale. The methodology is developed based on an Artificial 15 

Neural Network (ANN) that uses six input datasets including solar induced fluorescence (SIF), precipitation, net radiation, soil 

moisture, snow water equivalent, and air temperature. Moreover a Bayesian approach is implemented to optimally integrate 

information from three target datasets for training the ANN using Triple Collocation to calculate a priori probabilities for each of 

the three target datasets based on their uncertainty estimates. 

The new global product, referred to as WECANN, is validated using target datasets as well as FLUXNET tower observations. The 20 

validation results comparing with target outputstraining datasets show that our retrieval is best correlatedhas similar correlation 

with the three products while it has the smallest RMSD with FLUXNET-MTE for LE (R2=0.96RMSD=6.42 W m-2), H 

(R2=0RMSD=7.84 W m-2) and GPP (R2RMSD=0.9288 gC m-2 day-1), which is believed to be one of the most realistic global 

datasets and it has the lowest RMSE based on our TC error estimates (Fig. S2S4 – Fig. S4S6), despite its reported underestimated 

inter-annual variability due to the use of climatological values for several meteorological drivers (Miralles et al., 2014a, 2016). 25 

Such tendency also can be summarized from the global difference maps, which show that FLUXNET-MTE has the best agreement 

with WECANN retrievals. The WECANN and FLUXNET-MTE approaches are both based on machine learning, although the 

FLUXNET-MTE retrievals use a regression tree rather than an ANN. Nevertheless, this commonality of methods may also 

contribute to the greater correspondence between these two datasets.   

The flux retrieval maps indicate that all three fluxes have similar seasonal variability and distribution which are determined by 30 

annual phenological cycle in energy limited Northern latitude regions, dryness in Mediterranean and Monsoonal climates and by 

light availability in rainforests. Seasonal radiation has great impact on some regions for all flux variables, such as Eastern U.S., 

Europe and East Asia, which have wet conditions, are highly vegetated and located in mid-latitudes. As opposed to this, the 

seasonal variability for all fluxes in some low-latitude and wet condition regions, such as Amazon rainforest, Southern Africa and 

Southeast Asia, as well as some low-latitude arid regions, such as Southwest U.S., Western Australia, North Africa and Western 35 

Asia are not significant, as there is less seasonal solar radiation variability in aforementioned regions. Comparison between the 

flux variables LE, H, and GPP, they all demonstrate generally similar patterns of seasonal variability through time.  
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We also assessed the impact of SIF on retrieval quality. The difference maps between neural network outputs trained with SIF and 

without SIF demonstrate that SIF has high influence on all three flux retrievals (Fig. 6).In comparison to optical-based vegetation 

indices, SIF has better performance in regions where phenology and incident radiation are not the main contributor to flux 

variability, while it has similar performance in other regions.  

Finally, from the validation results comparing with FLUXNET tower observations, it is noted that WECANN has better 5 

performance compared to other global products. LE and H estimates from WECANN are more consistent with tower observations 

compared to GPP. WECANN retrievals have better correlation with tower observations in 6176% of site for LE, 6054% of sites 

for H, and 5653% of sites for GPP compared to other products. Moreover, retrievals from WECANN outperform other global 

products in capturing the seasonality of surface fluxes across a wide range of sites with different climatic and biome conditions. 

Data Availability 10 

WECANN product is available for free upon request. Please contact the corresponding author to request access. 

WECANN product is publicly available for download on Aura Validation Data Center (AVDC) at Goddard Space Flight Center 

via https://avdc.gsfc.nasa.gov/pub/data/project/WECANN/ 

Competing Interests 

The authors declare that they have no conflict of interest. 15 

Acknowledgments  

The funding for this study is provided by the NASA grant # NNX15AB30G. PG acknowledges funding from NSF CAREER 

Award # EAR - 1552304, and NASA grant # 14-AIST14-0096. DM and PG acknowledge funding from the Belgian Science Policy 

Office (BELSPO) in the frame of the STEREO III programme project STR3S (SR/02/329). WECANN product is hosted on AVDC 

server, and we would like to thank Michael M. Yan and Ghassan Taha for their help in this regard. The authors would like to thank 20 

all the producers and distributors of the data used in this study. The ECMWF team (Dr. Gianpaolo Balsamo and Dr. Souhail 

Bousetta, in particular) for providing the ECMWF data. We also thank NASA and Prof. Running for providing the MODIS GPP 

estimates and Dr. Johanna Joiner for the GOME-2 data. The GPCP 1DD data were provided by the NASA/Goddard Space Flight 

Center’s Mesoscale Atmospheric Processes Laboratory, which develops and computes the 1DD as a contribution to the GEWEX 

Global Precipitation Climatology Project. The MCD12C1 data product was retrieved from the online Data Pool, courtesy of the 25 

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) 

Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool. This work used eddy covariance data acquired 

and shared by the FLUXNET community, including these networks: AmeriFlux, (U.S. Department of Energy, Biological and 

Environmental Research, Terrestrial Carbon Program (DE‐FG02‐04ER63917 and DE‐FG02‐04ER63911)), AfriFlux, AsiaFlux, 

CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, (supported by CFCAS, NSERC, BIOCAP, 30 

Environment Canada, and NRCan), GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The 

FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, 

AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and 

AsiaFlux offices. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, 

FAO‐GTOS‐TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, 35 

https://avdc.gsfc.nasa.gov/pub/data/project/WECANN/
https://lpdaac.usgs.gov/data_access/data_pool


 

  18  

Université Laval and Environment Canada and US Department of Energy and the database development and technical support 

from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National 

Laboratory, University of California ‐ Berkeley, University of Virginia. 

References 

Aires, F., Prigent, C. and Rossow, W. B.: Sensitivity of satellite microwave and infrared observations to soil moisture at a global 5 

scale: 2. Global statistical relationships, J. Geophys. Res., 110(D11), D11103, doi:10.1029/2004JD005094, 2005. 

Aires, F., Aznay, O., Prigent, C., Paul, M. and Bernardo, F.: Synergistic multi-wavelength remote sensing versus a posteriori 

combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A, J. Geophys. Res. Atmos., 

117(D18), n/a-n/a, doi:10.1029/2011JD017188, 2012. 

Alemohammad, S. H., McColl, K. A., Konings, A. G., Entekhabi, D. and Stoffelen, A.: Characterization of precipitation product 10 

errors across the United States using multiplicative triple collocation, Hydrol. Earth Syst. Sci., 19(8), 3489–3503, doi:10.5194/hess-

19-3489-2015, 2015. 

Anber, U., Gentine, P., Wang, S. and Sobel, A. H.: Fog and rain in the Amazon, Proc. Natl. Acad. Sci., 112(37), 11473–11477, 

doi:10.1073/pnas.1505077112, 2015. 

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., 15 

Smith, W. L., Staelin, D. H., Strow, L. L. and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, 

data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41(2), 253–264, doi:10.1109/TGRS.2002.808356, 2003. 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, 

J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, 

H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial 20 

Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bull. Am. Meteorol. Soc., 82(11), 

2415–2434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M. and Betts, A. K.: A Revised Hydrology for the 

ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. 

Hydrometeorol., 10(3), 623–643, doi:10.1175/2008JHM1068.1, 2009. 25 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. 

B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., 

Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I. and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global 

Distribution and Covariation with Climate, Science (80-. )., 329(5993), 834–838, doi:10.1126/science.1184984, 2010. 

Brodzik, M. and Armstrong, R.: Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent, Version 4, , 30 

doi:http://dx.doi.org/10.5067/P7O0HGJLYUQU, 2013. 

D’Odorico, P., Gonsamo, A., Pinty, B., Gobron, N., Coops, N., Mendez, E. and Schaepman, M. E.: Intercomparison of fraction of 

absorbed photosynthetically active radiation products derived from satellite data over Europe, Remote Sens. Environ., 142, 141–

154, doi:10.1016/j.rse.2013.12.005, 2014. 

Damour, G., Simonneau, T., Cochard, H. and Urban, L.: An overview of models of stomatal conductance at the leaf level, Plant. 35 

Cell Environ., 33(9), no-no, doi:10.1111/j.1365-3040.2010.02181.x, 2010. 

DeLucia, E. H. and Heckathorn, S. A.: The effect of soil drought on water-use efficiency in a contrasting Great Basin desert and 

Sierran montane species, Plant, Cell Environ., 12(9), 935–940, doi:10.1111/j.1365-3040.1989.tb01973.x, 1989. 



 

  19  

Dewar, R. C.: The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated 

picture of guard cell function, Plant, Cell Environ., 25(11), 1383–1398, doi:10.1046/j.1365-3040.2002.00909.x, 2002. 

Dorigo, W.: ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions, Remote Sens. 

Environ., n.d. 

Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E. M., Miglietta, F., Mohammed, 5 

G., Nedbal, L., Rascher, U., Schuttemeyer, D. and Verhoef, W.: The FLuorescence EXplorer Mission Concept-ESA’s Earth 

Explorer 8, IEEE Trans. Geosci. Remote Sens., 1–12, doi:10.1109/TGRS.2016.2621820, 2016. 

Fisher, J. B., Tu, K. P. and Baldocchi, D. D.: Global estimates of the land–atmosphere water flux based on monthly AVHRR and 

ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ., 112(3), 901–919, doi:10.1016/j.rse.2007.06.025, 2008. 

Flexas, J., Escalona, J. M., Evain, S., Gulias, J., Moya, I., Osmond, C. B. and Medrano, H.: Steady-state chlorophyll fluorescence 10 

(Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants, 

Physiol. Plant., 114(2), 231–240, doi:10.1034/j.1399-3054.2002.1140209.x, 2002. 

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A. and 

Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary 

productivity, Geophys. Res. Lett., 38(17), doi:10.1029/2011GL048738, 2011. 15 

Frankenberg, C., O’Dell, C., Guanter, L. and McDuffie, J.: Remote sensing of near-infrared chlorophyll fluorescence from space 

in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals, Atmos. Meas. Tech., 

5(8), 2081–2094, doi:10.5194/amt-5-2081-2012, 2012. 

Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R. and Taylor, T. E.: Prospects for chlorophyll 

fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sens. Environ., 147, 1–12, 20 

doi:10.1016/j.rse.2014.02.007, 2014. 

Gebremichael, M., Krajewski, W. F., Morrissey, M. L., Huffman, G. J., Adler, R. F., Gebremichael, M., Krajewski, W. F., 

Morrissey, M. L., Huffman, G. J. and Adler, R. F.: A Detailed Evaluation of GPCP 1° Daily Rainfall Estimates over the Mississippi 

River Basin, J. Appl. Meteorol., 44(5), 665–681, doi:10.1175/JAM2233.1, 2005. 

Govindjee, Downton, W. J. S., Fork, D. C. and Armond, P. A.: Chlorophyll A fluorescence transient as an indicator of water 25 

potential of leaves, Plant Sci. Lett., 20(3), 191–194, doi:10.1016/0304-4211(81)90261-3, 1981. 

Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W. and Wagner, W.: Recent advances in (soil moisture) triple collocation 

analysis, Int. J. Appl. Earth Obs. Geoinf., 45, 200–211, doi:10.1016/j.jag.2015.09.002, 2016. 

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., Suto, H. and Grainger, R. G.: Retrieval and 

global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote Sens. Environ., 121, 236–30 

251, doi:10.1016/j.rse.2012.02.006, 2012. 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., 

Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M. 

and Griffis, T. J.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, Proc. Natl. Acad. 

Sci., 111(14), E1327–E1333, doi:10.1073/pnas.1320008111, 2014. 35 

Guillod, B. P., Orlowsky, B., Miralles, D., Teuling, A. J., Blanken, P. D., Buchmann, N., Ciais, P., Ek, M., Findell, K. L., Gentine, 

P., Lintner, B. R., Scott, R. L., Van den Hurk, B. and I. Seneviratne, S.: Land-surface controls on afternoon precipitation diagnosed 

from observational data: uncertainties and confounding factors, Atmos. Chem. Phys., 14(16), 8343–8367, doi:10.5194/acp-14-

8343-2014, 2014. 

Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J. and Seneviratne, S. I.: Reconciling spatial and temporal soil moisture 40 



 

  20  

effects on afternoon rainfall., Nat. Commun., 6, 6443, doi:10.1038/ncomms7443, 2015. 

Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C. and Holmes, T.: An intercomparison of available soil moisture 

estimates from thermal infrared and passive microwave remote sensing and land surface modeling, J. Geophys. Res., 116(D15), 

D15107, doi:10.1029/2011JD015633, 2011. 

Havaux, M. and Lannoye, R.: Chlorophyll fluorescence induction: A sensitive indicator of water stress in maize plants, Irrig. Sci., 5 

4(2), 147–151, doi:10.1007/BF00273382, 1983. 

Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., Susskind, J., Huffman, G. J., 

Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B. and Susskind, J.: Global Precipitation at One-

Degree Daily Resolution from Multisatellite Observations, J. Hydrometeorol., 2(1), 36–50, doi:10.1175/1525-

7541(2001)002<0036:GPAODD>2.0.CO;2, 2001. 10 

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y. and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, 

Nature, 496(7445), 347–350, doi:10.1038/nature11983, 2013. 

Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from 

Breathing Earth System Simulator (BESS), Remote Sens. Environ., 186, 528–547, doi:10.1016/j.rse.2016.08.030, 2016. 

Jiménez, C., Prigent, C. and Aires, F.: Toward an estimation of global land surface heat fluxes from multisatellite observations, J. 15 

Geophys. Res., 114(D6), D06305, doi:10.1029/2008JD011392, 2009. 

Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., 

Dirmeyer, P. A., Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M., Rodell, M., Sheffield, J., Tu, K. and Wang, 

K.: Global intercomparison of 12 land surface heat flux estimates, J. Geophys. Res., 116(D2), D02102, doi:10.1029/2010JD014545, 

2011. 20 

Jiménez, C., Clark, D. B., Kolassa, J., Aires, F. and Prigent, C.: A joint analysis of modeled soil moisture fields and satellite 

observations, J. Geophys. Res. Atmos., 118(12), 6771–6782, doi:10.1002/jgrd.50430, 2013. 

Joiner, J., Yoshida, YGuanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Yoshida, Y., Corp, L. A. and Middleton, E. M.: First 

observations of global and seasonalM., Huemmrich, K. F., Yoshida, Y. and Frankenberg, C.: Global monitoring of terrestrial 

chlorophyll fluorescence from space, Biogeosciences, 8(3), 637–651moderate-spectral-resolution near-infrared satellite 25 

measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6(10), 2803–2823, doi:10.5194/bg-

8-637-2011, 2011amt-6-2803-2013, 2013. 

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Yoshida, Y., Vasilkov, A. P., Schaefer, K., Jung, M., Guanter, L., Zhang, Y., 

Garrity, S., Middleton, E. M., Huemmrich, K. F., Yoshida, YGu, L. and Frankenberg, C.: Global monitoringBelelli Marchesini, 

L.: The seasonal cycle of terrestrialsatellite chlorophyll fluorescence observations and its relationship to vegetation phenology and 30 

ecosystem atmosphere carbon exchange, Remote Sens. Environ., 152, 375–391, doi:10.1016/j.rse.2014.06.022, 2014. 

Joiner, J., Yoshida, Y., Guanter, L. and Middleton, E. M.: New methods for the retrieval of chlorophyll red fluorescence from 

moderate-spectral-resolution near-infraredhyperspectral satellite measurements: methodology,instruments: simulations, and 

application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 6(10), 2803–28239(8), 3939–3967, doi:10.5194/amt-6-2803-

2013, 20139-3939-2016, 2016. 35 

Joshi, M. K., Rai, A. and Pandey, A. C.: Validation of TMPA and GPCP 1DD against the ground truth rain-gauge data for Indian 

region, Int. J. Climatol., 33(12), doi:10.1002/joc.3612, 2012. 

Jung, M., Reichstein, M. and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: 

validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6(10), 2001–2013, doi:10.5194/bg-6-

2001-2009, 2009. 40 



 

  21  

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., 

Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., 

Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, 

C., Wood, E., Zaehle, S. and Zhang, K.: Recent decline in the global land evapotranspiration trend due to limited moisture supply, 

Nature, 467(7318), 951–954, doi:10.1038/nature09396, 2010. 5 

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., 

Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., 

Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F. and Williams, C.: Global patterns of land-atmosphere fluxes of carbon 

dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res., 

116(G3), G00J07, doi:10.1029/2010JG001566, 2011. 10 

Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu, L. and Weller, R. A.: Surface Irradiances 

Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances, J. Clim., 26(9), 2719–2740, 

doi:10.1175/JCLI-D-12-00436.1, 2013. 

Kolassa, J., Aires, F., Polcher, J., Prigent, C., Jimenez, C. and Pereira, J. M.: Soil moisture retrieval from multi-instrument 

observations: Information content analysis and retrieval methodology, J. Geophys. Res. Atmos., 118(10), 4847–4859, 15 

doi:10.1029/2012JD018150, 2013. 

Kolassa, J., Gentine, P., Prigent, C. and Aires, F.: Soil moisture retrieval from AMSR-E and ASCAT microwave observation 

synergy. Part 1: Satellite data analysis, Remote Sens. Environ., 173, 1–14, doi:10.1016/j.rse.2015.11.011, 2016. 

van Kooten, O. and Snel, J. F. H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosynth. Res., 

25(3), 147–150, doi:10.1007/BF00033156, 1990. 20 

Kraft, S., Del Bello, U., Bouvet, M., Drusch, M. and Moreno, J.: FLEX: ESA’s Earth Explorer 8 candidate mission, in 2012 IEEE 

International Geoscience and Remote Sensing Symposium, pp. 7125–7128, IEEE., 2012. 

Krause, G. H. and Weis, E.: Chlorophyll Fluorescence and Photosynthesis: The Basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 

42(1), 313–349, doi:10.1146/annurev.pp.42.060191.001525, 1991. 

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P. C. and Wohlfahrt, G.: Separation of net 25 

ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, 

Glob. Chang. Biol., 16(1), 187–208, doi:10.1111/j.1365-2486.2009.02041.x, 2010. 

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., Asefi, 

S., Badgley, G. and Saatchi, S.: Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll 

fluorescence, Proc. R. Soc. B Biol. Sci., 280(1761), 20130171–20130171, doi:10.1098/rspb.2013.0171, 2013. 30 

Lee, J.-E., Berry, J. A., van der Tol, C., Yang, X., Guanter, L., Damm, A., Baker, I. and Frankenberg, C.: Simulations of chlorophyll 

fluorescence incorporated into the Community Land Model version 4, Glob. Chang. Biol., 21(9), 3469–3477, 

doi:10.1111/gcb.12948, 2015. 

Lei, F., Crow, W., Shen, H., Parinussa, R. and Holmes, T.: The Impact of Local Acquisition Time on the Accuracy of Microwave 

Surface Soil Moisture Retrievals over the Contiguous United States, Remote Sens., 7(10), 13448–13465, doi:10.3390/rs71013448, 35 

2015. 

Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F. and Evans, J. P.: 

Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth 

Syst. Sci., 15(2), 425–436, doi:10.5194/hess-15-425-2011, 2011. 

Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W., McCabe, M. F., Evans, J. P. and van Dijk, A. I. J. M.: 40 



 

  22  

Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sens. Environ., 123, 280–297, 

doi:10.1016/j.rse.2012.03.014, 2012. 

Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo-Smith, N. and Wong, T.: Toward 

Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget, J. Clim., 22(3), 748–766, doi:10.1175/2008JCLI2637.1, 

2009. 5 

Lopes, A. P., Nelson, B. W., Wu, J., Graça, P. M. L. de A., Tavares, J. V., Prohaska, N., Martins, G. A. and Saleska, S. R.: Leaf 

flush drives dry season green-up of the Central Amazon, Remote Sens. Environ., 182, 90–98, doi:10.1016/j.rse.2016.05.009, 2016. 

Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Kangwa, M., Smolander, T. and Derksen, C.: Global snow monitoring for 

climate research: Algorithm theoretical basis document (ATBD) - SWE Algorithm, Version/Revision 1.0/02., 2013. 

Mamadou, O., Gourlez de la Motte, L., De Ligne, A., Heinesch, B. and Aubinet, M.: Sensitivity of the annual net ecosystem 10 

exchange to the cospectral model used for high frequency loss corrections at a grazed grassland site, Agric. For. Meteorol., 228–

229, 360–369, doi:10.1016/j.agrformet.2016.06.008, 2016. 

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Férnandez-Prieto, D., Beck, H. E., Dorigo, W. A. 

and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev. Discuss., 0, 

1–36, doi:10.5194/gmd-2016-162, 2016. 15 

McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M. and Stoffelen, A.: Extended triple collocation: Estimating 

errors and correlation coefficients with respect to an unknown target, Geophys. Res. Lett., 41(17), 2014GL061322, 

doi:10.1002/2014GL061322, 2014. 

McColl, K. A., Roy, A., Derksen, C., Konings, A. G., Alemohammed, S. H. and Entekhabi, D.: Triple collocation for binary and 

categorical variables: Application to validating landscape freeze/thaw retrievals, Remote Sens. Environ., 176, 31–42, 20 

doi:10.1016/j.rse.2016.01.010, 2016. 

McFarlane, J. C., Watson, R. D., Theisen, A. F., Jackson, R. D., Ehrler, W. L., Pinter, P. J., Idso, S. B. and Reginato, R. J.: Plant 

stress detection by remote measurement of fluorescence, Appl. Opt., 19(19), 3287, doi:10.1364/AO.19.003287, 1980. 

McPhee, J., Margulis, S. A., McPhee, J. and Margulis, S. A.: Validation and Error Characterization of the GPCP-1DD Precipitation 

Product over the Contiguous United States, J. Hydrometeorol., 6(4), 441–459, doi:10.1175/JHM429.1, 2005. 25 

Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., McCabe, M. F., Fisher, J. B., Mu, Q., 

Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project Part 1: Tower-scale evaluation of four remote-

sensing-based evapotranspiration algorithms, Hydrol. Earth Syst. Sci., 20(2), 803–822, doi:10.5194/hess-20-803-2016, 2016. 

Miralles, D. G., Crow, W. T. and Cosh, M. H.: Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived 

from Point-Scale Observations, J. Hydrometeorol., 11(6), 1423–1429, doi:10.1175/2010JHM1285.1, 2010. 30 

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A. and Dolman, A. J.: Global land-surface 

evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15(2), 453–469, doi:10.5194/hess-15-453-2011, 

2011a. 

Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H. and Dolman, A. J.: Magnitude and variability of land evaporation 

and its components at the global scale, Hydrol. Earth Syst. Sci., 15(3), 967–981, doi:10.5194/hess-15-967-2011, 2011b. 35 

Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R. M., de Jeu, R. A. M., Beck, H. E., Holmes, T. R. H., Jiménez, C., 

Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J. and Johannes Dolman, A.: El Niño–La Niña cycle and recent trends in continental 

evaporation, Nat. Clim. Chang., 4(2), 122–126, doi:10.1038/nclimate2068, 2014a. 

Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. and Vilà-Guerau de Arellano, J.: Mega-heatwave temperatures due to 

combined soil desiccation and atmospheric heat accumulation, Nat. Geosci., 7(5), 345–349, doi:10.1038/ngeo2141, 2014b. 40 



 

  23  

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. 

B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project - Part 2: Evaluation of global 

terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016. 

Monteith, J. L. and Moss, C. J.: Climate and the Efficiency of Crop Production in Britain [and Discussion],, Philos. Trans. R. Soc. 

B Biol. Sci., 281(980), 277–294, doi:10.1098/rstb.1977.0140, 1977. 5 

Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., Harding, D. J. and North, P. R. J.: 

Amazon forests maintain consistent canopy structure and greenness during the dry season, Nature, 506(7487), 221–224, 

doi:10.1038/nature13006, 2014. 

Morton, D. C., Rubio, J., Cook, B. D., Gastellu-Etchegorry, J.-P., Longo, M., Choi, H., Hunter, M. and Keller, M.: Amazon forest 

structure generates diurnal and seasonal variability in light utilization, Biogeosciences, 13(7), 2195–2206, doi:10.5194/bg-13-10 

2195-2016, 2016. 

Mu, Q., Heinsch, F. A., Zhao, M. and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS 

and global meteorology data, Remote Sens. Environ., 111(4), 519–536, doi:10.1016/j.rse.2007.04.015, 2007. 

Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, 

M., Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M., Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F. and 15 

Zhang, Y.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 

38(6), n/a-n/a, doi:10.1029/2010GL046230, 2011. 

NASA LP DAAC: Land Cover Type Yearly L3, MCD12C1, V051, 2016. 

Pan, X., Liu, Y. and Fan, X.: Comparative Assessment of Satellite-Retrieved Surface Net Radiation: An Examination on CERES 

and SRB Datasets in China, Remote Sens., 7(4), 4899–4918, doi:10.3390/rs70404899, 2015. 20 

Parinussa, R. M., Meesters, A. G. C. A., Liu, Y. Y., Dorigo, W., Wagner, W. and de Jeu, R. A. M.: Error Estimates for Near-Real-

Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model, IEEE Geosci. Remote Sens. Lett., 8(4), 779–

783, doi:10.1109/LGRS.2011.2114872, 2011. 

Pastorello, G., Agarwal, D., Papale, D., Samak, T., Trotta, C., Ribeca, A., Poindexter, C., Faybishenko, B., Gunter, D., Hollowgrass, 

R. and Canfora, E.: Observational Data Patterns for Time Series Data Quality Assessment, in 2014 IEEE 10th International 25 

Conference on e-Science, pp. 271–278, IEEE., 2014. 

Pulliainen, J.: Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne 

microwave radiometer data and ground-based observations, Remote Sens. Environ., 101(2), 257–269, 

doi:10.1016/j.rse.2006.01.002, 2006. 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., 30 

Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, 

G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, 

F., Vesala, T., Yakir, D. and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: 

review and improved algorithm, Glob. Chang. Biol., 11(9), 1424–1439, doi:10.1111/j.1365-2486.2005.001002.x, 2005. 

Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M. R., de 35 

Camargo, P. B., Cardoso, F. L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., 

Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., Sá, L. D. A., Sakai, R. K., Tota, J., Wofsy, S. C., Zanchi, F. B. and 

Saleska, S. R.: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower 

measurements from the Brasil flux network, Agric. For. Meteorol., 182–183, 128–144, doi:10.1016/j.agrformet.2013.04.031, 2013. 

da Rocha, H. R., Manzi, A. O., Cabral, O. M., Miller, S. D., Goulden, M. L., Saleska, S. R., R.-Coupe, N., Wofsy, S. C., Borma, 40 



 

  24  

L. S., Artaxo, P., Vourlitis, G., Nogueira, J. S., Cardoso, F. L., Nobre, A. D., Kruijt, B., Freitas, H. C., von Randow, C., Aguiar, R. 

G. and Maia, J. F.: Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil, J. Geophys. 

Res., 114(G1), G00B12, doi:10.1029/2007JG000640, 2009. 
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Figure 1: Architecture of the ANN layers. Input layer provides the matrix P of the inputs to the Hidden layer. Hidden layer has a matrix 

W of weights and b of biases for the neurons, and the f1 transfer function. The output of the Hidden layer (a = f1(WP +b) ) is an input to 

the Output layer that applies the transfer function f2 to the estimates and generates final outputs O. 5 
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Figure 2: Left column: Annual average surface fluxes in 2011 for (a) LE, (b) H, and (c) GPP. Right column: Density scatterplot between 

estimates of ANN and target data for (d) LE, (e) H, and (f) GPP during the validation period (2011). The density of scatter points is 

represented by the shading color. The diagonal black line depicts the 1:1 relationship.  
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Figure 3: Global patterns of seasonal average LE from WECANN in 2011, (a) December - February, (b) March - May, (c) June - August, 

and (d) September - November. 
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Figure 4: Similar to Figure 3 but for H instead of LE 
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Figure 5: Similar to Figure 3 but for GPP instead of LE 
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Figure 6: Comparison of WECANN retrievals with the retrievals from an ANN without using SIF data. (a) – (c) shows the WECANN 

retrieval minus the retrieval without SIF normalized by the WECANN retrievals for LE, H, and GPP during 2011, respectively. (d)- (f) 

show the scatter plots of WECANN retrievals vs target data. 
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Figure 7: Difference between annual mean LE retrieved by WECANN and the three target datasets (a-c). Scatter plots of LE retrieved 

from WECANN vs. from each of the target datasets (d-f). Data used are from 2011. 
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Figure 7: Similar to Figure 6 but for H instead of LE 
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Figure 8: Similar to Figure 6 but for H instead of LE 
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Figure 9: Similar to Figure 7 but for GPP instead of LE 
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Figure 9: Geographical positions of the eddy-covariance sites used for comparison of the flux retrievals. 
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Figure 11: Comparison of the flux retrievals with eddy covariance observations of LE, H and GPP across European sites (a) AT-Neu 

site, Austria, (b) BE-Bra site, Belgium, (c) CH-Fru site, Switzerland, (d) ES-LgS site, Spain, and (e) FI-Hyy site, Finland 
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Figure 10: Same as Figure 9 but for Brazilian sites (a) BR-Ji1, (b) BR-Ji2, (c) BR-Sa3, and (d) BR-Sp1. 

 

 

 5 

 

 

Figure 11: Same as Figure 9 but for Canadian sites (a) CA-Qfo, and (b) CA-Qcu. 



 

  42  

 

 

 

 

 5 

Figure 12: Same as Figure 9 but for US sites (a) US-ARM, (b) US-IB2, (c) US-ME2, (d) US-Ne1, and (e) US-SRG. 
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Figure 13: Same as Figure 9 but for (a) AU-DaP, Australia, (b) ZA-Kru, South Africa 
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Figure 14: Uncertainty estimates of LE (top row), H (middle row) and GPP (bottom row) retrievals at global (left column) and regional (four right columns) scales between 2007 and 

2015.  
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Table 1: Characteristics of products used for training of ANN 

Product 
Output variables 

used for training 

Temporal 

Coverage 

Spatial 

Coverage 

Temporal 

Resolution 

Spatial 

Resolution 
Reference 

GLEAM LE, H 1980 - 2015 Global Daily 0.25° × 0.25° 
Martens et 

al., 2016 

ECMWF ERA 

HTESSEL 
LE, H, GPP 2008 - 2015 Global Daily 0.25° × 0.25° 

Balsamo et 

al., 2009 

FLUXNET-MTE LE, H, GPP 1982 - 2012 Global Monthly 0.5° × 0.5° 
Jung et al., 

2009 

MODIS-GPP GPP 2000 - 2015 Global Monthly 0.5° × 0.5° 
Running et 

al., 2004 

 

 

Table 2: Characteristics of observations used as input in the WECANN product 5 

Variable 
Product Name and 

Version 

Temporal 

Coverage 

Spatial 

Coverage 

Temporal 

Resolution 

Spatial 

Resolution 
Reference 

SIF 
GOME-2 

Fluorescence v26 
2007-present Global Daily 0.5° × 0.5° 

Joiner et al., 

2013 

Net Radiation CERES L3 SYN 1deg 2002-present Global Monthly 1° × 1° 
Wielicki et 

al., 1996 

Air 

Temperature 
AIRS3STD v6.0 2002-present Global Daily 1° × 1° 

Aumann et 

al., 2003 

Soil Moisture ESA-CCI v2.3 1978-2015 Global Daily 0.25° × 0.25° 
Liu et al., 

2012 

Precipitation GPCP 1DD v1.2 1996-2015 Global Daily 1° × 1° 
Huffman et 

al., 2001 

Snow Water 

Equivalent 
GLOBSNOW L3A v2 1979-present Global Daily 25 km × 25 km 

Luojus et al., 

2013 
 

 

Table 3: Comparison of WECANN retrievals with retrievals form an ANN without SIF as an input 

 

LE H GPP 

RMSD 

[W m-2] 
R2 

RMSD 

[W m-2] 
R2 

RMSD 

[gC m-2 day-1] 
R2 

WECANN 11.13 0.95 13.35 0.89 1.23 0.90 

ANN w/o SIF 12.33 0.94 13.89 0.88 1.33 0.88 
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Table 4: Statistics of LE retrievals compared to eddy-covariance measurements. Bold fonts represent best performing dataset statistics. 

 Correlation Coefficient RMSE [W m-2] Bias [W m-2] 

SiteID WECANN FLUXNET-MTE GLEAM ECMWF WECANN FLUXNET-MTE GLEAM ECMWF WECANN FLUXNET-MTE GLEAM ECMWF 

AT-Neu 0.91 0.94 0.93 0.96 16.25 15.96 14.04 10.11 -2.30 -7.96 0.87 0.60 

AU-DaP 0.89 0.80 0.87 0.82 22.25 26.85 21.42 25.42 -0.56 1.44 5.47 8.72 

BE-Bra 0.96 0.78 0.80 0.79 8.58 18.20 20.89 19.86 11.28 14.02 9.46 23.34 

BR-Ji1 0.13 0.09 0.65 0.13 16.67 16.21 13.41 19.06 27.83 29.08 15.52 31.35 

BR-Ji2 0.77 0.77 0.04 0.49 4.16 2.93 18.88 11.24 4.85 5.32 -2.02 10.14 

BR-Sa3 0.70 0.73 0.24 0.91 6.52 6.74 10.87 7.84 -6.61 -7.85 -4.79 5.14 

BR-Sp1 0.84 0.90 0.92 0.90 14.74 12.50 11.10 12.70 7.63 -0.69 3.67 15.00 

CA-Gro 0.94 0.88 0.79 0.87 11.61 14.45 22.27 17.40 9.96 3.20 17.79 13.94 

CA-Qcu 0.96 0.84 0.78 0.89 9.58 15.67 23.77 13.89 1.64 -1.64 12.18 6.52 

CH-Fru 0.81 0.76 0.69 0.66 21.35 24.09 27.85 29.96 1.63 -3.52 4.96 11.22 

ES-LgS 0.76 0.58 -0.06 0.07 14.09 17.24 25.79 27.71 -1.21 -9.17 -19.21 -4.45 

FI-Hyy 0.97 0.90 0.82 0.88 7.05 12.21 18.52 16.16 1.01 -0.48 4.49 7.93 

US-ARM 0.79 0.85 0.85 0.77 19.67 16.59 21.22 22.37 9.27 4.82 6.77 9.79 

US-IB2 0.95 0.86 0.86 0.84 19.31 26.15 26.79 28.50 -11.49 -17.56 -16.27 2.71 

US-Me2 0.91 0.87 0.77 0.62 13.08 15.25 18.43 23.27 -7.49 -11.82 -3.11 -7.61 

US-Ne1 0.85 0.90 0.85 0.65 35.71 25.59 31.03 45.20 -28.02 -15.06 -23.50 -9.52 

US-SRG 0.90 0.84 0.81 0.71 13.82 19.90 17.55 21.53 -8.38 -12.03 -4.91 -13.81 

ZA-Kru 0.50 0.69 0.59 0.65 38.81 28.79 30.22 31.82 -5.09 14.70 -1.83 17.81 

Average 0.81 0.78 0.68 0.70  
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Table 5: Statistics of H retrievals compared to eddy-covariance measurements. Bold fonts represent best performing dataset statistics. 

 Correlation Coefficient RMSE [W m-2] Bias [W m-2] 

SiteID WECANN FLUXNET-MTE GLEAM ECMWF WECANN FLUXNET-MTE GLEAM ECMWF WECANN FLUXNET-MTE GLEAM ECMWF 

AT-Neu 0.88 0.78 0.71 0.73 6.43 17.44 12.56 10.65 20.33 34.34 7.41 9.26 

AU-DaP 0.68 -0.85 0.82 0.82 25.68 63.64 18.93 18.91 -4.03 -5.20 -9.21 -4.61 

BE-Bra 0.87 0.78 0.78 0.90 18.01 18.97 22.51 15.06 -8.45 18.71 -21.85 -28.21 

BR-Ji1 0.29 0.42 0.57 0.45 9.27 5.67 10.09 9.27 -4.88 -7.66 -5.70 -11.56 

BR-Ji2 0.83 0.64 0.51 0.85 4.79 3.57 14.10 8.09 7.00 4.28 7.92 3.02 

BR-Sa3 0.97 0.88 0.79 0.50 3.21 2.04 9.84 6.33 3.03 -1.34 6.84 -7.45 

BR-Sp1 0.92 0.69 0.70 0.83 5.31 8.40 7.99 7.43 4.05 12.42 -3.47 -1.50 

CA-Gro 0.71 0.67 0.88 0.92 16.54 22.42 11.02 9.03 -7.45 4.03 -15.91 -8.35 

CA-Qcu 0.92 0.89 0.54 0.75 7.85 10.77 19.73 19.60 10.10 12.77 -8.76 10.87 

CH-Fru 0.75 0.70 0.50 0.53 12.03 19.43 17.41 16.06 11.41 31.45 3.09 1.25 

ES-LgS 0.87 0.59 0.75 0.81 26.93 46.40 34.49 32.83 0.47 -23.91 4.07 17.25 

FI-Hyy 0.85 0.91 0.86 0.93 16.51 12.76 16.67 12.45 0.01 5.78 -9.44 -14.33 

US-ARM 0.80 0.52 0.59 0.70 18.47 28.31 21.24 22.11 1.44 14.82 -11.65 1.16 

US-IB2 0.11 -0.03 0.58 0.35 21.69 37.07 12.36 16.71 8.22 22.49 -5.68 -5.97 

US-Me2 0.89 0.87 0.91 0.92 22.87 33.33 18.97 18.65 -9.12 -13.89 -14.65 2.49 

US-Ne1 0.47 -0.07 0.67 0.08 20.76 54.58 15.70 25.40 3.07 27.08 -5.09 -1.80 

US-Ro1 0.81 0.63 0.42 0.33 10.00 27.64 16.87 18.35 9.54 27.42 -0.28 -1.14 

US-Ses 0.92 0.74 0.82 0.92 9.23 17.57 14.08 13.14 -14.94 -41.03 -20.87 -6.25 

US-SRG 0.87 0.02 0.86 0.88 13.98 30.95 14.80 18.01 6.53 -25.52 0.81 28.58 

ZA-Kru 0.59 0.18 0.47 0.59 12.97 32.57 20.12 17.27 -12.78 -1.55 -16.42 -10.82 

Average 0.75 0.50 0.69 0.69  
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Table 6: Statistics of GPP retrievals compared to eddy-covariance measurements. Bold fonts represent best performing dataset statistics. 

 Correlation Coefficient RMSE [gC m-2 day-1] Bias [gC m-2 day-1] 

SiteID WECANN FLUXNET-MTE MODIS ECMWF WECANN FLUXNET-MTE MODIS ECMWF WECANN FLUXNET-MTE MODIS ECMWF 

AT-Neu 0.86 0.92 0.92 0.94 1.35 1.05 1.08 1.04 -0.52 0.14 -0.38 -0.93 

BE-Bra 0.94 0.88 0.90 0.79 0.86 1.89 1.38 1.00 0.65 2.28 1.25 0.65 

BR-Ji1 0.80 0.51 0.34 0.76 1.53 1.92 2.09 1.47 1.14 1.92 -0.32 2.49 

BR-Ji2 0.84 0.83 -0.03 0.82 0.82 0.79 1.57 1.34 -1.20 -0.40 -1.98 -0.08 

BR-Sa3 0.44 0.70 -0.83 -0.73 0.85 0.71 1.74 1.86 0.53 1.20 -0.92 2.77 

BR-Sp1 0.94 0.95 0.87 0.94 1.04 0.72 1.31 0.75 0.54 -0.47 0.36 -0.20 

CA-Gro 0.60 0.41 0.41 0.45 1.98 2.46 2.66 2.56 0.64 0.92 1.20 0.87 

CA-Qcu 0.74 0.38 0.51 0.54 1.53 1.95 2.19 1.73 0.63 1.09 0.91 0.55 

CA-Qfo 0.98 0.88 0.90 0.91 1.10 1.39 1.69 1.23 0.93 1.17 1.21 0.86 

CH-Fru 0.91 0.91 0.93 0.90 1.13 1.63 1.51 1.12 0.70 1.61 0.97 0.60 

ES-LgS 0.66 0.29 -0.03 -0.28 0.60 0.50 0.71 0.70 1.36 0.22 0.78 0.26 

FI-Hyy 0.97 0.89 0.91 0.91 0.56 1.52 1.41 1.21 0.23 1.22 0.89 0.71 

US-IB2 0.85 0.86 0.96 0.84 1.42 1.94 0.80 1.27 1.41 0.98 0.57 0.97 

US-Me2 0.89 0.91 0.94 0.65 0.67 0.53 0.60 1.02 -0.64 -0.08 -0.23 -1.22 

US-Ne1 0.77 0.88 0.69 0.54 2.33 1.69 2.43 3.04 0.80 0.30 -0.03 -0.42 

US-Ses 0.63 0.76 0.42 0.58 0.53 0.40 0.62 0.60 0.38 0.03 0.15 -0.51 

US-SRG 0.76 0.87 0.52 0.59 0.51 0.38 0.59 0.59 0.55 0.50 0.23 -0.07 

ZA-Kru 0.69 0.67 0.40 0.70 1.31 1.61 1.58 1.66 1.27 2.33 1.87 2.93 

Average 0.80 0.75 0.54 0.60  
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