1 S1. Cell count to volume conversion

- 2 Length = h_1
- 3 Width = h_2
- 4

5

bacterial carbon =
$$\left(\frac{\pi}{4} \times {h_2}^2 \times \left(\frac{h_1 - h_2}{3}\right)\right) \times 2.2 \times 10^{-7}$$

(S1)

6 (Bratbak and Dundas, 1984)

7

8 S2. ³H-Leucine concentration calibration

9

10 (S2) Fig. S1. ³H-Leucine concentration calibration (error bars show 1 standard deviation).

11

12 S3. Model Implementation and set-up

13 S3.1. Initial conditions

14 Initial conditions are informed by analysis of 0-years-of-exposure soil collected adjacent to the ice

15 snout, and values for all state variables are presented in Table – state variables and initial conditions.

- 16 Microbial biomass is estimated by microscopy. Initial community structure is derived by 16S analysis
- 17 of year-0 soils. An initial value for carbon substrate $(S_1 + S_2)$ is estimated based on the average TOC

18 content of year-0 soil (Carlo-Erba NC2500 elemental analyzer). Bioavailability is assumed to be 30%

- 19 labile (S1) and 70% refractory (S2). Organic Nitrogen (ON) and organic Phosphorus (OP) are
- 20 assumed to be stoichiometrically linked by the measured C:N:P ratio from which the model was
- 21 initially developed and tested (Bradley et al., 2015). An initial value for DIN is taken from a previous
- 22 evaluation of biogeochemistry of Svalbard tundra, whereby the lowest value is taken to represent the
- soil of least development, according to traditional understanding of forefield nutrient dynamics (Alves
- et al., 2013; Bradley et al., 2014). An initial value for DIP is established stoichiometrically from
- 25 previous model development and testing.
- 26
- 27

28	S3.2. Forcing data
29	The following external forcings drive and regulate the system's dynamics:
30	• Photosynthetically-active radiation (PAR) (wavelength of approximately 400 to 700nm) (W m ⁻
31	²).
32	• Snow depth (m).
33	• Soil temperature (°C).
34	 Allochthonous inputs (µg g⁻¹ d⁻¹).
35	
36	Soil temperature (at 1cm depth) for the entire of 2013 is provided by AWI from the permafrost
37	observatory near Ny-Ålesund, Svalbard. Similarly, PAR for 2013 is measured at the AWI
38	meteorological station near Ny-Ålesund, Svalbard. Averaged daily snow depth for 2009 to 2013 is
39	provided by the Norwegian Meteorological Institute (eKlima). The presence of snow on the ground
40	attenuates sunlight and inhibits PAR from reaching the soil surface. This is accounted for in pre-
41	processing of forcing data. Light attenuation is estimated according to the equation:
42	
43	$n = n_0 e^{-mx}$
44	(S2)
45	Whereby <i>n</i> is the irradiance (W/m ²), <i>x</i> is the snow depth (m) and m is the extinction coefficient for
46	snow. The extinction coefficients for various types of snow can be measured and an estimate of 6 is
47	used in this instance to represent snow in the Midtre Lovénbreen forefield (Greenfell and Maykut,
48	1977). Due to its high latitude, the study site experiences continual daylight for much of the summer
49	and continual darkness for much of the winter. Forcing data is provided as daily averages, and linear
50	interpolation is used between any (very infrequent) missing data points.
51	
52	Allochthonous inputs are estimated based on the best available budget of catchment hydrology and
53	nutrients for Midtre Lovénbreen presented in Hodson et al. (2005). Data from two summer-winter
54	seasons allow nutrient deposition, runoff and retention to be estimated. In SHIMMER, prescribed
55	inputs (I) are only partially retained (v). v_{DIN} is equal to the average of the residual (retained) DIN
56	divided by the total DIN deposition flux over the two years of observations. The retention flux is
57	assumed to be equal for all nutrient species ($v_{DIN} = v_{Sub} = v_{DIP}$) and this allows the total deposition of
58	DIP to be back-calculated from the runoff flux.
59	
60	$v_{DIN} = \frac{retainment}{inputs (snow \& rain)}$
61	(S3)
62	
63	
64	
65	

66

67 Table S1. v-values

Variable	Value	
VNO3 1999	0.146	
VNH4 1999	-0.056	
VNO3 2000	-0.089	
VNH4 1999	0.688	
average VDIN	0.172	
68		
69		
70 I _{DIN} is estimated	d as 69.605 kg N km ⁻² y ⁻² fo	or the average of 1999 and 2000 inputs (NO $_3$ + NH $_4$) a
71		

72 We assume that v_{DIN} is equal to v_{Sub} and v_{DIP}

73 I_{DIP} is estimated as 585.15 kg P km⁻² y⁻² by:

$$I_{DIP} = (1 - v_{DIP}) \times DIP_{output}$$
(S4)

74

77 We based our estimation of organic carbon, nitrogen and phosphorus inputs considering initial

78 analysis of organic carbon in glacier forefield soils, chemical analyses of glacier meltwater (Hodson et

al., 2005) and the ornithogenic contribution to soils (Jakubas et al., 2008; Ziolek and Melke, 2014),

and used the stoichiometry from Bradley et al. (2015) and Bernasconi et al. (2011).

81 Final allochthonous inputs are as follows:

82 Table S2. Final allochthonous inputs

Variable	Annual input
	(µg 1.19cm ⁻² y ⁻¹)
DIN	8.283
ON ₁	20.790
ON ₂	48.540
S ₁	147.51
S ₂	344.19
OP ₁	12.240

OP ₂	28.560
DIP	69.633
83	
84	
85	Inputs are evenly spread over snowmelt and summer period (days 155 to 264), and through 20cm
86	depth (v = $0.17/20 = 0.0085$).
87	
88	The sensitivity of microbial and nutrient dynamics to this allochthonous flux is the focus of future work,
89	in which we hope to address the issues of uncertainty of external inputs and leaching.
90	
91	The model is run for 120 years to encapsulate the entirety of the observational dataset. Annual
92	forcings (Fig. S2) are repeated for the entire duration of the model run.

94 Fig. S2. Annual forcings.

103 S3.3. Table S3. Model parameters

Parameter	Description	Units	Value
			(Reference)
T _{ref}	Reference	°C	25
	temperature for rates		(Frey et al., 2010)
NC	C:N ratio (mass)	Unitless	0.141
			(Bernasconi et al., 2011)
PC	C:P ratio (mass)	Unitless	0.083
			(Bernasconi et al., 2011)
α _A	Death rate	d ⁻¹	0.070
	(autotrophs)		(Bradley et al., 2015)
αн	Death rate	d ⁻¹	0.070
	(heterotrophs)		(Bradley et al., 2015)
exA	Exudates & EPS	Unitless	0.014
	production (autotrophs)		(Allison, 2005)
ехн	Exudates & EPS	Unitless	0.014
	production (heterotrophs)		(Allison, 2005)
p Sub	Slow-down of	Unitless	0.2
	subglacial microbial growth rate		(Bradley et al., 2015)
Ksub	Lower half-saturation	Unitless	0.8
	constants (Ks, K _N &		(Bradley et al., 2015)
	microbes		
K∟	Light half-saturation	W m ⁻² (PAR)	11.88
	constant for autotrophs		(De Nobel et al., 1998; Van Liere and Walsby,
	(A ₂ & A ₃)		1982; Chapra et al., 2014; Thornton et al., 2010;
			MacIntyre et al., 2002)
Ks	Substrate half-	µg g⁻¹	349.00
	saturation constant for heterotrophs		(Bradley et al, 2015)
K _N	DIN half-saturation	µg g⁻¹	49.21
	constant		(stoichiometric)
	constant	P9 9	(stoichiometric)

K _P	DIP half-saturation	µg g ⁻¹	28.967
	constant		(stoichiometric)
Ni	Downscaling of Yand I _{max} when fixing nitrogen	Unitless	0.25 (Bottomley and Myrold, 2007; LaRoche and Breitbarth, 2005; Breitbarth et al., 2008; Goebel et al., 2008)
K _{N2}	Nitrogen fixation inhibition	μg g ⁻¹	49.209 (Bradley et al., 2015; Holl and Montoya, 2005; Rabouille et al., 2006)
DINt	Threshold value of DIN for nitrogen fixation inhibition	μg g ⁻¹	0
q	Proportion of necromass that becomes labile (S ₁)	Unitless	0.3
Js1	Bioavailability (preference) of S ₁	Unitless	0.68 (Bradley et al, 2015)
J _{S2}	Bioavailability (preference) of S ₂	Unitless	0.15 <i>(Bradley et al, 2015)</i>
g Sub	Leaching of substrate	d-1	0
g din	Leaching of DIN	d-1	0
g DIP	Leaching of DIP	d-1	0
d	Active fraction of microbial biomass	Unitless	0.285 (Wang et al, 2014)
VSub	Proportion of allochthonous substrate deposition	Unitless	0.0085
VDIN	Proportion of allochthonous DIN deposition retained	Unitless	0.0085

VDIP	Proportion of	Unitless	0.0085
	allochthonous DIP		
	deposition retained		

Parameter	Description	Units	Value determined in lab
			(Standard Error)
Imax _H	Maximum growth rate	d ⁻¹	0.550
	(heterotrophs)		(0.027)
Imax _A	Maximum growth rate	d ⁻¹	0.550
	(autotrophs)		(assumed)
Q ₁₀	Temperature	Unitless	2.91
	sensitivity		(0.013)
Yн	Growth efficiency	g carbon (g	0.060
	(heterotrophs)	consumed) ⁻¹	(0.003)
	,	,	
Y _A	Growth efficiency	g carbon (g	0.060
	(autotrophs)	consumed) ⁻¹	(assumed)
	((,

106 S4. Statistical significance test of lab measurements (ANOVA & Tukey)

107 Table S4. Bacterial carbon production

Difference between treatments	P-value	
Low - High	0.064	
Medium - High	0.488	
None – High	0.100	
Medium – High	0.547	
None – Low	0.994	
None - Medium	0.697	

110 Table S5. Growth rate

Difference between treatments	P-value
Low - High	0.952
Medium - High	0.093
None – High	0.067
Medium – High	0.261
None – Low	0.202
None - Medium	0.999

111

112 Table S6. Respiration

Difference between incubation temperatures	P-value
5°C - 25°C	2.6*10 ⁻⁶
Killed (autoclave) - 25°C	2.0*10 ⁻⁷
Killed (furnace) - 25°C	5.0*10 ⁻⁷
Killed (autoclave) - 5°C	0.464
Killed (furnace) - 5°C	0.764
Killed (furnace) – Killed (autoclave)	0.954

113

114

115

116 **S5. References**

Allison, S. D.: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in

- spatially structured environments, Ecol Lett, 8, 626-635, DOI 10.1111/j.1461-0248.2005.00756.x,
 2005.
- 120 Alves, R. J. E., Wanek, W., Zappe, A., Richter, A., Svenning, M. M., Schleper, C., and Urich, T.:
- 121 Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-
- 122 oxidizing archaea, Isme J, 7, 1620-1631, 10.1038/ismej.2013.35, 2013.
- 123 Bernasconi, S. M., Bauder, A., Bourdon, B., Brunner, I., Bunemann, E., Christl, I., Derungs, N.,
- 124 Edwards, P., Farinotti, D., Frey, B., Frossard, E., Furrer, G., Gierga, M., Goransson, H., Gulland, K.,
- Hagedorn, F., Hajdas, I., Hindshaw, R., Ivy-Ochs, S., Jansa, J., Jonas, T., Kiczka, M., Kretzschmar, R.,
- 126 Lemarchand, E., Luster, J., Magnusson, J., Mitchell, E. A. D., Venterink, H. O., Plotze, M., Reynolds, B.,
- 127 Smittenberg, R. H., Stahli, M., Tamburini, F., Tipper, E. T., Wacker, L., Welc, M., Wiederhold, J. G.,

128 Zeyer, J., Zimmermann, S., and Zumsteg, A.: Chemical and Biological Gradients along the Damma

Glacier Soil Chronosequence, Switzerland, Vadose Zone J, 10, 867-883, Doi 10.2136/Vzj2010.0129,
 2011.

- Bottomley, P., and Myrold, D.: Biological N Inputs, in: Soil microbiology, ecology and biochemistry, 3
- ed., edited by: Paul, E., Elsevier, USA, 2007.
- 133 Bradley, J. A., Singarayer, J. S., and Anesio, A. M.: Microbial community dynamics in the forefield of
- 134 glaciers, Proceedings. Biological sciences / The Royal Society, 281, 2793-2802,
- 135 10.1098/rspb.2014.0882, 2014.
- 136 Bradley, J. A., Anesio, A. M., Singarayer, J. S., Heath, M. R., and Arndt, S.: SHIMMER (1.0): a novel
- mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems,
- 138 Geosci. Model Dev., 8, 3441-3470, 10.5194/gmd-8-3441-2015, 2015.
- Bratbak, G., and Dundas, I.: Bacterial Dry-Matter Content and Biomass Estimations, Appl Environ
 Microb, 48, 755-757, 1984.
- 141 Breitbarth, E., Wohlers, J., Klas, J., LaRoche, J., and Peeken, I.: Nitrogen fixation and growth rates of
- 142 Trichodesmium IMS-101 as a function of light intensity, Mar Ecol Prog Ser, 359, 25-36, Doi
- 143 10.3354/Meps07241, 2008.
- 144 Chapra, S. C., Flynn, K. F., and Rutherford, J. C.: Parsimonious Model for Assessing Nutrient Impacts
- on Periphyton-Dominated Streams, J Environ Eng, 140, 10.1061/(Asce)Ee.1943-7870.0000834, 2014.
- De Nobel, W. T., Matthijs, H. C. P., Von Elert, E., and Mur, L. R.: Comparison of the light-limited
- growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon, New Phytol, 138, 579-
- 148 587, DOI 10.1046/j.1469-8137.1998.00155.x, 1998.
- 149 Frey, B., Rieder, S. R., Brunner, I., Plotze, M., Koetzsch, S., Lapanje, A., Brandl, H., and Furrer, G.:
- 150 Weathering-Associated Bacteria from the Damma Glacier Forefield: Physiological Capabilities and
- 151 Impact on Granite Dissolution, Appl Environ Microb, 76, 4788-4796, Doi 10.1128/Aem.00657-10,
 152 2010.
- 153 Goebel, N. L., Edwards, C. A., Carter, B. J., Achilles, K. M., and Zehr, J. P.: Growth and carbon content
- of three different-sized diazotrophic cyanobacteria observed in the subtropical North Pacific, J
- 155 Phycol, 44, 1212-1220, DOI 10.1111/j.1529-8817.2008.00581.x, 2008.
- 156 Greenfell, T. C., and Maykut, G. A.: The optical properties of ice and snow in the Arctic basin, J
- 157 Glaciol, 18, 18, 1977.
- 158 Hodson, A. J., Mumford, P. N., Kohler, J., and Wynn, P. M.: The High Arctic glacial ecosystem: new
- insights from nutrient budgets, Biogeochemistry, 72, 233-256, DOI 10.1007/s10533-004-0362-0,
 2005.
- 161 Holl, C. M., and Montoya, J. P.: Interactions between nitrate uptake and nitrogen fixation in
- 162 continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria), J Phycol, 41, 11781183, DOI 10.1111/j.1529-8817.2005.00146.x, 2005.
- 164 Jakubas, D., Zmudczynska, K., Wojczulanis-Jakubas, K., and Stempniewicz, L.: Faeces deposition and
- 165 numbers of vertebrate herbivores in the vicinity of planktivorous and piscivorous seabird colonies in
- 166 Hornsund, Spitsbergen, Pol Polar Res, 29, 45-58, 2008.
- LaRoche, J., and Breitbarth, E.: Importance of the diazotrophs as a source of new nitrogen in theocean, J Sea Res, 53, 67-91, DOI 10.1016/j.seares.2004.05.005, 2005.
- 169 MacIntyre, H. L., Kana, T. M., Anning, T., and Geider, R. J.: Photoacclimation of photosynthesis
- 170 irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria, J Phycol,
- 171 38, 17-38, DOI 10.1046/j.1529-8817.2002.00094.x, 2002.
- 172 Rabouille, S., Staal, M., Stal, L. J., and Soetaert, K.: Modeling the dynamic regulation of nitrogen
- 173 fixation in the cyanobacterium Trichodesmium sp., Appl Environ Microb, 72, 3217-3227, Doi
- 174 10.1128/Aem.72.5.3217-3227.2006, 2006.
- 175 Van Liere, L., and Walsby, A. E.: Interactions of Cyanobacteria with Light, in: The Biology of
- 176 Cyanobacteria, 2 ed., edited by: Whitton, B. A., and Carr, N. G., Blackwell Scientific, Oxford, 1982.
- 2017 Ziolek, M., and Melke, J.: The impact of seabirds on the content of various forms of phosphorus in
- 178 organic soils of the Bellsund coast, western Spitsbergen, Polar Res, 33, ARTN 19986
- 179 10.3402/polar.v33.19986, 2014.
- 180