Response to Referee 1

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A
statistically-based estimate of global surface turbulent fluxes using solar-
induced fluorescence (Manuscript # bg-2016-495)

Comments

Responses/Actions

The authors proposed a new global product of
GPP, ET and H by using ANN. The manuscript is
well written and the topic falls on to the scope of
the journal. | do have several concerns.

We thank the referee for his/her positive comments.

First, the authors highlighted the use of SiF as
input data. | see SiF was the only input data
related to vegetation. Therefore, with/without

SiF in WECANN must give different flux estimates.

What happens if the authors use EVI or NDVI
instead of SiF? Any significant difference in
WECANN performance?

We agree with the referee's point on the evaluation of no-
SIF retrieval. Therefore, in the revised manuscript we
included comparisons with an artificial neural networks
retrieval that has either NDVI or EVI as input instead of SIF.
We comment on the differences and similarities, and why
SIF is a better input for this retrieval, in particular
highlighting the differences in terms of vegetation structure
impact on SIF and the impact of saturation of vegetation
indices (especially in forested areas and agricultural
regions). Results are summarized in section 4.5 and Tables
$1-S3 in the supplementary materials.

Second, what is the significant contribution from
this work? Spatial (1 degree) and temporal
(monthly) resolutions are too coarse. The
approach is on the similar family of other
machine learning methods (e.g. see Tramontana
et al 2016 Biogeosciences). Stress the novelty of
this manuscript. If there is any new discovery,
then highlight it.

There are two major new contributions in this study:

1- Using remotely-sensed SIF to estimate surface
fluxes.

2- Using a machine learning algorithm (in this case
artificial neural networks) to estimate fluxes from
remote sensing observations at global scale.

The Tramontana et al 2016 paper uses a regression model
to upscale fluxes from FLUXNET observations. However, we
use remote sensing observations to estimate fluxes rather
than relying on the representativeness of spatially limited
FLUXNET eddy-covariance data like the Tramontana et al
approach and its predecessors. Most importantly we use |
SIF as an indicator of vegetation activity. Therefore, the
strategy is pretty different compared to the Tramontana et
al retrieval. In addition, our main objective is to show that
SIF provides useful information on the rates of
photosynthesis and evapotranspiration. To our knowledge,
this is the first direct estimate of fluxes based on SIF data.
We revised portions of the text in the introduction section
(Page 2, Lines 30-33) to make sure the novelty of our
approach is clearly stated.




Third, the authors used MPI-BGC product as a
training dataset while testing the product against
FLUXNET data. As MPI-BGC product was trained
against FLUXNET dataset, the approach is self-
correlated. Why not evaluating the product

against independent datasets from MPI-BGC? E.g.

water balance derived ET in basin scale.

We do not share the referee’s perspective. While we
acknowledge that there is some information carried from
FLUXNET tower data into the FLUXNET-MTE dataset and
therefore in some part of the training data, we believe this
cross-correlation is likely to be small.

We train our algorithm against a target dataset which is
derived from three products (including MPI-BGC) by using
the Triple Collocation method and assigning a priori weights
to every product in each pixel. This means that our target
dataset has collective information from all three products
and not just MPI-BGC. Furthermore, the correlation
between FLUXNET and FLUXNET-MTE data is also imperfect
(cfg. Figure 2 in Tramontana et al 2016).

Interestingly, WECANN typically outperforms other
products (including FLUXNET-ME, which is expected to have
a stronger correlation to FLUXNET data) especially in terms
of seasonal cycle. This further emphasizes the information
content provided by remote sensing data which are used as
additional inputs

This is consistent with previous work (see Jimenez et al.
2009 for instance) that the spatial and temporal
correlations of a global artificial neural network are not due
to the initial training dataset but to the remote sensing
observations used as input.

Jimenez, C., Prigent, C., Aires, F. (2009). Toward an
estimation of global land surface heat fluxes from multi-
satellite observations. Journal of Geophysical Research-
Atmospheres, 114(D6), D06305.

Conducting a water balance analysis is an interesting idea
that might be informative, but it has its own challenges
because multiple sources of information need to be used to
close the water budget, each of which has its own
uncertainties. Furthermore, such an approach would only
be useful for validating the ET data but would not provide
information about the GPP and H performance. In view of
these reasons, and because the other referee asked us to
reduce the length of the manuscript, we have chosen not to
include this analysis.

Nevertheless, to provide an additional line of evidence
investigating the WECANN quality, we have now added a
new section 4.4 with an uncertainty analysis (which is much
briefer than would be required for a full discussion of a
water budget comparison).

Fourth, the spatial domain should be clearly
defined. The authors said it is global product, but
it did not include Antarctica and Greenland.

Thank you for the comments. We have now revised the
description in the introduction section to clearly note what




Given the coarse resolution (100 km), most
islands are likely uncovered but the global map
(Fig 2) showed fluxes in some islands. How did it
happen? Also, how to treat with water fraction
for each 1-degree pixel?

the coverage of the new product is (Page 2, Lines 26-29),
and provided a land mask in Figure S1.

Fifth, | recommend showing global uncertainty
maps for GPP, LE, H. | think one of strengths in
WECANN is its ability to quantify uncertainty.
Show the uncertainty map and discuss where and
why uncertainties are high. Also quantify
uncertainties in global values (e.g. XXX PgC yr-1 +-
Y PgCyr-1).

In the revised manuscript, we now include uncertainty
estimates based on errors in the input data propagated into
the network. We report a global average value as error is
spatially and temporally variable. The new section 4.4 in the
revised manuscript provides details on our uncertainty
analysis and the results that are provided in Figure 14.

Sixth, test global more carefully. When | look at
Fig 2, | found higher ET in mid to south east South
America (e.g. cerrado) compared to other global
ET products. Also, your ET in this region is
relatively very high compared to your GPP map.
So, water use efficiency will be very low in this
region, which is unlikely. See global distribution
of C4 maps. Higher proportion in C4 in this area is
likely to lead higher water use efficiency. It is
notable that your ANN did not consider C4
information.

The referee's point is an important one. The SIF relationship
with GPP will likely change in C4 plants. However, we
explicitly did not want to impose the C4/C3 (or even CAM)
delimitation in the artificial neural network as it would be
highly dependent on the quality of the classification map
used. Given that we do not have partitioning of
transpiration to total ET, it would be impossible to say
whether the water use efficiency is indeed low or if rain re-
evaporation and soil evaporation is the main process
explaining the difference. We note that all training products
include C3/C4 delimitation and therefore the C3/C4
delimitation is implicit in the training dataset and therefore
can be learnt by the network.

We have added a comment in the text emphasizing the
referee's points (Page 9, Lines 17-19).

Specific comments

P6: why only 21 FLUXNET sites were used? More
than 150 sites data are open to public

We had selected these 21 sites to represent a range of
climatic conditions along a geographical gradient for
validation of our retrieval. Presenting evaluation metrics
and temporal time series for 150 sites would lengthen the
manuscript and make it now hard to read. However, in the
revised manuscript we present summary statistics from a
comparison of WECANN retrievals against a much larger
number of tower data (97) from the FLUXNET 2015 and the
La Thuile synthesis dataset in the supplementary tables S1-
S3. We also comment on the results in Section 4.4.

P6 L23-24: The authors explained that target data
is used for training, validation, and testing. | am
confused with the terminology of validation and
testing. How do they differ? Also, in L36, “after
training, . . ... was evaluated”. Here, does
“evaluation” indicate validation or testing? |
recommend clearly defining each term, and use
them consistently across the whole manuscript.

We apologize for the confusion. The training, validation and
testing proportions are related to the training phase of the
retrieval. The back propagation algorithm uses a portion of
the training data for training (basically estimating the
weights of each neuron), and other portions of the training
data for validation and testing that aims at checking the
convergence of the training step. While after the training is
done, we use a subset of data that were not used in the




training process for evaluation. We revised the text in the
new version of the manuscript to clarify these
terminologies. (Page 7, Lines 5-10)

P6 L30: NN -> ANN (?)

Our apologies, this has been corrected in the revised
manuscript.

P7 L9: Please define “multiple datasets.” Is this
training dataset?}

This refers to the three products that we use (together with
error weights from Triple Collocation) to define a target
dataset for training. We revised the text in the new version
of the manuscript to clarify this.

P7 L12: What is “this” in “this prior distribution”?

It refers to the pseudo Bayesian training mentioned in the
lines before. We revised the text in the new version and
clarified the point.

P8 L20: Is this “target estimate” from 3.2?

Yes, this is the same. We made changes to section 3 and 4
of the manuscript in the new version to clarify all these
terminologies.

P8 L22: Add another unit for GPP as PgC yr-1,
which could be easily compared to the other
studies. Same for LE (km3).}

Thanks for noting this. We included the new units along
with previous ones in the new version of the manuscript.

P9 L29: | was surprised to see the reduction of
GPP in the Saharan Desert after removing SiF.
How to interpret this as we know there must be
zero GPP? Also, exclusion of SiF in LE made mixed
tendencies in this region. As we are confident LE
and GPP are close to nil in this area, it will be
interesting to test the impacts of
inclusion/exclusion in SiF on LE and GPP here.}

This observation is true, and is caused by noise in the SIF
data in deserts. As noted correctly by the referee, LE and
GPP are close to zero in this region; therefore, the
difference between the two retrievals (with and without
SIF) divided by the small amount of flux in this region is on
the order of the noise level in the retrievals. While the
percentages of change are notable, the absolute values of
difference between the two retrievals are less than 2 w m™
for LE and less than 0.7 gC m?2 day® for GPP. In addition, the
noisy pattern does not show up in the H retrievals in this
region. This is also another sign that the change patterns in
LE and GPP are due to noise. However, due to the request
of both referees we have revised our section on the impact
of SIF, and our analysis now focuses on the differences
between a retrieval with SIF or with NDIV/EVI (the new
Section 4.5). Therefore, this figure was removed from the
manuscript.

P10 L3: All three R2 looks too similar, so it is hard
to tell 0.96 is higher than 0.94.}

Yes, we agree and have typically highlighted with bold fonts
all comparable products for a fair comparison. This is
further emphasized in the text of the revised version of the
manuscript.

P10: The authors compared WECANN to
FLUXNET-MTE, ECMWF, GLEAM and MODIS-GPP
which were the training data for WECANN. | feel
there should be self-correlation, so | am curious
whether this is a reasonable approach.

The focus of this comparison is not validation. Since we
used the three training products to generate the target
dataset, we compare WECANN to these three to examine
how similar is it to each of those training datasets. And we
show that spatially WECANN is more similar to the product
that has the lower RMSE in our TC estimates.

P10 L8: | know there are few eddy flux tower data
in India, so FLUXNET-MTE might involve higher

It is true that there are few towers in India, but our retrieval
does not rely solely on regional towers to estimate surface




uncertainty. However, this is the same situation
for WECANN as it used FLUXNET-MTE and others,
which are all uncertain as training dataset.

fluxes. Indeed this is a major advantage over FLUXNET-MTE
and others. We train an artificial neural network algorithm
using the three training products (two of which are not
based on flux towers, and so do not necessary have higher
uncertainty in certain areas because there are few towers
there) mentioned in the manuscript for all the pixels
However, the actual time-scale retrieval is mostly informed
by the remote sensing observations (see discussion in
Jimenez et al. 2009). That means we use the information
from all the pixels over the globe to train one retrieval
algorithm. This algorithm uses remote sensing observation
at each point in time and space to retrieve surface fluxes.
Therefore, lack of FLUXNET towers in any part of the globe
would not impact the accuracy of WECANN retrievals, while
this would expected to be more be an issue for products
that upscale tower-based observations to estimate fluxes
across the globe.

P10 L4: Be quantitative. Report bias.

Thanks for noting this. The point we have raised in this line
(on the spread of scatter plots) can be quantitatively
compared using the RMSD value that are provided in the
figures. In the revised manuscript, we report this in the
text.

P10 L20: Define “G”

Corrected in the revised manuscript.

P11: Many contents in this page should move to
Methods.

In the revised manuscript, we re-organized the text and
moved these contents to section 2.3.

P12 L5-6: Then why not removing this site given
obvious deficiencies?

We believe that it is informative to include this comparison,
as it illustrates that the representativeness area can be a
challenge in comparing large-scale remote sensing based
retrievals to point based tower data. In this case, we have
good knowledge of the site and its surrounding region so it
is possible to investigate if the tower data is representative
of the larger scale fluxes.

P12-: As the authors well recognized, | feel it is
odd to compare 1 degree WECANN to several
hundred meters in flux towers. All discussion
from this comparison seems too subjective. |
think “validation” of 0.5-degree product is
unlikely possible. As your products are too
coarse, | would recommend evaluating at larger
scales. For example, look interannual variability
of global GPP (PgC yr-1), ET (W m-2), and H (W m-
2) and compare to atmospheric inversion
estimates. Test whether your product could
capture big climate extreme events such as
Russian heatwave, Texas drought etc. Compare
to other existing global land surface products

While there is some caveat in validation against point based
tower data, these are the only ground based observations
available for such a validation. Moreover, in the comparison
against tower data many large scale variabilities, including
but not limited to the seasonal cycle are comparable to
pixel based retrievals. This is also the case for interannual
variability, and we have discussed them in detail, in section
4.4 of the original manuscript (section 4.3 of the revised
manuscript). For instance the phenology has a strong
impact on the seasonal cycle of the fluxes and is here
clearly highlighted when comparing the different products
to flux tower estimates.

In the revised manuscript, we highlighted this limitation
clearly in section 4.3, while noting that comparison against
ground-based tower observations is common practice and




which were not used as input/training dataset in
WECANN.

is what the community indeed looks for when a new
retrieval algorithm is developed. We believe that specific
drought or flood events would lack the generality provided
here when comparing all years/months. Moreover, such a
comparison needs detailed analysis that would further
lengthen the manuscript (Indeed, the other referee asked
us to reduce the length of the manuscript).

In addition, in the new section 4.4 we provide uncertainty
estimates of the retrievals along with interannual variability
of surface fluxes at global scale to provide an additional line
of evidence on the quality of the WECANN dataset.




Response to Referee 2

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A
statistically-based estimate of global surface turbulent fluxes using solar-
induced fluorescence (Manuscript # bg-2016-495)

Comments

Responses/Actions

This manuscript is well written and deserves
consideration for publication in this journal.
However, | have the following issues that need to
be addressed.

We appreciate the referee’s positive feedback and provide
responses to his/her comments below.

The paper proposes an empirical machine
learning ‘meta-model’ to try to learn from
different existing datasets to combine their
strengths and factor out their limitations. On one
hand, | appreciate this effort to bring together
different datastreams and somehow harmonize
them through this new consolidated product, but
on the other, | am wary of this approach of
blindly adding further algorithmic layers without
really trying to understand mechanistically why
the initial datasets have shortcomings. If all
products are equally off in some parts, combining
them just gives the false impression we are going
in the right direction while reality is still off. Also,
the FLUXNET-MTE used as training is already a
machine learning product driven by various input
variables, very much like WECANN is.
Furthermore, there is quite some circularity in
the work since the FLUXNET-MTE and MODIS GPP
are both strongly based on the same fluxtowers
used here for validation. | deem that all these
points need to be acknowledged clearly and
discussed thoroughly.

We acknowledge this concern, and would like to bring the
following points to the referee’s attention:

1-

The WECANN machine learning retrieval is quite
different from FLUXNET-MTE in the sense that we
use remote sensing observations as inputs while
FLUXNET-MTE upscales tower-based observations
to estimate surface fluxes at global scale. Although
both approaches use machine learning techniques
(artificial neural networks in the case of WECANN
and regression in the case of FLUXNET-MTE) their
retrieval algorithms are quite different and directly
informed by only remote sensing observations in
WECANN, which we believe is an important means
of better constraining the retrievals.

Moreover, our training approach uses all the spatial
and temporal observations during the training
period (2008-2010) to develop one single neural
network for the global retrievals. This network is
then used with remote sensing observations as
input to retrieve surface fluxes. Therefore, if a few
percentage of times and pixels, all the three
training products are equally off this will be
mitigated by the larger number of pixel/time data
points that have more accurate estimates in other
places and other times. In addition, the network
can even correct the seasonal cycle when learning
from an incorrect seasonal cycle training data, as
the remote sensing inputs provide the information
on the seasonal cycle directly. This has already
been demonstrated previously, cfg. Jimenez et al.
(2009).

Jimenez, C., Prigent, C., Aires, F. (2009). Toward an
estimation of global land surface heat fluxes from




multisatellite observations. Journal of Geophysical
Research-Atmospheres, 114(D6), D06305.

3- Ontheissue of validation against FLUXNET tower
data, we acknowledge that two of the training
products use FLUXNET data for their calibration or
as input. However, virtually all products have been
calibrated in some ways or tested against eddy-flux
tower, so implicit circularity is hard to avoid; there
simply isn’t another high quality data-set available.
This does not however mean that the products are
not independent: indeed the training products we
use are typically calibrated to reproduce either the
annual mean or are adjusted per season at very few
sites (but not the exact temporal structures of the
eddy-covariance observations except for FLUXNET-
MTE). In addition the specific years of observations
used here were not used in the calibration of
MODIS and FLUXNET-MTE.

Here, we use the three training products together
with a priori weights calculated from Triple
Collocation to define a target dataset that has
collective information from all three of them. And
then we train our network on the target dataset.
Finally, we validate the retrievals of WECANN
against FLUXNET tower data and compare its
performance with the performance of the three
training products. While some information from
FLUXNET observations propagates through the
training products to WECANN training, the
comparison results against FLUXNET observations
show that WECANN learns from the three products
collectively and performs better than any of them
individually, emphasizing that our strategy works
well. In addition, it is clear that WECANN does not
have the seasonal biases seen in most retrievals
(see e.g. FI-Hyy site where WECANN correctly
captures this cold region's photosynthesis and
evapotranspiration compared to the other
products). Nevertheless, we have tried to also
provide alternative lines of evidence to support the
WECANN data quality, including an entirely new
uncertainty analysis in section 4.5
We also made changes to sections 3 and 4 of the
manuscript in the revised version to better reflect on these
points. Moreover, in the new section 4.4 we now provide
uncertainty estimates on WECANN retrievals to provide an
additional line of evidence on the quality of the WECANN
dataset.




Could you specify why you use the SYN products
(Level 3) from CERES instead of the EBAF ones
(Level 3B)? The later have been energy balanced
according to the product specifications. Wouldn’t
this be an advantage in your case?

Our goal here, as also mentioned in section 1 of the
manuscript, is to only use remotely-sensed observations as
input. The EBAF product is based on a model with some
remote sensing observations; therefore, we decided to use
the SYN product to avoid any model addition.

In the construction of the ANN, | would welcome
to have some justification of why tangent sigmoid
transfer functions are used instead of linear ones.
| know this is often done, but it seems very
arbitrary.

In this case, we tried the tangent sigmoid (the common
choice) as well as linear, and did not see any notable
changes in the performance of the network. Therefore, we
chose to use the typical tangent sigmoid function. This has
been added to the text (Page 6, Line 36 — Page7, Line 2).

Also, | did not quite understand how the 20% of
‘testing’ data is used. | clearly see that 60% are
used for training and 20% for validation, but how
exactly do you use the other 20%? Perhaps this
just needs some rephrasing in the text for
clarification.

We apologize for the confusion on this matter. In the
revised manuscript, we explained this in more detail (Page
7, Lines 5-10). In summary, these percentages are for the
data that are used in the training process. This is standard
practice in artificial neural networks training. The back-
propagation algorithm uses the training portion of the data
for estimating the weights of the neuron in the network,
and the validation and test data are used to evaluate
convergence of the training. These are separate than the
data that we used for validation later on. Our validation,
uses a subset of data that are not used in the training, to
make sure the network is not over-fitted to the training
data. We revised the text in the new version of the
manuscript and clarified the definitions.

Comparison with fluxtower measurements is not
appropriate as the difference in spatial support is
just too different (1 squared degree vs <1km?2).
Saying that WECANN performs better that other
products based on individual towers while all
these products cover such a larger area (by
several orders of magnitude) just does not make
much sense (even if it has been done in other
studies). The authors would need to do some
filtering of the towers to select only those that
can be considered representative (e.g.
http://doi.org/10.1016/j.rse.2016.04.027),
although | doubt this would leave many valid
towers for pixels of 1 squared degree. Another
option that may be more feasible would be to
make an evaluation at a larger aggregation scale,
such as for clusters of similar climates and plant
functional types. Making such averages from the
fluxtowers on one side and from all pixels that
are comparable in this respect on the other
would reduce the number of measurements for
validation, but would render them more credible.
| would also suggest to exploit more of the

We acknowledge that comparison against point based
tower data has its own limitation (as we also have noted in
the manuscript), but these are the only ground based
validation data that is available for evaluating a new global
product. For this reason, we used a selection of sites
spanning a geographical gradient and provided detail
explanation on the comparison results in each site based on
the knowledge of the land cover / land use around the site
to make sure the differences, if any, can be explained either
by uncertainties in WECANN retrieval or representativeness
of the of towers. As the referee notes, filtering the towers
based on representativeness might not leave us with any
tower to use.

In the original manuscript, we only used 21 towers that
were selected to represent a wide range of climatic
conditions and we would be able to explain the results of
each one of them, including the time series plots in detail.
However, due to the request of both referees in the revised
manuscript we include summary statistics from comparison
of WECANN against 97 FLUXNET sites from three datasets:
FLUXNET2015, La Thuile Synthesis Dataset and the Large-
scale Biosphere-Atmosphere (LBA) experiment in Brazil.
Results are provided in Tables S1 — S3 and discussed in
Section 4.3 of the revised manuscript. We also want to




available towers in the Fluxnet2015 dataset
instead of only 21.

emphasize that some features of the flux towers such as
phenology, seasonality are correctly picked up by our
retrieval compared to other products and are only
moderately affected by the heterogeneity within the pixels
(except if there would be a very different even composition
of deciduous and conifers for instance).

The part pretending to demonstrate the value of
SIF is also inadequate as the authors only test the
effect of removing this one input. By doing so,
any information of the actual vegetation
phenology is lost, which would necessarily reduce
the performance. What would be interesting
would be to show that SIF provides better
information that the classical vegetation indices
like NDVI or EVI. To do so, the SIF input of the
ANN should be replaced by one of these and then
a judgement on the pertinence of SIF can be
made.

We appreciate the referee's comment on this point. We
have now included comparisons with retrievals that have
only NDVI or EVI instead of SIF in the revised manuscript.
This better shows the value of having SIF as an input in
retrieving surface fluxes. Thank you for this important
comment. The results further emphasize the difference
between SIF and purely vegetation structure and phenology
(as well as saturation effects of vegetation indices). Section
4.5 in the revised manuscript provides the detailed
comparison of these retrievals.

Finally, the manuscript is often too long and too
descriptive in several parts describing the graphs
and maps. This needs to be reduced drastically.
Most of what is being said can be easily inferred
from the reader by looking at the graphs, while
deeper discussion on why discrepancies occur
between products and fluxtowers would be more
welcome. Also, please remove the extensive
references to different parts of the text and the
description of the structure of the paper (e.g.
page 3 lines 10-20), | think they are lengthening
the text needlessly.

Given the novelty of the approach we feel that it is
important to correctly describe the different steps of the
analysis as many are relatively new such as the machine
learning and the triple collocation. We had received the
opposite comments before that we were not sufficiently
describing the details; hence, the reason why the article
goes into the details of the retrievals. We have edited he
manuscript throughout and shortened it where possible.
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Abstract. A new global estimate of surface turbulent fluxes, including latent heat flux (LE), sensible heat flux (H), and gross

primary production (GPP) is developed using a machine learning approach informed by remotely sensed Solar-Induced

Fluorescence (SIF) and other radiative and meteorological variables. The approach uses an artificial neural network (ANN) with a
Bayesian perspective to learn from thethree training datasets:—a. The combined target input dataset is generated using three
independent data sources and a triple collocation (TC) algorithm to define a prior distribution. The new retrieval, named Water,
Energy, and Carbon with Artificial Neural Networks (WECANN), provides surface turbulent fluxes from 2007 to 2015 at 1° x 1°
spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN
retrievals are validated using FLUXNET tower measurements across various climates and conditions. WECANN performs well

in most cases and is

and-r-humid-conditions-constrained by the SIF information. When compared to in situ eddy covariance observations, WECANN

typically outperforms other estimates, particularly for sensible and latent heat fluxes._Uncertainty estimates of the retrievals are

analysed and the inter-annual variability in average global and regional fluxes show distinct climatic events such as the impact of

El Nifio on surface turbulent fluxes.

1 Introduction

Turbulent fluxes from the land surface to the atmosphere, particularly sensible heat flux (H), latent heat flux (LE), gross primary
production (GPP) and net primary production (NPP) are key to understanding ecosystem response to climate and the feedback on
the overlying atmosphere, as well as constraining the global carbon, water and energy cycles. In recent years, there has been
substantial effort towards estimating these surface fluxes from remote sensing observations at a global scale (see e.g. Fisher et al.,
2008; Jiang and Ryu, 2016; Jiménez et al., 2009, 2011; Jung et al., 2009; Miralles et al., 2011a; Mu et al., 2007; Mueller et al.,
2011). Two differenttypical approaches have been used to estimate these surface fluxes from remote sensing information. The first

approach uses physically-based or semi-empirical models (e.g. the Priestley-Taylor or Penman-Monteith equations in the case of

1
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ET, or a light use efficiency model in the case of GPP) informed by remote sensing information (e.g. vegetation indices, infrared
temperature, microwave soil moisture), often in combination with reanalysis meteorological forcing data (Fisher et al., 2008;
Miralles et al., 2011a; Mu et al., 2007; Zhang et al., 2016b; Zhao et al., 2005; Zhao and Running, 2010). These approaches are
sensitive to the assumptions and imperfections of the underlying flux models. The second approach, employed by the Max Planck
Institute for Biogeochemistry model (MPI-BGC) uses machine learning (e.g. a model tree ensemble) to determine fluxes (LE, H,
and GPP) from meteorological drivers and optical remote sensing data. Like all supervised machine learning models, the MPI-
BGC method relies on a training dataset to determine the non-linear statistical relationships. In this case, in situ turbulent flux
measurements from eddy-covariance towers are used (Beer et al., 2010; Jung et al., 2011). Such an approach relies implicitly on
an assumption that a long temporal record of fluxes at a small number of sites captures the full range of behavior and sensitivities
of terrestrial ecosystems around the globe. In addition, extreme and therefore rare events may be difficult to capture based on the
limited data availability.

Alternatively, one can use a machine learning approach, such as an Artificial Neural Network (ANN}-appreach), trained on globally-

representative but neisyimperfect estimates of the fluxes (such as those from models) to parameterize the non-linear statistical
relationships between remote sensing observations and surface fluxes. This approach has been successfully used for global soil
(Aires et al., 2012; Kolassa et
al., 2013, 2016; Rodriguez-Ferndndez et al., 2015) and surface heat flux retrieval (Jiménez et al., 2009). Such ANNS require a

moisture retrieval

target dataset for training. Climate model simulations of the relevant geophysical variable are usually used as the training dataset

to facilitate thesubsequent data assimilation efretrievals-inte-the-medelefforts (Aires-etal2012:Kolassa-et-al—2013,-2016)(Aires
etal., 2012; Kolassa et al., 2013, 2016). However, the downside of this approach is that the resulting fluxes estimated by the ANN

often shewexhibit some of the same biases as the simulations used to train the network (Rodriguez-Fernandez et al., 2015), even

if improvements can be achieved such as a more realistic seasonal cycle as it is informed by the seasonal cycle of the remote

sensing data (Jiménez et al., 2009).

In this study, we develop an ANN approach to retrieve monthly surface fluxes at the global scale. The network uses remotely sensed
solar-induced fluorescence (SIF) estimates in addition to other data including precipitation, temperature, soil moisture, snow cover,
and net radiation as inputs (predictor). To reduce any biases, we introduce a Bayesian perspective to generate the trainingtarget
dataset for the ANN. Multiple estimates of each of the fluxes are selected according to a prior probability that reflects the quality
and information content of the dataset at the particular pixel of interest (details are provided in Section 3.2). This approach enables
us, for the first time, to generate a robust trainingtarget dataset along with a statistical algorithm for the retrieval, while bypassing
the need for a land surface model and radiative transfer scheme. This new global product of surface turbulent fluxes is named
WECANN (Water, Energy, and Carbon Cycle fluxes with Artificial Neural Networks). WECANN monthly flux estimates for the
period 2007 — 2015 are provided on a 1° x 1° resolution grid and with units of W m for LE and H, and gC m day* for GPP. The
spatial coverage of WECANN is presented in Figure S1. It includes all the land areas, except for Greenland, Antarctica, and any

1° x 1° pixel that has more than 75% water, snow or ice permanently. To estimate the fraction of water, snow and ice in each pixel
we used the 0.05° x 0.05° MODIS-based Land Cover Type product (MCD12C1 v051) (NASA LP DAAC, 2016).

A second key innovation of the WECANN methodology is that it uses the new remotely sensed SIF measurement as input. To our

knowledge, this is the first time that remotely-sensed SIF estimates are used at the global scale to retrieve surface turbulent fluxes
(LE, H, and GPP). Previous studies show a strong relationship between the rate of photosynthesis and SIF observations and indicate

that the plant fluorescence measurements can be a useful proxy for photosynthesis estimation (Flexas et al., 2002; Govindjee et al.,
1981; Havaux and Lannoye, 1983; van Kooten and Snel, 1990; Krause and Weis, 1991; McFarlane et al., 1980; Toivonen and

Vidaver, 1988; van der Tol et al., 2009). Recently, satellite observations of SIF have become available, opening new possibilities
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for the global monitoring of photosynthesis (Frankenberg et al., 2011, 2012, 2014; Guanter et al., 2012; Joiner et al., 2013; Schimel
etal., 2015; Xu et al., 2015).

shows-that SIFisSIF observations from the Global Ozone Monitoring Experiment—2 (GOME-2) instrument are shown to better

track the seasonal cycle of GPP compared to typical high-resolution optically-based vegetation index estimates (Guanter et al.,

2012, 2014; Joiner et al., 2014; Walther et al., 2016). SIF has also been shown to be a pertinent indicator of vegetation water stress
(Lee et al., 2013). Moreover, a strong-near-linear relationship between G@SAI—basedmonthly SIF retrievals and GPP is found for
different vegetation types which suggests that SIF estimates can be

futtre-global-carbon-eyeleresearehstrongly constrain GPP retrievals (Frankenberg et al., 2011).

Recently, a new SIF product was developed from observations of the GOME-2 satellite using a new retrieval algorithm that

disentangles three components from multispectral observations (Joiner et al., 2013). SIF retrievals are shown not to be strongly
affected by cloud contamination and seasonal variabilities in aerosol optical depth (Frankenberg et al., 2014). More recently,
remotely sensed SIF retrievals have been used to successfully provide estimates of GPP in cropland and grassland ecosystems
(Guanter et al., 2014; Zhang et al., 2016a). SIF retrievals are also integrated with photosynthesis estimates from National Center
for Atmospheric Research Community Land Model version 4 (NCAR CLM4) which result in significant improvement of the
photosynthesis simulation (Lee et al., 2015). As GPP-direetly relates to plant transpiration through stomata regulation (Damour et
al., 2010; DeLucia and Heckathorn, 1989; Dewar, 2002), and transpiration water fluxes dominate continental ET (Jasechko et al.,
2013), the use of remotely sensed SIF has the potential to also better constrain estimates of the continental water (LE), and energy

(H) cycles, in addition to carbon (GPP) cycle. Using our machine learning approach we further demonstrate the usefulness of SIF

for constraining surface evaporation.

The rest of the paper is organized as follows. The datasets used as input and target are introduced in Section 2. The ANN retrieval
and Bayesian characterization methods are explained in Section 3. Section 4 provides the results of flux retrievals, validation of

results, uncertainty analysis of the retrievals and discussions on the impact of SIF on the retrievals. Conclusions are presented in

Section 5.

—The inputs teof WECANN include six
remotely sensed variables introduced in Section 2.2: SIF, net radiation, air temperature, soil moisture, precipitation, and snow
water equivalent. These are used to retrieve the three surface fluxes (LE, H, and GPP). Different observation and/or model based
datasets are used as the training dataset, and are explained in Section 2.1. All the data presented here are projected and gridded on

a 1° x 1° geographic grld and averaged at monthly temporal resolution. Iheeeean&n%eeeevered—pme%*ere%asked—u&ng%he
- Finally, the FLUXNET tower

data used for validation of the ANN retrievals are presented in Section 2.3.
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2.1 Training Datasets

Four products are introduced in this section, and a triplet of them is used for training of each of the LE, H, and GPP (Section 3.2).
For LE and H, training is performed based on GLEAM, FLUXNET-MTE, and ECWMF ERA HTESSEL. For GPP, training is
performed on FLUXNET-MTE, ECWMF ERA HTESSEL, and MODIS-GPP. Table 1 summarizes the characteristics of the

training datasets used here.

2.1.1 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms to estimate terrestrial evapotranspiration using
satellite observations (Martens et al., 2016; Miralles et al., 2011a). GLEAM is a physically-based model composed of 1) a rainfall
interception scheme, driven by rainfall and vegetation cover observations; 2) a potential evaporation scheme, calculated from the
Priestley and Taylor (1972) equation and driven by satellite observations; and 3) a stress factor attenuating potential evaporation,
based on a semi-empirical relationship between microwave VOD observations and root-zone soil moisture estimates (based on a
running water balance for rainfall and assimilating satellite soil moisture). The data is provided on a 0.25° x 0.25° spatial resolution
and daily temporal resolution and starts in 1980. GLEAM data have been used for studying land-atmosphere interactions, and the
global water cycle (Guillod et al., 2014, 2015, Miralles et al., 2011a, 20144a, 2014b). In this study, we use LE and H estimates from

the latest version v3.0a (Martens et al., 2016).

2.1.2 FLUXNET-MTE

The FLUXNET-MTE (Multi-Tree Ensemble) provides global surface fluxes at 0.5° x 0.5° spatial resolution derived from empirical
upscaling of eddy-covariance measurements from the FLUXNET global network (Baldocchi et al., 2001). The MTE method used
is an ensemble learning algorithm that enables learning diverse sequence of different model trees by perturbing the base learning
algorithm (Jung et al., 2009, 2010, 2011). The data covers the period from January 1982 to December 2012 and can be used for
benchmarking land surface models and assessment of biosphere gas exchange. We use LE, H, and GPP estimates from FLUXNET-
MTE.

2.1.3 ECMWF ERA HTESSEL

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) is a global 3D variational data
assimilation (3DVAR) product that uses the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) in
the forecast system. HTESSEL has a surface runoff component and accounts for a global non-uniform soil texture unlike the old
TESSEL model (Balsamo et al., 2009). This is an offline model simulation, and HTESSEL is driven by meteorological forcing

output from the forecast runs. Photosynthesis in the model is computed independently (i.e. with its own canopy conductance) from

LE, so that the carbon cycle does not interact with the water cycle at the stomata level, adding errors. We use LE, H, and GPP

estimates from ERA HTESSEL provided on a 0.25° x 0.25° geographic grid with daily temporal resolution.

2.1.4 MODIS-GPP

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is onboard the sun-synchronous NASA satellites Terra
(10:30 AM/PM overpasses) and Aqua (1:30 AM/PM overpasses). It provides 44 global data products (Justice et al., 2002) from 36
spectral bands including visible, infrared and thermal infrared spectrums to monitor and understand Earth surface: atmosphere,
land and ocean processes. The MODIS GPP/NPP project (MOD17) provides gross/net primary production estimates covering the
whole land surface and is useful for analyzing the global carbon cycle and monitoring environmental change. The MOD17

4
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algorithm is based on a light-use efficiency approach proposed by {Menteith-and-Mess—1977)(Monteith and Moss, 1977), which
states that GPP is proportional to the product of incoming Photosynthetically Active Radiation (PAR), fraction of Absorbed PAR

(FAPAR) and efficiency of radiation absorption in photosynthesis. We use the monthly MOD17A2 GPP product (Running et al.,
2004; Zhao et al., 2005; Zhao and Running, 2010). MOD17A2 is available from 2000 until 2015, and provided on a 0.05° x 0.05°

spatial resolution.

2.2 Input Datasets

Six sets of observations are used as input to the WECANN retrieval algorithm. These are selected in a way to provide necessary
physical constraints on the estimates from the ANN. Table 2 lists the characteristics of each of the datasets, and they are briefly

introduced in the following.

2.2.1 Solar-Induced Fluorescence

The GOME-2 instrument is an optical spectrometer onboard Meteorological Operational Satellite Program, MetOp-A and MetOp-
B satellites, which were launched by the European Space Agency (ESA). GOME-2 was designed to monitor atmospheric ozone

profile as wells as other trace gases and water vapor content. It senses Earth backscatter radiance and solar irradiance at a 4080640

km spatial resolution- (prior to July 2013 the spatial resolution was 40x80 km). Recently, the retrieval of Solar-Induced chlorophyll
Fluorescence (SIF) using GOME-2 observations in the 650-800 nm spectrum has been investigated {Frankenberg-et-al—201%:
Joineretal;2011)-(Joiner et al., 2013, 2016). We use version 26 of the daily SIF product that uses the MetOp-A GOME-2 channel

4 with a ~0.5 nm spectral resolution and wavelengths between 734 and 758 nm. SIF estimates are provided on a geographic grid

with 0.5° x 0.5° grid spacing.

2.2.2 Net Radiation

Net radiation is the main control of the rates of sensible and latent heat in wet environments and is closely related to PAR. The
Clouds and Earth’s Radiation Energy System (CERES) is a suite of instruments which measure radiometric properties of solar
reflected and Earth emitted radiation from the Top Of Atmosphere (TOA) to Earth surface, from three broadband channels at 0.3
— 100 um. The CERES sensors are on board the Earth Observation Satellites (EOS) including Terra, Aqua and TRMM (Kato et
al., 2013; Loeb et al., 2009). We use the net radiation estimates from Synoptic Radiative Fluxes and Clouds (SYN) product of

CERES which are provided on a 1° x 1° geographic grid with monthly time resolution.

2.2.3 Air Temperature

The Atmospheric Infrared Sounder (AIRS) is a high- spectral resolution spectrometer onboard the NASA Aqua satellite launched
in 2002. It provides hyperspectral (visible and thermal infrared) observations for monitoring process changes in the Earth’s
atmosphere and land surface, as well as for improving weather prediction. The AIRS instrument was designed to obtain
atmospheric temperature and humidity profiles of every 1 km layer of the atmosphere. The accuracy of AIRS temperature
observations is typically better than 1°C in the lower troposphere under clear sky condition (Aumann et al., 2003). We use daily
temperature estimates from the lowest layer of AIRS level-3 standard product that is provided on a 0.5° x 0.5° geographic grid.

2.2.4 Surface Soil Moisture

The European Space Agency (ESA) Climate Change Initiative (CCI) program soil moisture (ESA CCl SM) is a multi-decadal

(1980-2015) global satellite-observed surface soil moisture product. It merges observations from passive sensors (e.g., Scanning
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Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), AMSR-E) and active ones (e.g., the
European Remote Sensing (ERS), Advanced Scatterometer (ASCAT)), based on a triple collocation error characterization (Dorigo,
et al., in reivew; Liu, Parinussa, et al., 2011; Liu et al., 2012; Wagner et al., 2012). Here, we use daily data from the latest version,
v2.3. ESA CCI SM is provided on a 0.25° x 0.25° geographic grid.

2.2.5 Precipitation

The Global Precipitation Climatology Project (GPCP) provides global daily precipitation estimates at 1° x 1° spatial resolution
from Oct. 1996 to near present (Huffman et al., 2001). Global precipitation estimates from infrared and microwave instruments
are combined with monthly gauge measurements to produce the daily estimates. In this study, v1.2 of the one-Degree Daily (1DD)
product of GPCP is used and daily estimates are aggregated to monthly scales. Several studies have evaluated the GPCP 1DD
product at global or regional scales, and results show that it has high accuracy and good agreement with independent in situ
measurements and other global precipitation estimates (Gebremichael et al., 2005; Joshi et al., 2012; McPhee et al., 2005; Rubel
etal., 2002).

2.2.6 Snow Water Equivalent

The GlobSnow project is developed by ESA, and provides long-term snow-related variables: Snow Water Equivalent (SWE) and
areal Snow Extent (SE). It combines microwave-based retrievals of snow information (including Nimbus-7 SMMR, DMSP
F8/F11/F13/F17 SSM/I(S) observations) and ground based station data through a data assimilation process and provides the SWE
and SE products at different temporal resolutions: daily, weekly and monthly (Pulliainen, 2006). Here, we use v2 of the daily L3A
SWE product which is posted on a 25 km x 25 km EASE grid.

2.3 Validation Dataset: Eddy-Covariance Flux Observations

FLUXNET is a network of regional-micrometeorelogical tower sites, which measure turbulent flux exchanges (water vapor, energy
fluxes and carbon dioxide) between ecosystems and atmosphere (Baldocchi et al., 2001). FLUXNET comprises over 750 sites
covering five continents. Measurements from the FLUXNET towers provide valuable information for validating satellite based
retrievals of surface fluxes. In this study, FLUXNET measurements from the FEUXNET2015FLUXNET 2015, the La Thuile
Synthesis dataset fer21-stationsand the Large-scale Biosphere-Atmosphere (LBA) experiment in Brazil are used for validation

(details are provided in section 4.4).
FLUXNET 2015 tier 1 and tier 2 data were retrieved from (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The data have

been systematically quality controlled with a standard format throughout the dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-

dataset/data-processing/, (Pastorello et al., 2014)) and gap-filled using ERA meteorological forcing downscaling.

From the Large-scale Biosphere-Atmosphere (LBA) experiment in Brazil, we use data from sites in Ronddnia at the edge of a

deforested region (BR-Jil and BR-Ji2) and near S&o-Paulo (BR-Sp1l). As the data did not span recent years, we instead use a

climatology of the fluxes for comparison. We note that, of course, the inter-annual variability in the region (such as EI Nifio and
La Nifa) could alter the seasonality and magnitude of the fluxes in the region.

to-validate-the-We also use data from the La Thuile Synthesis Dataset (http://fluxnet.fluxdata.org/data/la-thuile-dataset/) covering
24 sites. These data are part of the free-fair use version of the dataset.

A total of 97 sites from the three datasets are selected for validation of WECANN retrievals—Fhese-sites-are-selected-to-span

spanning a large climatic and biome gradient (detaHs-are-provided-in-seetion-4-4)Fig. S2). For AmeriFlux towers, if measurements
from both the FLUXNET 2015 dataset and the La Thuile dataset were available, we have used the FLUXNET 2015 data. We have
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only selected sites that had at least 24 month of continuous measurements during 2007-2015 years. Any site that would have fallen

outside of the WECANN land mask (Fig. S1) is excluded (several sites in coastal regions).

3. Methodology
3.1 Artificial Neural Network Setup

We developed an ANN retrieval algorithm to estimate the surface fluxes (LE, H, and GPP) based on our six sets of input
observations: SIF, net radiation, air temperature, soil moisture, precipitation, and SWE (as described in Section 2.2). The ANN
used here is a feedforward network consisting of three layers: (1) an input layer that directly connects to the input data, (2) one
hidden layer and (3) an output layer that produces the 3 output estimates. The number of neurons in the input and output layer is
determined by the number of input and output variables, whereas for the hidden layer it has to be chosen according to the
complexity of the problem (see below). The neuron output from each layer is fed to neurons in the subsequent layer through
weighted connections. Each neuron output is the weighted sum of its inputs plus a bias, which is then subjected to a transfer
function. In this study, we chose a tangent sigmoid transfer function for neurons in the hidden layer and a linear transfer function
in the output layer. The change of the transfer function for the hidden layer (log sigmoid or tangent sigmoid) did not produce any

significant changes in the retrievals (not shown), so we used the more common method. A schematic of the ANN architecture is

provided in Fig. 1.

The training step of the ANN aims at estimating the weights for each of the neuron connections, such that the mismatch between
the ANN outputs and target estimates is minimized. For this, we used the mean squared error (MSE) as the cost function and a
backpropagation algorithm to adjust the ANN weights. During training, the target data is divided into three subsets: training,
validation and testing constituting 60%, 20% and 20% of the target data, respectively. In each iteration, the training subset is used
to estimates the weights in the network, and the convergence of the training and-validation-estimates-towards the target data is

checked_using the validation subset. When overfitting of the network weights to the training data occurs, the validation estimates

start diverging from the target data and the training is stopped (early stopping). The weights from the last iteration before the
occurrence of the divergence represent the final solution. The test-datatesting subset are used to assess the ANN performance after
the training phase.

As an additional measure to avoid overfitting, we repeated the training for several ANNANNSs with an increasing number of
neurons in the hidden layer (1 to 15). For 1 to 5 neurons, the R? value between the target data and NNthe ANN estimates increased
with an increasing number of neurons. For more than 5 neurons, little change in the skill was observed when increasing the number
of hidden layer neurons (Fig. S£S3). Thus an ANN with 5 hidden layer neurons represents the simplest ANN that can converge to
a solution and model the non-linear relationship between the satellite inputs and the surface flux estimates.

To train the ANN, we used LE, H and GPP estimates from the years 2008-2010. The target dataset was generated through a triple
collocation based merging of triplets of the flux estimates introduced in Section 2.1 (details are discussed in Section 3.2). After
completion of the training, the performance of the ANN and its ability to generalize was evaluated using the LE, H and GPP target
data from 2011. Finally, WECANN retrievals are validated against other global products and eddy covariance tower data. Results
of these comparisons are presented in section 4.

3.2 Target Dataset: A Bayesian prior using Triple Collocation

One of the key issues in the design of an ANN to retrieve any geophysical variable is defining a good trainingtarget dataset. One
practice has been to use outputs from a land surface model as the target (Aires et al., 2005; Jiménez et al., 2013; Kolassa et al.,
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2013; Rodriguez-Fernandez et al., 2015). However, all observations and models contain random errors and biases. Therefore, the
retrieval based on the ANN exhibits mestsome of the biases of the original trainingtarget dataset even if the ANN is able to make
corrections to its original training-target data (e.g. correction of an imperfect seasonal cycle, as demonstrated by Jiménez et al.,
2009). To address this issue, we use multiplethree datasets, which are sufficiently independent so that the training can learn from
each dataset and benefit from all of them, synergistically. We implement a pseudo Bayesian training by probabilistically weighting

the occurrence of each training dataset by its likelihood, and define a target dataset. The three datasets are listed in Table 1 for each

variable.

To define this prior distribution, we use the triple collocation (TC) technique. TC is a method to estimate the Root Mean Square
Errors (RMSE) (and, if desired, correlation coefficients) of three spatially and temporally collocated measurements by assuming a
linear error model between the measurements (McColl et al., 2014; Stoffelen, 1998). This methodology has been widely used in
error estimation of land and ocean parameters, such as wind speed, sea surface temperature, soil moisture, evaporation,
precipitation, fAPAR, and in the rescaling of measurement systems to reference system for data assimilation purposes
(Alemohammad et al., 2015; D’Odorico et al., 2014; Gruber et al., 2016; Hain et al., 2011; Lei et al., 2015; Miralles et al., 2010,
2011b; Parinussa et al., 2011), as well as in validating categorical variables such as the soil freeze/thaw state (McColl et al., 2016).

The relationship between each measurement and the true value is assumed to follow a linear model:
Xi = Q; + ﬁlt + & i= 1,2,3 (1)

where X;'s are the measurements from the collocated system i (e.g. remote sensing observation, model output, etc), t is the true
value, a; and §3; are the intercept and slope of the linear model, respectively. ; is the random error in measurement i and TC
estimates the variance of this random variables in each measurement. By further assuming that the errors from the three
measurements are uncorrelated (Cov(e;, &) = 0, fori # j) and the errors are uncorrelated with the truth (Cov(e;, t) = 0), the

RMSE of each measurement error can be calculated as (McColl et al., 2014):

Q12013
0, [ Qu — = ]
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in which Q; is the (ith, jth) element of the covariance matrix between the three measurements. Since the triplet of datasets used
for training each of the fluxes (see Table 1) is derived through different semi-empirical approaches with different sources of errors,
the assumption of uncorrelated errors is more likely to be met.

The TC errors from the surface fluxes are shown in Figs. S2-S4-S6. The white regions represent missing retrievals or discarded
negative estimates due to insufficient data record. For LE, high TC errors are found in the Amazon rainforest and tropical Africa
for GLEAM, in Amazon rainforest and the Sahel for ECMWF, in Indian peninsula for FLUXNET-MTE and in U.S. Great Plains
for ECMWF and FLUXNET-MTE. For H, beside the aforementioned regions, high TC errors are also found in Southeast Asia for
GLEAM and ECMWEF, and in northern Canada for FLUXNET-MTE. For GPP, MODIS and ECMWF have the highest errors in
Amazon rainforest, ECMWF and FLUXNET-MTE have relatively higher errors in US Great Plains, and all three products have

similar errors in Tropical Africa.



10

15

20

25

30

35

There are several likely causes for these errors. For the FLUXNET-MTE data, the regions which are not covered by (many)
FLUXNET eddy-covariance stations may result in larger uncertainties, and those regions for which interception is a large
component of the LE flux as well (Michel et al., 2016). For the GLEAM and ECMWF data thick vegetation generally induces
biases compared to the satellite observations, especially in tropical regions (Anber et al., 2015).
Finally, we use the TC-based RMSE estimates at each pixel to compute the a priori probability (P;) of selecting a particular dataset
in each pixel, if that pixel is used as part of the training dataset:

P =5 3

i=1,2
a2,
&

in which P; is the probability of selecting dataset i when sampling from three measurements. We assume that these probabilities
are time independent as we are limited by the currently available duration of the input data; however, future versions will explore

the use of seasonally varying probabilities.

4. Results and Discussion
4.1 Global Magnitude and Variability of Surface Fluxes

In this section, we present and compare the retrievals of LE, H and GPP fluxes for the year 2011, which was not included in the
training step of WECANN-thus. Thus, it is used here to evaluate the ANN fit to the target values.

Figure 2 illustrates the global average annual retrieved fluxes and scatterplots of flux retrievals vs target estimates. The spatial
patterns of the WECANN retrievals are similar to expectations. The average global fluxes in 2011 are 36.2638.33 W mfor LE,
34.8239.44 W m2 for H, and 2.2034 gC m day ! (or 123.16 PgC yr?) for GPP. LE has the best R? (0.95) comparing to the other
threetwo flux variables H (R?=0.89), and GPP (R?=0.90). The Root Mean Squared Difference (RMSD) of each of the retrievals
with respect to the target estimates is as following: for LE, RMSD = 11.2306 W m%; for H, RMSD = 13.3513 W m; and for GPP,
RMSD=1.2322 gC m? day .

The seasonal variability and spatial pattern of the surface flux retrievals from 2011 (LE, H, GPP) are shown in Figs. 3 - 5. LE does
not exhibit any variability over deserts, such as the Sahara and Arabian Peninsula, as expected (Fig. 3). Fropical-regionsWet
tropical forests exhibit subtle seasonal variability in LE;-sueh-as-inthe- Amazenrainforest-Congo-basinand-Seutheast-Asia. These

spatial variabilities in the seasonal cycle reflect changes in the radiation, temperature, water availability during the dry season, soil

nutrient, soil type conditions as well as leaf flushing (Anber et al., 2015; Morton et al., 2014, 2016; Restrepo-Coupe et al., 2013;
da Rocha et al., 2009; Saleska et al., 2016). In contrast, seasonal variability dominated by radiation availability are noticeable in
wet mid-latitude regions for both Northern and Southern Hemisphere, i.e., East Asia, Eastern U.S. and Australian North and East
Coast with over 60 W m difference between winter and summer months. One exceptional case is South Asia, where LE does not

significantly rise in spring, likely due to the effects of the monsoonal climate. In Eastern South America, the ET estimates are

relatively high compared to GPP estimates. This difference can be caused by either low water use efficiency or significant rain re-

evaporation and soil evaporation.

Seasonal variabilities in H (Fig. 4) are distributed in opposite pattern to LE, as expected. Deserts and dry regions i.e., the Sahara,
Southwestern U.S. and Western Australia demonstrate much more seasonal variability than the rest of the world;- -given the strong

water limitations there, the available energy converted into H becomes dictated by the seasonal cycle of solar radiation. In contrast,

tropical rainforests (Amazon, Congo, Indonesia) exhibit limited seasonal variability. In mid-latitude energy-limited regions

(Central/Eastern Europe, Easter US), H also reflects the course of available energy, and in more water-limited regimes (e.g.
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Western US and Mediterranean Europe), it reflects the interplay between soil dryness and available energy, with a peak between
spring and summer for dry regions.
The seasonal variability of GPP (Fig. 5) in Northern latitudes feHewfollows the availability of radiation in wet regions with a peak

in summer and another in spring for dry regions, corresponding to both soil water availability and high incoming radiation. A clear
East-West transition conditioned by water availability is observed in continental U.S. In tropics and subtropics, the response is
diverse. The Amazon rainforest exhibits high GPP throughout the year with a peak between September and February in the wetter
part of the basin, following the dry season, consistent with the observations at eddy-covariance towers near Manaus and Santarem
(Restrepo-Coupe et al., 2013; da Rocha et al., 2009). Compared to LE, substantial geographical variability areis observed in the
Amazon, because of the strong variabilities in soil type, green up, biodiversity and sei-wateravaHabity-rooting depth. In the drier
part of the basin, water availability controls the seasonal cycle of photosynthesis and the peak in GPP is observed in the wet season
(DJFMA). In the Congo rainforest, GPP exhibits four seasons, with two wet and two dry ones, with substantial decrease in GPP
during those dry spells. In Indonesia, GPP is steadier throughout the year, exhibiting high values year--round. Monsoonal climates
over India, South-East Asia, Northern Australia and Central-Northern America are well captured with rapid rise in GPP following

water availability. The highest GPP are observed in rainforests and the US agricultural Great Plains, in JJA for the latter. Northern

latitude regions mainly exhibit substantial GPP in the summer and late spring, and small values throughout the rest of the year.
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4:34.2 Comparison against other remote-sensing based products

In this section, we compare the WECANN-based estimates to other datasets-_used in the training to better understand how

WECANN differs from those training data. Figure 6 shows the comparisons for LE, and indicates that our product has highera
relatively similar R? with the three products (R? = 0.96 with FLUXNET-MTE {R?=0.96)-and ECMWF-{, and R? = 0.96)-than94
with GLEAM-R?*=-0:94). However, the scatterplot with FLUXNET-MTE is more concentrated and aligned along the 1:1 line,
further emphasizing the consistency between the two datasets—Difference (RMSD of 6.42 W m for FLUXNET MTE versus 8.47
W m?and 9.72 W m? for GLEAM and ECMWEF, respectively). Differences in spatial patterns shown in Fig. 6a-c reflect that
WECANN exhibits smaller spatial differences with FLUXNET-MTE than GLEAM or ECMWEF and such differences exhibit a
narrower range between -10 and 10 W m2. FLUXNET-MTE overestimates LE compared to eurpreductWECANN in transitional

tropical and subtropical regions and particularly over India, which are regions with few eddy-covariance towers. GLEAM exhibits

substantial differences with our product particularly in regions dominated by seasonal water stress such as Brazilian savannas, the
Horn of Africa, Central America, India and the subtropical humid part of Africa south of the Congo. In the Sahel, GLEAM LE is
higher than our estimate and FLUXNET-MTE. The LE estimate of ECMWEF is nearly always higher than our estimate with much
higher values in the Congo, the Amazon, Southern Brazil, and Northern Canada. In Europe, where the ECMWF estimate should
be best because of the frequent weather operational forecast checks and model adjustment in the region, the estimates are more
similar. The differences and similarities of WECANN retrievals with the three target datasets is consistent with the error estimates
from TC. For example, Fig. S254 shows that FLUXNET-MTE has the smallest error in LE estimates globally compared to GLEAM
and ECMWEF, other than across India. WECANN retrievals also have better agreement with FLUXNEWT-MTE.

The differences in H estimates are more complex (Fig. 7). First, the R? between WECANN and the other datasets is-alwaysare
slightly lower than for LE. ECMWF and FLUXNET-MTE again-yield higher R? with WECANN (0.85-and-0-84,respectively92)
while GLEAM has an R? of 0.8087. GLEAM exhibits lower H in most of the Northern hemisphere, especially in seasonally dry

regions, potentially due to its simple formulation of G-ground heat flux (G). H estimates are relatively higher over the Amazon and

Congo but lower over Indonesia for GLEAM. In the Southern Sahara and northern Sahel as well as in Eastern Asia and Canada
GLEAM has lower H compared to WECANN and FLUXNET--MTE. ECMWF exhibits higher values in seasonal dry regions such
as Western US, Brazilian Savannas, Southern Congo, the Sahel compared to WECANN and smaller values in the Amazon,
Indonesia, and over desert areas of the Sahara and Arabic peninsula as well as South East Asia. The GLEAM and ECMWF H
difference maps show many similar patterns: the Sahara, Eastern Europe, East Asia are underestimated, while Southern Africa and
Eastern part of Amazon are overestimated. Similarly the errors patterns estimated from TC (Fig. S3S5) are consistent with the
comparison of WECANN and target datasets. Figure S3S5 shows that ECMWEF has higher errors in the Sahel, Southern Congo,
and Brazilian Savana and GLEAM has higher errors in the Amazon, East Asia and Central Africa.

The comparison between the GPP estimates shows significant differences (Fig. 8). WECANN compares the best against
FLUXNET-MTE (R? = 0.9293), with MODIS (R? = 0.9091) and ECMWF (R? = 0.8790) following. While FLUXNET-MTE-and
MoDiSall three products have similar R?, their spatial differences are distinct. In the Amazon, ECMWF and FLUXNET-MTE
have larger GPP estimates compared to WECANN, while MODIS estimates are much smaller. In cold northern latitude regions of
Siberia and Northern Canada, all three products have higher GPP than WECANN. In Congo, MODIS and FLUXNET-MTE have
higher GPP, while ECMWEF has a lower one. In Central and Southwestern US, all three products tend to yield lower GPP.
Comparison of these findings with the error estimates from TC (Fig. S4S6) shows that FLUXNET-MTE has the lowest errors
globally, while ECMWF has the largest errors in the Amazon.
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4.43 Validation with FLUXNET Data

Direct validation of the WECANN fluxes is made more challenging by the fact that no global, error-free flux estimates are available.
Remote sensing or model products such as those used for training have their own errors. In situ estimates from eddy covariance
towers with a footprint of a few 100 m may not be representative of the entire 1° x 1° pixel, and are known to have problems with
energy closure. When three datasets with uncorrelated errors (commonly assumed to be true if the sources of error in each dataset
have no common physical origin) are available, triple collocation provides a valuable technique to validate large-scale datasets in
the absence of a known truth. However, WECANN’s use of different noisy training datasets may cause the presence of some
correlated errors between WECANN fluxes and other possible large-scale triple collocation inputs. Instead, we validate the fluxes
by comparing them to data from severala set of FLUXNET eddy-covariance towers. HeweverNevertheless, it is important to keep
in mind that these flux estimates may themselves have errors relative to the true 1-degree scale fluxes and their footprint not be

representative of the WECANN 1° x 1° pixels._ However, in the comparison against tower data the impact of large-scale climate

variability such as the seasonal cycle or interannual variability are comparable to pixel based retrievals. For instance, the phenology

has a strong impact on the seasonal cycle of the fluxes and in the following examples, it is clearly highlighted when comparing the

different products to flux tower estimates.

A-summary of statistics across the differentsites-combining-the- FLEUXNET-2015-tier-1-database-s97 sites are provided in Fable

4-Table-6.Tables S1 — S3. Overall, WECANN performs better than the alternative global products. In particular, WECANN has
the highest correlation for 6176% of sites for LE, 6054% of sites for H, and 5653% of sites for GPP. This high R? reflects the
capacity of WECANN to correctly capture the seasonal cycle and interannual variability. One of the reasons for this is the presence
of the SIF information in the ANN retrieval, which is directly related to GPP and plant transpiration, contrary to optical vegetation
indices that are sensitive to vegetation greenness and canopy cover - factors which can lag fluxes or be out of phase (see e.g. the
lower correlation with NDVI in Frankenberg et al., 2011). The RMSE of WECANN is lower than all other products at 5671% of
sites for LE, 5846% of sites for H, and 4451% of the sites for GPP. The bias is also reduced compared to other retrievals, even if

some variability can be seen from site to site. In the following, we analyze the retrievals across 17 select sites that span a range of

climatic and vegetation coverage conditions. We provide interpretations of similarities and differences between the retrievals, flux

tower measurements as well the three training datasets.
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Figure 9 shows the comparison of monthly WECANN retrievals with the tower estimates across 5 European sites. At the AT-Neu
site, Neusflit, Stubai Valley, Austria (Fig. 9a), the seasonal cycle is correctly captured for both LE and GPP. All flux retrievals
perform relatively well at this site dominated by radiation and temperature. The GPP based on the eddy covariance has a sharper
and earlier rise in the spring than LE, which seems unrealistic and may be an artifact of the GPP retrieval method. WECANN is
slightly delayed compared to the observed LE, possibly a reflection of the larger footprint encapsulating various conditions in this
steep topography region. All flux retrievals overestimate the H observations, even though they capture some of the seasonality.
The observed H lags the observed LE, which seems unrealistic given that the region is mostly radiation limited so that a spring
increase in radiation and temperature should affect both fluxes. The large footprint of the retrieval could be another source of error,
as it would sample multiple environmental conditions. Nonetheless, the ECMWF and GLEAM retrievals are the closest to the
observed H and FLUXNET-MTE strongly overestimates the observed flux, similarly to WECANN, even though the bias is not as
high.

At the Brasschaat site, BE-Bra, Belgium (Fig. 9b), all retrievals strongly underestimate the reported eddy-covariance H. At this
humid site though, the magnitude of the measured H is often higher or on the same order in the summer as LE. Given the high
degree of urbanization around the site, it is most likely a reflection of the footprint of the eddy-covariance and the fact that it
observes urbanized surfaces with high H. Indeed the surface energy budget is not locally balanced and turbulent fluxes are higher
than the observed net radiation minus ground heat flux. LE is very well captured by WECANN, which captures the seasonal cycle
well, yet misses some of the interannual variability. WECANN outperforms the other retrievals of LE and GPP. WECANN captures
the GPP seasonal cycle compared to other products, which display too early GPP rise and overestimate the summer GPP. Again,
the SIF data provides independent useful data compared to other environmental information (radiation, temperature, vegetation
indices) used by the other retrieval schemes.

At another seasonally cold site, in Switzerland, CH-Fru (Fig. 9¢), WECANN again performs very well, correctly reproducing the
seasonality of all fluxes, especially compared to the other products, which tend to rise too early in the spring. The magnitude of H
and LE is very similar to the observations, yet GPP seems to be overestimated by WECANN, yet much less so than other products.
At the Mediterranean, Spanish site, ES-LgS (Fig. 9d) WECANN correctly reproduces H and LE yet overestimates the magnitude
of GPP, even though it correctly captures its seasonal dynamics. We note; however, that the region is highly heterogeneous both
in terms of topography and vegetation coverage and that the site is located at some of the driest location of the region.

At the cold Finland site (FI-Hyy), WECANN very well captures the seasonal cycle of GPP and LE, as well as to a less extent of
H. WECANN better reproduces the seasonality, amplitude and interannual variability compared to other retrievals (Fig. 9e).

At the Brazilian sites, spanning the Savanna region to the Amazonian rainforest (Fig. 10), we only consider the climatology of the
results, as most the data (ending in 2006) was not available during the GOME-2 satellite period. We acknowledge potential
differences when considering the climatology of the fluxes, as interannual variability could modify the derived climatological
seasonality. At the Rondbnia sites Jil, all flux retrievals tend to overestimate LE and GPP. This is most likely a reflection of the
large landscape fragmentation with deforested and non-deforested patches. Similarly, the dryness perceived at the flux tower is not
seen by most of the retrievals as forests can sustain photosynthesis during the dry season through deeper roots (da Rocha et al.,
2009). At the nearby Ji2 site, on the other hand, most flux retrievals perform much better and correspondingly report a maintained
GPP and LE in the dry season. GLEAM as well as ECMWF exaggerate the seasonal cycle of LE and H. WECANN is positively
biased in H but correctly reproduces LE. FLUXNET-MTE better reproduces GPP than WECANN and both products outperform
MODIS and the ECMWEF retrievals. Relativehy-similarresults-are-obtained-at- the-wet Santarem-site-Sa3;-where-both- WECANN
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—At the other site near Sao Paulo,

with dry winter savanna, most flux retrievals correctly capture the seasonal cycle, yet most retrievals and especially WECANN are
in seasonal advance over the observed eddy covariance with a too early increase in GPP and LE. The site is located in a highly
heterogeneous agricultural landscape yet observes an evergreen broadleaf forest, which is not representative of the heterogeneous
landscape seen by the remote sensing products.

In Canada, (Fig. 11), WECANN very well reproduces the seasonal cycle of LE, especially compared to the other products that
produce a too early rise in LE during the spring season. WECANN also better reproduces the seasonal cycle of GPP compared to
other products. Nonetheless, all GPP retrievals underestimate the reported eddy covariance GPP. This is true of both sites Qfo and
Qcu. The reported eddy-covariance GPP appears very small though, especially given the LE magnitude in the summer, pointing
to potential problem in the magnitude of the surface fluxes, which is drastically impacted by the high-frequency corrections of the
turbulent co-spectrum and its parameterization (Mamadou et al., 2016). H is well reproduced by WECANN at the Qcu site, but the
Qfo site exhibits nearly twice the H magnitude of the Qcu site in the summer. This does not appear realistic given that the radiative
and LE conditions are relatively similar at the two sites. WECANN again better reproduces the seasonal cycle compared to the
other products.

Across the continental US Ameriflux sites (Fig. 12), WECANN performs well in terms of seasonal and interannual dynamics. At
the Oklahoma agricultural site (US-ARM), H and LE are well reproduced, yet dry year H is underestimated (Fig. 12a). The GPP
reported at the site very rapidly decays at the end of the spring whereas the region is highly agricultural with sustained agriculture
in the summer. The difference between the reported GPP and WECANN retrievals might be again due to the difference in the
footprint of the two estimates, At the Illinois site, US-1b2, the dynamics of LE is relatively well reproduced by most products
except for ECMWEF (Fig. 12b). All retrievals overestimate GPP, especially FLUXNET-MTE. WECANN exhibits a late delay in
the GPP decay. The measured H is very noisy yet exhibits a summer decay which is only partially captured by the different products.
At the evergreen needleleaf Maine site, US-Me2, WECANN reproduces the dynamics of H, LE and GPP well, even if it
underestimates the peak fluxes (Fig. 12c). Over the irrigated maize site in Nebraska (US-Nel), the retrievals underestimate the
peak LE and GPP, as well as overestimate the H in the peak summer season (Fig. 12d). This is most likely a reflection of the larger
area observed or modeled by the flux retrievals which do not include similar intensive irrigation practices, leading to lower peak
LE (and correspondingly higher H) and GPP. Only FLUXNET-MTE reproduces the magnitude of this irrigated site (but US-Nel
was included in the FLUXNET-MTE training database). Finally, at the monsoonal grassland site of Santa Rita, AZ, WECANN
correctly captures the complex dynamics of H and LE at the site with sometimes rain periods preceding the Monsoon period (Fig.
12e). Yet, WECANN slightly underestimates LE and overestimates GPP. In fact, most flux retrieval overestimate GPP in the dry
and cold seasons. The landscape in the region is highly heterogeneous with denser vegetation in riparian zones, away from the
tower location, which may explain the lower GPP value at the site compared to estimates of the larger-scale values.

Figure 13 shows the comparison of retrievals at two other sites. At the Daly River pasture, AU-DaP, Australia (Fig. 13a),
WECANN reproduces very well the observed LE in terms of both seasonal and interannual variability. Compared to other products,
WECANN better reproduces the seasonal cycle of this Monsoonal site, with a rapid rise in LE and lagged drying. Most retrievals
fail to correctly reproduce the exact H seasonality, which is in opposite phase with LE, at this water limited site. All retrievals tend
to overestimate the retrieved eddy-covariance GPP and fail to correctly capture the rapid rise in GPP, except for WECANN. The
eddy-covariance GPP decay occurs significantly in advance over the LE decay. It seems unlikely that during the drying phase soil
evaporation would explain nearly all of the LE and that transpiration would be so small (as indicated by the drop in GPP before
LE). Itis most likely due to an artifact in the model fitting of the respiration component, which implicitly assumes some stationarity.

Nonetheless, all remote sensing retrievals seem to overestimate the dry season GPP.
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At the South African Mediterranean site, ZA-Kru, WECANN reproduces some of the dynamics of the observed H, yet is typically
smoother (Fig. 13b). Similarly, it reasonably captures the LE dynamics, except for the suspect cold season increase reported at the
tower in 2013 (like other products). All products overestimate the reported GPP, though WECANN is closest to the observations
and better captures the seasonal dynamics.

Overall, across the different sites, the WECANN retrieval performs better than other products, especially in terms of the seasonality
of the fluxes. Several factors contribute to the capability of WECANN in having a better retrieval compared to other products. The
ANN approach in WECANN uses a novel training technique to remove highly uncertain and outlier estimates from its target
dataset. Therefore, WECANN retrievals are closer to the truth than each of the single target datasets. Moreover, the SIF

measurements that are directly correlated with GPP provide a better constraint on flux estimates.

4.4 Uncertainty Analysis of WECANN Retrievals

One of the advantages of a statistical retrieval algorithm, in particular of ANNSs, is that the run time is extremely fast, after the

training step. This enables us to characterize the uncertainty of the retrievals by propagating the uncertainties in the input variables

through the network. For this purpose, we set up a 10,000 bootstrap experiment and run the WECANN retrieval by adding error

to input variables. The errors are normally distributed with mean zero and a standard deviation that depends on the input variable.

For SIF, air temperature and soil moisture, we use the error estimates or standard deviations reported in their associated products.

These errors are spatially and temporally varying and we used the associated value for each time and space data point. For net

radiation, we use a constant standard deviation of 34.58 W m based on the analysis by (Pan et al., 2015). For precipitation and

SWE estimates, we use a conservative 10% of the estimates themselves as a standard deviation for error. For each bootstrap

replicate, we sample from the error distribution of each input variable and add that to the input.

Figure 14 shows the results of the bootstrap for each of the three fluxes globally and in different climatic zones. The zones are
defined as Polar (90° N - 60° N), Northern Hemisphere (NH) mid-latitude (60° N - 10° N), Tropics (10° N - 15° S), and Southern

Hemisphere (SH) mid-latitude (15° S - 60° S). Each panel in Figure 14 shows the uncertainty derived from the bootstrap experiment,

relative to the interannual variability of the fluxes. GPP estimates are provided in units of PgC yr*as total productivity in each

region. LE and H are provided in units of W m-2 as an average rate of flux in each region.
At global scale the GPP ranges between a minimum of 117.15 + 2.379 PgC yr? in 2015 to a maximum of 124.82 + 2.482 PgC yr
!in 2007. Similarly, LE has a minimum of 37.40 + 0.54 W m in 2015 and a maximum of 38.33 + 0.53 W m™2 in 2011. H has a
maximum of 41.00 + 0.54 W m2 in 2015 and a minimum of 39.43 + 0.52 W m? in 2011.

The inter-annual variations of surface fluxes show distinct patterns. For example, in year 2015, which was an El Nifio year, LE

and GPP have reduced notably, and H increased to an extreme value in the 9 years of WECANN product. Moreover, from 2011 to

2015 both LE and GPP have a consistent decreasing trend at global scale. The inter-annual variability of GPP and LE are similar

at global scale while their regional patterns are different. For example, in year 2015 GPP at global scale and in all regions has

decreased with respect to 2014, while LE in Polar and NH mid-latitudes have increased and LE at global scale has decreased. As

expected, the variability of LE and H are anti-correlated.

4.5 Impact of SIF on the retrieval of surface fluxes

Satellite SIF observations are relatively new, and have not been used to estimate LE and H at the global scale previously. Therefore,

we want to assess the information content of SIF observations in the WECANN retrievals by replacing them with more typical

optical/near-infrared indices of vegetation (NDVI or EVI).
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To do so, we trained two different ANNs with NDVI and EVI instead of SIF data on each of the three fluxes and evaluated the

retrievals against the same FLUXNET tower measurements used in Section 4.3 for validating WECANN retrievals. Tables S4 -

S6 show the results of validations of these three retrievals against the tower measurements for LE, H and GPP, respectively. In

terms_of correlation coefficient, on average all three retrievals have relatively similar performance except in regions where

phenology (and incident radiation) is not the main contributor to the flux variability such as in Spain (ES-LgS). Indeed, in such

regions changes in canopy structure is more limited and changes in response to water stress (through changes in light and water

use efficiency) are the primary reason for the seasonal variability. This emphasizes, similarly to current thinking on the SIF signal,

that the monthly SIF signal is dominated by incident radiation and canopy structure but that in some conditions light use efficiency

changes are detected by SIF, but not optical vegetation indices (Lee et al., 2013). We also point out that current SIF retrievals

(such as those from GOME-2 used here) are still noisy as they were not obtained by satellites designed to measure SIF. Future SIF

designated missions such as Fluorescence Explorer (FLEX) will have higher accuracy and finer spatial and temporal resolution

(Drusch et al., 2016). We expect they will further enhance the retrievals of surface fluxes such as those from WECANN.

5 Conclusion

This study introduces a new statistical approach to retrieve global surface latent and sensible heat fluxes as well as gross primary
productivity using remotely sensed observations at a monthly time scale. The methodology is developed based on an Artificial
Neural Network (ANN) that uses six input datasets including solar induced fluorescence (SIF), precipitation, net radiation, soil
moisture, snow water equivalent, and air temperature. Moreover a Bayesian approach is implemented to optimally integrate
information from three target datasets for training the ANN using Triple Collocation to calculate a priori probabilities for each of
the three target datasets based on their uncertainty estimates.

The new global product, referred to as WECANN, is validated using target datasets as well as FLUXNET tower observations. The
validation results comparing with target-eutputstraining datasets show that our retrieval is-best-correlatedhas similar correlation
with the three products while it has the smallest RMSD with FLUXNET-MTE for LE (R*=0.96RMSD=6.42 W m?), H
(R*=0RMSD=7.84 W m™) and GPP (R*RMSD=0.9288 gC m day™), which is believed to be one of the most realistic global
datasets and it has the lowest RMSE based on our TC error estimates (Fig. S2S4 — Fig. S4S6), despite its reported underestimated

inter-annual variability due to the use of climatological values for several meteorological drivers (Miralles et al., 2014a, 2016).
Such tendency also can be summarized from the global difference maps, which show that FLUXNET-MTE has the best agreement
with WECANN retrievals. The WECANN and FLUXNET-MTE approaches are both based on machine learning, although the
FLUXNET-MTE retrievals use a regression tree rather than an ANN. Nevertheless, this commonality of methods may also
contribute to the greater correspondence between these two datasets.

The flux retrieval maps indicate that all three fluxes have similar seasonal variability and distribution which are determined by
annual phenological cycle in energy limited Northern latitude regions, dryness in Mediterranean and Monsoonal climates and by
light availability in rainforests. Seasonal radiation has great impact on some regions for all flux variables, such as Eastern U.S.,
Europe and East Asia, which have wet conditions, are highly vegetated and located in mid-latitudes. As opposed to this, the
seasonal variability for all fluxes in some low-latitude and wet condition regions, such as Amazon rainforest, Southern Africa and
Southeast Asia, as well as some low-latitude arid regions, such as Southwest U.S., Western Australia, North Africa and Western
Asia are not significant, as there is less seasonal solar radiation variability in aforementioned regions. Comparison between the

flux variables LE, H, and GPP, they all demonstrate generally similar patterns of seasonal variability through time.

16



10

15

20

25

30

35

indices, SIF has better performance in regions where phenology and incident radiation are not the main contributor to flux

variability, while it has similar performance in other regions.

Finally, from the validation results comparing with FLUXNET tower observations, it is noted that WECANN has better
performance compared to other global products. LE and H estimates from WECANN are more consistent with tower observations
compared to GPP. WECANN retrievals have better correlation with tower observations in 6276% of site for LE, 6654% of sites
for H, and 5653% of sites for GPP compared to other products. Moreover, retrievals from WECANN outperform other global
products in capturing the seasonality of surface fluxes across a wide range of sites with different climatic and biome conditions.

Data Availability

WECANN product is publicly available for download on Aura Validation Data Center (AVDC) at Goddard Space Flight Center
via https://avdc.gsfc.nasa.gov/pub/data/project/ WECANN/
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Figure 1: Architecture of the ANN layers. Input layer provides the matrix P of the inputs to the Hidden layer. Hidden layer has a matrix
W of weights and b of biases for the neurons, and the f1 transfer function. The output of the Hidden layer (a = fi(WP +b) ) is an input to
the Output layer that applies the transfer function f2 to the estimates and generates final outputs O.
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Figure 2: Left column: Annual average surface fluxes in 2011 for (a) LE, (b) H, and (c) GPP. Right column: Density scatterplot between
estimates of ANN and target data for (d) LE, (e) H, and (f) GPP during the validation period (2011). The density of scatter points is
represented by the shading color. The diagonal black line depicts the 1:1 relationship.
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Figure 3: Global patterns of seasonal average LE from WECANN in 2011, (a) December - February, (b) March - May, (c) June - August,
and (d) September - November.
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Figure 12: Same as Figure 9 but for US sites (a) US-ARM, (b) US-1B2, (c) US-ME2, (d) US-Nel, and (e) US-SRG.
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Table 1: Characteristics of products used for training of ANN

Output variables Temporal Spatial Temporal Spatial
Product s . . Reference
used for training Coverage Coverage Resolution Resolution
. o o Martens et
GLEAM LE,H 1980 - 2015 Global Daily 0.25° x 0.25 al. 2016
ECMWF ERA . o o Balsamo et
HTESSEL LE, H, GPP 2008 - 2015 Global Daily 0.25° x 0.25 al.. 2009
FLUXNET-MTE | LE, H, GPP 1982 - 2012 Global Monthly 0.5° x 0.5° JZL(‘)%% et al,
MODIS-GPP GPP 2000 - 2015 Global Monthly 0.5° x 0.5° ;””2”(;82 &t
Table 2: Characteristics of observations used as input in the WECANN product
Variable Product N_ame and Temporal Spatial Tempo_ral Spathl Reference
Version Coverage Coverage Resolution Resolution
GOME-2 . o o Joiner et al.,
SIF Eluorescence V26 2007-present Global Daily 0.5°x0.5 2013
. 0w Ao Wielicki et
Net Radiation | CERES L3 SYN 1deg | 2002-present Global Monthly 1°x1 al. 1996
Air . 0w 10 Aumann et
Temperature AIRS3STD v6.0 2002-present Global Daily 1°x1 al.. 2003
Soil Moisture | ESA-CCI v2.3 1978-2015 Global Daily 0.25° x 0.25° '27(')‘1? al,
Precipitation | GPCP 1DD v1.2 1996-2015 Global Daily 1°x 1° ;“f;g“gf et
Snow Water | o haoNOW L3A V2 | 1979-present Global Daily 25 km x 25 km | Cuolus etal,
Equivalent 2013

LE H GRP
RMSD RMSD RMSD
R? R? R?
PALm?] PALm?] [gCm2day?]
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