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Abstract. Leaf area index (LAI) is an important parameter related to carbon, water and energy 20 

exchange between canopy and atmosphere, and is widely applied in the process models to simulate 21 

production and hydrological cycle in forest ecosystems. However, fine-scale spatial heterogeneity of 22 

LAI and its controlling factors have not been fully understood in Chinese subtropical forests. We used 23 

hemispherical photography to measure LAI values in three subtropical forests (i.e. Pinus massoniana - 24 

Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris 25 

deciduous broadleaved forests, and L. glaber - Cyclobalanopsis glauca evergreen broadleaved forests) 26 

during period from April, 2014 to January, 2015. Spatial heterogeneity of LAI and its controlling factors 27 

were analysed by using geostatistics method the generalised additive models (GAMs), respectively. Our 28 

results showed that LAI values differed greatly in the three forests and their seasonal variations were 29 

consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for three forests 30 

measured in January and for the L. glaber - C. glauca forest in April, July and October. Obvious patch 31 

distribution pattern of LAI values occurred in three forests during the non-growing period and this 32 

pattern gradually dwindled in the growing season. Stand basal area, crown coverage, crown width, 33 

proportion of deciduous species on basal area basis and forest types affected the spatial variations in 34 

LAI values in January, while species richness, crown coverage, stem number and forest types affected 35 

the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity and seasonal 36 

variations should be considered for sampling strategy in indirect LAI measurement and application of 37 

LAI to simulate functional processes in subtropical forests. 38 
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(GAMs) 40 

 41 

1 Introduction 42 

  Many fundamental ecological processes in forest ecosystems, such as carbon (C) flux as well as 43 

water and energy exchanges, take place between canopy layer and the atmosphere (Brut et al., 2009; 44 

GCOS, 2006; Alonzo et al., 2015; Liu et al., 2015b). At finer scale, leaves within canopy are the 45 

primary organ to perform a series of physiological activities (i.e. photosynthesis, respiration and 46 

evapotranspiration) (Aragão et al., 2005) and physical reactions (i.e. rainfall and radiation interception) 47 

(Smith, 1981; Crockford & Richardson, 2000; Aston, 1979). Therefore, the amount of leaves in a forest 48 

is the determinant of aboveground ecological processes and ecosystem functions. Leaf area index (LAI), 49 

defined as total one-sided leaf area per unit ground surface area (Biudes et al., 2014), is widely used 50 

parameter (Kross et al., 2015) to quantitatively describe the vegetation canopy structure (Woodgate et 51 

al., 2015), to simulate ecological process models (Sprintsin et al., 2007; Facchi et al., 2010; Brooks et 52 

al., 2006; Gonsamo & Chen, 2014) and to reveal tree growth and productivity in forests at stand scale 53 

and landscape level (Liu et al., 2015b; Lee et al., 2004). In addition, LAI is listed as one of the essential 54 

variables for observation of global climate (Mason et al., 2003; Manninen et al., 2009) and for remote 55 

sensing data validation (Asner et al., 2003; Clark et al., 2008). Thus, accurate estimations of LAI value 56 

are important to understand ecological processes in forest ecosystems. 57 
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  At present, various direct and indirect methods have been developed to measure LAI in forests. 58 

Direct estimation methods including leaf harvest (Clark et al., 2008), allometric equations and litter 59 

collection (Ryu et al., 2010; Liu et al., 2015a) are recognised as the most accurate method. However, 60 

leaf harvest and allometric equations methods need time-consuming, labour-intensive and destructive 61 

sampling process, while litter collection is more feasible for temperate deciduous forests. Obviously, the 62 

direct method is less applicable for large-scale and long-term LAI monitoring (Bequet et al., 2012; 63 

Biudes et al., 2014). Indirect methods include plant canopy analyser (Licor LAI-2000), hemispherical or 64 

fisheye photography (Macfarlane et al., 2007) and remote sensing (Biudes et al., 2014). The indirect 65 

methods retrieve LAI value from light transmittance through canopies or from canopy image analysis. 66 

For large scale LAI estimates, remote sensing is the effective method but requires validation with the 67 

ground-based LAI data. It is still a challenge for LAI estimates on the ground at small scales due to the 68 

problems of sampling strategies associated with accepted level of accuracy, time and cost consideration 69 

(Richardson et al., 2009). Hemispherical photography is a relatively simple and easily operated method 70 

among many indirect methods to retrieve LAI value at small scales (Demarez et al., 2008). Correction 71 

of the effects of woody materials, clumping and zenith angels or exposure is critical for improving the 72 

accuracy of LAI estimation (Liu et al., 2015b). Analysis software development and portable and timely 73 

characteristics allow hemispherical photography to measure spatial heterogeneity and seasonal 74 

variations of LAI in forests. 75 

  Forest canopy structure is highly complicate so LAI values show great temporal and spatial variations 76 
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at scales ranging from stand to global scale. For example, LAI values in the 7.9 ha plot of an old humid 77 

temperate forest tended to increase spatially as elevation increased and showed a temporal variation 78 

with plant phenology (Naithani et al., 2013). The spatial patterns of LAI values at stand scale were 79 

significantly influenced by spatial distribution of tree species, which was dependent on topography and 80 

soil types (Naithani et al., 2013). Coefficient of variations (CV) in LAI decreased as the scale increased 81 

and LAI values did not have any relationship with biome type and climate patterns, but were influenced 82 

by land use and land cover, terrain features, and soil properties at stand scale (Aragão et al., 2005). The 83 

CV of LAI of three species (i.e. beech, oak and pine) had different degree spatial variations in 1 ha plot 84 

at stand level (Bequet et al., 2012). LAI values in sagebrush displayed strong spatial patterns with the 85 

time after disturbance and increased with stand age and total plant cover (Ewers & Pendall, 2007). The 86 

LAI values derived from MODIS data (Huang et al., 2008; Myneni et al., 2002) revealed strong spatial 87 

variations at global scale and the variations were correlated with latitude (Tian et al., 2004). At global 88 

scale, temperature is the limiting factor for LAI under cool conditions while water plays a predominant 89 

role under other conditions, and this pattern differed among plant functional types (Iio et al., 2014). The 90 

factors that govern the spatial variations in LAI values at stand level include forest types, stand structure 91 

(Bequet et al., 2012), climate (Shao & Zeng, 2011), topography, soil moisture condition (Breshears & 92 

Barnes, 1999), and human disturbance and management activities (Huang & Ji, 2010). Although effects 93 

of topography, soil properties (Naithani et al., 2013; Aragão et al., 2005) and stand character (Bequet et 94 

al., 2012; Yao et al., 2015) on LAI values have been investigated in detail, how forest types, tree species 95 
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diversity and stand structure affect spatial heterogeneity and seasonal variations of LAI has not been 96 

fully understood. 97 

  Chinese subtropical forests contain a diversity of tree species with complex canopy structure and 98 

mostly grow on heterogeneous topography and soil condition. As a result, LAI in subtropical forests 99 

may exhibit greatly spatial and seasonal variations, which is worthy of further investigation. However, 100 

LAI data of subtropical forests are relative deficiency in the global database (see Asner et al., 2003). In 101 

this study, we selected three different forests (i.e. Pinus massoniana - Lithocarpus glaber coniferous 102 

and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and 103 

L. glaber - Cyclobalanopsis glauca evergreen broadleaved forests), LAI values were measured by using 104 

hemispherical photography. Spatial heterogeneity of LAI was investigated through geostatistics analysis 105 

method. The generalised additive models (GAMs) were used to examine how tree species diversity and 106 

stand characters affect LAI variations in the three forests. Specifically, the objectives of this study were: 107 

(1) to examine differences and seasonal variations in LAI among three forests in subtropical China; (2) 108 

to analyse spatial heterogeneity of LAI values within a specific forest; and (3) to identify how forest 109 

types, species diversity and stand characters control the spatial heterogeneity and seasonal variations of 110 

LAI values in three forests. 111 

 112 

2 Materials and methods 113 

2.1 Study site description 114 
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  The study was carried out at the Dashanchong Forest Farm (latitude 28°23′58″ - 28°24′ 58″ N, 115 

longitude 113°17′46″ - 113°19′08″ E), Changsha County, Hunan Province, China. The Farm 116 

experiences a humid mid-subtropical monsoon climate. Mean annual air temperature was between 117 

16.6 °C to 17.6 °C, with a mean monthly minimum temperature of -11°C in January and maximum 118 

temperature of 40°C in July. Mean annual precipitation ranged from 1412 mm to 1559 mm, mostly 119 

occurring between April and August. The topography is characterized by a typical low hilly landscape 120 

with an altitude between 55 m to 260 m above sea level. Soil type is designated as well-drained clay 121 

loam red soil developed on slate and shale rock, classified as Alliti-Udic Ferrosols, corresponding to 122 

Acrisol in the World Reference Base for Soil Resource (IUSS Working Group WRB, 2006). Evergreen 123 

broadleaved forest is the climax vegetation of the region. As a result of human disturbance and 124 

management activities, the Farm possesses a range of secondary forests dominated by different tree 125 

species, including P. massoniana - L. glaber coniferous and evergreen broadleaved mixed forests, C. 126 

axillaris deciduous broadleaved forests, and L. glaber - C. glauca evergreen broadleaved forests (Xiang 127 

et al., 2015). 128 

 129 

2.2 Stand characteristics determination 130 

  We established a permanent plot for each of three forests (i.e. 90 m × 190 m plot for P. massoniana - 131 

L. glaber mixed forests, 100 m × 100 m plot for C. axillaris deciduous forests, and 100 m × 100 m plot 132 

for L. glaber - C. glauca evergreen broadleaved forests). Each plot was divided into 10 m × 10 m 133 
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subplots, where tree species, diameter at breast height (DBH, cm), tree height (H, m), height under the 134 

lowest live branch (m) and crown width (m) were measured for the individual stem with DBH larger 135 

than 1 cm. Stand characteristics for the trees with DBH larger than 4 cm of the three forests were 136 

presented in Table S1. 137 

  To identify the factors that control spatial heterogeneity of LAI values in the forests, we selected 138 

individual trees with H larger than average height of each stand (see Table S1) and calculated their stem 139 

number, average DBH, H, total basal area at breast height (BA), crown width, crown coverage, 140 

biodiversity index, the proportion of BA of three functional group (coniferous, deciduous and evergreen 141 

broadleaved species) to total stand BA within a subplot. Biodiversity index (BDI) was determined by 142 

Shannon-Wiener index as the formula: 143 

      BDI=-∑PilnPi                                       (1) 144 

where Pi is important value of ith species and is calculated by dividing the sum of relative abundance 145 

degree (Ar) and relative dominance degree (Dr) of ith species within a subplot by two. 146 

 147 

2.3 Sampling design for LAI measurement 148 

  At the centre of each subplot of the three forests, hemipherical photographs were taken using a LAI 149 

measuring instrument (SY-S01A) throughout four measurement seasons, i.e. in April (spring), July 150 

(summer) and October (autumn) in 2014 and January (winter) in 2015. The operation was carried out 151 

below canopy with the fisheye lens 1.0 m above the ground (Manninen et al., 2009). We took the 152 

Biogeosciences Discuss., doi:10.5194/bg-2016-5, 2016
Manuscript under review for journal Biogeosciences
Published: 12 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 9 

photographs in the morning, dusk or cloudy to minimize influence of direct sunshine (Rich, 1990; 153 

Bequet et al., 2012). The images were processed and effective LAI values (Le) were recorded by the 154 

plant canopy analysis system of the LAI measuring instrument. To obtain accurate LAI (L), the 155 

correction was made to Le based on previous theory (Chen, 1996): 156 

E

Ee)1(

Ω

γLα
L


                                   (2) 157 

where α is the ratio of woody to total area and reflects the contribution of woody materials to Le. ΩE is 158 

the clumping index that quantifies the effect of foliage clumping beyond shoots level. γE is the needle to 159 

shoot area ratio and quantifies the effect of foliage clumping within shoots. 160 

  Photoshop Software (Adobe Photoshop CS5, Adobe Systems Incorporated, North America) was used 161 

to calculate α. After total pixel number of Le image was determined, the Clone Stamp Tool in the 162 

software was used to replace the woody materials with surrounding of non-woody materials and to 163 

obtain the pixel number and recorded as LAI of leaves (LAIleaf). The value of α was calculated 164 

accordingly: 165 

       α = (Le - LAIleaf)/Le                             (3) 166 

  The logarithm averaging method proposed by Lang and Xiang (1986) was applied to calculate ΩE: 167 

           

 


n
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1
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)](ln[

)](ln[
)(                  (4) 168 

where P(θ) is the average gap fraction (expressed without the bar in the text), ln[P(θ)] is the logarithm 169 

average of the gap fraction, Pk(θ) is the gap fraction of segment k. For deciduous and evergreen 170 
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broadleaved species, γE=1.0, but for coniferous species, γE is always greater than 1.0, but we ignored the 171 

effect of needle to shoot area on LAI in this study. 172 

 173 

2.4 Data analysis 174 

  The minimum, maximum, mean value, standard deviation and coefficient of variation (CV) were 175 

calculated for the LAI data in the three forests. Two-way analysis of variance (ANOVA) was used to 176 

detect effects of forest types and measurement seasons on LAI values. The LAI data in the three forests 177 

were tested for normal distribution using the K-S test (p<0.05). We used domain method to identify the 178 

specific values and replaced them with normally maximal values and if the data did not meet normal 179 

distribution, the transformation was applied till the statistical assumption was met. Most values required 180 

natural logarithm transformation to meet assumptions of normality. The exception is for L. glaber - C. 181 

glauca in April which was cosine transformed and L. glaber - C. glauca in November which was 182 

artan-transformed. 183 

  To investigate spatial heterogeneity of LAI values at four seasons measured in the three forests, 184 

semivariance function was calculated as the following formula: 185 

       
 2

)(

1

)]()([
)(2

1
)( hxZxZ

hN
h ii

hN

i

 


                           
(5) 186 

where γ(h) is semivariance value of lag distance h, N(h) is the number of pair data for lag distance h, 187 

Z(xi) and Z(xi+ h) represent LAI values at coordinate xi and (xi+h) (Rossi et al., 1992). Based on the 188 

semivariogram plotting γ(h) values against h variable, the appropriate models were fitted and we 189 
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obtained the values of nugget (C0), sill (C0+C), range (A0) (Ewers & Pendall, 2007) and the ratio 190 

[C/(C0+C)] that reflected the degree of spatial autocorrelation of LAI values in a forest. Because spatial 191 

autocorrelation and semivariogram theory make unbiased optimal estimation for regional variables in a 192 

limited area (Bivand et al., 2013), Kriging interpolation method was used to predict unknown LAI 193 

values in the forests from the data measured and to produce spatial distribution map of LAI values for 194 

the three forests at four seasons. 195 

  Because the largest amount of defoliated leaves occurs in January and leaves fully expand in July in 196 

subtropical forests, we chose LAI values measured in January and July in three forests as response 197 

variable. Stepwise regression was used to select the factors that significantly affect LAI variations. The 198 

factors include forest types, species diversity (species richness and biodiversity index) and stand 199 

characters (stem number, average DBH, H, BA, crown width, crown coverage, the proportion of two 200 

functional groups (deciduous and evergreen broadleaved species) to total stand BA). Stepwise 201 

regression showed that BA, crown coverage, crown width, the proportion of deciduous species to total 202 

stand BA and forest types significantly influenced LAI values measured in January, whereas species 203 

richness, stem number, crown coverage and forest types significantly affected LAI values measured in 204 

July (Tables S2). However, residuals of stepwise regression did not meet the requirements of normal 205 

distribution and homogeneity (Fig. S1 and Fig. S2). The generalised additive models (GAMs) have the 206 

advantages to analyse complex and nonlinear relationships (Guisan et al., 2002; Austin, 2002; Wood, 207 

2006). Therefore, we used GAMs to examine how the factors selected by stepwise regression affect LAI 208 
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values. The function of GAMs is the addition of many smooth functions and each smooth function has 209 

an explanatory variable. The variance inflation factor (VIF), the ratio of the variance of regression 210 

coefficient for a variable when fitting with all variables to the variance of regression coefficient for the 211 

variable if fit on its own, was used to test the multi-collinearity of explanatory variables (James et al., 212 

2013). When the VIF of an explanatory variable is between 0 and 10, the variable was retained to the 213 

model; otherwise, we discarded the variable (Shen et al., 2015). The Akaike information criterion (AIC) 214 

or generalised cross validation (GCV) was used to determine whether the model was good or bad (Clark, 215 

2013). The factors selected after multi-collinearity test were used for multi-factor analysis. After all the 216 

possible models in multi-factor analysis, we determined the optimal model based on the significant 217 

influence of all explanatory variables in the model with the smallest AIC or GCV (Dong et al., 2012). 218 

Geostatistics analysis was performed with GS+ software (Gamma Design Software). Statistical analysis 219 

and GAMs analysis were operated in R programme. The car packages were used to test 220 

multi-collinearity and the gam packages were used to select the optimal model. 221 

 222 

3 Results 223 

3.1 Variations of LAI values in three forests 224 

  The LAI values varied with forest types and measurement seasons (Table 1). Generally, LAI differed 225 

significantly for measurement seasons (p<0.001), but LAI difference was not significant among forest 226 

types (p>0.05). Interactive effects of measurement seasons and forest types on LAI were significant 227 
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(p<0.01). Among three forests, LAI in the P. massoniana - L. glaber forest had relatively low variations, 228 

while LAI in the L. glaber - C. glauca forest had the highest variations. In the P. massoniana - L. glaber 229 

forest, LAI showed the largest variations (the highest CVs) in October and the lowest variations (the 230 

smallest CVs) in January. In the C. axillaris forest, the largest variation in LAI was found in April and 231 

the lowest was found in January. In the L. glaber - C. glauca forest, LAI showed the largest variations 232 

in April and had the lowest variations in July. 233 

  Mean LAI values in the three forests showed different seasonal variation patterns (Fig. 1). The C. 234 

axillaris forest exhibited a unimodal pattern of seasonal variations, with the maximum mean LAI value 235 

(3.11±1.18) occurring in July and the minimum mean LAI value (1.28±0.44) in January. In the P. 236 

massoniana - L. glaber forest and L. glaber - C. glauca forest, the maximum mean LAI value both 237 

occurred in October and the minimum mean LAI value appeared in January. During the growing season 238 

(April and July), the C. axillaris forest had the highest mean LAI value and the L. glaber - C. glauca 239 

forest had the lowest mean LAI value. During the non-growing season (October and January), the L. 240 

glaber - C. glauca forest had the highest mean LAI value in January, while the P. massoniana - L. 241 

glaber forest had the highest mean LAI value in October, the C. axillaris forest had the lowest mean 242 

LAI values. 243 

  Mean α values in the three forests showed different seasonal variation patterns (Table 2). The C. 244 

axillaris forest exhibited a unimodal pattern of seasonal variations in mean α value, with the maximum 245 

mean α value occurring in January and the minimum mean α value in July. No obvious seasonal 246 
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variations were found for the mean α value in the P. massoniana - L. glaber forest and in the L. glaber - 247 

C. glauca forest. Mean ΩE values in the three forests were between 0.84-0.92, but they did not show 248 

clear seasonal variations, and the standard deviations were small. 249 

 250 

3.2 Spatial heterogeneity of LAI values in three forests 251 

  The semivariograms results for LAI in three forests during different measurement seasons were 252 

summarised in Table 3. The spatially dependent variance [C] accounted for 88.9% - 98.4% of the total 253 

variance [C+C0] for LAI values measured in January in the three forests and also in April, July and 254 

October in the L. glaber - C. glauca forest. This indicated the strong spatial autocorrelations of LAI 255 

values at short distance. These LAI data were best fitted with gaussian model or exponential model (r
2 
> 256 

0.50). 257 

  Spatial autocorrelation range of LAI values differed among forests and measurement seasons (Table 258 

3). In January, the largest spatial autocorrelation range was found in the P. massoniana - L. glaber forest, 259 

and the lowest was found in the C. axillaris forest. In April, the largest spatial autocorrelation range of 260 

LAI was found in the C. axillaris forest, and the lowest was found in the P. massoniana - L. glaber 261 

forest. In July, the P. massoniana - L. glaber forest had the largest spatial autocorrelation range of LAI, 262 

while the C. axillaris forest had the smallest spatial autocorrelation range. In October, the L. glaber - C. 263 

glauca forest had the largest spatial autocorrelation range of LAI, while the P. massoniana - L. glaber 264 

forest had the smallest spatial autocorrelation range. Seasonal changes of range showed one peak 265 
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pattern for C. axillaris forest and L. glaber - C. glauca forest, where the large range appeared in the 266 

growing season (April and July) and the small range appeared in the non-growing season (October and 267 

January). 268 

  Spatial distribution pattern of LAI values also varied with forest types and measurement seasons (Fig. 269 

2). For example, LAI values in January in three forests exhibited obvious patch and heterogeneous 270 

spatial distribution. In April and July, less spatial heterogeneity was found for LAI values in three 271 

forests especially in the P. massoniana - L. glaber forest. In October, heterogeneous and patch spatial 272 

distributions of LAI values appeared in the L. glaber - C. glauca forest, and banded spatial distributions 273 

of LAI values obviously appeared in the C. axillaris forest. 274 

 275 

3.3 Factors affecting LAI variations in three forests 276 

  The multi-collinearity test indicated that the factors with significant effects on LAI in January and 277 

July selected by stepwise regression did not have multi-collinearity. Thus, BA, crown coverage, crown 278 

width, the proportion of deciduous species to total stand BA and forest types were included as 279 

explanatory variables in multi-factor analysis for LAI values measured in January in three forests (Table 280 

4). The best fitted GAMs for LAI values in January was expressed as LAI ~ s(BA, 2) + s(crown 281 

coverage, 2) + s(crown width, 2) + s (the proportion of deciduous species to total stand BA, 2) +factor 282 

(forest types). For LAI values measured in July, species richness, crown coverage, stem number and 283 

forest types were included as explanatory variables in multi-factor analysis (Table 4). The best fitted 284 
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GAMs for LAI values in July was expressed as LAI ~ s(species richness, 2) + s(crown coverage, 2) + 285 

s(stem number, 2) + factor(forest types). 286 

  The explanatory variables included in GAMs reflected their effects on or relationship with LAI 287 

variations. Given that other variables were fixed, LAI measured in January tended to increase as BA 288 

increased and showed a negative nonlinear relationship with crown coverage and a positive nonlinear 289 

relationship with crown width. The LAI values tended to decrease as the proportion of deciduous 290 

species to total stand BA increased (Fig. 3). Given that other variables were fixed, LAI measured in July 291 

tended to increase as species richness increased and showed a positive nonlinear relationship with 292 

crown coverage and a negative nonlinear relationship with stem number (Fig. 4). 293 

 294 

4 Discussion 295 

4.1 Seasonal variations in LAI values among three forests 296 

  LAI data in subtropical forests in southern China are less than that in other global regions (Asner et 297 

al., 2003). This study provided seasonal LAI data in three subtropical forests that consist of contrasting 298 

functional types of species. Mean LAI values in the three forests investigated in this study varied from 299 

1.28±0.44 to 3.28±1.26 (Table 1). This result is close to LAI range (from 1.0 in winter to 4.0 in summer) 300 

retrieved by remote sensing techniques from subtropical area of China during the period 2000 to 2010 301 

(Liu et al., 2012). Compared with the LAI values estimated from allometric equations (Xiang et al., 302 

2016) and specific leaf area (SLA) at 40 m × 40 m quadrate plots of this study (5.29-9.19), the LAI 303 
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values measured by hemipherical photography are low but significantly correlated (r
2
=0.40 and 304 

p=0.035). Previous studies (see Lopes et al., 2015) have proved the underestimation of LAI using 305 

hemipherical photography. However, the hemipherical photography method is feasible to obtain LAI 306 

data in forests and to investigate spatial and seasonal variations in LAI in forests (Coops et al., 2004; 307 

Dovey & Toit, 2006). 308 

  The ratio of woody to total area (α) and the clumping index (ΩE) have been recognised as the error 309 

sources in LAI measurement by optical methods (Liu et al., 2015a; Bréda, 2003; Chen et al., 1997). So 310 

far these two parameters have been measured in Northeastern China (Liu et al., 2015a; Liu et al., 2015b) 311 

but they are not suitable for LAI correction in subtropical forests. Also the literature about them in 312 

subtropical forests has been rarely reported. Our results showed that mean α values in the three forests 313 

varied from 0.04±0.03 to 0.15±0.09 (Table 2). The variations of α value are probably due to the seasonal 314 

variations and spatial heterogeneity of canopy structure in the three forests. In general, the α values are 315 

consistent with the amount of leaf litter. Our results showed that the large mean α values occurred in 316 

autumn for the P. massoniana - L. glaber forest and the C. axillaris forest, but in spring and autumn for 317 

the L. glaber - C. glauca forest (Table 2). This seasonal change of mean α values in three forests was 318 

generally consistent with the amount of leaf litter collected by litter tap installed in the three forests 319 

(Guo et al., 2015). The average ΩE value (0.87) in this study is smaller than the values of mixed 320 

broadleaved - korean pine forest in Northeastern China (Liu et al. 2015b) and this could be attributed to 321 

the different region and forests. The values of α and ΩE obtained in this study fill the gap of calibration 322 
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for optical measurement of LAI in subtropical forests. 323 

  Mean LAI values differed among the three forests and the differences were significant between the C. 324 

axillaris forest and other two forests at a given measurement season. The C. axillaris forest had the 325 

relatively high mean LAI value during the growing season but changed to the lowest mean LAI value 326 

during the non-growing season. The change in mean LAI values in the C. axillaris forest was consistent 327 

with the study of a deciduous species dominated forest reported by Naithani et al. (2013). It has been 328 

reported that the forests consisting of different plant functional types of species showed different LAI 329 

values (Asner et al., 2003; Iio et al., 2014). The differences and seasonal variations of LAI values in the 330 

three forests could be attributed to floristic composition and phenological defoliation pattern of tree 331 

species especially the deciduous species. The C. axillaris forest consisted of 74.15% deciduous species, 332 

25.80% evergreen broadleaved species and 0.05% evergreen coniferous species while the proportions of 333 

deciduous species were 10.05% and 25.70% respectively in the P. massoniana - L. glaber forest and the 334 

L. glaber - C. glauca forest. Seasonal growth and defoliation of different functional types of species 335 

lead to the change in leaf lifespan and foliage area (Niinemets et al., 2010) during different seasons 336 

related to temperature and water availability, which are responsible for the unimodal pattern of seasonal 337 

variations in mean LAI values. This agrees with the results from Liu et al. (2012) that the highest LAI 338 

was found in summer (July), followed by autumn (October) and spring (April), and the lowest was 339 

found in winter (January). 340 

 341 

Biogeosciences Discuss., doi:10.5194/bg-2016-5, 2016
Manuscript under review for journal Biogeosciences
Published: 12 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 19 

4.2 Spatial heterogeneity and its controlling factors of LAI values within a forest 342 

  Semivariograms of LAI values in the three forests were fitted with spherical models, gaussian models, 343 

exponential models or linear models (Table 3). Based on the fitted models, the degree of spatial 344 

autocorrelation could be evaluated. Spatial autocorrelation is weak when the determination coefficient 345 

(r
2
) of the best-fitted semivariogram model is less than 0.5 (Duffera et al., 2007). The ratio [C/(C0+C)] 346 

is also used to describe the degree of spatial autocorrelation. The ratio between 0 and 0.25 indicates a 347 

weak spatial autocorrelation, between 0.26 to 0.75 means moderate and larger than 0.75 means strong 348 

(Lopez-Granados et al., 2004). Spatial autocorrelation of LAI in this study varied with forests and 349 

measurement seasons (Table 3). Strong spatial autocorrelation at short range for LAI values measured in 350 

January in three forests indicated the sampling distance is reasonable for LAI variables within the 351 

spatial range (Liu et al., 2008). On the contrary, weak autocorrelation within spatial autocorrelation 352 

range indicated that more samples and smaller sampling intervals should be taken to determine spatial 353 

dependency of LAI, such as LAI measured in April in the P. massoniana - L. glaber forest. 354 

  Spatial heterogeneity of LAI values was different in three forests and measurement seasons. Our 355 

study respectively described spatial variations of LAI values by CV and analysis of geostatistics and the 356 

results were basically consistent with each other. In general, the CVs of LAI values in three forests (in 357 

particular C. axillaris forest) were higher for the period of leaf onset (April) and senescence (October) 358 

than that for the period of leaf maturity (July) (Table 1). This reflects changes of leaves due to plant 359 

phenology and is consistent with the study by Naithani (2013) that LAI became increasingly 360 
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homogenous from leaf onset to maturity, but became more heterogeneous from maturity to senescence. 361 

As a result, heterogeneity degree of LAI values in three forests tended to dwindle from leaf 362 

non-growing season to growing season (Fig. 2). 363 

  The complex hydrothermal environment results in complex vertical and horizontal variations of 364 

canopy layer and formed the unique spatial heterogeneity of LAI values. The results of stepwise 365 

regression and GAMs showed that forest types, species diversity and stand characters affected the 366 

spatial heterogeneity of LAI values significantly in three forests. This finding that floristic composition 367 

and stand characters affected LAI values measured in July is consistent with the previous study that LAI 368 

values increased with species richness (Yao et al., 2015). The positive relationship between LAI values 369 

in July and crown coverage is also in agreement with the findings reported by Bequet (2012) that large 370 

trees (high DBH, tree height, crown length and crown cover) had high LAI values measured in July. The 371 

negative relationship between LAI values in July and stem number probably could be explained by the 372 

strong competition among tree species in the three forests with diverse species composition. 373 

  Up to now, the relationship of LAI variations measured in non-growing season with forest types and 374 

stand characters has seldom reported. In this study, forest types, BA, crown width, crown coverage and 375 

the proportion of deciduous species to total stand BA were the factors significantly affecting LAI 376 

variations in January. Because large trees (high crown width and BA) had high LAI values and January 377 

is the leaf senescence period of deciduous species, LAI values in January increased with BA and crown 378 

width but decreased with deciduous species ratio. The fact that LAI values in January decreased with 379 
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increasing crown coverage could be explained that large crown coverage means more defoliation (in 380 

particular deciduous species) in the forest in January. 381 

  Although the factors selected by regression could explain a small proportion (6%) of spatial 382 

heterogeneity of LAI measured in July, the factors selected in January could explain 35% of the LAI 383 

spatial heterogeneity (Table 4). The LAI heterogeneity also could be affected by that several other 384 

factors, such as the topography (Naithani et al., 2012), soil features (Chloer et al., 2010), soil 385 

temperature (Vitasse et al., 2009; Hardwick et al., 2015), microclimate, human activities and other 386 

physicochemical properties. And yet, full leaf expansion of all tree species which covers up the effect of 387 

other physicochemical properties on LAI leads to small difference in LAI in July. The effects of 388 

environmental factors (such as temperate, rainfall, etc.) on LAI in the forests at fine scale should be 389 

taken into account in the future studies. 390 

  Spatial heterogeneity of LAI in three forests can yield some useful information for sampling strategy 391 

to accurate estimation of LAI by using indirect measurement. An optimal sampling strategy should 392 

consider appropriate sampling plot size and the lowest sampling number as far as possible to obtain a 393 

high sampling accuracy and a low sampling error (Bequet et al., 2012). Our study found that strong 394 

spatial autocorrelations range were about 30m (Table 3), indicating that 30m range might serve as a 395 

reference for sampling plot size to estimate LAI in subtropical forests. In addition, LAI heterogeneity 396 

was closely related to floristic composition and stand characters, thus stand structural variables (BA or 397 

DBH) are important for sampling strategy to measure LAI in forests (Bequet et al., 2012). 398 
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 399 

5 Conclusions 400 

  This study measured LAI in three subtropical forests using hemispherical photography method in 401 

four seasons and offered reliable data to analyse spatial and seasonal variations of LAI in the three 402 

forests. Our results indicated that LAI differed greatly with forests and measurement seasons. Seasonal 403 

variations of LAI occurred in the three forests reflect defoliation phenomenon due to plant phenology. 404 

LAI values in the three forests exhibited different spatial autocorrelation in four seasons. Obvious patch 405 

distribution pattern of LAI values was found in the three forests during the non-growing seasons and 406 

this pattern gradually dwindled in the growing seasons. While BA, crown coverage, crown width, the 407 

proportion of deciduous species to total stand BA and forest types significantly affected the spatial 408 

variations in LAI values in January, species richness, crown coverage, stem number and forest types 409 

significantly affected the spatial variations in LAI values in July. These findings supplement LAI data 410 

for global synthesis and provide useful information for sampling strategies to accurate LAI estimates 411 

and simulating the models of forest production and hydrological cycle in subtropical forests. 412 

 413 
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Table 1 Descriptive statistical characteristics of LAI values measured during period from April 2014 to 609 

January 2015 in P. massoniana - L. glaber, C. axillaris and L. glaber - C. glauca forests (n=100). 610 

 611 

Month Forest type 
Minimum 

value 

Maximum 

value 

Variance 

coefficient (%) 

P value of 

K-S test 

Data 

transformation 

January P. massoniana - 

L. glaber 
1.29 4.03 27.5 0.021 0.275 

C. axillaris 0.53 2.38 34.0 0.260  

L. glaber - C. 

glauca 
0.43 6.98 40.2 0.018 0.243 

April P. massoniana - 

L. glaber 
1.57 7.83 36.4 0.076  

C. axillaris 1.34 8.33 47.0 0.047 0.535 

L. glaber - C. 

glauca 
1.34 10.22 59.6 0.000 0.158 

July P. massoniana - 

L. glaber 
1.56 8.16 38.0 0.003 0.075 

C. axillaris 1.73 8.17 37.8 0.166  

L. glaber - C. 

glauca 
1.68 7.58 33.1 0.010 0.170 

October P. massoniana - 

L. glaber 
1.55 6.79 38.3 0.321  

C. axillaris 0.37 6.51 44.1 0.102  

L. glaber - C. 

glauca 
1.49 7.88 49.3 0.000 0.212 

 612 

 613 
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Table 2 Average woody to total leaf ration (α) and clumping index (ΩE) values in P. massoniana - L. 615 

glaber, C. axillaris and L. glaber - C. glauca forests. Values in parenthesis are the standard deviation of 616 

α and ΩE values (n=100). 617 

 618 

Forest type Month α ΩE 

P. massoniana - L. glaber January 0.06 (0.04) 0.88 (0.09) 

April 0.08 (0.05) 0.87 (0.09) 

July 0.07 (0.04) 0.87 (0.09) 

October 0.09 (0.10) 0.85 (0.08) 

C. axillaris January 0.15 (0.09) 0.92 (0.08) 

April 0.07 (0.06) 0.85 (0.10) 

July 0.04 (0.03) 0.90 (0.07) 

October 0.14 (0.14) 0.87 (0.10) 

L. glaber - C. glauca January 0.07 (0.09) 0.87 (0.09) 

April 0.15 (0.07) 0.86 (0.09) 

July 0.05 (0.03) 0.87 (0.08) 

October 0.09 (0.08) 0.84 (0.09) 

 619 

 620 

 621 

 622 

 623 

 624 

 625 
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Table 3 Semivariogram theoretical models and fitted parameters for LAI values in P. massoniana - L. 627 

glaber, C. axillaris and L. glaber - C. glauca forests. 628 

 629 

Month Forest type Model 
Nugget 

(C0) 

Sill 

(C0+C) 
C/(C0+C) 

Range 

(A0/m) 
r
2
 RSS 

January P. massoniana 

- L. glaber 
Exponential 0.0068 0.0614 0.889 27.00 0.607 9.762×10

-5
 

C. axillaris Exponential 0.0030 0.1820 0.984 13.80 0.504 1.219×10
-4

 

L. glaber - C. 

glauca 
Gaussian 0.0029 0.1178 0.975 15.42 0.888 3.468×10

-5
 

April P. massoniana 

- L. glaber 
Exponential 0.1220 0.7670 0.841 17.70 0.229     0.017 

C. axillaris Linear 0.1760 0.1760 0.000 52.96 0.189 1.762×10
-4

 

L. glaber - C. 

glauca 
Exponential 0.0008 0.0152 0.951 26.40 0.978 2.290×10

-7
 

July P. massoniana 

- L. glaber 
Linear 0.0843 0.0843 0.000 92.69 0.074 1.383×10

-4
 

C. axillaris Exponential 0.1460 0.9340 0.844 17.70 0.258     0.017 

L. glaber - C. 

glauca 
Exponential 0.0065 0.0684 0.905 22.80 0.951 5.781×10

-6
 

October P. massoniana 

- L. glaber 
Exponential 0.1620 1.6310 0.901 11.70 0.173     0.017 

C. axillaris Spherical 0.0050 0.5830 0.991 11.90 0.000 1.870×10
-3

 

L. glaber - C. 

glauca 
Exponential 0.0005 0.0125 0.960 21.90 0.894 4.444×10

-7
 

 630 

 631 
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 633 
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Table 4 Estimated coefficients of the generalised additive models (GAMs) for the factors with effects 636 

on LAI values measured in P. massoniana - L. glaber, C. axillaris and L. glaber - C. glauca forests. 637 

 638 

Month Parameter F-value p-value r
2
 AIC 

January s (BA,2) 15.146 1.236×10
-4

*** 0.3496 654.30 

 s (Crown width,2)  1.588          0.209   

 s (Crown coverage,2)  0.556        0.456   

 s (PDSB,2) 49.324 1.556×10
-11

***   

 factor(Forest types) 44.355 < 2.2×10
-16

***   

July s (Species richness,2)  3.165         0.076. 0.0551 677.85 

 s (Stem number,2)  8.381   4.086×10
-3

**   

 s (Crown coverage,2)  0.006         0.939   

 factor(Forest types)  2.475         0.086.   

 639 

The significance of the regressions (p) are ., *, **, *** for p<0.1, 0.05, 0.01, and 0.001, respectively 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 
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Figure captions 649 

Fig. 1 Seasonal variations of mean LAI values (with standard deviation) in P. massoniana - L. glaber, C. 650 

axillaris and L. glaber - C. glauca forests. The values carrying with different letters indicate significant 651 

differences (p<0.05) among measurement seasons in a given forest. 652 

 653 

Fig. 2 Spatial heterogeneity map of LAI values interpolated through ordinary Kriging method for P. 654 

massoniana - L. glaber, C. axillaris and L. glaber - C. glauca forests. 655 

 656 

Fig. 3 Partial effects of total stand basal area (BA, cm
2
), average crown width (m), crown coverage (m

2
), 657 

the proportion of deciduous species to total stand BA (PDSB), and forest types (calculated for overstory 658 

trees with height larger than average stand height) on the LAI values observed in January in P. 659 

massoniana - L. glaber, C. axillaris and L. glaber - C. glauca forests. 660 

 661 

Fig. 4 Partial effects of species richness, individual stem number, crown coverage (m
2
) and forest types 662 

(calculated for overstory trees with height larger than average stand height) on the LAI values observed 663 

in July in P. massoniana - L. glaber, C. axillaris and L. glaber - C. glauca forests. 664 

 665 

 666 

 667 
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Figure 1 668 
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Figure 2 679 

 680 
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Figure 3 682 
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Figure 4 685 
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