Response to Referee 1

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A
statistically-based estimate of global surface turbulent fluxes using solar-
induced fluorescence (Manuscript # bg-2016-495)

Comments

Responses/Actions

Thank you for the efforts in trying to address the
guestions raised during the review process. |
think the manuscript has been improved,
specifically with the inclusion of the NDVI/EVI
tests, the larger fluxnet dataset for validation and
the analysis on the uncertainty estimation.
However, | am still not satisfied on some issues.
In particular on two points that were raised by
both reviewers: (1) the circularity of using flux
data in both the training and the validation and
(2) the mismatch between the footprint of the
towers and the 1 degree cells of the products. For
both points, | would strongly encourage including
the analyses suggested by Reviewer 1, that is: for
point 1 to do an evaluation of ET at basin scale
from water balance; and for point 2 to focus on
an evaluation at larger scale such as catching big
climate events, and perhaps the inter-annual
variability of GPP and comparing them perhaps
with atmospheric inversion estimates. | believe
that these will be much more convincing in
showing the added value of WECANN that the
current individual pixel to tower
comparisons/validations that are done. These
could be placed in supplementary material in my
opinion, if the length is really an issue.

We thank the referee for their comments and suggestions.
In order to address these critiques, we have implemented
the following three validation analyses:

1- Evaluating WECANN estimates in three extreme
heatwave events: Russia 2010, Texas 2011, US corn belt
2013 (Section 4.4 in the new manuscript).

2- Estimating the error of WECANN ET estimates in five

large basins (Amazon, Colorado, Congo, Mississippi, and
Orinoco) using data from a water budget closure model
(Section 4.5 in the new manuscript).

3- Calculating correlation between GRACE estimates of
terrestrial water storage changes and P-ET from WECANN
(Section 4.6 in the new manuscript).

Results of these analyses show the capability of WECANN
retrievals in capturing large-scale anomalies.

| do realize that both suggestions of Reviewer 1
where countered in part by using the argument
that | (reviewer 2) asked to reduce the length of
the manuscript. | am afraid that | was
misunderstood on this point. | did not mean the
whole manuscript should be reduced per se, but
rather that some specific parts were
unnecessarily lengthy. Large parts describing the
plots and maps could (and still can in my opinion)
be reduced, mostly the 'Results and Discussion'
section. Also, phrases like "In this section, we [do

We changed the text throughout the manuscript to reduce
the unnecessary sentences as needed.




this]... " after the subtitle saying precisely what
'this' is just adds unnecessary length and could be
reformulated in my opinion e.g. top of page 9 and
page 10. Bottom-line is that tackling the two
points raised above should have a priority over
reducing the length of the paper as a whole.

Regarding the other arguments for keeping to a
'standard' comparison of 1 degree vs fluxtower
footprints, such as the this is how it is often done
or that fluxtowers is the only source of validation
GPP, | believe now would be the time to raise the
issue more prominently that doing these matches
is sub optimal as we are unable to disentangle
the signal from the confounding factors caused
by intra-pixel spatial heterogeneity. The current
manuscript would benefit from taking that point
up front and show a more innovative 'validation'
using the suggestions of reviewer 1. And | repeat,
the current work on individual towers should be
kept, as it is informative, but perhaps placed in
supplementary if space is lacking.

We agree with the referee on the shortcomings of the
FLUXNET tower comparisons given the coarse spatial
resolution of WECANN retrievals. We have summarized the
results of this comparison in a shorter section (4.2) now
with only 5 flux towers being discussed in details instead of
17, and put more focus on the large scale validation efforts
that are introduced in the new version. We have also
summarized the results of flux tower comparisons in the
new Figure 6 based on Plant Functional Types.

Other remarks/suggestions

The comparison against a set of 97 fluxsite is
welcome, but this should come to the forefront,
instead of being relegated to supplementary
material. Not with the full details of all individual
fluxtower comparison (which could stay in the
supplementary material), but with a synthetic
table with the average values for each flux. In this
table also include the average values for the
RSME and Bias. You could also consider using a
symmetric index of agreement
(https://www.nature.com/articles/srep19401) as
a generic value from 0 to 1 to specify the degree
of agreement. This combines together the effects
of RMSE, bias and correlation in a single metric,
which also does not assume a reference. Indeed,
here it could be argued that the fluxtower
estimate is not an absolute reference because it
is not measured on the same observational
support as the 1 degree WECANN estimate.

As noted in the previous comment, we have summarized
the flux tower comparison section and brought it up into
the first evaluation section (4.2) following presenting the
seasonal patterns from WECANN retrievals.

We have added the average RMSE of each product in
Tables S1-S6. But we tend to not report the average bias,
because it can be misleading. For example, if a product has
large negative and positive biases across different sites a
mean value close to zero it does not mean that it has low
bias compared to another product that has only small
positive biases that on average are larger than the mean of
the first product.

The point on C3/C4 plants raised by reviewer 1 is
not explicitly addressed in the text. | would
expect a phrase talking about it somewhere.

We added text to Page 9 Lines 20-23 in the current
manuscript to explain this further.

Page 2, Line 31: you would need to specify that
you " jointly retrieve surface turbulent fluxes" for

Thanks for the note on this. We have revised the text
accordingly.




the first time using SIF, as GPP has been retrieved
from SIF on many occasions

Uncertainty analysis is very welcome. Clarify in
the caption of figure 14 that these are the annual
mean estimates of each flux with their
uncertainty. As it is now, it seems the centre of
the box plot represent the mean uncertainty
instead of the mean flux.

We changed the figure caption to clarify the data presented
in this figure.

You say the decreasing trends in GPP and LE are
consistent in figure 14. They are consistent with
each other (with is to be expected from your
product) but is it consistent with the general
knowledge of what is really happening across the
globe (a marked reduction of GPP since 2011) ?
Please put this in context with other studies.
Also, how do you explain the strange pattern of
sudden decrease in 2007-2009 for GPP in the Mid
latitudes?

While we believe analysis of the trends in the retrievals is
beyond the scope of this manuscript (and it is the focus of
our next research study being carried out), here we present
a figure to compare the yearly anomalies of LE, H, and GPP
across the globe and different latitudinal zones and
compare them with FLUXNET-MTE (Figure R1). Since
FLUXNET-MTE is only available until 2011, we can’t
compare the anomalies from 2012-2015. However,
comparison of the results from 2007-2011 shows consistent
anomalies and trends in both datasets.

In figure S1, there seems to be a strange
asymmetric effect of your land mask, e.g. there is
a white line on the west coast of Africa and South
America, but not on the East coast. Are the
datasets properly aligned?

Thanks for noting this issue. This was caused by an error in
using the plot function in MATLAB. It is corrected in the
new version.
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Figure R1- Annual mean anomalies of LE (top row), H (middle row) and GPP (bottom row) retrievals at
global (left column) and regional (four right columns) scales for WECANN (solid lines) and FLUXNET-MTE

(dashed lines).




Response to Referee 2

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A
statistically-based estimate of global surface turbulent fluxes using solar-
induced fluorescence (Manuscript # bg-2016-495)

Comments

Responses/Actions

Editor comments.

Failing to find a suitable reviewer in time, I've
made my own assessment. | largely agree with
the other reviewer, but would like to point our
that in addition | find this manuscript to be weak
in discussing the implication of the findings in
context to other studies. The reviewer and my
comments may give a direction how to improve
this, in general | think what is needed is a criticial
assessment of what one can learn from this
development, which we did not know in the past,
and how for instance the trend estimates
WECANN produces compare to other studies (or
whether they maybe should not be regarded as
trends given the brevity of the record.) One fairly
simple addon would be to plot the other
products as well in Figure 14, to have a more
synthetic overview.

We thank the editor for his comments and suggestions. We
have addressed each of the comments in the following and
implemented necessary changes in the manuscript to
address them.

One of the key findings of this study is showing the
capability of SIF measurements to be used for estimating
latent and sensible heat fluxes along with GPP. GPP
retrievals from SIF have been studied before, but our
retrieval is the first of its kind to estimates latent and
sensible heat.

This finding is of interest to a large community of
researchers in our field, in particular science teams of OCO-
2, OCO-3, ECOSTRESS, geoCARB, and FLEX missions. During
the last couple of months we have been invited to their
science team meetings and presented our results on this
topic which was highly received by their team members.

| would suggest to keep some (say 4 site from
different biomes) of the FLUXNET comparison
plots in the main manuscript (and in agreement
to the other reviewer, but them more at the front
of the results), and put the others into the
Appendix

We have reduced the flux tower comparison section by
including only 6 sites, and summarizing the statistics from
Tables S1-S3 in Figure 6 based on Plant Functional Types.

Minor comments

P1 L29: GPP and NPP are not generally
considered turbulent exchanges, nor are they a
flux from the land to the atmosphere. The
turbulent flux observed is the net ecosystem
exchange rate, of which GPP is a compartment
flux. I also don’t see the reason to include NPP in
this list if it is not subject of this study.

We removed NPP from the discussion.

P1 L34 redundant sentence

We revised this in the new version.

P2 L1: this is not only the MPI-BGC, see
Tramontana, G. et al. Predicting carbon dioxide

We revised the text here to appropriately refer to this
product.




and energy fluxes across global FLUXNET sites
with regression algorithms. Biogeosciences 13,
4291-4313 (2016).

P2 L9ff: To be fair to the regression approach
discussed above, this paragraph needs to
mention that any model product that is used to
train an ANN necessarily inherits all its
imperfections in capturing means, extremes and
so on to the ANN.

We already have mentioned this further down in the same
paragraph, Page 2 Lines 14-16 in the new version.

P2 L20: It is necessary here to introduce the
training data sources (at least in an overview).

Introduction on training data is added. (this is now in Page
3, Lines 7-8).

P2 L30: its is not clear what the first key
innovation is at this point. Also SIF has been
introduced already. Please edits the text such
that the information flow is more logical, e.g. by
mentioning SIF first here.

We revised the content in the first section to appropriately
address this issue.

P3 L9: True, but how does this work in an ANN,
which does not intrinsically know about this
coupling?

The way ANN develops such a coupling implicitly is by using
one set of weights and biases for its neurons to estimate
the three fluxes together. These weights and biases are
tuned during the training. Therefore, having a good target
dataset for training is essential to develop an accurate
network.

P3 L14-18 can be safely removed.

We have removed this section.

P3 L 22 why 1° when all input data are at a higher
resolution?

As listed in Table 2, three of the input datasets (Air
Temperature, Net Radiation, and Precipitation) are posted
on 1° spatial grids. Therefore, the final product can’t be on
a higher spatial resolution.

P6 L8ff. Please clarify which data has been used,
and why. It is probably best to include a
supplementary table, listing all sites, data
coverage and their sources.

As we have explained later in this section, we are using data
accessed through the FLUXNET 2015 dataset. This is a
product developed by the Pls of all flux towers contributing
data, and all the specifications of data are specified in the
product itself. So it would be redundant to list them again
here. Based on the request of PIS, we have appropriately
cited the data, acknowledged them in the
acknowledgement section and used the correct
abbreviation for site names.

P7 L20. To show that the method adds
information, would it be helpful to compare the
product against the point-wise average of the
three input data sources?

As our results show WECANN has the best performance
among the four products considered in this study. WECANN
is developed by characterizing the errors of each of the
training products and learning from them collectively while
minimizing errors. Moreover, as our TC analysis shows error
of each of the training products change from one pixel to
another and there is no single product that has the
lowest/highest error at all pixels. Therefore, a simple
averaging of the pixel-wise estimates will not provide a
reasonable estimate of the fluxes at all pixels and times.




P8 L13. Help the reader what the error means.
Does the method simply fail, or is this evidence
for the inconsistency between the different data
sets. If so, what is the knowledge gain relative to
simply looking at the difference between the
three products?

Here, ‘error’ refers to the variance of the random error
component of each measurement system estimated by TC
technique. This information is an indicator of the
uncertainty in each of the measurement systems with
respect to the truth and can’t be achieved by looking at the
differences between the measurements themselves. We
have clarified this in the new version.

P10 L4: Is this really surprising, given that MET
and WECANN are both purely statistical models,
whereas GLEAM and ECMWF contain process
knowledge, which may obscure any direct
relationship between fluxes and driving
variables?

We believe this similarity between WECANN and FLUXNET-
MTE is caused because of their accuracy. FLUXNET-MTE is
driven by point based measurements from flux towers
unlike GLEAM and ECMWF which are physical models
driven by other environmental variables. Therefore,
FLUXNET-MTE is expected to be more representative of the
true fluxes. On the other hand, WECANN learns from all
three products by minimizing the information from the
most uncertain product in each case and it is driven by
independent satellite based observations. This results in
WECANN to have the best performance, and indirectly be
more similar to FLUXNET-MTE.

P15 L18. | must have missed this, which
figure/statistics demonstrates the added value of
SIF at the global scale? Section 4.5 only discusses
site-level analyses

This is based on the site level comparisons as we have
discussed in Section 4.8.

P15 L 21: This is in parts not surprising, because
WECANN isn’t fully independent from these data.
This needs to be mentioned here.

We tend to disagree with the editor in this case. Because
FLUXNET-MTE (which is the other product used in training
and our validation comparisons) is a direct upscaling of the
flux tower data, while WECANN is indirectly trained on
FLUXNET-MTE as well as three other products which are
independent of flux tower data. Therefore, we would have
expected that FLUXNET-MTE, which is not independent of
flux tower data, be the best product. But this is not the
case, and WECANN which learns from three independent
products during training and uses SIF as an input has a
better performance.

Figure 9ff: There seems to be an issue with some
of the fluxnet data in the year 2014-2015. Please
check and potentially remove flawed data.

There was no panel f in Figure 9 in the previous version of
the manuscript. We are not sure what the editor is referring
to. But we have investigated flux tower data as much as
possible before including them in the analysis. In cases that
the reported values seems unrealistic we discussed some of
them in the manuscript.

Figure S1: Why is the land-mask shifted relative
to the continents?

Thanks for noting this issue. This was caused by an error in
using the plot function in MATLAB. It is corrected in the
new version.

Tables S1-S4: Why is only R2 averaged over the
sites, and not the others? | think it would be
helpful to provide the average and standard
deviation across sites of these statistics as a table

We had only averaged R2 because it is the index with
similar range for all cases, unlike RMSE and bias that their
values should be interpreted by considering the mean of
the flux at each site.




for the manuscript (while keeping the Sl tables),
to make this material more accessible to the
reader.

However, due to the request of the other reviewer as well,
we have now added the average for RMSE. But we tend to
not report the average bias, because it can be misleading.
For example if a product has large negative and positive
biases across different sites a mean value close to zero it
does not mean that it has low bias compared to another
product that has only small positive biases that on average
are larger than the mean of the first product.

Moreover, the new Figure 6 summarizes the mean and one
standard deviation from these tables based on Plant
Functional Types.
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Abstract. A new global estimate of surface turbulent fluxes, including latent heat flux (LE), sensible heat flux (H), and gross
primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced
Fluorescence (SIF) and other radiative and meteorological variables. The approach uses an artificial neural network (ANN) with a
Bayesian perspective to learn from three training datasets- and is the first global retrieval based on SIF. The combined target input

dataset is generated using three independent data sources and a triple collocation (TC) algorithm to define a prior distribution. The
new retrieval, named Water, Energy, and Carbon with Atrtificial Neural Networks (WECANN), provides surface turbulent fluxes
from 2007 to 2015 at 1° x 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the
target data, and the WECANN retrievals are validated using FLUXNET tower measurements across various climates and
conditions. WECANN performs well in most cases and is constrained by the SIF information. When compared to in situ eddy
covariance observations, WECANN typically outperforms other estimates, particularly for sensible and latent heat fluxes.
Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show
distinct climatic events such as the impact of El Nifio on surface turbulent fluxes.

1 Introduction

Turbulent fluxes from the land surface to the atmosphere, particularly sensible heat flux (H), latent heat flux (LE), and gross
primary production (GPP) and-net-primary-production(NPP)-are key to understanding ecosystem response to climate and the
feedback on the overlying atmosphere, as well as constraining the global carbon, water and energy cycles. In recent years, there
has been substantial effort towards estimating these surface fluxes from remote sensing observations at a global scale (see e.g.
Fisher et al., 2008; Jiang and Ryu, 2016; Jiménez et al., 2009, 2011; Jung et al., 2009; Miralles et al., 2011a; Mu et al., 2007;
Mueller et al., 2011). Two typical approaches have been used to estimate these surface fluxes from remote sensing information.
The first approach uses physically-based or semi-empirical models (e.g. the Priestley-Taylor or Penman-Monteith equations in the
case of ET, or a light use efficiency model in the case of GPP) informed by remote sensing information (e.g. vegetation indices,
infrared temperature, microwave soil moisture), often in combination with reanalysis meteorological forcing data (Fisher et al.,
2008; Miralles et al., 2011a; Mu et al., 2007; Zhang et al., 2016b; Zhao et al., 2005; Zhao and Running, 2010). These approaches
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are sensitive to the assumptions and imperfections of the underlying flux models. The second approach,-empleyed-by-the-Max

Planek-Institute-for Biogeochemistry-modeHMPI-BGC) uses machine learning (e.g. a model tree ensemble) to determine fluxes
(LE, H, and GPP) from meteorological drivers and optical remote sensing data—Like-aH-supervised-machine-learning-medels-the
MPI-BGC-methed (Tramontana et al., 2016). Like all supervised machine learning models, this approach relies on a training dataset

to determine the non-linear statistical relationships. In this case, in situ turbulent flux measurements from eddy-covariance towers
are used (Beer et al., 2010; Jung et al., 2011). Such an approach relies implicitly on an assumption that a long temporal record of
fluxes at a small number of sites captures the full range of behavior and sensitivities of terrestrial ecosystems around the globe. In
addition, extreme and therefore rare events may be difficult to capture based on the limited data availability.

Alternatively, one can use a machine learning approach, such as an Atrtificial Neural Network (ANN), trained on globally-
representative but imperfect estimates of the fluxes (such as those from models) to parameterize the non-linear statistical
relationships between remote sensing observations and surface fluxes. This approach has been successfully used for global soil
moisture retrieval (Aires et al., 2012; Kolassa et al., 2013, 2016; Rodriguez-Fernandez et al., 2015) and surface heat flux retrieval
(Jiménez et al., 2009). Such ANNs require a target dataset for training. Climate model simulations of the relevant geophysical
variable are usually used as the training dataset to facilitate subsequent data assimilation efforts (Aires et al., 2012; Kolassa et al.,
2013, 2016). However, the downside of this approach is that the resulting fluxes estimated by the ANN often exhibit some of the
same biases as the simulations used to train the network (Rodriguez-Fernandez et al., 2015), even if improvements can be achieved
such as a more realistic seasonal cycle as it is informed by the seasonal cycle of the remote sensing data (Jiménez et al., 2009).

In this study, we develop an ANN approach to retrieve monthly surface fluxes at the global scale. The network uses remotely sensed
solar-induced fluorescence (SIF) estimates in addition to other data including precipitation, temperature, soil moisture, snow cover,

and net radiation as inputs (predictor). Fe-reduce-any-biases—we-introduce-a-Bayesian-perspective-to-generate-the-target-dataset-fo

t for Groonland Ant.
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knowledge, this is the first timestudy that uses remotely-sensed SIF estimates are-used-at the global scale to retrieve LE and H surface

turbulent fluxes {LE--H--andalong with GPP)--.
Previous studies show a strong relationship between the rate of photosynthesis and SIF observations and indicate that the plant

fluorescence measurements can be a useful proxy for photosynthesis estimation (Flexas et al., 2002; Govindjee et al., 1981; Havaux
and Lannoye, 1983; van Kooten and Snel, 1990; Krause and Weis, 1991; McFarlane et al., 1980; Toivonen and Vidaver, 1988;
van der Tol et al., 2009). Recently, satellite observations of SIF have become available, opening new possibilities for the global
monitoring of photosynthesis = : ; ; = Joi = -Sehi g
Xu-et-al;-2015)(Frankenberg et al., 2011, 2012, 2014; Guanter et al., 2012; Joiner et al., 2013; Schimel et al., 2015; Xu et al.,
2015).
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SIF observations from the Global Ozone Monitoring Experiment—2 (GOME-2) instrument are shown to better track the seasonal
cycle of GPP compared to typical high-resolution optically-based vegetation index estimates (Guanter et al., 2012, 2014; Joiner et
al., 2014; Walther et al., 2016). SIF has also been shown to be a pertinent indicator of vegetation water stress (Lee et al., 2013).
Moreover, a near-linear relationship between monthly SIF retrievals and GPP is found for different vegetation types which suggests
that SIF estimates can strongly constrain GPP retrievals (Frankenberg et al., 2011).

Recently, a new SIF product was developed from observations of the GOME-2 satellite using a new retrieval algorithm that
disentangles three components from multispectral observations (Joiner et al., 2013). SIF retrievals are shown not to be strongly
affected by cloud contamination and seasonal variabilities in aerosol optical depth (Frankenberg et al., 2014). More recently,
remotely sensed SIF retrievals have been used to successfully provide estimates of GPP in cropland and grassland ecosystems
(Guanter et al., 2014; Zhang et al., 2016a). SIF retrievals are also integrated with photosynthesis estimates from National Center
for Atmospheric Research Community Land Model version 4 (NCAR CLM4) which result in significant improvement of the
photosynthesis simulation (Lee et al., 2015). As GPP relates to plant transpiration through stomata regulation (Damour et al., 2010;
DeL ucia and Heckathorn, 1989; Dewar, 2002), and transpiration water fluxes dominate continental ET (Jasechko et al., 2013), the
use of remotely sensed SIF has the potential to also better constrain estimates of the continental water (LE), and energy (H) cycles,
in addition to carbon (GPP) cycle. Using our machine learning approach we further demonstrate the usefulness of SIF for

constraining surface evaporation.

Moreover, to reduce any errors, we introduce a Bayesian perspective to generate the target dataset for the ANN. Multiple estimates

of each of the fluxes are selected according to an a priori probability that reflects the quality and information content of the dataset

at the particular pixel of interest (details are provided in Section 3.2). This approach enables us to generate a robust target dataset

for remote sensing observations along with a statistical algorithm for the retrieval, while bypassing the need for a land surface
model and radiative transfer scheme. We use the triplet of GLEAM, ECMWEF and FLUXNET-MTE for training of LE and H; and
the triplet of MODIS-GPP, ECMWEF and FLUXNET-MTE for GPP training.

This new global product of surface turbulent fluxes is named WECANN (Water, Energy, and Carbon Cycle fluxes with Artificial
Neural Networks). WECANN monthly flux estimates for the period 2007 — 2015 are provided on a 1° x 1° resolution grid and

with units of W m™ for LE and H, and gC m day™* for GPP. The spatial coverage of WECANN s presented in Figure S1. It

includes all the land areas, except for Greenland, Antarctica, and any 1° x 1° pixel that has more than 75% water, snow or ice

permanently. To estimate the fraction of water, snow and ice in each pixel we used the 0.05° x 0.05° MODIS-based Land Cover
Type product (MCD12C1 v051) (NASA LP DAAC, 2016).

2 Data

The inputs of WECANN include six remotely sensed variables introduced in Section 2.2: SIF, net radiation, air temperature, soil
moisture, precipitation, and snow water equivalent. These are used to retrieve the three surface fluxes (LE, H, and GPP). Different
observation and/or model based datasets are used as the training dataset, and are explained in Section 2.1. All the data presented
here are projected and gridded on a 1° x 1° geographic grid and averaged at monthly temporal resolution. Finally, the FLUXNET
tower data used for validation of the ANN retrievals are presented in Section 2.3.
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2.1 Training Datasets

Four products are introduced in this section, and a triplet of them is used for training of each of the LE, H, and GPP (Section 3.2).
For LE and H, training is performed based on GLEAM, FLUXNET-MTE, and ECWMF ERA HTESSEL. For GPP, training is
performed on FLUXNET-MTE, ECWMF ERA HTESSEL, and MODIS-GPP. Table 1 summarizes the characteristics of the
training datasets used here.

2.1.1 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms to estimate terrestrial evapotranspiration using
satellite observations (Martens et al., 2016; Miralles et al., 2011a). GLEAM is a physically-based model composed of 1) a rainfall
interception scheme, driven by rainfall and vegetation cover observations; 2) a potential evaporation scheme, calculated from the
Priestley and Taylor (1972) equation and driven by satellite observations; and 3) a stress factor attenuating potential evaporation,
based on a semi-empirical relationship between microwave VOD observations and root-zone soil moisture estimates (based on a
running water balance for rainfall and assimilating satellite soil moisture). The data is provided on a 0.25° x 0.25° spatial resolution
and daily temporal resolution and starts in 1980. GLEAM data have been used for studying land-atmosphere interactions, and the
global water cycle (Guillod et al., 2014, 2015, Miralles et al., 2011a, 2014a, 2014b). In this study, we use LE and H estimates from
the latest version v3.0a (Martens et al., 2016).

2.1.2 FLUXNET-MTE

The FLUXNET-MTE (Multi-Tree Ensemble) provides global surface fluxes at 0.5° x 0.5° spatial resolution derived from empirical
upscaling of eddy-covariance measurements from the FLUXNET global network (Baldocchi et al., 2001). The MTE method used
is an ensemble learning algorithm that enables learning diverse sequence of different model trees by perturbing the base learning
algorithm (Jung et al., 2009, 2010, 2011). The data covers the period from January 1982 to December 2012 and can be used for
benchmarking land surface models and assessment of biosphere gas exchange. We use LE, H, and GPP estimates from FLUXNET-
MTE.

2.1.3 ECMWF ERA HTESSEL

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) is a global 3D variational data
assimilation (3DVAR) product that uses the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) in
the forecast system. HTESSEL has a surface runoff component and accounts for a global non-uniform soil texture unlike the old
TESSEL model (Balsamo et al., 2009). This is an offline model simulation, and HTESSEL is driven by meteorological forcing
output from the forecast runs. Photosynthesis in the model is computed independently (i.e. with its own canopy conductance) from
LE, so that the carbon cycle does not interact with the water cycle at the stomata level, adding errors. We use LE, H, and GPP
estimates from ERA HTESSEL provided on a 0.25° x 0.25° geographic grid with daily temporal resolution.

2.1.4 MODIS-GPP

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is onboard the sun-synchronous NASA satellites Terra
(10:30 AM/PM overpasses) and Aqua (1:30 AM/PM overpasses). It provides 44 global data products (Justice et al., 2002) from 36
spectral bands including visible, infrared and thermal infrared spectrums to monitor and understand Earth surface: atmosphere,
land and ocean processes. The MODIS GPP/NPP project (MOD17) provides gross/net primary production estimates covering the
whole land surface and is useful for analyzing the global carbon cycle and monitoring environmental change. The MOD17
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algorithm is based on a light-use efficiency approach proposed by (Monteith and Moss, 1977), which states that GPP is proportional
to the product of incoming Photosynthetically Active Radiation (PAR), fraction of Absorbed PAR (fAPAR) and efficiency of
radiation absorption in photosynthesis. We use the monthly MOD17A2 GPP product (Running et al., 2004; Zhao et al., 2005; Zhao
and Running, 2010). MOD17A2 is available from 2000 until 2015, and provided on a 0.05° x 0.05° spatial resolution.

2.2 Input Datasets

Six sets of observations are used as input to the WECANN retrieval algorithm. These are selected in a way to provide necessary
physical constraints on the estimates from the ANN. Table 2 lists the characteristics of each of the datasets, and they are briefly
introduced in the following.

2.2.1 Solar-Induced Fluorescence

The GOME-2 instrument is an optical spectrometer onboard Meteorological Operational Satellite Program, MetOp-A and MetOp-
B satellites, which were launched by the European Space Agency (ESA). GOME-2 was designed to monitor atmospheric ozone
profile as wells as other trace gases and water vapor content. It senses Earth backscatter radiance and solar irradiance at a 40x40
km spatial resolution (prior to July 2013 the spatial resolution was 40x80 km). Recently, the retrieval of Solar-Induced chlorophyll
Fluorescence (SIF) using GOME-2 observations in the 650-800 nm spectrum has been investigated (Joiner et al., 2013, 2016). We
use version 26 of the daily SIF product that uses the MetOp-A GOME-2 channel 4 with a ~0.5 nm spectral resolution and
wavelengths between 734 and 758 nm. SIF estimates are provided on a geographic grid with 0.5° x 0.5° grid spacing.

2.2.2 Net Radiation

Net radiation is the main control of the rates of sensible and latent heat in wet environments and is closely related to PAR. The
Clouds and Earth’s Radiation Energy System (CERES) is a suite of instruments which measure radiometric properties of solar
reflected and Earth emitted radiation from the Top Of Atmosphere (TOA) to Earth surface, from three broadband channels at 0.3
— 100 um. The CERES sensors are on board the Earth Observation Satellites (EOS) including Terra, Aqua and TRMM (Kato et
al., 2013; Loeb et al., 2009). We use the net radiation estimates from Synoptic Radiative Fluxes and Clouds (SYN) product of
CERES which are provided on a 1° x 1° geographic grid with monthly time resolution.

2.2.3 Air Temperature

The Atmospheric Infrared Sounder (AIRS) is a high spectral resolution spectrometer onboard the NASA Aqua satellite launched
in 2002. It provides hyperspectral (visible and thermal infrared) observations for monitoring process changes in the Earth’s
atmosphere and land surface, as well as for improving weather prediction. The AIRS instrument was designed to obtain
atmospheric temperature and humidity profiles of every 1 km layer of the atmosphere. The accuracy of AIRS temperature
observations is typically better than 1°C in the lower troposphere under clear sky condition (Aumann et al., 2003). We use daily
temperature estimates from the lowest layer of AIRS level-3 standard product that is provided on a 0.5° x 0.5° geographic grid.

2.2.4 Surface Soil Moisture

The European Space Agency (ESA) Climate Change Initiative (CCI) program soil moisture (ESA CCI SM) is a multi-decadal
(1980-2015) global satellite-observed surface soil moisture product. It merges observations from passive sensors (e.g., Scanning
Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/1), AMSR-E) and active ones (e.g., the
European Remote Sensing (ERS), Advanced Scatterometer (ASCAT)), based on a triple collocation error characterization (Dorigo,
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etal., in reivew; Liu, Parinussa, et al., 2011; Liu et al., 2012; Wagner et al., 2012). Here, we use daily data from the latest version,
v2.3. ESA CCI SM is provided on a 0.25° x 0.25° geographic grid.

2.2.5 Precipitation

The Global Precipitation Climatology Project (GPCP) provides global daily precipitation estimates at 1° x 1° spatial resolution
from Oct. 1996 to near present (Huffman et al., 2001). Global precipitation estimates from infrared and microwave instruments
are combined with monthly gauge measurements to produce the daily estimates. In this study, v1.2 of the one-Degree Daily (1DD)
product of GPCP is used and daily estimates are aggregated to monthly scales. Several studies have evaluated the GPCP 1DD
product at global or regional scales, and results show that it has high accuracy and good agreement with independent in situ
measurements and other global precipitation estimates (Gebremichael et al., 2005; Joshi et al., 2012; McPhee et al., 2005; Rubel
etal., 2002).

2.2.6 Snow Water Equivalent

The GlobSnow project is developed by ESA, and provides long-term snow-related variables: Snow Water Equivalent (SWE) and
areal Snow Extent (SE). It combines microwave-based retrievals of snow information (including Nimbus-7 SMMR, DMSP
F8/F11/F13/F17 SSM/I(S) observations) and ground based station data through a data assimilation process and provides the SWE
and SE products at different temporal resolutions: daily, weekly and monthly (Pulliainen, 2006). Here, we use v2 of the daily L3A
SWE product which is posted on a 25 km x 25 km EASE grid.

2.3 Validation Bataset:Datasets
2.3.1 Eddy-Covariance Flux Observations <

FLUXNET is a network of regional tower sites, which measure turbulent flux exchanges (water vapor, energy fluxes and carbon
dioxide) between ecosystems and atmosphere (Baldocchi et al., 2001). FLUXNET comprises over 750 sites covering five
continents. Measurements from the FLUXNET towers provide valuable information for validating satellite based retrievals of
surface fluxes. In this study, FLUXNET measurements from the FLUXNET 2015, the La Thuile Synthesis dataset and the Large-
scale Biosphere-Atmosphere (LBA) experiment in Brazil are used for validation (details are provided in section 4.4).

FLUXNET 2015 tier 1 and tier 2 data were retrieved from (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The data have
been systematically quality controlled with a standard format throughout the dataset (http:/fluxnet.fluxdata.org/data/fluxnet2015-

dataset/data-processing/, (Pastorello et al., 2014)) and gap-filled using ERA meteorological forcing downscaling.

From the Large-scale Biosphere-Atmosphere (LBA) experiment in Brazil, we use data from sites in Rondonia at the edge of a
deforested region (BR-Jil and BR-Ji2) and near Séo-Paulo (BR-Spl). As the data did not span recent years, we instead use a
climatology of the fluxes for comparison. We note that, of course, the inter-annual variability in the region (such as EI Nifio and
La Nifia) could alter the seasonality and magnitude of the fluxes in the region.

We also use data from the La Thuile Synthesis Dataset (http:/fluxnet.fluxdata.org/data/la-thuile-dataset/) covering 24 sites. These
data are part of the free-fair use version of the dataset.

A total of 97 sites from the three datasets are selected for validation of WECANN retrievals spanning a large climatic and biome
gradient (Fig. S2). For AmeriFlux towers, if measurements from both the FLUXNET 2015 dataset and the La Thuile dataset were
available, we have used the FLUXNET 2015 data. We have only selected sites that had at least 24 month of continuous
measurements during 2007-2015 years. Any site that would have fallen outside of the WECANN land mask (Fig. S1) is excluded
(several sites in coastal regions).

[ Formatted: Heading 3
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2.3.2 GRACE Terrestrial Water Storage Changes

Gravity Recovery And Climate Experiment (GRACE) is a suit of two satellites orbiting the Earth and measuring changes in the

gravitational field of the Earth. Observed changes are then related to changes in terrestrial water storage which includes

groundwater, surface water, snow and soil moisture (Landerer and Swenson, 2012; Swenson and Wahr, 2006). Here, we use the

retrievals from JPL’s mascon solution release 5 which are posted on a 1° x 1° spatial grid at monthly time scale. These retrievals
are used in section 4.6 to evaluate WECANN ET estimates from 2007 to 2015.

3. Methodology
3.1 Artificial Neural Network Setup

We developed an ANN retrieval algorithm to estimate the surface fluxes (LE, H, and GPP) based on our six sets of input
observations: SIF, net radiation, air temperature, soil moisture, precipitation, and SWE (as described in Section 2.2). The ANN
used here is a feedforward network consisting of three layers: (1) an input layer that directly connects to the input data, (2) one
hidden layer and (3) an output layer that produces the 3 output estimates. The number of neurons in the input and output layer is
determined by the number of input and output variables, whereas for the hidden layer it has to be chosen according to the
complexity of the problem (see below). The neuron output from each layer is fed to neurons in the subsequent layer through
weighted connections. Each neuron output is the weighted sum of its inputs plus a bias, which is then subjected to a transfer
function. In this study, we chose a tangent sigmoid transfer function for neurons in the hidden layer and a linear transfer function
in the output layer. The change of the transfer function for the hidden layer (log sigmoid or tangent sigmoid) did not produce any
significant changes in the retrievals (not shown), so we used the more common method. A schematic of the ANN architecture is
provided in Fig. 1.

The training step of the ANN aims at estimating the weights for each of the neuron connections, such that the mismatch between
the ANN outputs and target estimates is minimized. For this, we used the mean squared error (MSE) as the cost function and a
backpropagation algorithm to adjust the ANN weights. During training, the target data is divided into three subsets: training,
validation and testing constituting 60%, 20% and 20% of the target data, respectively. In each iteration, the training subset is used
to estimates the weights in the network, and the convergence of the training towards the target data is checked using the validation
subset. When overfitting of the network weights to the training data occurs, the validation estimates start diverging from the target
data and the training is stopped (early stopping). The weights from the last iteration before the occurrence of the divergence
represent the final solution. The testing subset are used to assess the ANN performance after the training phase.

As an additional measure to avoid overfitting, we repeated the training for several ANNs with an increasing number of neurons in
the hidden layer (1 to 15). For 1 to 5 neurons, the R? value between the target data and the ANN estimates increased with an
increasing number of neurons. For more than 5 neurons, little change in the skill was observed when increasing the number of
hidden layer neurons (Fig. S3). Thus an ANN with 5 hidden layer neurons represents the simplest ANN that can converge to a
solution and model the non-linear relationship between the satellite inputs and the surface flux estimates.

To train the ANN, we used LE, H and GPP estimates from the years 2008-2010. The target dataset was generated through a triple
collocation based merging of triplets of the flux estimates introduced in Section 2.1 (details are discussed in Section 3.2). After
completion of the training, the performance of the ANN and its ability to generalize was evaluated using the LE, H and GPP target
data from 2011. Finally, WECANN retrievals are validated against other global products and eddy covariance tower data. Results
of these comparisons are presented in section 4.
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3.2 Target Dataset: A Bayesian prior using Triple Collocation

One of the key issues in the design of an ANN to retrieve any geophysical variable is defining a good target dataset. One practice
has been to use outputs from a land surface model as the target (Aires et al., 2005; Jiménez et al., 2013; Kolassa et al., 2013;
Rodriguez-Fernandez et al., 2015). However, all observations and models contain random errors and biases. Therefore, the retrieval
based on the ANN exhibits some of the biases of the original target dataset even if the ANN is able to make corrections to its
original target data (e.g. correction of an imperfect seasonal cycle, as demonstrated by Jiménez et al., 2009). To address this issue,
we use three datasets, which are sufficiently independent so that the training can learn from each dataset and benefit from all of
them, synergistically. We implement a pseudo Bayesian training by probabilistically weighting the occurrence of each training
dataset by its likelihood, and define a target dataset. The three datasets are listed in Table 1 for each variable.

To define this prior distribution, we use the triple collocation (TC) technique. TC is a method to estimate the Root Mean Square
Errors (RMSE) (and, if desired, correlation coefficients) of three spatially and temporally collocated measurements by assuming a
linear error model between the measurements (McColl et al., 2014; Stoffelen, 1998). This methodology has been widely used in
error estimation of land and ocean parameters, such as wind speed, sea surface temperature, soil moisture, evaporation,

precipitation, fAPAR, and in the rescaling of measurement systems to reference system for data assimilation purposes

Alemohammad 015: D>Oderico-eta 014 Grub 0

2011h;Parinussa-etak2011)(Alemohammad et al., 2015; D’Odorico et al., 2014; Gruber et al., 2016; Hain et al., 2011; Lei et al.
2015; Miralles et al., 2010, 2011b; Parinussa et al., 2011), as well as in validating categorical variables such as the soil freeze/thaw

state (McColl et al., 2016). The relationship between each measurement and the true value is assumed to follow a linear model:
Xi= a;+Bit + ¢ i=123 (6}

where X;'s are the measurements from the collocated system i (e.g. remote sensing observation, model output, etc)s.), t is the true
value, a; and f3; are the intercept and slope of the linear model, respectively. ¢; is the random error in measurement i and TC
estimates the variance of this random variables in each measurement. By further assuming that the errors from the three
measurements are uncorrelated (Cov(e;, &) = 0, for i # j) and the errors are uncorrelated with the truth (Cov(g;, t) = 0), the

RMSE of each measurement error can be calculated as (McColl et al., 2014):
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in which Q;; is the (i*", j**) element of the covariance matrix between the three measurements. Since the triplet of datasets used
for training each of the fluxes (see Table 1) is derived through different semi-empirical approaches with different sources of errors,
the assumption of uncorrelated errors is more likely to be met. In the following, we will calculate the standard deviation of random

error component of Equation (1) using TC for each of the surface fluxes, and use them as TC based errors of each product.

The TC estimated errors fromfor the surface fluxes are shown in Figs. S4-S6. The white regions represent missing retrievals or

discarded negative estimates due to insufficient data record. For LE, high TC errors are found in the Amazon rainforest and tropical

| Field Code Changed




10

15

20

25

30

35

Africa for GLEAM, in Amazon rainforest and the Sahel for ECMWEF, in Indian peninsula for FLUXNET-MTE and in U.S. Great
Plains for ECMWF and FLUXNET-MTE. For H, beside the aforementioned regions, high TC errors are also found in Southeast
Asia for GLEAM and ECMWEF, and in northern Canada for FLUXNET-MTE. For GPP, MODIS and ECMWF have the highest
errors in Amazon rainforest, ECMWF and FLUXNET-MTE have relatively higher errors in US Great Plains, and all three products
have similar errors in Tropical Africa.

There are several likely causes for these errors. For the FLUXNET-MTE data, the regions which are not covered by (many)
FLUXNET eddy-covariance stations may result in larger uncertainties, and those regions for which interception is a large
component of the LE flux as well (Michel et al., 2016). For the GLEAM and ECMWF data thick vegetation generally induces
biases compared to the satellite observations, especially in tropical regions (Anber et al., 2015).

Finally, we use the TC-based RMSE estimates at each pixel to compute the a priori probability (P;) of selecting a particular dataset

in each pixel, if that pixel is used as part of the training dataset:

P= i @®
=12
13
in which P; is the probability of selecting dataset i when sampling from three measurements. We assume that these probabilities
are time independent as we are limited by the currently available duration of the input data; however, future versions will explore

the use of seasonally varying probabilities.

4. Results and Discussion
4.1 Global Magnitude and Variability of Surface Fluxes

In this section, we present and compare the retrievals of LE, H and GPP fluxes for the year 2011, which was not included in the
training step of WECANN. Thus, it is used here to evaluate the ANN fit to the target values.

Figure 2 illustrates the global average annual retrieved fluxes and scatterplots of flux retrievals vs target estimates. The spatial
patterns of the WECANN retrievals are similar to expectations. The average global fluxes in 2011 are 38.33 W m™for LE, 39.44
W m? for H, and 2.34 gC m? day " (or 123.16 PgC yr?) for GPP. LE has the best R? (0.95) comparing to the other two flux
variables H (R?=0.89), and GPP (R?=0.90). The Root Mean Squared Difference (RMSD) of each of the retrievals with respect to
the target estimates is as following: for LE, RMSD = 11.06 W m?; for H, RMSD = 13.13 W m*; and for GPP, RMSD=1.22 gC
m2 day L.

The seasonal variability and spatial pattern of the surface flux retrievals from 2011 (LE, H, GPP) are shown in Figs. 3 - 5. LE does
not exhibit any variability over deserts, such as the Sahara and Arabian Peninsula, as expected (Fig. 3). Wet tropical forests exhibit
subtle seasonal variability in LE. These spatial variabilities in the seasonal cycle reflect changes in the radiation, temperature, water
availability during the dry season, soil nutrient, soil type conditions as well as leaf flushing (Anber et al., 2015; Morton et al., 2014,
2016; Restrepo-Coupe et al., 2013; da Rocha et al., 2009; Saleska et al., 2016). In contrast, seasonal variability dominated by
radiation availability are noticeable in wet mid-latitude regions for both Northern and Southern Hemisphere, i.e., East Asia, Eastern
U.S. and Australian North and East Coast with over 60 W m difference between winter and summer months. One exceptional
case is South Asia, where LE does not significantly rise in spring, likely due to the effects of the monsoonal climate. In Eastern
South America, the ET estimates are relatively high compared to GPP estimates. This difference can be caused by either low water
use efficiency or significant rain re-evaporation and soil evaporation. Moreover, the SIF relationship with GPP likely changes in

C4 plants. However, we did not impose the C4/C3 delimitation in the ANN as it would be highly dependent on the quality of the
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classification map used. We note that all training products used here include C3/C4 delimitation and therefore the C3/C4

delimitation is implicit in the training dataset; therefore, can be learnt by the network.

Seasonal variabilities in H (Fig. 4) are distributed in opposite pattern to LE, as expected. Deserts and dry regions i.e., the Sahara,
Southwestern U.S. and Western Australia demonstrate much more seasonal variability than the rest of the world -given the strong
water limitations there, the available energy converted into H becomes dictated by the seasonal cycle of solar radiation. In contrast,
tropical rainforests (Amazon, Congo, Indonesia) exhibit limited seasonal variability. In mid-latitude energy-limited regions
(Central/Eastern Europe, Easter US), H also reflects the course of available energy, and in more water-limited regimes (e.g.
Western US and Mediterranean Europe), it reflects the interplay between soil dryness and available energy, with a peak between
spring and summer for dry regions.

The seasonal variability of GPP (Fig. 5) in Northern latitudes follows the availability of radiation in wet regions with a peak in
summer and another in spring for dry regions, corresponding to both soil water availability and high incoming radiation. A clear
East-West transition conditioned by water availability is observed in continental U.S. In tropics and subtropics, the response is
diverse. The Amazon rainforest exhibits high GPP throughout the year with a peak between September and February in the wetter
part of the basin, following the dry season, consistent with the observations at eddy-covariance towers near Manaus and Santarem
(Restrepo-Coupe et al., 2013; da Rocha et al., 2009). Compared to LE, substantial geographical variability is observed in the
Amazon, because of the strong variabilities in soil type, green up, biodiversity and rooting depth. In the drier part of the basin,
water availability controls the seasonal cycle of photosynthesis and the peak in GPP is observed in the wet season (DJFMA). In
the Congo rainforest, GPP exhibits four seasons, with two wet and two dry ones, with substantial decrease in GPP during those
dry spells. In Indonesia, GPP is steadier throughout the year, exhibiting high values year-round. Monsoonal climates over India,
South-East Asia, Northern Australia and Central-Northern America are well captured with rapid rise in GPP following water
availability. The highest GPP are observed in rainforests and the US agricultural Great Plains, in JJA for the latter. Northern latitude
regions mainly exhibit substantial GPP in the summer and late spring, and small values throughout the rest of the year.

4.24.2 Validation with FLUXNET Data

Direct validation of the WECANN fluxes is challenging by the fact that no global, error-free flux estimates are available. Remote

sensing or model products such as those used for training have their own errors. When three datasets with uncorrelated errors

commonly assumed to be true if the sources of error in each dataset have no common physical origin) are available, triple

collocation provides a valuable technique to validate large-scale datasets in the absence of a known truth. However, WECANN’s
use of different training datasets will cause the presence of some correlated errors between WECANN fluxes and any of the datasets

used for the training. Instead, we validate the fluxes by comparing them to data from a set of FLUXNET eddy-covariance towers.

In situ estimates from eddy covariance towers with a footprint of a few 100 m to km may not be representative of the entire 1° x

1° pixel, and are known to have problems with energy closure (Foken et al., 2010). However, in the comparison against tower data

the impact of large-scale climate variability and seasonality can still be seen even at different spatial scales. For instance, the

phenology has a strong impact on the seasonal cycle of the fluxes and in the following examples, it is clearly highlighted when
comparing the different products to flux tower estimates.
Summary of statistics across 97 FLUXNET sites are provided in Tables S1 — S3. Overall, WECANN performs better than other

alternative global products. In particular, WECANN has the highest correlation for 76% of sites for LE, 54% of sites for H, and
53% of sites for GPP. This high R? reflects the capacity of WECANN to correctly capture the seasonal cycle and interannual

variability, as it is largely imposed by the remote sensing observations rather than by the statistical retrieval (Jiménez et al., 2009).

One of the reasons for this is the presence of the SIF information in the ANN retrieval, which is directly related to GPP and plant
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transpiration (Frankenberg et al., 2011). The RMSE of WECANN is lower than all other products at 71% of sites for LE, 46% of

sites for H, and 51% of the sites for GPP. The bias is also reduced compared to other retrievals, even if some variability can be
seen from site to site.

Figure 6 shows a summary of the correlation coefficients presented in Tables S1 - S3 for each group of Plant Functional Types

(PETs). Each class has between 6 and 22 sites. WECANN has the best mean within each PFT class, and the smallest variability in

most of the classes for all three fluxes.

Figure 7 shows the comparison of monthly WECANN retrievals and three other global products’ estimates with the tower estimates

across 5 select sites that span a range of climatic and vegetation coverage conditions. At the Oklahoma agricultural site (US-ARM)
H and LE are well reproduced, yet dry year H is underestimated (Fig. Figure 7a). The GPP reported at the site very rapidly decays
at the end of the spring whereas the region is highly agricultural with sustained agriculture in the summer. The difference between
the reported GPP and WECANN retrievals might be again due to the difference in the footprint of the two estimates.

At the Brasschaat site, BE-Bra, Belgium (Fig. Figure 7b), LE is very well captured by WECANN, which captures the seasonal
cycle well, yet misses some of the interannual variability. WECANN outperforms the other retrievals of LE and GPP and captures

the GPP seasonal cycle very well compared to other products, which display too early GPP rise and overestimate summer GPP.

Again, the SIF data provides independent useful data compared to other environmental information (radiation, temperature

vegetation indices) used by the other retrieval schemes. All retrievals strongly underestimate the reported eddy-covariance H. At
this humid site though, the magnitude of the measured H is often higher or on the same order in the summer as LE. Given the high

degree of urbanization around the site, it is most likely a reflection of the footprint of the eddy-covariance and the fact that it
observes urbanized surfaces with high H. Indeed, the surface energy budget is not locally balanced and turbulent fluxes are higher

than the observed net radiation minus ground heat flux.

At the cold Finland site (FI-Hyy), WECANN very well captures the seasonal cycle of GPP and LE, as well as to a less extent H.

WECANN better reproduces the seasonality, amplitude and interannual variability compared to other retrievals (Fig. Figure 7c).
It also reflects the difficulties of retrieving fluxes in snow dominated regions. SIF has the great advantage that it is not directly

sensitive to snow compared to vegetation indices for instance, which incorrectly attribute snowmelt and changes in observed

ground color to photosynthesis onset (Jeong et al., 2017).

At the monsoonal grassland site of Santa Rita, AZ, WECANN correctly captures the complex dynamics of H and LE at the site<— { Formatted: Tab stops: Not at 1.63"

with some rain periods preceding the Monsoon period (Fig. Figure 7d). Yet, WECANN slightly underestimates LE and
overestimates GPP. In fact, all flux retrievals overestimate GPP in the dry and cold seasons. The landscape in the region is highly
heterogeneous with denser vegetation in riparian zones, away from the tower location, which may explain the lower GPP value at

the site compared to estimates of the larger-scale values.
Finally, at the South African Mediterranean site, ZA-Kru, WECANN reproduces some of the dynamics of the observed H, yet is

typically smoother (Fig. Figure 7e). It reasonably captures the LE dynamics, except for the suspect cold season increase reported

at the tower in 2013 (like other products). All products overestimate the reported GPP, though WECANN s closest to the

observations and better captures the seasonal dynamics compared to other products.

Overall, across the different sites, the WECANN retrieval performs better than other products, especially in terms of the seasonality
of the fluxes. Several factors contribute to the improved retrieval of WECANN compared to other products, even at those smaller

footprint sites. First, the SIF measurements that are directly correlated with GPP provide a better constraint on flux estimates. The

ANN approach in WECANN also uses a novel training technique based on probabilistically merging different datasets to remove

outliers from its target dataset. Therefore, WECANN retrievals learn collectively from the different datasets (and remote sensing
observations) and are closer to the truth than each of the individual target datasets.

11




10

15

20

25

30

35

4.3 Comparison against other remote-sensing based products

In this section, we compare the WECANN-based estimates to other datasets used in the training to better understand how
WECANN differs from those training data. Figure 8 shows the comparisons for LE, and indicates that our product has a relatively
similar R? with the three products (R? = 0.96 with FLUXNET-MTE and ECMWF, and R? = 0.94 with GLEAM). However, the
scatterplot with FLUXNET-MTE is more concentrated and aligned along the 1:1 line, further emphasizing the consistency between
the two datasets (RMSD of 6.42 W m? for FLUXNET MTE versus 8.47 W m? and 9.72 W m? for GLEAM and ECMWF,
respectively). Differences in spatial patterns shown in Fig. 8a-c reflect that WECANN exhibits smaller spatial differences with
FLUXNET-MTE than GLEAM or ECMWF and such differences exhibit a narrower range between -10 and 10 W m2 FLUXNET-
MTE overestimates LE compared to WECANN in transitional tropical and subtropical regions and particularly over India, which
are regions with few eddy-covariance towers. GLEAM exhibits substantial differences with our product particularly in regions
dominated by seasonal water stress such as Brazilian savannas, the Horn of Africa, Central America, India and the subtropical
humid part of Africa south of the Congo. In the Sahel, GLEAM LE is higher than our estimate and FLUXNET-MTE. The LE
estimate of ECMWEF is nearly always higher than our estimate with much higher values in the Congo, the Amazon, Southern Brazil,
and Northern Canada. In Europe, where the ECMWF estimate should be best because of the frequent weather operational forecast
checks and model adjustment in the region, the estimates are more similar. The differences and similarities of WECANN retrievals
with the three target datasets is consistent with the error estimates from TC. For example, Fig. S4 shows that FLUXNET-MTE has
the smallest error in LE estimates globally compared to GLEAM and ECMWF, other than across India. WECANN retrievals also
have better agreement with FLUXNEWT-MTE.

The differences in H estimates are more complex (Fig. 9). First, the R? between WECANN and the other datasets are slightly lower
than for LE. ECMWF and FLUXNET-MTE vyield higher R? with WECANN (0.92) while GLEAM has an R? of 0.87. GLEAM
exhibits lower H in most of the Northern hemisphere, especially in seasonally dry regions, potentially due to its simple formulation
of ground heat flux (G). H estimates are relatively higher over the Amazon and Congo but lower over Indonesia for GLEAM. In
the Southern Sahara and northern Sahel as well as in Eastern Asia and Canada GLEAM has lower H compared to WECANN and
FLUXNET-MTE. ECMWF exhibits higher values in seasonal dry regions such as Western US, Brazilian Savannas, Southern
Congo, the Sahel compared to WECANN and smaller values in the Amazon, Indonesia, and over desert areas of the Sahara and
Arabic peninsula as well as South East Asia. The GLEAM and ECMWF H difference maps show many similar patterns: the Sahara,
Eastern Europe, East Asia are underestimated, while Southern Africa and Eastern part of Amazon are overestimated. Similarly the
errors patterns estimated from TC (Fig. S5) are consistent with the comparison of WECANN and target datasets. Figure S5 shows
that ECMWF has higher errors in the Sahel, Southern Congo, and Brazilian Savana and GLEAM has higher errors in the Amazon,
East Asia and Central Africa.

The comparison between the GPP estimates shows significant differences (Fig. 10). WECANN compares the best against
FLUXNET-MTE (R? = 0.93), with MODIS (R? = 0.91) and ECMWF (R? = 0.90) following. While all three products have similar
R?, their spatial differences are distinct. In the Amazon, ECMWF and FLUXNET-MTE have larger GPP estimates compared to
WECANN, while MODIS estimates are much smaller. In cold northern latitude regions of Siberia and Northern Canada, all three
products have higher GPP than WECANN. In Congo, MODIS and FLUXNET-MTE have higher GPP, while ECMWF has a lower
one. In Central and Southwestern US, all three products tend to yield lower GPP. Comparison of these findings with the error
estimates from TC (Fig. S6) shows that FLUXNET-MTE has the lowest errors globally, while ECMWF has the largest errors in
the Amazon.
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Directvalidation-of the WECANN-fluxes-is-made-mere4.4 Extreme Events Assessment

In order to further assess WECANN at the global scale, we analyse its capacity in capturing extreme events. We thus selected three

major heatwave and drought events that occurred during the temporal coverage of WECANN product. These events are the Russia
2010 heat wave, Texas 2011 drought and US Corn Belt 2012 drought. Figure 11 shows the percentage of mean monthly anomalies

with respect to mean surface fluxes, for LE, H and GPP, in each of the three cases. The patterns reveal significant anomalies in all

fluxes which is consistent with reported patterns. In summer 2010, a historical heatwave occurred over western Russia and resulted

in all-time maximum temperature record in many locations (Dole et al., 2011). The extent of reduction in LE and increase in H

derived from WECANN retrievals is consistent with estimates reported in the literature (Lau and Kim, 2012), with 10-15% increase

in H and 15-20% reduction in LE. In early 2011, drought conditions developed in southern US, particularly in the states of Texas

and Louisiana (Luo and Zhang, 2012). By April, most of Texas, Oklahoma, Louisiana and Arkansas were classified in the D4

drought condition (exceptional drought), and the situation continued throughout the summer and fall of 2011 as reported by US

Drought Monitor (Svoboda et al., 2002). As Figure 11 reveals, the same spatial pattern is pronounced in the monthly anomalies

derived from WECANN retrievals, emphasizing massive reduction in LE and GPP accompanied by high H over the region.

Finally, an intense drought in the central US, particularly in the Corn Belt, occurred in 2012 and reduced maize yields by about
25% and increased prices by 17-24% (Boyer et al., 2013; USDA, 2013). By mid-September 2012 almost two-thirds of the
continental US was covered by drought, and different parts of US Corn Belt was categorized as either D3 (extreme drought) or D4

(exceptional drought) condition. Figure 11 shows similar patterns in surface fluxes with significant positive anomaly in H (~20%)

and reductions in LE and GPP (~20%), consistent with crop yield decrease.

4.5 Basin Scale Evaluation

We also assess the accuracy of WECANN ET retrievals using estimates of an independent water budget closure model across five

major basins (Aires, 2014; Munier et al., 2014) . ET estimates from the budget closure approach satisfy a water budget closure

with no residual; therefore, they can be used as a reference to evaluate WECANN ET estimates at basin scale. These basins include
Amazon (4,680,000 km?), Colorado (618,715 km?), Congo (3,475,000 km?), Mississippi (2,964,255 km?) and Orinoco (836,000
km?). Details of the water budget estimate are provided in Munier and Aires, 2017, but in a nutshell they combine estimates of

precipitation, evaporation, water storage and runoff to define a best estimate of the different fluxes and changes in storage,

constrained by the water budget over the basin. The analysis is carried out for years 2007 to 2010. Figure 12 _shows the relative

difference in ET estimates from WECANN compared to the ET estimates from the water budget study (mean value and one

standard deviation across 48 months). Mean differences vary between a low of 5% in the Amazon and a larger 24% value in

Colorado, while other three basins have a mean difference of 9%, 17%, and 20%. While the differences vary between a low and

moderate range, it should be noted that the coarse spatial resolution of WECANN product causes a difference in the spatial

averaging to get the basin level estimates of ET. Moreover, in the budget closure estimates only a single runoff (at the outlet of the

considered basin) is used over the entire basin; therefore, large heterogeneous basins such as the Colorado and Mississippi have

large uncertainties associated with them, as runoff does not correctly constrain the flux distribution over the entire basin. It is over

those basins that the WECANN retrieval compare less favorably with these large-scale estimates. Downscaled version of those

estimates would further help in the evaluation of ET products.
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4.6 Comparison with GRACE

Terrestrial water storage changes estimated from GRACE satellite observations provide a valuable opportunity to evaluate global

estimates of surface fluxes in combination with other observations. Terrestrial water storage includes groundwater, soil moisture,

surface water and snow cover. Indeed, changes in storage equals precipitation (P) minus ET and runoff. We thus expect positive

correlation between changes in storage and P-ET, except in snowy regions where delays in snow melt correlates storage compared
to P-ET.

We estimate the correlation between seasonal changes in terrestrial water storage and the difference between precipitation and
WECANN ET. This analysis provides another independent evaluation of ET estimates from WECANN over larger scales than

over flux towers. We use the GPCP precipitation estimates, and calculate the correlation coefficient at seasonal time scale between

2007 and 2015 (Figure 13). Over almost all of the non-snowy regions the correlation is positive, as expected, meaning that the

positive (negative) value of P-ET results in a positive (negative) change in terrestrial water storage and confirming that at a larger

scale the ET seasonal cycle is consistent with changes in storage. Over snow dominated regions, such as the Rockies or Russia the

correlation is negative which is due to the role of snow cover in the changes of the terrestrial water storage. This evaluation provides

another perspective to the quality of the ET estimates from WECANN.

4.7-challensing by the fact that no alobal error-free flux estimates are aval
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4.4 Uncertainty Analysis of WECANN Retrievals

One of the advantages of a statistical retrieval algorithm, in particular of ANNSs, is that the run time is extremely fast, after the
training step. This enables us to characterize the uncertainty of the retrievals by propagating the uncertainties in the input variables
through the network. For this purpose, we set up a 10,000 bootstrap experiment and run the WECANN retrieval by adding error
to input variables. The errors are normally distributed with mean zero and a standard deviation that depends on the input variable.
For SIF, air temperature and soil moisture, we use the error estimates or standard deviations reported in their associated products.
These errors are spatially and temporally varying and we used the associated value for each time and space data point. For net
radiation, we use a constant standard deviation of 34.58 W m based on the analysis by (Pan et al., 2015). For precipitation and
SWE estimates, we use a conservative 10% of the estimates themselves as a standard deviation for error. For each bootstrap
replicate, we sample from the error distribution of each input variable and add that to the input.

Figure 14 shows the results of the bootstrap for each of the three fluxes globally and in different climatic zones. The zones are
defined as Polar (90° N - 60° N), Northern Hemisphere (NH) mid-latitude (60° N - 10° N), Tropics (10° N - 15° S), and Southern
Hemisphere (SH) mid-latitude (15° S - 60° S). Each panel in Figure 14 shows the uncertainty derived from the bootstrap experiment,
relative to the interannual variability of the fluxes. GPP estimates are provided in units of PgC yr as total productivity in each
region. LE and H are provided in units of W m2 as an average rate of flux in each region.

At global scale the GPP ranges between a minimum of 117.15 + 2.379 PgC yr in 2015 to a maximum of 124.82 + 2.482 PgC yr
in 2007. Similarly, LE has a minimum of 37.40 + 0.54 W m2 in 2015 and a maximum of 38.33 + 0.53 W m?in 2011. H has a
maximum of 41.00 + 0.54 W m2 in 2015 and a minimum of 39.43 + 0.52 W m2 in 2011.

The inter-annual variations of surface fluxes show distinct patterns. For example, in year 2015, which was an EI Nifio year, LE
and GPP have reduced notably, and H increased to an extreme value in the 9 years of WECANN product. Moreover, from 2011 to
2015 both LE and GPP have a consistent decreasing trend at global scale. The inter-annual variability of GPP and LE are similar
at global scale while their regional patterns are different. For example, in year 2015 GPP at global scale and in all regions has
decreased with respect to 2014, while LE in Polar and NH mid-Ilatitudes have increased and LE at global scale has decreased. As
expected, the variability of LE and H are anti-correlated.

4.58 Impact of SIF on the retrieval of surface fluxes

Satellite SIF observations are relatively new, and have not been used to estimate LE and H at the global scale previously. Therefore,
we want to assess the information content of SIF observations in the WECANN retrievals by replacing them with more typical
optical/near-infrared indices of vegetation (NDVI or EVI).

To do so, we trained two different ANNs with NDVI and EVI instead of SIF data on each of the three fluxes and evaluated the
retrievals against the same FLUXNET tower measurements used in Section 4.32 for validating WECANN retrievals. Tables S4 -
S6 show the results of validations of these three retrievals against the tower measurements for LE, H and GPP, respectively. In
terms of correlation coefficient, on average all three retrievals have relatively similar performance except in regions where
phenology (and incident radiation) is not the main contributor to the flux variability such as in Spain (ES-LgS). Indeed, in such
regions changes in canopy structure is more limited and changes in response to water stress (through changes in light and water
use efficiency) are the primary reason for the seasonal variability. This emphasizes, similarly to current thinking on the SIF signal,
that the monthly SIF signal is dominated by incident radiation and canopy structure but that in some conditions light use efficiency
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changes are detected by SIF, but not optical vegetation indices {Lee-etal;2013)(Lee et al., 2013). We also point out that current
SIF retrievals (such as those from GOME-2 used here) are still noisy as they were not obtained by satellites designed to measure
SIF. Future SIF designated missions such as Fluorescence Explorer (FLEX) will have higher accuracy and finer spatial and
temporal resolution (Drusch et al., 2016). We expect they will further enhance the retrievals of surface fluxes such as those from
WECANN.

5 Conclusion

This study introduces a new statistical approach to retrieve global surface latent and sensible heat fluxes as well as gross primary
productivity using remotely sensed observations at a monthly time scale. The methodology is developed based on an Atrtificial
Neural Network (ANN) that uses six input datasets including solar induced fluorescence (SIF), precipitation, net radiation, soil
moisture, snow water equivalent, and air temperature. Moreover a Bayesian approach is implemented to optimally integrate
information from three target datasets for training the ANN using Triple Collocation to calculate a priori probabilities for each of
the three target datasets based on their uncertainty estimates.

The new global product, referred to as WECANN, is validated using target datasets as well as FLUXNET tower observations. The
validation results comparing with training datasets show that our retrieval has similar correlation with the three products while it
has the smallest RMSD with FLUXNET-MTE for LE (RMSD=6.42 W m?), H (RMSD=7.84 W m?) and GPP (RMSD=0.88 gC
m2 dayt), which is believed to be one of the most realistic global datasets and it has the lowest RMSE based on our TC error
estimates (Fig. S4 — Fig. S6), despite its reported underestimated inter-annual variability due to the use of climatological values
for several meteorological drivers (Miralles et al., 2014a, 2016). Such tendency also can be summarized from the global difference
maps, which show that FLUXNET-MTE has the best agreement with WECANN retrievals. The WECANN and FLUXNET-MTE
approaches are both based on machine learning, although the FLUXNET-MTE retrievals use a regression tree rather than an ANN.
Nevertheless, this commonality of methods may also contribute to the greater correspondence between these two datasets.

The flux retrieval maps indicate that all three fluxes have similar seasonal variability and distribution which are determined by
annual phenological cycle in energy limited Northern latitude regions, dryness in Mediterranean and Monsoonal climates and by
light availability in rainforests. Seasonal radiation has great impact on some regions for all flux variables, such as Eastern U.S.,
Europe and East Asia, which have wet conditions, are highly vegetated and located in mid-latitudes. As opposed to this, the
seasonal variability for all fluxes in some low-latitude and wet condition regions, such as Amazon rainforest, Southern Africa and
Southeast Asia, as well as some low-latitude arid regions, such as Southwest U.S., Western Australia, North Africa and Western
Asia are not significant, as there is less seasonal solar radiation variability in aforementioned regions. Comparison between the
flux variables LE, H, and GPP, they all demonstrate generally similar patterns of seasonal variability through time.

We also assessed the impact of SIF on retrieval quality. In comparison to optical-based vegetation indices, SIF has better
performance in regions where phenology and incident radiation are not the main contributor to flux variability, while it has similar
performance in other regions.

Finaly—fromFrom the validation results comparing with FLUXNET tower observations, it is noted that WECANN has better
performance compared to other global products. LE and H estimates from WECANN are more consistent with tower observations
compared to GPP. WECANN retrievals have better correlation with tower observations in 76% of site for LE, 54% of sites for H,
and 53% of sites for GPP compared to other products. Moreover, retrievals from WECANN outperform other global products in
capturing the seasonality of surface fluxes across a wide range of sites with different climatic and biome conditions.
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We also assessed the performance of WECANN in capturing extreme heatwave and drought events, and showed that in the case
of Russia 2010 heatwave, Texas 2011 drought and US Corn Belt 2012 drought WECANN properly captures the extent of the

anomalies in LE, H and GPP. Moreover, an independent ET estimate from a water budget closure model was used to evaluate

WECANN ET estimates across five large basins, and it showed small to moderate errors for WECANN retrievals.

Finally, a correlation analysis of P-ET (from WECANN) with water storage changes from GRACE mission showed positive

correlation coefficients across non-snowy regions, confirming the accuracy of ET estimates from WECANN.

Data Availability

WECANN product is publicly available for download on Aura Validation Data Center (AVDC) at Goddard Space Flight Center
via https://avdc.gsfc.nasa.gov/pub/data/project/ WECANN/
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Input Hidden Output
'a A

O =f,(f,(WP + b))

Figure 1: Architecture of the ANN layers. Input layer provides the matrix P of the inputs to the Hidden layer. Hidden layer has a matrix
W of weights and b of biases for the neurons, and the f1 transfer function. The output of the Hidden layer (a = fi(WP +b) ) is an input to
5 the Output layer that applies the transfer function f2 to the estimates and generates final outputs O.
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Figure 2: Left column: Annual average surface fluxes in 2011 for (a) LE, (b) H, and (c) GPP. Right column: Density scatterplot between
estimates of ANN and target data for (d) LE, (e) H, and (f) GPP during the validation period (2011). The density of scatter points is
represented by the shading color. The diagonal black line depicts the 1:1 relationship.

28



] (a) LE (DJF) : ot (b) LE (MAM)

0 20 40 60 80 100

Figure 3: Global patterns of seasonal average LE from WECANN in 2011, (a) December - February, (b) March - May, (c) June - August,
and (d) September - November.
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5  Figure 4: Similar to Figure 3 but for H instead of LE
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Figure 5: Similar to Figure 3 but for GPP instead of LE
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(a) R? between WECANN and FLUXNET Insitu Observations for ET
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Figure 6; Correlation coefficient (R?) between WECANN retrievals and FLUXNET tower estimates categorized across different plant

functional types for (a) LE, (b) H, and (c) GPP. Markers show

(CRO=Croplands, DBF=Deciduous Broadleaf Forests, EBF=Evergreen Broadleaf Forests, ENF=Evergreen Needleleaf Forests

GRA=Grasslands, MF=Mixed Forests, SAV=Savannas, and WET=Permanent Wetlands)
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Figure 11:

; Mean monthly anomalies (in percentage with respect to

mean value of each flux) for three extreme heatwave events.
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: Correlation between seasonal values of GRACE terrestrial water storage anomaly and difference between precipitation and
evapotranspiration (estimated by WECANN). Regions with an annual precipitation of less than 200 mm are excluded from the analysis.
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Figure 14: UneertaintyAnnual mean estimates_and uncertainty bounds of LE (top row), H (middle row) and GPP (bottom row) retrievals at global (left column) and regional (four
right columns) scales between 2007 and 2015. The central line in each box indicates the mean, the edges of the box are 25th and 75th percentiles, and the whiskers show the most
extreme values.
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Table 1: Characteristics of products used for training of ANN

Product Output varlgb_les Temporal Spatial Tempo_ral Spathl Reference
used for training Coverage Coverage Resolution Resolution
GLEAM LE, H 1980 - 2015 Global Daily 0.25° x 0.25° Qfarztggz et
ECMWF ERA . o o Balsamo et
HTESSEL LE, H, GPP 2008 - 2015 Global Daily 0.25° x 0.25 al,, 2009
FLUXNET-MTE | LE, H, GPP 1982 - 2012 Global Monthly 0.5° x 0.5° le(‘)'(‘)% et al,
MODIS-GPP GPP 2000 - 2015 Global Monthly 0.5° x 0.5° ;””2"53?1 et
Table 2: Characteristics of observations used as input in the WECANN product
Variable Product N_ame and Temporal Spatial Tempo_ral Spatla}l Reference
Version Coverage Coverage Resolution Resolution
GOME-2 . o o Joiner et al.,
SIF Fluorescence V26 2007-present Global Daily 0.5°x 0.5 2013
i 0w o Wielicki et
Net Radiation | CERES L3 SYN 1deg | 2002-present Global Monthly 1°x1 al.. 1996
Air . oo Aumann et
Temperature AIRS3STD v6.0 2002-present Global Daily 1°x1 al., 2003
Soil Moisture | ESA-CCI v2.3 1978-2015 Global Daily 0.25° x 0.25° '2‘(')‘12“ al.,
Precipitation | GPCP 1DD v1.2 1996-2015 Global Daily 1°x1° ;”f;g“gf et
Snow Water | ) 5asNOW L3A V2 | 1979-present Global Daily 25 km x 25 km | buolus etal.,
Equivalent 2013
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