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Abstract. Leaf area index (LAI) is an important parameter related to carbon, water and energy
exchange between canopy and atmosphere, and is widely applied in process models that simulate
production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of
LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used
hemispherical photography to measure LAI values in three subtropical forests (Pinus
massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias
axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved
forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were
analysed using geostatistical methods and the generalised additive models (GAMs), respectively. Our
results showed that LAI values differed greatly in the three forests and their seasonal variations were
consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests
measured in January and for the L. glaber-C. glauca forest in April, July and October. Obvious patch
distribution pattern of LAI values occurred in three forests during the non-growing period and this
pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of
evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis and
forest types affected the spatial variations in LAI values in January, while stem number and proportion
of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic
composition, spatial heterogeneity and seasonal variations should be considered for sampling strategy in

indirect LAI measurement and application of LAI to simulate functional processes in subtropical
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1 Introduction

Many fundamental ecological processes in forest ecosystems, such as carbon (C) flux as well as
water and energy exchanges, take place between the canopy layer and atmosphere (GCOS, 2006; Brut
et al., 2009; Alonzo et al., 2015; Liu et al., 2015b). At a finer scale, leaves within the canopy are the
primary organ to perform a series of physiological activities (i.e. photosynthesis, respiration and
evapotranspiration) (Aragdo et al., 2005) and physical reactions (i.e. rainfall and radiation interception)
(Aston, 1979; Smith, 1981; Crockford & Richardson, 2000). Therefore, the amount of leaves in a forest
is the determinant of above-ground ecological processes and ecosystem functions. Leaf area index
(LAI), defined as total one-sided leaf area per unit ground surface area (Biudes et al., 2014), is a widely
used parameter (Kross et al., 2015) to quantitatively describe the vegetation canopy structure (Woodgate
et al., 2015), to simulate ecological process models (Brooks et al., 2006; Sprintsin et al., 2007; Facchi et
al., 2010; Gonsamo & Chen, 2014) and to reveal tree growth and productivity in forests at stand scale
and landscape level (Lee et al., 2004; Liu et al., 2015b). In addition, LAI is listed as one of the essential
variables for observation of global climate (Mason et al., 2003; Manninen et al., 2009) and for remote

sensing data validation (Asner et al., 2003; Clark et al., 2008). Thus, accurate estimates of LAI value are
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important to understand ecological processes in forest ecosystems.

At present, various direct and indirect methods have been developed to measure LAI in forests.
Direct estimation methods including leaf harvest (Clark et al., 2008), allometric equations and litter
collection (Ryu et al., 2010; Liu et al., 2015a) are recognised as the most accurate. However, leaf
harvest and allometric equations methods need time-consuming, labour-intensive and destructive
sampling processes, while litter collection is more feasible for temperate deciduous forests. Obviously,
the direct methods are less applicable to large-scale and long-term LAI monitoring (Bequet et al., 2012;
Biudes et al.,, 2014). Indirect methods include using a plant canopy analyser (Licor LAI-2000),
hemispherical or fisheye photography (Macfarlane et al., 2007) and remote sensing (Biudes et al., 2014).
The indirect methods retrieve LAI value from light transmittance through canopies or from canopy
image analysis. For large-scale LAI estimates, remote sensing is the most effective method but requires
validation with ground-based LAI data. LAI estimates on the ground at small scales are still a challenge
due to the problems of sampling strategies associated with accepted level of accuracy, time and cost
considerations (Richardson et al., 2009). Hemispherical photography is a relatively simple and easily
operated method among many indirect methods to retrieve LAI value at small scales (Demarez et al.,
2008). Correction of the effects of woody materials, clumping and zenith angels or exposure is critical
to improve the accuracy of LAI estimation (Liu et al., 2015b). Analysis software development and
portable and timely characteristics allow hemispherical photography to measure spatial heterogeneity

and seasonal variations of LAI in forests.
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Forest canopy structure is highly complex so LAI values show great temporal and spatial variations at
scales ranging from stand to global scale. For example, LAI values in the 7.9 ha plot of an old humid
temperate forest tended to increase spatially as elevation increased and showed a temporal variation
with plant phenology (Naithani et al., 2013). The spatial patterns of LAI values at stand scale were
significantly influenced by spatial distribution of tree species, which was dependent on topography and
soil types (Naithani et al., 2013). The coefficient of variation (CV) in LAI decreased as the scale
increased and LAI values did not have any relationship with biome type and climate patterns, but were
influenced by land use and land cover, terrain features, and soil properties at stand scale (Aragao et al.,
2005). The CV of LAI of three species (i.e. beech, oak and pine) had different degrees of spatial
variation in a 1 ha plot at stand level (Bequet et al., 2012). LAI values in sagebrush displayed strong
spatial patterns with time after disturbance and increased with stand age and total plant cover (Ewers &
Pendall, 2007). The LAI values derived from MODIS data (Myneni et al., 2002; Huang et al., 2008)
revealed strong spatial variations at global scale, which were correlated with latitude (Tian et al., 2004).
At the global scale, temperature is the limiting factor for LAI under cool conditions while water plays a
predominant role under other conditions, and this pattern differed among plant functional types (lio et
al., 2014). The factors that govern the spatial variations in LAI values at stand level include forest types,
stand structure (Bequet et al., 2012), climate (Shao & Zeng, 2011), topography, soil moisture condition
(Breshears & Barnes, 1999), and human disturbance and management activities (Huang & Ji, 2010).

Although effects of topography, soil properties (Aragdo et al., 2005; Naithani et al., 2013) and stand
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characters (Bequet et al., 2012; Yao et al., 2015) on LAI values have been investigated in detail, the
effect of forest type, stand structural diversity and stand structure on spatial heterogeneity and seasonal
variations of LAI has yet to be fully understood.

Chinese subtropical forests contain a diversity of tree species with complex canopy structure that
mostly grow on heterogeneous topography and soil conditions. As a result, LAI in subtropical forests
may exhibit great spatial and seasonal variations, which is worthy of further investigation. However,
LALI data of subtropical forests are relatively deficient in the global database (see Asner et al., 2003). In
this study, we selected three different forests: Pinus massoniana-Lithocarpus glaber coniferous and
evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L.
glaber-Cyclobalanopsis glauca evergreen broadleaved forests, in which to measure LAI values were
measured by using hemispherical photography. Spatial heterogeneity of LAI was investigated through
geostatistical analysis, and generalised additive models (GAMs) were used to examine how stand
structural diversity and stand characters affect LAI variations in the three forests. Specifically, the
objectives of this study were: (1) to examine differences and seasonal variations in LAI among three
forests in subtropical China; (2) to analyse spatial heterogeneity of LAI values within a specific forest;
and (3) to identify how forest types, stand structural diversity and stand characters control the spatial

heterogeneity and seasonal variations of LAI values in three forests.

2 Materials and methods
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2.1 Study site description

The study was carried out at Dashanchong Forest Farm (latitude 28°23'58"-28°24" 58" N, longitude
113°17'46"-113°19'08" E), Changsha County, Hunan Province, China. The farm experiences a humid
mid-subtropical monsoon climate. Mean annual air temperature was 16.5 °C, with a mean monthly
minimum temperature of -11°C in January and maximum temperature of 40°C in July. Mean annual
precipitation ranged from 1412 mm to 1559 mm, mostly occurring between April and August. The
topography is characterized by a typical low hilly landscape with an altitude between 55 m and 260 m
above sea level. Soil type is designated as well-drained clay loam red soil developed on slate and shale
rock, classified as Alliti-Udic Ferrosols, corresponding to Acrisol in the World Reference Base for Soil
Resource (IUSS Working Group WRB, 2006). Evergreen broadleaved forest is the climax vegetation of
the region. As a result of human disturbance and management activities, the farm has no primary forest,
and possesses a range of secondary forests in different stages of succession (based on species
composition) dominated by different tree species, including (1) early stage P. massoniana-L. glaber
coniferous and evergreen broadleaved mixed forests dominated by the shade-intolerant coniferous
species typical of early succession, (2) middle stage C. axillaris deciduous broadleaved forests
dominated by shade-intolerant deciduous broadleaf species, and (3) late stage L. glaber-C. glauca
evergreen broadleaved forests dominated by the shade-tolerant evergreen broadleaved species

commonly observed in the late stage of succession in this farm (Xiang et al., 2015; Ouyang et al., 2016).
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2.2 Determination of stand characteristics

We established a permanent plot for each of three forests (i.e. 90 m x 190 m irregular plot for P
massoniana-L. glaber mixed forests, 100 m x 100 m plot for C. axillaris deciduous forests, and 100 m x
100 m plot for L. glaber-C. glauca evergreen broadleaved forests). Each plot was divided into 10 m X
10 m subplots, where tree species, diameter at breast height (DBH, cm), tree height (H, m), height under
the lowest live branch (m) and crown width (m) were measured for the individual stem with DBH larger
than 1 cm. Stand characteristics for the trees with DBH >4 cm of the three forests are presented in Table
S1.

To identify the factors that control spatial heterogeneity of LAI values in the forests, we selected
individual trees with H larger than average height of each stand (see Table S1) and calculated their stem
number, average DBH, H, total basal area at breast height (BA), crown width, crown coverage
(calculated from crown diameter measured for individual trees within a stand), tree species diversity,
tree size diversity, the proportion of BA of three functional group (coniferous, deciduous and evergreen
broadleaved species) to total stand BA within a subplot. Tree species diversity (biodiversity index, BDI)
was determined using the Shannon-Wiener index as follows:

BDI=-Y PInP; (1)
where P; is important value of ith species and is calculated by dividing the sum of relative abundance
degree (Ar) and relative dominance degree (Dr) of ith species within a subplot by two.

Based on the Shannon-Wiener index, 2 cm was used for the DBH class, so tree size diversity (H) was
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determined using the formula of Lei et al. (2009):
H =-3 PinP; (2)

where P; is the proportion of basal area for the ith diameter class.

2.3 Sampling design for LAI measurement

At the centre of each subplot of the three forests, hemispherical photographs were taken using a LAI
measuring instrument (SY-SO1A, Shiya Scientific and Technical Cooperation, Hebei, China) throughout
four measurement seasons, i.e. in April (spring), July (summer) and October (autumn) in 2014 and
January (winter) in 2015. The operation was carried out below canopy with the fisheye lens (Pentax
TS2V114E, Japan) 1.0 m above the ground (Manninen et al., 2009) with a viewing angle of 180°. The
picture exposure is automatic exposure set by the manufacturer, and we took the photographs (768 x
494 pix, BMP) in the morning, at dusk or when cloudy, in order to minimize influence of direct
sunshine (Rich, 1990; Bequet et al., 2012). The images were processed and effective LAI values (Lc)
were recorded using plant canopy analysis software developed by the manufacturer, for which
appropriate pixel classification (thresholding) was chosen (752(H) % 494(V)), viewing angle considered
(150°), and the hemispherical photography was divided into five rings to obtain results. To obtain

accurate LAI (L), the correction was made to L. based on previous theory (Chen, 1996):

_(d-a)Lee
(95

L (3)

where a is the ratio of woody to total area and reflects the contribution of woody materials to L., and Qg
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is the clumping index that quantifies the effect of foliage clumping beyond shoots level. In the method
getting accurate Qg values, the hemispherical photography was divided into ten sectors. yg is the needle
to shoot area ratio and quantifies the effect of foliage clumping within shoots.

Photoshop Software (Adobe Photoshop CSS5, Adobe Systems Incorporated, North America) was used
to calculate a. After total pixel number of L. image was determined, in the Photoshop software, we used
the Clone Stamp Tool to select the image of the woody materials (e.g. stems) and excluded the pixels,
leaving only leaves on the photos, recorded as LAI of leaves (LAl.f). The value of a was calculated
accordingly:

o= (Le- LALga)/Le (4)

The logarithm averaging method proposed by Lang and Xiang (1986) was applied to calculate Qg:

_In[P®)] _  nIn[P(6)]

Q0 =
O ap@n S mraon

()

where P(6) is the average gap fraction (expressed without the bar in the text), In[P(0)] is the logarithm
average of the gap fraction, and Pi(6) is the gap fraction of segment k. For deciduous and evergreen
broadleaved species, yg=1.0, but for coniferous species, yg is always >1.0, but we ignored the effect of

needle to shoot area on LAI in this study.

2.4 Data analysis
The minimum, maximum, mean value, standard deviation and CV were calculated for the LAI data
measured in 100 plots within each forest. Two-way analysis of variance (ANOVA) was used to detect

10
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effect of forest type and measurement season on LAI value. The LAI data in the three forests were
tested for normal distribution using the K-S test (P<0.05). We followed Chiang et al. (2003) in
regarding LAI values as normal when they fell within the mean value +3 standard deviations. Otherwise,
the LAI values were regarded as outliers and replaced with the maximum or the minimum of normal
values. Because the geostatistical analysis requires that the data meet normal distribution, the
transformation was applied if the data did not meet normal distribution (Dai et al., 2014). Most values
required natural logarithm transformation to meet assumptions of normality. The exception is for L.
glaber-C. glauca in April and in November which were artan-transformed.

To investigate spatial heterogeneity of LAI values over four seasons measured in the three forests,

semivariance function was calculated as follows:

1 o

v(h) SN ;[Z (xi) = Z(xi+ )] (6)

where y(/) is semivariance value of lag distance 4, N(/) is the number of pair data for lag distance #,
Z(x;) and Z(x+ h) represent LAI values at coordinate x; and (xi+4) (Rossi et al., 1992). Based on the
semivariogram plotting (%) values against s variable, the appropriate models were fitted and we
obtained the values of nugget (C)), sill (Cy+C), range (Ao) (Ewers & Pendall, 2007) and the ratio
[C/(Cy+ )] that reflected the degree of spatial autocorrelation of LAI values in a forest. Because spatial
autocorrelation and semivariogram theory make unbiased optimal estimation for regional variables in a
limited area (Bivand et al., 2013), the Kriging interpolation method, an unbiased estimation of the
regional variables of the sampling points using the structure of the data and semivariogram function,
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was used to predict unknown LAI values in the forests from the data measured and to produce spatial
distribution maps of LAI values for the three forests and four seasons. Compared with other methods,
the Kriging method can overcome the difficulty in analysing error of interpolation, does not produce the
boundary effect of regression analysis, and estimates the spatial variability distribution of measured
parameters. Ordinary Kriging - one of the Kriging methods - is a least-squares method of spatial
prediction based on the assumption of an unknown mean. It is the most common type of Kriging in
practice (Dai et al., 2014) and is widely used in soil spatial heterogeneity studies (Elbasiouny et al.,
2014). In our study, we also used the ordinary Kriging interpolation method to investigate spatial
heterogeneity of LAI values.

Because the largest amount of defoliated leaves occurs in January and leaves fully expand in July in
subtropical forests, we chose LAI values measured in January and July in three forests as response
variables. The explanatory variables include forest types, stand structural diversity (species richness,
tree species diversity and tree size diversity) and stand characters (stem number, average DBH, H, BA,
crown width, crown coverage, the proportion of two functional groups (deciduous and evergreen conifer
species) to total stand BA). The generalised additive models (GAMs) are able to analyse complex and
nonlinear relationships (Guisan et al., 2002; Austin, 2002; Wood, 2006). Therefore, we used GAMs to
examine how the factors affect LAI values. The function of GAMs is the addition of many smooth
functions and each smooth function has an explanatory variable. In our study, we chose smooth spline

with two splines as the smooth method for GAMs. The variance inflation factor (VIF) - the ratio of the
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regression coefficient variance for a variable when fit with all variables to that for the variable if fit on
its own - was used to test the multi-collinearity of explanatory variables (James et al., 2013). When the
VIF of an explanatory variable is between 0 and 10, the variable was retained to the model; otherwise,
we discarded the variable (Shen et al., 2015). The Akaike information criterion (AIC) or generalised
cross validation (GCV) was used to determine whether the model was good or bad (Clark, 2013). The
factors selected after the multi-collinearity test were used for multi-factor analysis. After all the possible
models in multi-factor analysis, we determined the optimal model based on the significant influence of
all explanatory variables in the model with the smallest AIC or GCV (Dong et al., 2012). Geostatistical
analysis was performed with GS+ software (Gamma Design Software). Statistical analysis and GAMs
analysis were operated in R 3.2.1 (R Development Core Team, 2015). The car packages were used to

test multi-collinearity and the gam packages were used to select the optimal model.

3 Results
3.1 Variation in LAI values

The LAI values varied with forest type and measurement season (Table 1). Generally, LAI differed
significantly between measurement season (P<0.001), but LAI difference was not significant among
forest types (P>0.05). Interactive effects of measurement seasons and forest types on LAI were
significant (P<0.01). Among three forests, LAI in the P. massoniana-L. glaber forest had relatively low

variation, while LAI in the L. glaber-C. glauca forest had the highest variation. In the P. massoniana-L.
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glaber forest, LAI showed the largest variation (the highest CVs) in October and the lowest variation
(the smallest CVs) in January. In the C. axillaris forest, the largest variation in LAI was found in April
and the lowest was found in January. In the L. glaber-C. glauca forest, LAI showed the largest variation
in April and had the lowest variation in July.

Mean LAI values in the three forests showed different seasonal variation patterns (Fig. 1). The C.
axillaris forest exhibited a unimodal pattern of seasonal variation, with the maximum mean LAI value
(3.11£1.18) occurring in July and the minimum mean LAI value (1.28+0.44) in January. In the P
massoniana-L. glaber forest and L. glaber-C. glauca forest, the maximum mean LAI values occurred in
October and the minimum mean LAI values appeared in January. During the growing season (April and
July), the C. axillaris forest had the highest mean LAI value and the L. glaber-C. glauca forest had the
lowest mean LAI value. During the non-growing season (October and January), the L. glaber-C. glauca
forest had the highest mean LAI value in January, while the P. massoniana-L. glaber forest had the
highest mean LAI value in October, and the C. axillaris forest had the lowest mean LAI values.

Mean a values in the three forests showed different seasonal variation patterns (Table 2). The C.
axillaris forest exhibited a unimodal pattern of seasonal variations in mean a value, with the maximum
mean a value occurring in January and the minimum mean a value in July. No obvious seasonal
variations were found for the mean o value in the P. massoniana-L. glaber forest and in the L. glaber-C.
glauca forest. Mean Qg values in the three forests were between 0.84 and 0.92, but they did not show

clear seasonal variations, and the standard deviations were small.
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3.2 Spatial heterogeneity in LAI values

The semivariogram results for LAI across the three forests during different measurement seasons are
summarised in Table 3. The spatially dependent variance [C] accounted for 88.9%-98.4% of the total
variance [C+Cy] for LAI values measured in January in the three forests and also in April, July and
October in the L. glaber-C. glauca forest. This indicated the strong spatial autocorrelations of LAI
values over short distances. These LAI data were best fitted with a Gaussian model or exponential
model (+*>0.50).

Spatial autocorrelation ranges of LAI values differed among forests and measurement seasons (Table
3). In January, the largest spatial autocorrelation range was found in the P. massoniana-L. glaber forest,
and the lowest was found in the C. axillaris forest. In April, the largest spatial autocorrelation range of
LAI was found in the C. axillaris forest, and the lowest was found in the P. massoniana-L. glaber forest.
In July, the largest spatial autocorrelation range of LAI was in the P. massoniana-L. glaber forest, while
the smallest was in the C. axillaris forest. In October, the largest spatial autocorrelation range of LAI
was in the L. glaber-C. glauca forest, while the smallest was in the P. massoniana-L. glaber forest.
Seasonal changes of range showed one peak pattern for C. axillaris forest and L. glaber-C. glauca forest,
where the large range appeared in the growing season (April and July) and the small range appeared in
the non-growing season (October and January).

Spatial distribution pattern of LAI values also varied with forest type and measurement season (Fig.
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2). For example, LAI values in January across the three forests exhibited obvious patch and
heterogeneous spatial distribution. In April and July, less spatial heterogeneity was found for LAI values
especially in the P. massoniana-L. glaber forest. In October, heterogeneous and patch spatial
distributions of LAI values appeared in the L. glaber-C. glauca forest, and banded spatial distributions

of LAI values obviously appeared in the C. axillaris forest.

3.3 Factors affecting LAI variation

The multi-collinearity test indicated that the explanatory variables in January and July did not have
multi-collinearity. Thus, forest type, species richness, tree species diversity, tree size diversity, stem
number, average DBH, H, BA, crown width, crown coverage, and the proportion of two functional
groups (deciduous and evergreen conifer species) to total stand BA were included as explanatory
variables in multi-factor analysis for LAI values measured in January in the three forests. After
comparing all possible models, the best fitted GAMs for LAI values in January were expressed as LAI ~
s(stem number, 2) + s(crown coverage, 2) + s(PESB, 2) + s (PDSB, 2) + factor (forest types) (Table 4).
For LAI values measured in July, all these factors selected by the multi-collinearity test were included
as explanatory variables in multi-factor analysis. The best fitted GAMs for LAI values in July were
expressed as LAI ~ s(stem number, 2) + s(PDSB, 2) (Table 4).

The explanatory variables included in GAMs reflected their effects on or relationship with LAI

variations. Given that other variables were fixed, LAI measured in January tended to decrease as stem
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number increased. LAI showed a positive nonlinear relationship with crown coverage up to ~200 m?,
and then decreased with increasing crown coverage. The LAI values tended to increase as the
proportion of evergreen conifer species to total stand BA increased, and tended to decrease as the
proportion of deciduous species to total stand BA increased (Fig. 3). Given that other variables were
fixed, LAI measured in July tended to increase as stem number increased up to ~7 and then decreased at
higher values. The effect of the proportion of deciduous species to total stand BA on LAI appeared
more complicated, in that LAI increased as the proportion of deciduous species to total stand BA

increased up to ~0.7, and then decreased at higher values (Fig. 4).

4 Discussion
4.1 Seasonal variation in LAI value among forest type

LAI data in subtropical forests in southern China are lacking compared to other global regions (Asner
et al., 2003). This study provided seasonal LAI data in three subtropical forests that consist of
contrasting functional types of species. Their mean LAI values varied from 1.284+0.44 to 3.28+1.26
(Table 1). This result is close to the LAI range (from 1.0 in winter to 4.0 in summer) retrieved by remote
sensing techniques from the subtropical area of China from 2000 to 2010 (Liu et al., 2012). Compared
with the LAI values estimated from allometric equations (Xiang et al., 2016) and specific leaf area
(SLA) values in 40 m x 40 m plots in this study (5.29-9.19), the LAI values measured by hemispherical

photography are low but significantly correlated (+*=0.40 and P=0.035). Previous studies (see Lopes et
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al., 2015) have proved the underestimation of LAI using hemispherical photography. However, the
method is feasible to obtain forest LAI data and to investigate spatial and seasonal variation in such
values (Coops et al., 2004; Dovey & Toit, 2006).

The ratio of woody to total area (o) and the clumping index (£2g) have been recognised as the error
sources in LAI measurement by optical methods (Chen et al., 1997; Bréda, 2003; Liu et al., 2015a). So
far these two parameters have been measured in northeastern China (Liu et al., 2015a; Liu et al., 2015b),
which showed that the a values ranged from 0.04+0.01 to 0.69+0.12 and Qg values ranged from
0.88+0.04 to 0.96+0.01. These values were measured in temperate forest in northeastern China and
differed from our study (mean o values varied from 0.04+0.03 to 0.15+0.09 and mean Qg values varied
from 0.84+0.09 to 0.92+0.08) (Table 2), so they are not suitable for LAI correction in subtropical forests.
Also literature on o and Qg values in subtropical forests is scarce. The variations in a are probably due
to the seasonal variations and spatial heterogeneity of canopy structure in the three forests. In general,
the a values are consistent with the amount of leaf litter. Our results showed that the large mean «o
values occurred in autumn for the P. massoniana-L. glaber forest and the C. axillaris forest, but in
spring and autumn for the L. glaber-C. glauca forest (Table 2). This seasonal change in mean o value in
three forests was generally consistent with the amount of leaf litter collected by a litter trap installed in
each forest type (Guo et al., 2015). The average Qg value (0.87) in this study was smaller than the
values of mixed broadleaved-Korean pine forest in northeastern China (Liu et al. 2015b) and this could

be attributed to the different region and forests. The values of a and Qg obtained in this study fill the gap
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of calibration for optical measurement of LAI in subtropical forests.

Mean LAI values differed among the three forests and the differences were significant between the C.
axillaris forest and the other two forests at a given measurement season. The C. axillaris forest had a
relatively high mean LAI value during the growing season but changed to the lowest mean LAI value
during the non-growing season. The change in mean LAI values in the C. axillaris forest was consistent
with the study of a deciduous species-dominated forest reported by Naithani et al. (2013). It has been
reported that the forests consisting of different plant functional types showed different LAI values
(Asner et al., 2003; Tio et al., 2014). The differences and seasonal variations of LAI values in the three
forests could be attributed to floristic composition and phenological defoliation patterns of tree species
especially the deciduous species. The C. axillaris forest consisted of 74.15% deciduous species, 25.80%
evergreen broadleaved species and 0.05% evergreen coniferous species, while the proportions of
deciduous species were 10.05% and 25.70% in the P. massoniana-L. glaber and L. glaber-C. glauca
forests, respectively. Seasonal growth and defoliation of different functional types of species lead to the
change in leaf lifespan and foliage area (Niinemets, 2010) during different seasons related to
temperature and water availability, which are responsible for the unimodal pattern of seasonal variation
in mean LAI values. This agrees with the results of Liu et al. (2012), where the highest LAI was found
in summer (July), followed by autumn (October) and spring (April), and the lowest was found in winter

(January).

19



362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

4.2 Within-forest spatial heterogeneity and factors controlling LAI

Semivariograms of LAI values in the three forests were fitted with spherical, Gaussian, exponential
or linear models (Table 3). Based on the fitted models, the degree of spatial autocorrelation could be
evaluated. Spatial autocorrelation is weak when the determination coefficient (") of the best-fitted
semivariogram model is less than 0.5 (Duffera et al., 2007). The ratio [C/(Cy+C)] is also used to
describe the degree of spatial autocorrelation. A ratio of between 0 and 0.25 indicates a weak spatial
autocorrelation, of between 0.26 and 0.75 indicates moderate autocorrelation and of more than 0.75
indicates strong autocorrelation (Lopez-Granados et al., 2004). Spatial autocorrelation of LAI in this
study varied with forest and measurement season (Table 3). Strong spatial autocorrelation in LAI values
at a short range measured in January in all three forests indicated the sampling distance is reasonable for
LAI variables within the spatial range (Liu et al., 2008). On the contrary, weak autocorrelation indicated
that more samples and smaller sampling intervals should be taken to determine spatial dependency of
LAI such as for LAI measured in April in the P. massoniana-L. glaber forest.

Spatial heterogeneity in LAI values was different for forest type and measurement season. Our study
described spatial variations in LAI value by CV and geostatistical analysis, and the results were largely
consistent with each other. In general, the CVs of LAI values in the three forest types (in particular C.
axillaris forest) were higher for the period of leaf onset (April) and senescence (October) than for the
period of leaf maturity (July) (Table 1). This reflects changes in leaves due to plant phenology and is

consistent with the study of Naithani (2013) where LAI became increasingly homogenous from leaf

20



381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

onset to maturity, but became more heterogeneous from maturity to senescence. As a result, degree of
heterogeneity in LAI value for all three forests tended to dwindle from leaf non-growing season to
growing season (Fig. 2).

The complex hydrothermal environment results in complex vertical and horizontal variation in
canopy layer and formed unique spatial heterogeneity in LAI values. The effects of stand characters on
LAI have been examined and positive and negative effects have been reported (Tobin et al., 2006;
Bequet et al., 2012; Yao et al., 2015). In our study, results from GAMs showed that forest types, stand
structural diversity and stand characters affected spatial heterogeneity of LAI values significantly in the
three forests. This finding that floristic composition and stand characters affected LAI values measured
in July is consistent with the study of Yao et al. (2015); LAI values increased with stem number but
when stem number was larger than 7, LAI values decreased with stem number mainly due to the
floristic composition in these study areas. Because July is the period of leaf maturity for deciduous
species and leaves fully expand in this season, LAI values tended to increase as ratio of deciduous
species increased, but when the ratio was higher than ~0.7, its negative relationship with LAI probably
could be explained by the strong competition among tree species, with diverse species composition and
the canopy overlap among tree species (Fig. 4). Our results indicated that LAI values did not exhibit a
significant relationship with stand BA, consistent with the findings of Mcdowell (2007); total LAI did
not exhibit a clear pattern in relation to stand BA.

Until now, the non-growing season relationship of LAI variation with forest type and stand characters
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has been seldom reported. In this study, forest type, stem number, crown coverage, proportion of
evergreen conifer species to total stand BA and proportion of deciduous species to total stand BA and
forest type were the factors significantly affecting LAI variation in January. As January is mainly the
leaf senescence period of deciduous species, LAI values in January decreased with stem number and
decreased with deciduous species ratio. The relationship between LAI value and the evergreen species
ratio was generally the reverse of that between LAI and the deciduous species ratio. The fact that LAI
values in January decreased with increasing crown coverage when crown coverage was larger than ~200
m® could be explained by large crown coverage resulting in more defoliation (in particular for
deciduous species) in the forest in January (Fig. 3). The proportion of deciduous species to total stand
BA both significantly affected LAI variations in January and July, and the relationship between LAI and
the deciduous species proportion was reversed when the ratio was smaller than 0.7 in these two seasons,
which is consistent with the growth law of deciduous species. Thus, deciduous species play an
important role in LAI variations across seasons. Also the seasons have a significant effect on LAI
variation by affecting leaf growth. The partial effects of stem number and crown coverage on the LAI
values observed in January showed these smooth functions were large at both ends of the 95%
confidence interval. This was due to the small sample number in this range, and most were concentrated
in the middle parts, the same as the partial effects of stem number on the LAI values observed in
January (Figs 3, 4).

Although the factors selected by regression could explain a small proportion (4%) of spatial
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heterogeneity of LAI measured in July, the factors selected in January could explain 35% of the LAI
spatial heterogeneity (Table 4). The LAI heterogeneity also could be affected by several other factors,
such as the topography (Naithani et al., 2012), soil feature (Chloer et al., 2010), soil temperature
(Vitasse et al., 2009; Hardwick et al., 2015), microclimate, human activity and other physicochemical
properties. However, full leaf expansion of all tree species, which covers up the effect of other
physicochemical properties on LAI, leads to a small difference in LAI in July. The effects of
environmental factors (e.g. temperate and rainfall) on LAI in the forests at the fine scale should be taken
into account in future studies.

Spatial heterogeneity of LAI in the three forests can yield some useful information for sampling
strategy to accurately estimate of LAI using indirect measurement. An optimal sampling strategy should
consider appropriate sampling plot size and the lowest sampling number that, as far as possible, obtains
a high sampling accuracy and a low sampling error (Bequet et al., 2012). Our study found that strong
spatial autocorrelations range were ~13-27 m (the minimal range was 13.80 m, and the maximal range
was 27.00 m) (Table 3), indicating that the range from 13 m to 27 m might serve as the reference for
sampling plot size to estimate LAI in subtropical forests. In addition, LAI heterogeneity was closely
related to floristic composition and stand characters, thus stand structural variables (BA or DBH) are

important for sampling strategy to measure LAI in forests (Bequet et al., 2012).

5 Conclusions
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This study measured LAI in three subtropical forests using a hemispherical photography method over
four seasons, and offered reliable data to analyse spatial and seasonal variations in LAI. Our results
indicated that LAI differed greatly with forest type and measurement season. Seasonal variation in LAI
across the three forests reflects defoliation due to plant phenology. LAI values for all three forests
exhibited different spatial autocorrelation in the four seasons. A clear patch distribution pattern in LAI
value was found during the non-growing seasons and this pattern gradually dwindled in the growing
seasons. While stem number, crown coverage, proportion of evergreen conifer species to total stand BA,
the proportion of deciduous species to total stand BA, and forest type significantly affected spatial
variations in LAI values in January, stem number and proportion of deciduous species to total stand BA
significantly affected spatial variations in LAI values in July. These findings supplement LAI data for
global synthesis, and will provide valuable information for sampling strategies to enable more accurate

estimates of LAI for simulated models of production and hydrological cycles in subtropical forests.
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655  Table 1 Descriptive statistical characteristics of LAI values measured from April 2014 to January 2015

656  in P. massoniana-L. glaber, C. axillaris and L. glaber-C. glauca forests (n=100).

657
Measurement Forest type Minimum Maximum Varianc.e P-value of Data .
season value value coefficient (%) K-S test transformation
P. massoniana-L. glaber 1.29 4.03 27.5 0.021 0.275
January C. axillaris 0.53 2.38 34.0 0.260
L. glaber-C. glauca 0.43 6.98 40.2 0.018 0.243
P. massoniana-L. glaber 1.57 7.83 36.4 0.076
April C. axillaris 1.34 8.33 47.0 0.047 0.535
L. glaber-C. glauca 1.34 10.22 59.6 0.000 0.158
P. massoniana-L. glaber 1.56 8.16 38.0 0.003 0.075
July C. axillaris 1.73 8.17 37.8 0.166
L. glaber-C. glauca 1.68 7.58 33.1 0.010 0.170
P. massoniana-L. glaber 1.55 6.79 38.3 0.321
October C. axillaris 0.37 6.51 44.1 0.102
L. glaber-C. glauca 1.49 7.88 49.3 0.000 0.212
658
659
660
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661  Table 2 Average woody to total leaf ration (a) and clumping index (Qg) values in P. massoniana-L.
662  glaber, C. axillaris and L. glaber-C. glauca forests. Values in parenthesis are the standard deviation of a

663  and Qg values (n=100).

Mean value Standard deviation
Measurement season Forest type
o .QE a .QE

P. massoniana-L. glaber  0.06 0.88 0.04 0.09

January C. axillaris 0.15 0.92 0.09 0.08

L. glaber-C. glauca 0.07 0.87 0.09 0.09

P. massoniana-L. glaber  0.08 0.87 0.05 0.09

April C. axillaris 0.07 0.85 0.06 0.10

L. glaber-C. glauca 0.15 0.86 0.07 0.09

P. massoniana - L. glaber  0.07 0.87 0.04 0.09

July C. axillaris 0.04 0.90 0.03 0.07

L. glaber-C. glauca 0.05 0.87 0.03 0.08

P. massoniana-L. glaber ~ 0.09 0.85 0.10 0.08

October C. axillaris 0.14 0.87 0.14 0.10

L. glaber-C. glauca 0.09 0.84 0.08 0.09
664
665
666
667
668
669
670
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Table 3 Semivariogram theoretical models and fitted parameters for LAI values in P. massoniana-L.

glaber (90 m % 190 m irregular shape), C. axillaris (100 m x 100 m) and L. glaber-C. glauca (100 m x

100 m) forests.

Residual sum

Measurement Nugget Sill Range 2
season Forest type Model (Co) (CotC) C/(CytC) (Ag/m) r of squares
(RSS)

P
massoniana-L  Exponential 0.0068  0.0614  0.889 27.00  0.607  9.762x10°
. glaber

January C. axillaris ~ Exponential 0.0030  0.1820  0.984 13.80  0.504  1.219x10™
L glaber-C. Gaussian 00029 0.1178 0,975 1542 0.888  3.468x10°
glauca
P
massoniana-L  Exponential 0.1220  0.7670  0.841 1770 0229  0.017
. glaber

April C. axillaris ~ Linear 0.1760  0.1760  0.000 5296  0.189  1.762x10™
L. glaber-C. g onential 0.0008 00152  0.951 2640 0978  2.290x10”
glauca
P
massoniana-L.  Linear 0.0843  0.0843  0.000 9269  0.074  1.383x10™
. glaber

July C. axillaris ~ Exponential 0.1460  0.9340  0.844 1770 0258  0.017
L. glaber-C. g onential  0.0065  0.0684  0.905 2280 0951  5.781x10°
glauca
P
massoniana-L  Exponential 0.1620 1.6310  0.901 11.70 0.173 0.017
. glaber

October C. axillaris Spherical ~ 0.0050  0.5830  0.991 11.90  0.000  1.870x10°
L. glaber-C. g o onential  0.0005 00125 0.960 21.90  0.894  4.444x10”7
glauca
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Table 4 Estimated coefficients of the generalised additive models (GAMs) for the factors with effects

on LAI values measured in P. massoniana-L. glaber, C. axillaris and L. glaber-C. glauca forests.

Measurement season Parameter F-value P-value " AlIC
January s (Stem number, 2) 16.716 <0.0001*** 0.3481 655.91
s (Crown coverage, 2)  4.545 0.034*
s (PESB, 2) 26.105 <0.0001***
s (PDSB, 2) 27.281 <0.0001***
factor(Forest types) 39.847 <0.0001***
July s (Stem number, 2) 5.027 0.026* 0.040 880.93
s (PDSB, 2) 7.115 0.008%**

The significance of the regressions (P) are *, ** *** for P<(0.05, 0.01, and 0.001, respectively
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Figure captions
Fig. 1 Seasonal variation in mean LAI value (with standard deviation) in P. massoniana-L. glaber, C.
axillaris and L. glaber-C. glauca forests. The different letters by values indicate significant differences

(P<0.05) among measurement seasons in a given forest.

Fig. 2 Spatial heterogeneity map of LAI values interpolated through ordinary Kriging method for P,

massoniana-L. glaber, C. axillaris and L. glaber-C. glauca forests.

Fig. 3 Partial effects of stem number, crown coverage (m?), the proportion of evergreen conifer species
to total stand BA (PESB), the proportion of deciduous species to total stand BA (PDSB) and forest types
(calculated for overstorey trees with height larger than average stand height) on the LAI values

observed in January in P. massoniana-L. glaber, C. axillaris and L. glaber-C. glauca forests.

Fig. 4 Partial effects of stem number and the proportion of deciduous species to total stand BA (PDSB)

(calculated for overstorey trees with height larger than average stand height) on the LAI values

observed in July in P. massoniana-L. glaber, C. axillaris and L. glaber-C. glauca forests.
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712 Figure 2
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