

1 Zooplankton faecal pellet transfer through the meso- and 2 bathypelagic layers in the Southern Ocean in spring

3 Anna Belcher^{1,2}, Clara Manno³, Pete Ward³, Stephanie Henson¹, Richard Sanders¹, Geraint Tarling³

4 ¹National Oceanography Centre, Southampton, SO14 3ZH, UK

5 ²University of Southampton, Southampton, SO14 3ZH, UK

6 ³ British Antarctic Survey, Cambridge, CB3 0ET, UK

7 *Correspondence to:* Anna Belcher (A.Belcher@noc.soton.ac.uk)

8 **Abstract.** The faecal pellets (FP) of zooplankton can be important vehicles for the transfer of particulate organic carbon
9 (POC) to the deep ocean, often making large contributions to carbon sequestration. However, the routes by which these FP
10 reach the deep ocean have yet to be fully resolved. We address this by comparing estimates of FP production to
11 measurements of FP size, shape and number in the upper mesopelagic (175–205 m), using Marine Snow Catchers, and in the
12 bathypelagic, using sediment traps (1,500–2,000 m). The study is focussed on the Scotia Sea, which contains some of the
13 most productive regions in the Southern Ocean, where epipelagic FP production is likely to be high. We found that, although
14 the size distribution of zooplankton suggests that high numbers of small FP are produced in the epipelagic, small FP are rare
15 in the deeper layers, implying that they are not transferred efficiently to depth. Consequently, small FP make only a minor
16 contribution to FP fluxes in the meso- and bathypelagic, particularly in terms of carbon. The dominant FP in the upper
17 mesopelagic were cylindrical and elliptical, while ovoid FP were dominant in the bathypelagic. The change in FP
18 morphology, as well as size distribution, points to the repacking of surface FP in the mesopelagic and in situ production in
19 the lower meso- and bathypelagic, augmented by inputs of FP via zooplankton vertical migrations. The flux of carbon to the
20 deeper layers within the Southern Ocean is therefore strongly modulated by meso- and bathypelagic zooplankton, meaning
21 that the community structure in these zones has a major impact on the efficiency of FP transfer to depth.

22

23 1 Introduction

24 The biological carbon pump (BCP) from the atmosphere to the deep ocean is an important process by which carbon can be
25 sequestered for millennia or longer (Volk and Hoffert, 1985). About 10% of surface ocean primary production sinks out (is
26 exported) of the surface ocean, with the remainder being remineralised in situ. However, only a small fraction of this
27 material (<10%) reaches the deep ocean (Sarmiento and Gruber, 2006), with most of it being respired by grazers or bacteria
28 (Azam et al., 1983) in the upper mesopelagic (Martin et al., 1987). Thus close to 10% of surface primary production is stored
29 in the interior, a process which keeps atmospheric CO₂ around 200 ppm lower than preindustrial levels (Parekh et al., 2006).
30 Small changes in the BCP, such as a change in the depth at which sinking material is remineralised can result in large

31 changes to the climate system; a global increase of 24 m in the depth at with 63% of sinking carbon is resired could
32 decrease atmospheric CO₂ by 10-27 ppm (Kwon et al., 2009). For this reason, the nature of particles occurring at different
33 depths is important to understand.

34
35 The repackaging of slow-sinking individual phytoplankton cells into fast-sinking faecal pellets (FP) can promote efficient
36 export of POC out of the euphotic zone (Hamm et al., 2001). The contribution of FP to bathypelagic particle fluxes can be
37 large (>90%) (Carroll et al., 1998; Manno et al., 2015; Wilson et al., 2013), providing direct evidence of the importance of
38 zooplankton FP to the transport of carbon to the deep ocean. However, surface produced FP can also undergo intense
39 reworking and fragmentation in the euphotic and upper mesopelagic zones (González et al., 1994b; Riser et al., 2001;
40 Wexels Riser et al., 2007), through processes such as coprophagy (ingestion of FP), coprophagy (fragmentation of FP),
41 microbial remineralisation and physical aggregation and disaggregation (Lampitt et al., 1990; Poulsen and Iversen, 2008;
42 Turner, 2015; Wilson et al., 2008). Thus, FP can also provide a source of nutrition for other zooplankton and bacterial
43 communities en route to the deep ocean (Miquel et al., 2015; Riser et al., 2001). The complexity of these interacting factors
44 results in a wide range of estimates (<1->100% (Turner, 2015)) of the contribution FP make to POC flux (%FPC), which is
45 typically measured using sediment traps (Dagg et al., 2003; Fowler et al., 1991; Gleiber et al., 2012; Manno et al., 2015;
46 Suzuki et al., 2001; Wassmann et al., 2000; Wilson et al., 2013).

47
48 Differences in FP shape, composition and density, as well as varying depths of production (through zooplankton species
49 residing at different depths and also vertical migration (VM)) will greatly influence the magnitude of FP associated POC that
50 reaches the deep ocean (Atkinson et al., 2012; Steinberg et al., 2000; Wallace et al., 2013; Wilson et al., 2008). Both diel and
51 seasonal migrations of zooplankton can directly transport carbon out of the euphotic zone to the mesopelagic, bypassing the
52 region of rapid remineralisation (Jónasdóttir et al., 2015; Kobari et al., 2008; Steinberg et al., 2000). Different zooplankton
53 feeding strategies will also influence the effect that their vertical migrations have on POC export (Wallace et al., 2013).

54
55 The direct sinking of zooplankton FP can provide an efficient vehicle for the sequestration of carbon in the deep ocean. For
56 example, direct sedimentation of FP from large salp blooms in the upper ocean can result in huge depositions on the sea floor
57 at depths of ~4000 m due to their high sinking velocities (Smith, Jr. et al., 2014). Additionally, the swarming behaviour of
58 krill can result in *en masse* sinking of FP, which can overload recycling zooplankton grazers and be efficiently transferred
59 through the upper ocean (Clarke et al., 1988). Alternatively, FP may arrive in the deep ocean via a FP ‘cascade’ effect
60 (Bodungen et al., 1987; Urrere and Knauer, 1981), being constantly reworked and transformed with depth. The fact that FP
61 have been observed in the deep ocean highlights the important role they play in carbon sequestration, however knowledge of
62 the route by which these FP reach the deep ocean is not yet clear. There is a need for comparisons between the composition
63 and characteristics of sinking FP just below the euphotic zone and in the deep ocean to improve our understanding of both

64 the origin of faecal material reaching the deep ocean and how it is potentially modified by meso- and bathypelagic
65 zooplankton.

66

67 Here we use Marine Snow Catchers and deep ocean sediment traps in the Scotia Sea, within the Southern Ocean, to collect
68 intact sinking FP in the upper mesopelagic and bathypelagic respectively, and use these data to compare the characteristics
69 of mesopelagic and bathypelagic FP. We compare zooplankton abundances in the upper 200 m with FP fluxes in both the
70 upper mesopelagic and bathypelagic in order to understand the processes controlling the fate of FP produced in the
71 epipelagic. We use these data to determine whether FP arriving in sediment traps in the deep ocean are a result of a direct
72 detrital rain from the surface, or are produced in the mesopelagic via the grazing and repackaging of this material by deep
73 zooplankton populations. We focus in particular on copepod FP as copepods are the numerically dominant zooplankton in
74 our study region, typically comprising >90% of total zooplankton (Ward et al., 2012). Zooplankton FP can make a large
75 contribution to fluxes of FP in the meso- and bathypelagic of the Scotia Sea (e.g. Belcher et al., 2016b; Cavan et al., 2015;
76 Manno et al., 2015). In this region, the transfer of FP through the mesopelagic (as well as the mechanisms controlling their
77 transfer) is therefore a key determinant of the efficiency of the BCP.

78 **2 Methods**

79 **2.1 Study site**

80 Sediment traps have been deployed for a number of years at two sites, P2 and P3 (Fig. 1), upstream and downstream of
81 South Georgia (at -55.248 °N, -41.265 °E and -52.812 °N, -39.972 °E respectively) in the Scotia Sea in the Southern Ocean
82 (Manno et al., 2015). Samples were collected from Marine Snow Catcher (MSC) and zooplankton abundance data were
83 collected during cruises in austral spring 2013 (JR291) and 2014 (JR304) aboard the *RRS James Clark Ross* (Table 1).
84 Sediment trap data were obtained from traps deployed in 2012 and 2013 at P2 and P3, at depths of 1,500 m and 2,000 m
85 respectively. The P3 trap (2,000 m depth) was deployed in May 2013 on cruise JR287, and P2 (1,500 m depth) deployed on
86 8th December 2012 on cruise JR280, herein defined as D1. Both traps were recovered in December 2013 on cruise JR291
87 aboard the *R.R.S. James Clark Ross*. In addition the P2 mooring was redeployed on 7th Dec 2013 and recovered on 28th
88 November 2014 during cruise JR304, herein defined as D2. Samples from the spring period (October to January) were
89 analysed for comparison with MSC deployments. Mean current velocities at both sites are <10 m s⁻¹ (Whitehouse et al.,
90 2012) suggesting effects of lateral advection are minimal and as such they are not considered in this study.

91 **2.2 Mesozooplankton collection**

92 **2.2.1 Net sampling**

93 Mesozooplankton were collected using a motion-compensating Bongo net (61 cm mouth diameter, 2.8 m long, 200 μm
94 mesh). The net was equipped with solid cod ends, deployed to 200 m and hauled vertically to the surface at 0.22 m s^{-1} .
95 Samples were preserved in 4% formalin (w/v) in seawater before being identified to species/taxa using a binocular
96 microscope and staged where appropriate. At least 500 individuals were counted per sample. Counts were converted into ind.
97 m^{-2} (0–200 m) based on the area of the Bongo net mouth and the depth of deployment. A total of five deployments were
98 carried out during JR291 and two during JR304. Average abundances for each species/taxa were calculated by averaging all
99 the deployments (from both cruises) at each site. Antarctic krill (*Euphausia superba*) and other large euphausiids were
100 occasionally caught in the Bongo nets, but the Bongo net does not accurately quantify their abundance due to their patchy
101 distribution and net avoidance capabilities. Large euphausiid abundances were therefore not considered, so zooplankton
102 abundances in this study reflect mesozooplankton abundances. In particular, copepod species were overwhelmingly
103 dominant in terms of abundance at our study site, typically >90% of total zooplankton abundance (Ward et al., 2012).

104 **2.2.2 Prediction of faecal pellet size distribution in epipelagic layers**

105 We predicted the size distribution of FP in the epipelagic layers by using the size distribution of the copepod community
106 assessed via prosome length (PL, mm) (Ward et al. 2012, their table A1) and the known relationship between copepod size
107 and the volume of their FP (FPV, μm^3) (Mauchline, 1998; Stamieszkin et al., 2015).

108

$$109 \log_{10} \text{FPV} = \theta \log_{10}(\text{PL}) + \eta \quad (1)$$

110

111 We take mean values of θ and η of 5.4 and 2.58 from Stamieszkin et al. (2015) derived from literature values of FPV and PL.
112 Using measured copepod abundances, we then calculated the size distribution of FP produced by our population of
113 copepods. We compared the percent abundance in each size class, making the assumption that all copepods were egesting FP
114 at the same rate (see Discussion). As the zooplankton net tows are integrated from the surface to 200 mm, there is a slight
115 overlap with the MSC samples, however as the bulk of zooplankton are found in the upper 100 m (Ward et al., 2014), these
116 net samples are largely representative of the epipelagic layer and we refer to it as such for simplicity. Non-copepod
117 zooplankton (~10 % mesozooplankton abundance) were not considered in this calculation and represents a background error
118 in this approach.

119 **2.3 Faecal pellet collection**

120 **2.3.1 Marine Snow Catcher deployments**

121 Marine Snow Catchers (MSC) were deployed in the upper mesopelagic, defined here as 110 m below the base of the mixed
122 layer depth (MLD) identified from vertical profiles of the water column taken prior to MSC deployments using a
123 Conductivity-Temperature-Depth (CTD) unit (Seabird 9Plus with SBE32 carousel). MSC are large (95 L) PVC closing
124 water bottles, designed to minimise turbulence so particles are more likely to remain intact (Belcher et al., 2016a, 2016b;
125 Cavan et al., 2015; Riley et al., 2012). Once at the appropriate depth, MSC were closed via a mechanical release mechanism,
126 before recovering and leaving on deck for a settling period (2 hours). Following settling, they were drained and particles that
127 sank fast enough to reach the bottom collector tray (“fast sinking” particles (Riley et al., 2012)) were removed in the tray and
128 stored at 2-4°C for further analysis. Particles reaching the bottom of the tray that were visible by eye (>0.15 mm diameter)
129 were picked from the tray using a wide bore pipette. Given the MSC height of 1.53 m, particles originating at the top of the
130 MSC are required to sink at a minimum rate of 18.4 m d^{-1} to reach the base of the MSC. However considering measurements
131 of FP sinking velocity in the Southern Ocean (27 m d^{-1} to 1218 m d^{-1} (Atkinson et al., 2012; Belcher et al., 2016b; Cavan et
132 al., 2015), this is likely sufficient to capture sinking FP.

133 **2.3.2 Sediment trap deployments**

134 Sediment traps (ST) were deployed in the bathypelagic (1500 m to 2000 m). They consisted of a plastic funnel with a baffle
135 at the top (0.5 m^2 surface area), and a narrow opening at the bottom, through which particles fall into 1 L sampling cups
136 (McClane, PARFLUX Mark 78H-21). The traps were programmed so sampling cups would rotate after 14 to 31 days, with
137 shorter periods set to coincide with expected periods of high productivity. Prior to deployment each cup was filled with a
138 preservative solution of sodium chloride buffered 0.01% Mercuric Chloride. Upon recovery, samples were photographed and
139 the pH recorded. Swimmers, defined as zooplankton that were alive and intact on entering the trap, were picked out using
140 tweezers and removed from the sample. Each sample was then split into a number of equal aliquots (determined by the
141 amount of material in the sample) using a rotary splitter McClane Wet Sample Divider (WSD-10). Here we focus on ST trap
142 samples in November and December (austral spring) to match MSC and zooplankton net deployments.

143 **2.4 Faecal pellet analysis**

144 All FP were photographed using an Olympus SZX16 microscope. FP were classified visually as round, ovoid and cylindrical
145 using light microscopy. All FP in each category collected in the MSC were counted, and their length and width measured
146 using ImageJ. For each ST sample, the dimensions of 10-50 FP of each class were measured. FP volumes were calculated for
147 round, ovoid and cylindrical pellets using the formula for a sphere, ellipsoid and cylinder respectively. Equivalent spherical
148 diameters (ESD) were also calculated. We compare FP volume rather than FP number to avoid bias due to possible
149 fragmentation (Wexels Riser et al., 2010). The carbon contents of FP were calculated based on conversion factors of 0.035,

150 0.052 and 0.030 mg C mm⁻³ for round, ovoid and cylindrical FP respectively based on measurements made on FP collected
151 from the ST in spring-early autumn (Manno et al., 2015).

152
153 Without faecal production experiments of isolated species, it is difficult to ascertain the exact origin of FP collected in the
154 MSC and ST. Previous studies (González and Smetacek, 1994; González, 1992; González et al., 1994a; Martens, 1978;
155 Wilson et al., 2008; Yoon et al., 2001) suggest that ovoid/ellipsoidal pellets originate from copepods, pteropods and
156 larvaceans, cylindrical from krill and copepods and spherical pellets from amphipods, small copepods and crustacean
157 nauplii.

158 **2.5 Faecal pellet sinking velocities and fluxes**

159 Sinking velocities (w) of a sample of FP collected in MSC were measured on board on both cruises. During JR291, sinking
160 velocities were measured in a graduated glass cylinder in a temperature controlled laboratory (2°C). For each FP, the sinking
161 velocity was calculated from the average of the time taken to sink past two marked distances (10 cm apart), with the starting
162 point more than 10 cm from the water surface. During JR304, sinking velocities were measured in a temperature controlled
163 (at 4°C) flow chamber system (Ploug and Jorgensen, 1999), suspending FP in an upward flow and taking the average of
164 three measurements. Only FP larger than 0.15 mm ESD (i.e. those visible by eye) could be measured. No significant
165 differences were found between sinking velocities measured during JR291 and JR304 by these two different methods
166 (Student's t-test, $p=0.2$).

167 The median sinking velocity of measured FP for each MSC was utilised to calculate the sinking FP flux (F_{FP}).

168

$$169 F_{FP} (n \text{ FP } m^{-2} d^{-1}) = \frac{n_{FP}}{A} \times \frac{w}{h} \quad (2)$$

170

171 Here, n_{FP} is the total number of FP collected at the base of the MSC (excluding krill FP), A the area of the MSC opening
172 based on inner MSC diameter, and h the height of the snow catcher (1.53 m).

173 For sediment trap samples, FP fluxes were calculated as follows:

174

$$175 F_{FP} (n \text{ FP } m^{-2} d^{-1}) = n_{FP} / (A/d), \quad (3)$$

176

177 where d is the number of days that the trap was open (15 days) and A is the area of the sediment trap (0.5 m²).

178 **2.6 Faecal pellet comparisons**

179 FP collected in the ST and MSC were compared in terms of the number of FP in each morphological type as well as in terms
180 of carbon. As the absolute number of FP was vastly different between MSC and ST samples due to attenuation with depth,

181 we compared the percentage abundance and carbon across the size distribution of all FP from measured FP volumes. As only
182 an average FP size for each morphological type (rather than for all individual FP) was measured for samples from the ST
183 deployments D1 and D2, we make use of historical sediment trap data (Manno et al., 2015) at the same sites from 2009 and
184 2010 (herein referred to as H2009 and H2010). The size of all FP in each sample-split were measured in the study of Manno
185 et al. (2015) allowing us to compare size distributions of MSC and ST collected FP. Manno et al. (2015) also categorised FP
186 into ovoid, cylindrical and round, with an additional category of elliptical. We combine cylindrical and elliptical categories
187 due to their similar morphology and to allow comparison with our MSC data. Although this introduces uncertainty in terms
188 of inter-annual variability between 2009-2010 (full sediment trap data) and 2013-2014 (Marine Snow Catcher data),
189 consistency in the FP types and percentages in each category between years (Fig. S2) provides confidence in the use of these
190 historical data. Numbers of large cylindrical FP, probably originating from large euphausiids, were removed from counts
191 given the large potential bias in the quantification of these organisms in the net samples. Again we take only the spring data
192 (November and December).

193 2.7 Statistics

194 In order to estimate error uncertainty, we take the standard error of our measurements, i.e. multiple Bongo net tows for
195 zooplankton, multiple MSC deployments for mesopelagic FP, and multiple ST deployments for bathypelagic FP. We
196 compare zooplankton size distributions using a Kolmogorov-Smirnov test. FP size distributions (in terms of % abundance)
197 are also compared using an Anderson-Darling k-sample test as this test is more sensitive to differences in the tails and
198 differences in shift, scale and symmetry when means are similar (Engmann and Cousineau, 2011). All statistics were carried
199 out in RStudio (version 0.98.1091; R development core team, 2014).

200 3. RESULTS

201 3.1 Zooplankton community and faecal pellet production

202 On average, total zooplankton abundances and species compositions were similar at P2 and P3 (Fig. 2), with small
203 microcopepod species *Oithona similis*, *Oncaeaa sp.* and *Ctenocalanus sp.* outnumbering the main large calanoid copepod
204 species (*Rhincalanus gigas*, *Calanoides acutus*, *Calanus similimus*, *C. propinquus*, *Euchaeta spp.*, and *Metridia spp.*) (Table
205 S1, Fig. 2). The number of zooplankton with PL < 2 mm is similar at P2 and P3 (ratio P3:P2 of 1.1), but the abundance of
206 larger copepods (4-7 mm PL) at P3 was almost double that of P2 (ratio P3:P2 of 1.8) (Fig. S1).

207 The predicted size distribution of egested FP from our mesozooplankton copepod community highlights that most FP
208 egested in the epipelagic would be in the smallest size category <0.001 mm³ (97.6 ± 20.3% and 97.0 ± 4.0% at P2 and P3
209 respectively) with low contributions (<2%) from each of the larger FP size categories (Fig. 3a). The high standard error of
210 FP <0.001 mm³ at P2 is in part due to very high abundances of *Oithona similis* during one deployment. Removing this net

212 from the average gives $97.8 \pm 13.7\%$ $\text{FP} < 0.001 \text{ mm}^3$. The predicted size distributions of FP at P2 and P3 were not
213 significantly different ($p > 0.5$, Mann-Whitney U-test, Kolmogorov-Smirnov test, and Anderson-Darling k-sample test).

214 **3.2 Sinking faecal pellets**

215 Sinking faecal pellets collected in MSC (upper mesopelagic) and ST (bathypelagic) are described in terms of size and shape
216 to assess changes between these two layers.

217 **3.2.1 Faecal pellet shape**

218 The morphologies of FP captured in the MSC at P2 were heterogeneous (Fig. 4, Fig. 5a), with cylindrical/elliptical FP, and
219 round FP making up similarly high percent contributions to the total number of FP. Conversely, a single morphology
220 dominated in the P3 MSC samples which were cylindrical FP of $< 0.005 \text{ mm}^3$ (Fig. 5c).

221

222 All morphological classes found in the upper mesopelagic (MSC samples) were also present in the bathypelagic (ST
223 samples, Fig. 4). However, the dominant type of FP changed between these two layers (Fig. 5). Ovoid FP made only low
224 contributions ($< 8.3\%$ and $< 1.4\%$ at P2 and P3 respectively) to total FP abundance in the MSC samples but were the
225 dominant type in most size categories in the ST samples (up to 25.2% and 13.1% at P2 and P3 respectively, Fig. 5).

226 **3.2.2 Faecal pellet size**

227 The predicted FP size distributions of pellets produced in the epipelagic by the net caught zooplankton community were
228 significantly different to those observed in the upper mesopelagic (MSC samples) at both P2 and P3 (Kolmogorov-Smirnov
229 test, $D=0.58$ (P2), $D=0.67$ (P3), $DF=11$, $p < 0.01$). Comparison of Fig. 3a and b reveals that there was a reduced dominance of
230 the smallest FP ($0-0.001 \text{ mm}^3$) from $> 96 \pm < 20\%$ to $< 18 \pm < 5\%$ between the two layers at both sites.

231

232 A further loss in the smaller FP size categories is apparent between the upper mesopelagic MSC samples and the
233 bathypelagic ST samples (Fig. 3c). FP $< 0.003 \text{ mm}^3$ in volume decreased from $35.5 \pm 13.4\%$ to $5.0 \pm 0.4\%$ at P2 and from
234 $52.3 \pm 6.7\%$ to $14.0 \pm 5.7\%$ at P3. Based on size alone, the FP community appears to have become less diverse in the
235 bathypelagic layer, with most FP ($> 80\%$) occupying a narrower size range in the ST samples, ($0.003-0.01 \text{ mm}^3$) compared
236 to the MSC samples ($0.001-0.02 \text{ mm}^3$). FP size distributions in the MSC and ST were not however significantly different at
237 either P2 or P3 (Anderson-Darling k-sample test, $T.\text{AD}=1.3$, $DF=11$, $p=0.2$ and $T.\text{AD}=0.43$, $DF=11$, $p=0.9$ at P2 and P3
238 respectively). Re-running the test for only FP size categories $< 0.003 \text{ m}^3$ highlights a significant difference in the %FP
239 abundance in the smaller size categories between the MSC and ST ($p=0.03$ at both P2 and P3).

240 **3.3 Faecal pellet carbon**

241 Although small FP were numerically dominant in the MSC, comparison of Fig. 5 and Fig. 6 reveals higher contributions of
242 the larger FP size classes to total FP carbon (FPC). This is not unexpected as larger FP contain a larger amount of carbon.
243 FPC data highlight the importance of the loss of large FP to the carbon sinking through the water column. Although
244 abundances of small FP greatly reduced with depth, this does not represent such a large change in terms of carbon.

245 **3.4 Faecal pellet sinking velocities and fluxes**

246 Sinking velocities of FP collected in the MSC ranged from 61 to 950 m d⁻¹ at P2 and 24 to 370 m d⁻¹ at P3 reflecting the
247 range in FP shapes and sizes. Generally small FP had lower sinking velocities than larger FP. During cruise JR291, we
248 measured FP sinking rates of 65-120 m d⁻¹ for FP <0.002 mm³, and 118-207 m d⁻¹ for FP >0.02 mm³. During cruise JR304,
249 FP sinking rates were 47-51 m d⁻¹ and 36-270 m d⁻¹ for FP <0.002 mm³ and FP >0.02 mm³ respectively.

250
251 At P3, the flux of cylindrical and elliptical FP in the MSC was an order of magnitude higher than fluxes of round or ovoid
252 FP whereas, at P2, cylindrical and elliptical FP were the dominant FP type, but fluxes of round FP were of a similar
253 magnitude (Table 2). FP fluxes in the ST were dominated by ovoid FP at both sites (Table 2).

254 **4. DISCUSSION**

255 In this study we compare predicted size distributions of FP produced by the zooplankton (mainly copepod) community in the
256 epipelagic, to those of sinking FP in the upper mesopelagic (from MSC) and the bathypelagic (from ST) in order to
257 determine the fate of FP sinking through the mesopelagic and assess the importance of deep dwelling zooplankton on the
258 efficiency of the BCP in the Southern Ocean.

259 **4.1 Changes in faecal pellet with depth: upper mesopelagic**

260 Our data suggest that small FP are not transferred efficiently from the epipelagic to the meso- and bathypelagic, and hence
261 make a small contribution to FP fluxes at depth, particularly in terms of carbon. Comparison of estimated copepod FP
262 production with measurements of sinking FP in the upper mesopelagic (from MSC) gives an indication of the degree of
263 retention in that layer. The community at both P2 and P3 was dominated by microcopepod species which, based on their
264 size, produce small FP which are expected to sink more slowly than large FP (Komar et al., 1981; Small et al., 1979;
265 Stamieszkin et al., 2015). Agreeing with the data presented here, small FP (<0.002 mm³) are predicted to have a sinking
266 velocity three times slower than larger FP (>0.02 mm³) based on the empirical relationship of Small et al. (1979) for copepod
267 FP.
268

269 The longer residence time of small FP in the upper ocean (due to their slower sinking velocities) means they are exposed to
270 remineralisation processes such as coprophagous feeding, fragmentation and microbial remineralisation, for a longer period
271 of time. This type of retention filter and low export efficiency of small FP has been observed in a number of oceanographic
272 environments (e.g. Dagg et al., 2003; Riser et al., 2001; Viitasalo et al., 1999). Wexels Riser et al. (2010) made observations
273 over the upper 200 m of a Norwegian fjord, finding that large FP produced by *Calanus finmarchicus* contributed
274 disproportionately to vertical flux despite large numbers of small FP produced by *Oithona similis*, agreeing well with the
275 loss of small FP that we observed in the Scotia Sea.

276

277 It is important to acknowledge here, that although the 200 μm mesh used in this study is commonly used in zooplankton
278 surveys, this leads to an underestimation of the smaller zooplankton size classes present in the epipelagic. Ward et al., (2012)
279 found that a 53 μm mesh caught 5.87 times more zooplankton than a 200 μm net in the upper mesopelagic of the northern
280 Scotia Sea in spring. However, in this study an underestimation of the small zooplankton size classes serves to reinforce the
281 fact that small FP dominate the flux of FP out of the epipelagic and are largely attenuated as they pass through the
282 mesopelagic.

283

284 Comparison of freshly egested FP size distributions with the size distributions of FP sinking through the mesopelagic relies
285 here on the assumption that different species within the copepod community had the same rates of egestion. FP production
286 varies with species, as well as factors such as season and food availability; the range in FP production rates between different
287 copepod species across a number of high latitude studies is 2-48 FP ind. d^{-1} (Dagg et al., 2003; Daly, 1997; Roy et al., 2000;
288 Thibault et al., 1999; Urban-Rich et al., 1999). However, as the estimated abundance of egested FP in the smallest size
289 category (0-0.001 mm^3) is between 60-250 times greater than the next largest category, the smallest FP are still likely to
290 dominate the FP community even if egestion rates are varied within reasonable bounds. Therefore, despite our assumptions
291 regarding rates of egestion, our conclusion of rapid attenuation of these small FP in the upper mesopelagic remains valid.

292 4.2 Changes in faecal pellet with depth: meso- to bathypelagic

293 Our data reveal a change in FP size, shape and abundance between the upper mesopelagic and bathypelagic of the Scotia Sea
294 suggesting in situ FP production by deeper dwelling zooplankton. The occurrence of intact and fresh FP in deep sediment
295 traps in the Southern Ocean (e.g. Accornero et al., 2003; Manno et al., 2015) may therefore be a result of an indirect,
296 cascade-like transfer through the mesopelagic as they are reprocessed by different zooplankton communities (Miquel et al.,
297 2015; Urrere and Knauer, 1981).

298

299 Urrere and Knauer (1981) deployed free-floating traps off the Monterey Peninsula in California. They observed a decrease in
300 numerical FP fluxes in the upper 500 m, but FP fluxes increased by a factor of 2.7 from 500 m to 1500 m. This increase was
301 largely due to elliptical FP, suggesting the presence of deep resident (or overwintering) zooplankton populations (Urrere and

302 Knauer, 1981). The authors conclude that organic material reaches the deep ocean (supporting deep resident zooplankton
303 populations) through in situ repackaging of detritus and via heterotrophy as well as inputs from migrating populations,
304 emulating the “ladder of migrations” first proposed by Vinogradov (1962). More recently, Miquel et al. (2015) deployed
305 drifting sediment traps in the upper 210 m of the Beaufort Sea, observing increases in elliptical FP with depth and decreases
306 in cylindrical FP. They explain this by the presence of omnivorous and carnivorous zooplankton in the mesopelagic, whose
307 primary food sources are the vertical flux of organic matter and other organisms. In agreement with our observations, Suzuki
308 et al. (2003) observed large declines in cylindrical FP between sediment traps deployed at 537 and 796 m in the marginal ice
309 zone of Antarctica, and increases in elliptical FP over the same depth range. They suggest that coprophagous feeding and
310 new FP production can explain some of the loss of cylindrical FP, with fragmentation into small sinking particles explaining
311 the rest. As different zooplankton species produce different shape of FP, a change in FP shape suggests a change in
312 zooplankton community structure.

313

314 At both P2 and P3 we saw an increase in the contribution of ovoid FP to the total number of FP between the upper
315 mesopelagic (MSC samples) and bathypelagic (ST samples), increasing by factors of 4.5 and 8.5 at P2 and P3 respectively.
316 This suggests that there is either an input of ovoid FP at depth, or that cylindrical-elliptical and round FP are preferentially
317 remineralised in the mesopelagic. We made both size and shape measurements of FP in the upper mesopelagic and
318 bathypelagic, allowing us to discern if there is indeed production of new ovoid FP at depth. At both P2 and P3, we observed
319 size classes of ovoid FP in the ST (0.003-0.008 mm³) that were not present in the MSC, which rules out selective
320 remineralisation. Furthermore, the intact shape of ovoid FP in the ST argues against fragmentation as a cause of this change
321 in size distribution. In agreement with Manno et al. (2015), we observed that ovoid FP in the ST showed fewer signs of
322 fragmentation and were more intact than cylindrical or elliptical FP at both P2 and P3. Estimates of FPC in ST samples
323 indicates that these ovoid FP also make a large contribution to the flux of POC and, as such, their production at depth
324 represents a mechanism for long term storage of carbon in the ocean. Hence, we conclude that FP fluxes to depth are
325 augmented by FP produced in situ at depth.

326

327 We can estimate the size class of zooplankton producing the FP we find at depth based on the FP size class and Equation 1.
328 We estimate that zooplankton of PL 2.6-3.8 mm and 2.6-3.2 mm could have produced the FP we observed in the ST, based
329 on dominant size classes of FP of 0.003-0.008 mm³ and 0.003-0.005 mm³ at P3 and P2 respectively. Of the species within
330 these size classes recorded in the Bongo net tows at P2 and P3, *Calanoides acutus* IV and *Metridia gerlachei* adults were the
331 most abundant and may be responsible for the flux of these FP to the ST. *C.acutus* is a known seasonal migrator in the
332 region, occurring in the upper 200 m in summer but residing deeper (~200 -600 m) in spring (Ward et al., 2012). *Metridia*
333 spp. are also known migrators (Ward and Shreeve, 1999; Ward et al., 1995, 2006), found to be one of the more abundant
334 species in the 500-1000 m depth range based on *Discovery Investigations* to the west of the Drake Passage (Ward et al.,
335 2014). Ward et al. (2014) find the most abundant species in this depth range to be *Oncaeae* spp., *Oithona frigida* and

336 *Microcalanus pygmaeus*, all of which are too small (≤ 0.5 mm PL) to produce the larger FP that were dominant in the ST.
337 Similar to the situation in the epipelagic and upper mesopelagic, we suggest that although small species are more abundant,
338 they produce small FP which sink slowly and are rapidly remineralised. It is likely that it is the less abundant larger
339 carnivores and recyclers in the lower mesopelagic that are contributing more to the flux of carbon to the deep ocean through
340 the production of large FP, agreeing with the modelling study of Stamieszkin et al., (2015). Calanoid copepod families,
341 *Aetideidae*, *Heterorhabdidae*, *Metridinidae* and *Euchaetidae* are also common in the mesopelagic of the Scotia Sea and
342 surrounding area (Laakmann et al., 2009; Ward and Shreeve, 1999; Ward et al., 1995), and are of an appropriate size (as
343 adults or other copepodite stages) to produce the larger FP that were dominant in the ST. Although we can only speculate as
344 to the possible producers of FP in the ST, it is clear that appropriately sized zooplankton are sufficiently abundant in the
345 mesopelagic to influence the flux of FP to the ST.

346 **4.3 Role of meso- and bathypelagic zooplankton**

347 Our data suggest that zooplankton residing below the euphotic layer repackage sinking detritus and produce FP which are
348 able to pass through the lower mesopelagic and be collected in ST in the bathypelagic. Observations made at P2 and P3 in
349 autumn show that, during the night, the highest zooplankton abundances are in the upper 125 m (C.Liszka pers. comm.).
350 However corresponding daytime surface abundances are typically lower which may be partially explained by certain species
351 that migrate vertically in the water column (C.Liszka pers. comm.). We suggest that diel vertical migrators may contribute to
352 the relatively fresh FP we found at depth. A modelling study by Wallace et al. (2013) suggests that FP penetrate deeper in
353 the water column when there is zooplankton vertical migration, with the deepest FP production occurring when zooplankton
354 undertake diel vertical migrations rather than foray type feeding (multiple ascents and descents during a day). Resident
355 zooplankton populations were observed below 150 m depth, with a peak at 375-500 m, most notably at P3 (C.Liszka
356 pers.comm.), suggesting that the non-migrating, or seasonally or ontogenetically migrating, community are also important at
357 our study site and could repackage organic material in the upper mesopelagic, producing some of the intact FP which we
358 observed in our ST.

359
360 The abundance of zooplankton typically declines rapidly over the upper 1000 m of the water column (Ward and Shreeve,
361 1999; Ward et al., 1995, 2014), suggesting that any new FP production below the depth of our MSC samples is likely to take
362 place in the upper to mid mesopelagic where zooplankton abundances are higher. Although zooplankton are more
363 concentrated in the epipelagic, total depth integrated zooplankton abundances in the 250-2000 m horizon (extending
364 abundances recorded at 750-1000 m down to 2000 m) in the Antarctic Zone (to the west of our study site) is about three
365 quarters (0.74) of the number of zooplankton in the top 250 m (Ward et al., 2014). Therefore it is likely that there is still
366 substantial production of FP in the lower mesopelagic, and FP produced here are subject to remineralisation processes over a
367 shorter distance so are more likely to reach the deep ocean intact.
368

369 Despite the similarities in copepod abundances at P2 and P3, the numbers of FP collected at P3 were an order of magnitude
370 higher than at P2. Surface phytoplankton productivity at P3 is typically much higher than at P2, with large blooms occurring
371 in most years (Borrione and Schlitzer, 2013; Korb et al., 2008, 2012). This may in part explain higher FP fluxes at the P3
372 site, as in good feeding conditions (such as those measured during JR304 (Belcher et al., 2016b)) FP production rates have
373 been shown to be higher (Besiktepe and Dam, 2002; Butler and Dam, 1994). The zooplankton community structure may also
374 affect the fate of FP in the mesopelagic. Previous studies have found relationships between POC export and the presence of
375 microcopepod species, suggesting that low POC export may be attributed to coprophagy and/or coprorhexy (Suzuki et al.,
376 2003; Svensen and Nejstgaard, 2003). More recently, several studies have proposed that the main role of small zooplankton
377 species may be to fragment FP rather than ingest them (Iversen and Poulsen, 2007; Poulsen and Kiørboe, 2005; Reigstad et
378 al., 2005). Regardless of the mechanism, previous studies agree that high microcopepod abundances can lead to increased FP
379 retention. The increased abundance of small copepods (compared to larger calanoids) at P2 (Figure 2) may result in greater
380 losses of FP in the epi- and mesopelagic, resulting in lower numbers of FP captured in our MSC and ST at P2. Indeed, we
381 see higher attenuation of FP fluxes at P2 than P3 between our measurement depths (Table 2).

382

383 The flux of FP reaching the deep ocean therefore depends not only on surface production, but also on the meso- and
384 bathypelagic zooplankton populations and the balance between FP retention and FP production. For instance, if the deep
385 zooplankton community at P3 are larger in size than those at P2, this could explain the larger size of FP observed in the ST
386 at P3 as well as contributing to higher numbers of FP here due to increased sinking velocities of larger FP (Komar et al.,
387 1981; Small et al., 1979; Stamieszkin et al., 2015). Although our data implies that in situ FP production in the mesopelagic
388 accounted for additional fluxes of FP to the bathypelagic at both P2 and P3, the potential for further working and
389 fragmentation of FP produced in the mesopelagic means we are not able to quantify this deep FP production. We therefore
390 cannot determine whether higher FP fluxes at P3 are due primarily to reduced attenuation or to increased FP production at
391 depth, however at least in the upper mesopelagic (mixed layer depth-200 m) FP attenuation is higher at P2 than P3 (Belcher
392 et al., 2016b). We cannot rule out that a combination of both is occurring.

393

394 We present here a comparison of FP size, shape and abundance in the upper mesopelagic and lower bathypelagic allowing us
395 to verify previous hypotheses of in situ FP production and vertical migrations augmenting the flux of FP to depth in the
396 Southern Ocean (Accornero et al., 2003; Manno et al., 2015; Suzuki et al., 2003). We find that the occurrence of intact FP in
397 deep ST can be explained by both vertical migrations of zooplankton, and repackaging and in situ FP production by meso-
398 and bathypelagic zooplankton populations (Fig. 7). The route by which the FP are transferred to depth is a key control on the
399 amount of carbon reaching this depth. Taking an integrated surface production of $1 \text{ g C m}^{-2} \text{ d}^{-1}$ (based on measurements by
400 Korb et al. (2012) to the northwest of South Georgia), and assuming that FP reaching the deep ocean via vertical migration
401 are only assimilated (with efficiency of 66% (Anderson and Tang, 2010; Head, 1992)) once (left panel Fig. 7, Case A), we
402 calculate that up to $340 \text{ mg C m}^{-2} \text{ d}^{-1}$ could reach the depth of migration. In comparison, if we assume FP undergoing

403 repackaging in the mesopelagic are assimilated twice over the same depth range as the vertical migration (right panel, Fig. 7,
404 Case B), up to $115 \text{ mg C m}^{-2} \text{ d}^{-1}$ could reach the same depth. These estimates are within the range of estimates of POC flux
405 made in the upper mesopelagic at P2 and P3 (Belcher et al., 2016b), but are over an order of magnitude higher than POC
406 fluxes measured in the ST (Manno et al., 2015), implying that material reaching the ST may have been repackaged many
407 times. The exact difference in carbon transfer between these two routes (Case A and B) will depend on the number of
408 repacking steps, specific assimilation efficiencies of the repackaging copepods as well as degree of microbial
409 remineralisation occurring during FP sinking between repackaging cycles. Regardless of the feeding mode of these
410 mesopelagic zooplankton communities (detritivory, omnivory or carnivory), production of FP at depth via both the
411 aforementioned scenarios supports the transfer of intact FP to the deep ocean, supporting the sequestration of carbon on long
412 timescales. There is therefore a need to link meso- and bathypelagic zooplankton communities (particularly the larger size
413 classes) to carbon fluxes within global biogeochemical models by refining the contribution of different zooplankton size
414 classes to carbon fluxes via their differential FP production rates and sinking speed.

415

416 **Acknowledgements**

417 We would like to thank the crew, officers and scientists aboard the *R.R.S. James Clark Ross* during research cruises JR291
418 and JR304. Particular thanks to Elena Ceballos Romero, Fred le Moigne, Andy Richardson, and Manon Duret for their
419 invaluable help with marine snow catcher deployments. Thanks to Cecilia Liszka for providing information on the deep
420 mesozooplankton community at our study site. Fieldwork was supported by a NERC AFI Collaborative Gearing Scheme
421 grant to Stephanie Henson. Geraint A. Tarling and Clara Manno were supported by the Ocean Ecosystems programme at
422 British Antarctic Survey.

423

424 **References**

425 Accornero, A., Manno, C., Esposito, F. and Gambi, M. C.: The vertical flux of particulate matter in the polynya of Terra
426 Nova Bay . Part II . Biological components, *Antarct. Sci.*, 15(2), 175–188, doi:10.1017/S0954102003001214, 2003.

427 Anderson, T. R. and Tang, K. W.: Carbon cycling and POC turnover in the mesopelagic zone of the ocean : Insights from a
428 simple model, *Deep. Res. Part II*, 57(16), 1581–1592, doi:10.1016/j.dsr2.2010.02.024, 2010.

429 Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. and Geissler, P. A.: Variable food absorption by Antarctic krill:
430 Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets, *Deep Sea Res. Part II*
431 *Top. Stud. Oceanogr.*, 59-60, 147–158, doi:10.1016/j.dsr2.2011.06.008, 2012.

432 Azam, F., Frenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. and Thingstad, F.: The ecological role of water-column
433 microbes in the sea, *Mar. Ecol. Prog. Ser.*, 10, 257–263, doi:10.3354/meps010257, 1983.

434 Belcher, A., Iversen, M., Giering, S., Riou, V., Henson, S. and Sanders, R.: Depth-resolved particle associated microbial

435 respiration in the northeast Atlantic, *Biogeosciences*, 13, 4927–4943, doi:10.5194/bg-2016-130, 2016a.

436 Belcher, A., Iversen, M. H., Manno, C., Henson, S. A., Tarling, G. A. and Sanders, R.: The role of particle associated
437 microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica, *Limnol. Oceanogr.*,
438 61(3), 1049–1064, doi:10.1002/lno.10269, 2016b.

439 Besiktepe, S. and Dam, H. G.: Coupling of ingestion and defecation as a function of diet in the calanoid copepod *Acartia*
440 *tonsa*, *Mar. Ecol. Prog. Ser.*, 229(I), 151–164, doi:10.3354/meps229151, 2002.

441 Bodungen, von B., Fischer, G., Nothing, E. M. and Wefer, G.: Sedimentation of krill faeces during spring development of
442 phytoplankton in the Bransfield Strait, Antarctica, *Mitteilungen aus dem Geol. un Paläontologischen Inst. der Univ. Leipzig*,
443 62, 243–235, 1987.

444 Borrione, I. and Schlitzer, R.: Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean,
445 *Biogeosciences*, 10(1), 217–231, doi:10.5194/bg-10-217-2013, 2013.

446 Butler, M. and Dam, H. G.: Production rates and characteristics of fecal pellets of the copepod *Acartia tonsa* under simulated
447 phytoplankton bloom conditions: implications for vertical fluxes, *Mar. Ecol. Prog. Ser.*, 114, 81–91,
448 doi:10.3354/meps114081, 1994.

449 Carroll, M. L., Miquel, J.-C. and Fowler, S. W.: Seasonal patterns and depth-specific trends of zooplankton fecal pellet
450 fluxes in the Northwestern Mediterranean Sea, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 45(8), 1303–1318,
451 doi:10.1016/S0967-0637(98)00013-2, 1998.

452 Cavan, E. L., Le Moigne, F., Poulton, A. J., Tarling, G. A., Ward, P., Daniels, C. J., G, F. and Sanders, R. J.: Attenuation of
453 particulate organic carbon flux in the Scotia Sea, Southern Ocean, controlled by zooplankton fecal pellets, *Geophys. Res.*
454 *Lett.*, 42(3), 821–830, doi:10.1002/2014GL062744, 2015.

455 Clarke, A., Quetin, L. B. and Ross, R. M.: Laboratory and field estimates of the rate of faecal pellet production by Antarctic
456 krill, *Euphausia superba*, *Mar. Biol.*, 98(4), 557–563, doi:10.1007/BF00391547, 1988.

457 Dagg, M. J., Urban-Rich, J. and Peterson, J. O.: The potential contribution of fecal pellets from large copepods to the flux of
458 biogenic silica and particulate organic carbon in the Antarctic Polar Front region near 170°W, *Deep Sea Res. Part II Top.*
459 *Stud. Oceanogr.*, 50(3-4), 675–691, doi:10.1016/S0967-0645(02)00590-8, 2003.

460 Daly, K. L.: Flux of particulate matter through copepods in the Northeast Water Polynya, *J. Mar. Syst.*, 10(1-4), 319–342,
461 doi:10.1016/S0924-7963(96)00062-0, 1997.

462 Engmann, S. and Cousineau, D.: Comparing distributions: The two-sample Anderson-Darling test as an alternative to the
463 Kolmogorov-Smirnoff test, *J. Appl. Quant. methods*, 6(3), 1–17, 2011.

464 Fowler, S. W., Small, L. F. and La Rosa, J.: Seasonal particulate carbon flux in the coastal northwestern Mediterranean Sea ,
465 and the role of zooplankton fecal matter, *Oceanol. Acta*, 14(1), 77–85, 1991.

466 Gleiber, M. R., Steinberg, D. K. and Ducklow, H. W.: Time series of vertical flux of zooplankton fecal pellets on the
467 continental shelf of the western Antarctic Peninsula, *Mar. Ecol. Prog. Ser.*, 471, 23–36, doi:10.3354/meps10021, 2012.

468 González, H. E.: The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas

469 (Antarctica) and their role in particle flux, *Polar Biol.*, 12, 81–91, doi:10.1007/BF00239968, 1992.

470 González, H. E. and Smetacek, V.: The possible role of the cyclopoid copepod *Oithona* in retarding vertical flux of
471 zooplankton faecal material, *Mar. Ecol. Prog. Ser.*, 113(1982), 233–246, 1994.

472 González, H. E., Kurbjewitz, F. and Bathmann, U. V: Occurrence of cyclopoid copepods and faecal material in the Halley
473 Bay region, Antarctica, during January–February 1991, *Polar Biol.*, 14(5), 331–342, doi:10.1007/BF00238449, 1994a.

474 González, H. E., González, S. R. and Brummer, G. A.: Short-term sedimentation pattern of zooplankton, faeces and
475 microplankton at a permanent station in the Bjarnafjorden (Norway) during April–May 1992, *Mar. Ecol. Prog. Ser.*, 105, 31–
476 45, 1994b.

477 Hamm, C., Reigstad, M., Riser, C. W., Mühlebach, A. and Wassmann, P.: On the trophic fate of *Phaeocystis pouchetii*. VII.
478 Sterols and fatty acids reveal sedimentation of *P. pouchetii*-derived organic matter via krill fecal strings, *Mar Ecol Prog Ser*,
479 209, 55–69, doi:10.3354/meps209055, 2001.

480 Head, E. J. H.: Comparison of the chemical composition of particulate material and copepod faecal pellets at stations off the
481 coast of Labrador and in the Gulf of St. Lawrence, *Mar. Biol.*, 112(4), 593–600, doi:10.1007/BF00346177, 1992.

482 Iversen, M. H. and Poulsen, L.: Coprophagy, coprophagy, and coprochaly in the copepods *Calanus helgolandicus*,
483 *Pseudocalanus elongatus*, and *Oithona similis*, *Mar. Ecol. Prog. Ser.*, 350(1990), 79–89, doi:10.3354/meps07095, 2007.

484 Jónasdóttir, S. H., Visser, A. W., Richardson, K. and Heath, M. R.: Seasonal copepod lipid pump promotes carbon
485 sequestration in the deep North Atlantic., *Proc. Natl. Acad. Sci. U. S. A.*, 112(39), 12122–6, doi:10.1073/pnas.1512110112,
486 2015.

487 Kobari, T., Steinberg, D. K., Ueda, A., Tsuda, A., Silver, M. W. and Kitamura, M.: Impacts of ontogenetically migrating
488 copepods on downward carbon flux in the western subarctic Pacific Ocean, *Deep Sea Res. Part II Top. Stud. Oceanogr.*,
489 55(14–15), 1648–1660, doi:10.1016/j.dsr2.2008.04.016, 2008.

490 Komar, P. D., Morse, A. P., Small, L. F. and Fowler, S. W.: An analysis of sinking rates of natural copepod and euphausiid
491 fecal pellets, *Limnol. Oceanogr.*, 26, 172–180, doi:10.4319/lo.1981.26.1.0172, 1981.

492 Korb, R. E., Whitehouse, M. J., Atkinson, A. and Thorpe, S.: Magnitude and maintenance of the phytoplankton bloom at
493 South Georgia: a naturally iron-replete environment, *Mar. Ecol. Prog. Ser.*, 368, 75–91, doi:10.3354/meps07525, 2008.

494 Korb, R. E., Whitehouse, M. J., Ward, P., Gordon, M., Venables, H. J. and Poulton, A. J.: Regional and seasonal differences
495 in microplankton biomass, productivity, and structure across the Scotia Sea: Implications for the export of biogenic carbon,
496 *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 59–60, 67–77, doi:10.1016/j.dsr2.2011.06.006, 2012.

497 Kwon, E. Y., Primeau, F. and Sarmiento, J. L.: The impact of remineralization depth on the air–sea carbon balance, *Nat.*
498 *Geosci.*, 2(9), 630–635, doi:10.1038/ngeo612, 2009.

499 Laakmann, S., Stumpp, M. and Auel, H.: Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae
500 and Aetideidae; Calanoida) in the vicinity of the Antarctic Polar Front, *Polar Biol.*, 32(5), 679–689, doi:10.1007/s00300-
501 008-0573-2, 2009.

502 Lampitt, R. S., Noji, T. and Bodungen, B. Von: What happens to zooplankton faecal pellets? Implications for material flux,

503 Mar. Biol., 104, 15–23, doi:10.1007/BF01313152, 1990.

504 Manno, C., Stowasser, G., Enderlein, P., Fielding, S. and Tarling, G. A.: The contribution of zooplankton faecal pellets to
505 deep-carbon transport in the Scotia Sea (Southern Ocean), Biogeosciences, 12(6), 1955–1965, doi:10.5194/bg-12-1955-
506 2015, 2015.

507 Martens, P.: Faecal pellets, Fich. Ident. Zooplankt., 162, 1–4, 1978.

508 Martin, J. H., Knauer, G. A., Karl, D. M. and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep
509 Sea Res. Part I Oceanogr. Res. Pap., 34(2), 267–285, doi:10.1016/0198-0149(87)90086-0, 1987.

510 Mauchline, J.: The biology of calanoid copepods, Adv. Mar. Biol., 33, 710, 1998.

511 Miquel, J.-C., Gasser, B., Martín, J., Marec, C., Babin, M., Fortier, L. and Forest, A.: Downward particle flux and carbon
512 export in the Beaufort Sea, Arctic Ocean; the role of zooplankton, Biogeosciences, 12(16), 5103–5117, doi:10.5194/bg-12-
513 5103-2015, 2015.

514 Orsi, H., Whitworth III, T. and Nowlin Jr, W. D.: On the meridional extent and fronts of the Antarctic Circumpolar Current,
515 Deep Sea Res. Part I Oceanogr. Res. Pap., 42(5), 641–673, doi:10.1016/0967-0637(95)00021-W, 1995.

516 Parekh, P., Dutkiewicz, S., Follows, M. J. and Ito, T.: Atmospheric carbon dioxide in a less dusty world, Geophys. Res.
517 Lett., 33(3), L03610, doi:10.1029/2005GL025098, 2006.

518 Ploug, H. and Jorgensen, B. B.: A net-jet flow system for mass transfer and microsensor studies of sinking aggregates, Mar.
519 Ecol. Prog. Ser., 176(1987), 279–290, doi:10.3354/meps176279, 1999.

520 Poulsen, L. and Iversen, M. H.: Degradation of copepod fecal pellets: key role of protozooplankton, Mar. Ecol. Prog. Ser.,
521 367, 1–13, doi:10.3354/meps07611, 2008.

522 Poulsen, L. and Kiørboe, T.: Coprophagy and coprophagy in the copepods *Acartia tonsa* and *Temora longicornis*: clearance
523 rates and feeding behaviour, Mar. Ecol. Prog. Ser., 299, 217–227, doi:10.3354/meps299217, 2005.

524 Reigstad, M., Riser, C. W. and Svensen, C.: Fate of copepod faecal pellets and the role of *Oithona* spp., Mar. Ecol. Prog. Ser.,
525 304, 265–270, 2005.

526 Riley, J. S., Sanders, R., Marsay, C., Le Moigne, F., Achterberg, E. P. and Poulton, A. J.: The relative contribution of fast
527 and slow sinking particles to ocean carbon export, Global Biogeochem. Cycles, 26, doi:10.1029/2011GB004085, 2012.

528 Riser, C. W., Wassmann, P., Olli, K. and Arashkevich, E.: Production, retention and export of zooplankton faecal pellets on
529 and off the Iberian shelf, north-west Spain, Prog. Oceanogr., 51(2-4), 423–441, doi:10.1016/S0079-6611(01)00078-7, 2001.

530 Roy, S., Silverberg, N., Romero, N., Deibel, D., Klein, B., Savenkoff, C., V??zina, A., Tremblay, J. ??, Legendre, L. and
531 Rivkin, R. B.: Importance of mesozooplankton feeding for the downward flux of biogenic carbon in the Gulf of St.
532 Lawrence (Canada), Deep. Res. Part II Top. Stud. Oceanogr., 47(3-4), 519–544, doi:10.1016/S0967-0645(99)00117-4, 2000.

533 Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press, Princeton., 2006.

534 Small, L. F., Fowler, S. W. and Ünlü, M. Y.: Sinking rates of natural copepod fecal pellets, Mar. Biol., 51(3), 233–241,
535 doi:10.1007/BF00386803, 1979.

536 Smith, Jr., K. L., Sherman, A. D., Huffard, C. L., McGill, P. R., Henthorn, R., Von Thun, S., Ruhl, H. A., Kahru, M. and

537 Ohman, M. D.: Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast
538 Pacific: Day to week resolution, *Limnol. Oceanogr.*, 59(3), 745–757, doi:10.4319/lo.2014.59.3.0745, 2014.

539 Stamieszkin, K., Pershing, A. J., Record, N. R., Pilskaln, C. H., Dam, H. G. and Feinberg, L. R.: Size as the master trait in
540 modeled copepod fecal pellet carbon flux, *Limnol. Oceanogr.*, 60, 2090–2107, doi:10.1002/lno.10156, 2015.

541 Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A., Madin, L. P. and Michaels, A. F.: Zooplankton vertical
542 migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea, *Deep. Res. I*, 47, 137–158,
543 doi:10.1016/S0967-0637(99)00052-7, 2000.

544 Suzuki, H., Sasaki, H. and Fukuchi, M.: Short-term variability in the flux of rapidly sinking particles in the Antarctic
545 marginal ice zone, *Polar Biol.*, 24(9), 697–705, doi:10.1007/s003000100271, 2001.

546 Suzuki, H., Sasaki, H. and Fukuchi, M.: Loss processes of sinking fecal pellets of zooplankton in the mesopelagic layers of
547 the Antarctic marginal ice zone, *J. Oceanogr.*, 59(6), 809–818, doi:10.1023/B:JOCE.0000009572.08048.0d, 2003.

548 Svensen, C. and Nejstgaard, J. C.: Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from
549 enclosed ecosystems, *J. Plankton Res.*, 25(8), 917–926, doi:10.1093/plankt/25.8.917, 2003.

550 Thibault, D., Roy, S., Wong, C. S. and Bishop, J. K.: The downward flux of biogenic material in the NE subarctic Pacific:
551 Importance of algal sinking and mesozooplankton herbivory, *Deep. Res. Part II Top. Stud. Oceanogr.*, 46(11-12), 2669–
552 2697, doi:10.1016/S0967-0645(99)00080-6, 1999.

553 Thorpe, S. E., Heywood, K. J., Brandon, M. A. and Stevens, D. P.: Variability of the southern Antarctic Circumpolar Current
554 front north of South Georgia, *J. Mar. Syst.*, 37(1-3), 87–105, doi:10.1016/S0924-7963(02)00197-5, 2002.

555 Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump, *Prog. Oceanogr.*, 130,
556 205–248, doi:10.1016/j.pocean.2014.08.005, 2015.

557 Urban-Rich, J., Nordby, E. and Andreassen, I.: Contribution by mezooplankton focal pellets to the carbon flux on
558 Nordvestbanken, north Norwegian shelf in 1994, *Sarsia*, 84(March), 253–264, doi:10.1080/00364827.1999.10420430,
559 1999.

560 Urrere, M. A. and Knauer, G. A.: Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the
561 pelagic environment, *J. Plankton Res.*, 3(3), 369–387, doi:10.1093/plankt/3.3.369, 1981.

562 Viitasalo, M., Rosenberg, M., Heiskanen, A.-S. and Koski, M.: Sedimentation of copepod fecal material in the coastal
563 northern Baltic Sea: Where did all the pellets go?, *Limnol. Ocean.*, 44(6), 1388–1399, doi:10.4319/lo.1999.44.6.1388, 1999.

564 Vinogradov, M. E.: Feeding of the deep-sea zooplankton, *Rapp P- V Cons. Int. Explor. Mer*, 153, 114–120, 1962.

565 Volk, T. and Hoffert, M. I.: Ocean Carbon Pumps: Analysis of relative strengths and efficiencies in ocean driven
566 atmospheric CO₂ changes, in *The carbon cycle and atmospheric CO₂:Natural variations Archean to Present*, edited by E. T.
567 Sundquist and W. S. Broecker, pp. 99–110, American Geophysical Union, Washington, DC., 1985.

568 Wallace, M. I., Cottier, F. R., Brierley, A. S. and Tarling, G. A.: Modelling the influence of copepod behaviour on faecal
569 pellet export at high latitudes, *Polar Biol.*, 36(4), 579–592, doi:10.1007/s00300-013-1287-7, 2013.

570 Ward, P. and Shreeve, R.: The spring mesozooplankton community at South Georgia: a comparison of shelf and oceanic

571 sites, *Polar Biol.*, 22, 289–301, doi:10.1007/s003000050422, 1999.

572 Ward, P., Atkinson, A., Murray, A. W. A., Wood, A. G., Williams, R. and Poulet, S. A.: The summer zooplankton
573 community at South Georgia: biomass, vertical migration and grazing, *Polar Biol.*, 195–208, doi:10.1007/BF00239059,
574 1995.

575 Ward, P., Shreeve, R. and Tarling, G. A.: The autumn mesozooplankton community at South Georgia: Biomass, population
576 structure and vertical distribution, *Polar Biol.*, 29(11), 950–962, doi:10.1007/s00300-006-0136-3, 2006.

577 Ward, P., Atkinson, A. and Tarling, G.: Mesozooplankton community structure and variability in the Scotia Sea: A seasonal
578 comparison, *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 59-60, 78–92, doi:10.1016/j.dsr2.2011.07.004, 2012.

579 Ward, P., Tarling, G. A. and Thorpe, S. E.: Mesozooplankton in the Southern Ocean: Spatial and temporal patterns from
580 Discovery Investigations, *Prog. Oceanogr.*, 120, 305–319, doi:10.1016/j.pocean.2013.10.011, 2014.

581 Wassmann, P., Erik, J. and Tselepides, A.: Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic
582 Cretan Sea (NE Mediterranean Sea), *Prog. Oceanogr.*, 46, 241–258, doi:10.1016/S0079-6611(00)00021-5, 2000.

583 Wexels Riser, C., Reigstad, M., Wassmann, P., Arashkevich, E. and Falk-Petersen, S.: Export or retention? Copepod
584 abundance, faecal pellet production and vertical flux in the marginal ice zone through snap shots from the northern Barents
585 Sea, *Polar Biol.*, 30, 719–730, doi:10.1007/s00300-006-0229-z, 2007.

586 Wexels Riser, C., Reigstad, M. and Wassmann, P.: Zooplankton-mediated carbon export : A seasonal study in a northern
587 Norwegian fjord Norwegian fjord, *Mar. Biol. Res.*, 6(5), 461–471, doi:10.1080/17451000903437067, 2010.

588 Whitehouse, M. J., Atkinson, A., Korb, R. E., Venables, H. J., Pond, D. W. and Gordon, M.: Substantial primary production
589 in the land-remote region of the central and northern Scotia Sea, *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 59-60, 47–56,
590 doi:10.1016/j.dsr2.2011.05.010, 2012.

591 Wilson, S. E., Steinberg, D. K. and Buesseler, K. O.: Changes in fecal pellet characteristics with depth as indicators of
592 zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean, *Deep*
593 *Sea Res. Part II Top. Stud. Oceanogr.*, 55(14-15), 1636–1647, doi:10.1016/j.dsr2.2008.04.019, 2008.

594 Wilson, S. E., Ruhl, H. A. and Smith, K. L.: Zooplankton fecal pellet flux in the abyssal northeast Pacific : A 15 year time-
595 series study, *Limnol. Oceanogr.*, 58(3), 881–892, doi:10.4319/lo.2013.58.3.0881, 2013.

596 Yoon, W. D., Kim, S. K. and Han, K. N.: Morphology and sinking velocities of fecal pellets of copepod, molluscan,
597 euphausiid, and salp taxa in the northeastern tropical Atlantic, *Mar. Biol.*, 139(5), 923–928, doi:10.1007/s002270100630,
598 2001.

599

600

601 **Tables**

602 **Table 1: Details of marine snow catcher (MSC) deployments during cruises JR291 and JR304 to the Scotia Sea**

Cruise	Site	Latitude	Longitude	Date	Time (GMT)	Depth of MSC (m)
JR291	P2	-55.192	-41.342	02/12/2013	23:45	176
	P2	-55.196	-41.332	03/12/2013	15:54	204
	P2	-55.259	-41.295	07/12/2013	15:07	203
	P3	-52.769	-40.155	13/12/2013	13:49	205
	P3	-52.769	-40.154	14/12/2013	06:33	180
JR304	P3	-52.8116	-39.9727	12/12/2014	22:40	176
	P3	-52.8118	-39.9726	13/12/2014	22:47	183

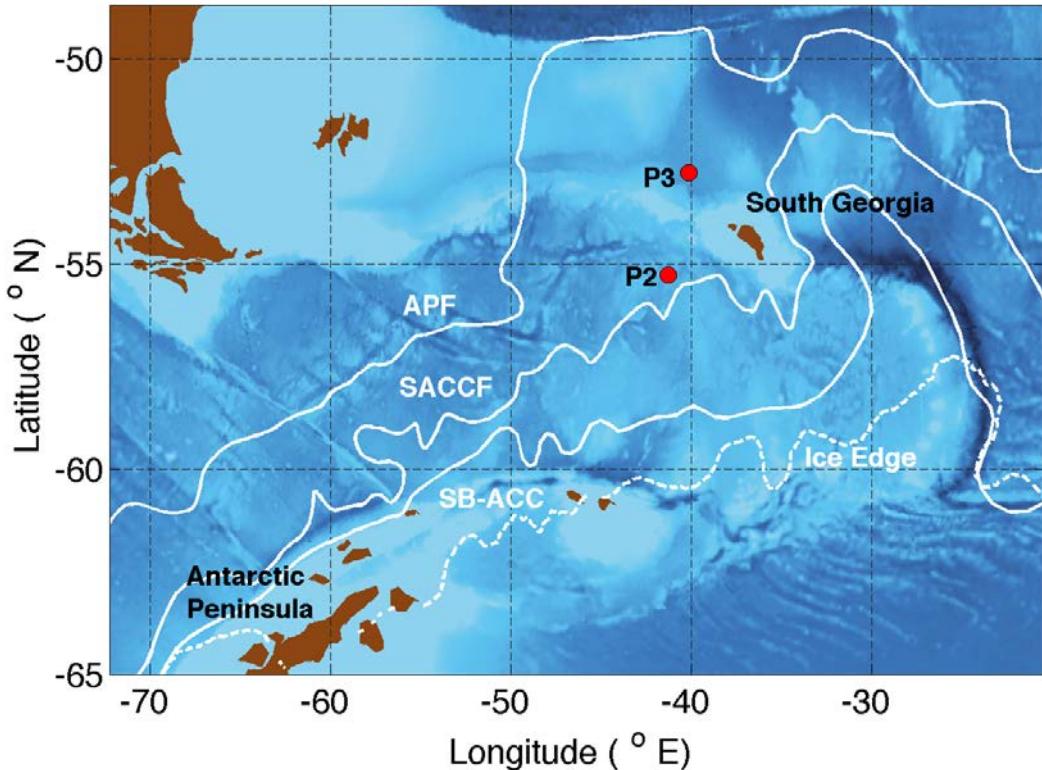
603

604

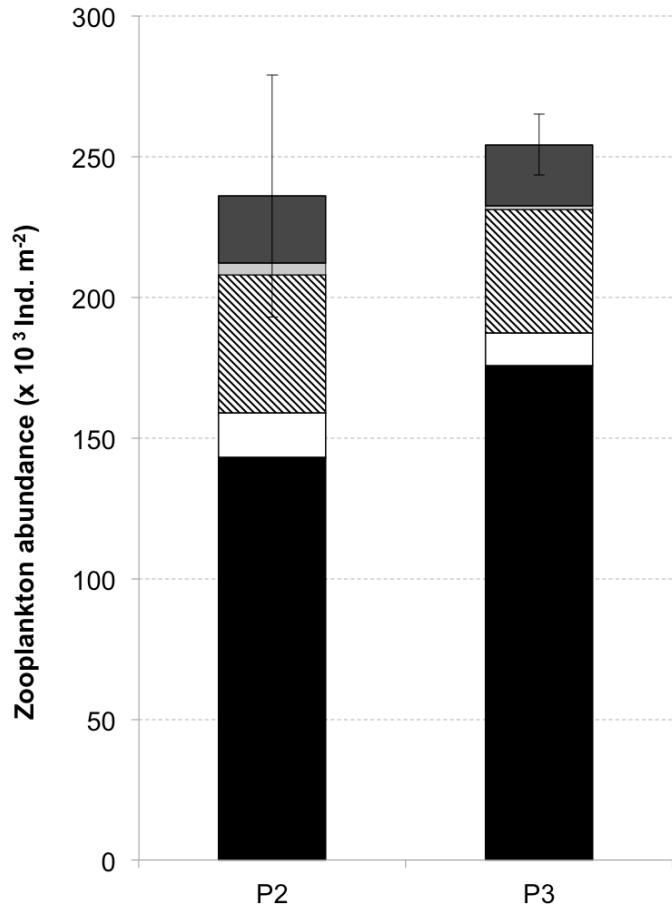
605

606

Table 2: FP fluxes (\pm SE, $nFP \text{ m}^{-2} \text{ d}^{-1}$) of ovoid, cylindrical and elliptical (Cyl+Ell), and round FP at P2 and P3 as measured in Marine Snow Catchers (MSC) and sediment traps (ST) in the Scotia Sea in spring.

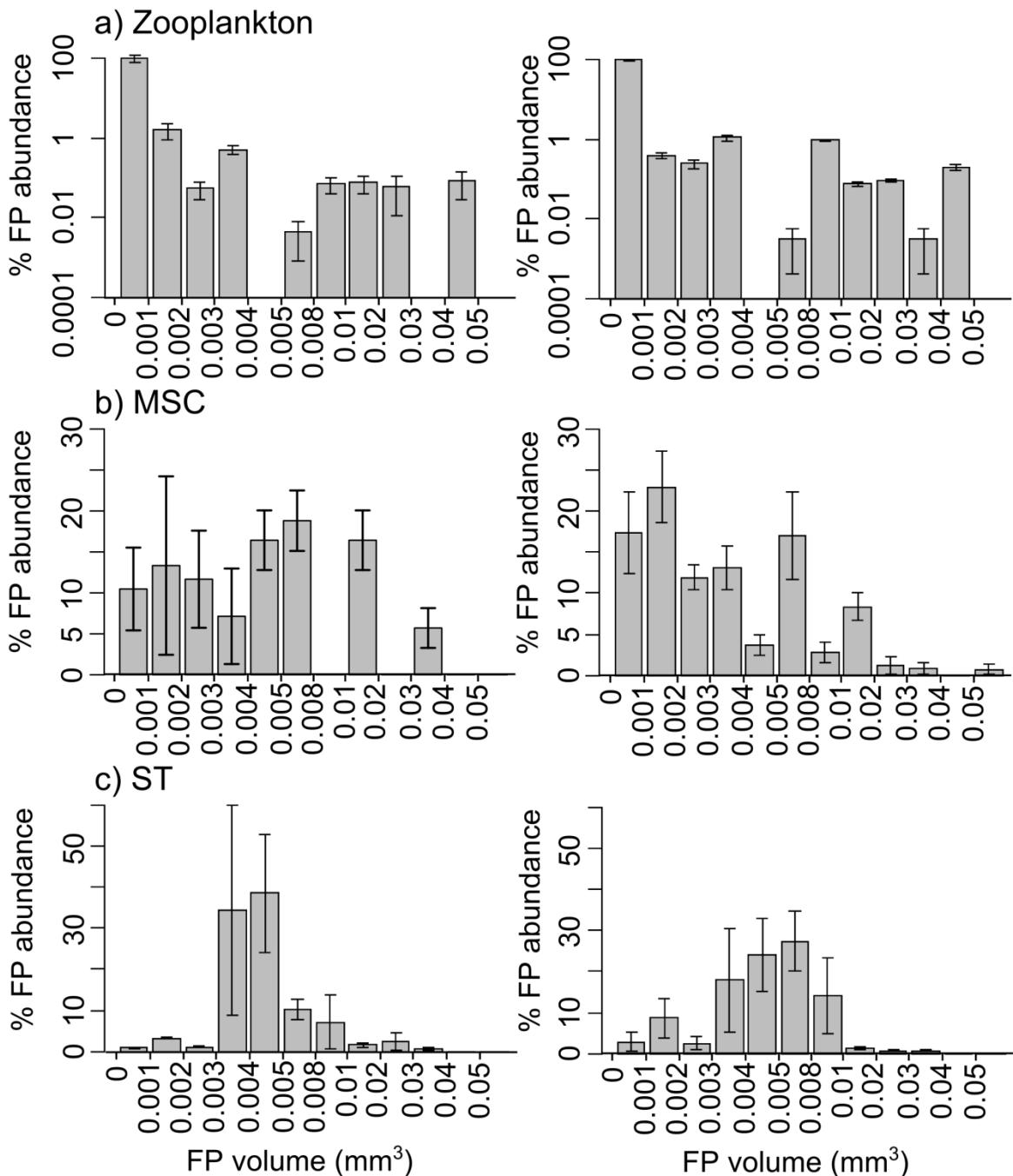

	P3				P2			
	Ovoid	Cyl + Ell	Round	Total	Ovoid	Cyl + Ell	Round	Total
MSC	13,416 ($\pm 8,207$)	190,716 ($\pm 51,623$)	32,172 ($\pm 15,239$)	236,304 ($\pm 63,079$)	6,309 ($\pm 2,698$)	21,128 ($\pm 1,328$)	14,596 ($\pm 1,124$)	89,850 ($\pm 11,922$)
ST	11,226 (± 706)	7,406 ($\pm 1,274$)	4,668 (± 14)	23,300 ($\pm 1,994$)	640 (± 33)	238 (± 82)	175 (± 37)	1,052 (± 152)
MSC/ST	1.2	25.8	6.9	10.1	9.9	88.9	83.5	39.9

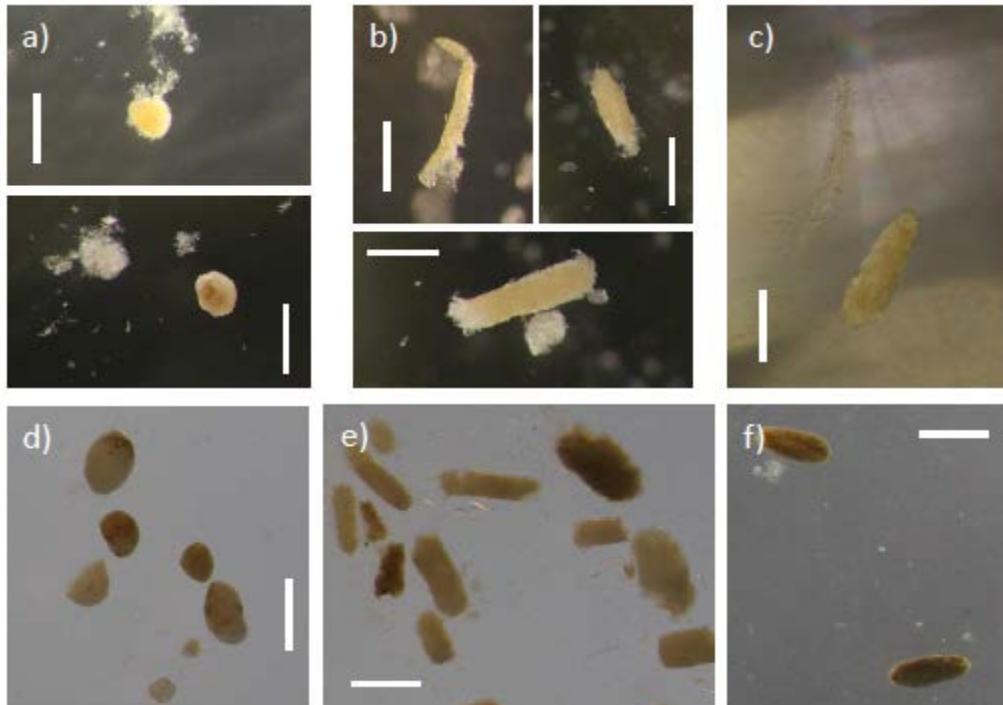
607


608 **Figures and Figure Legends**

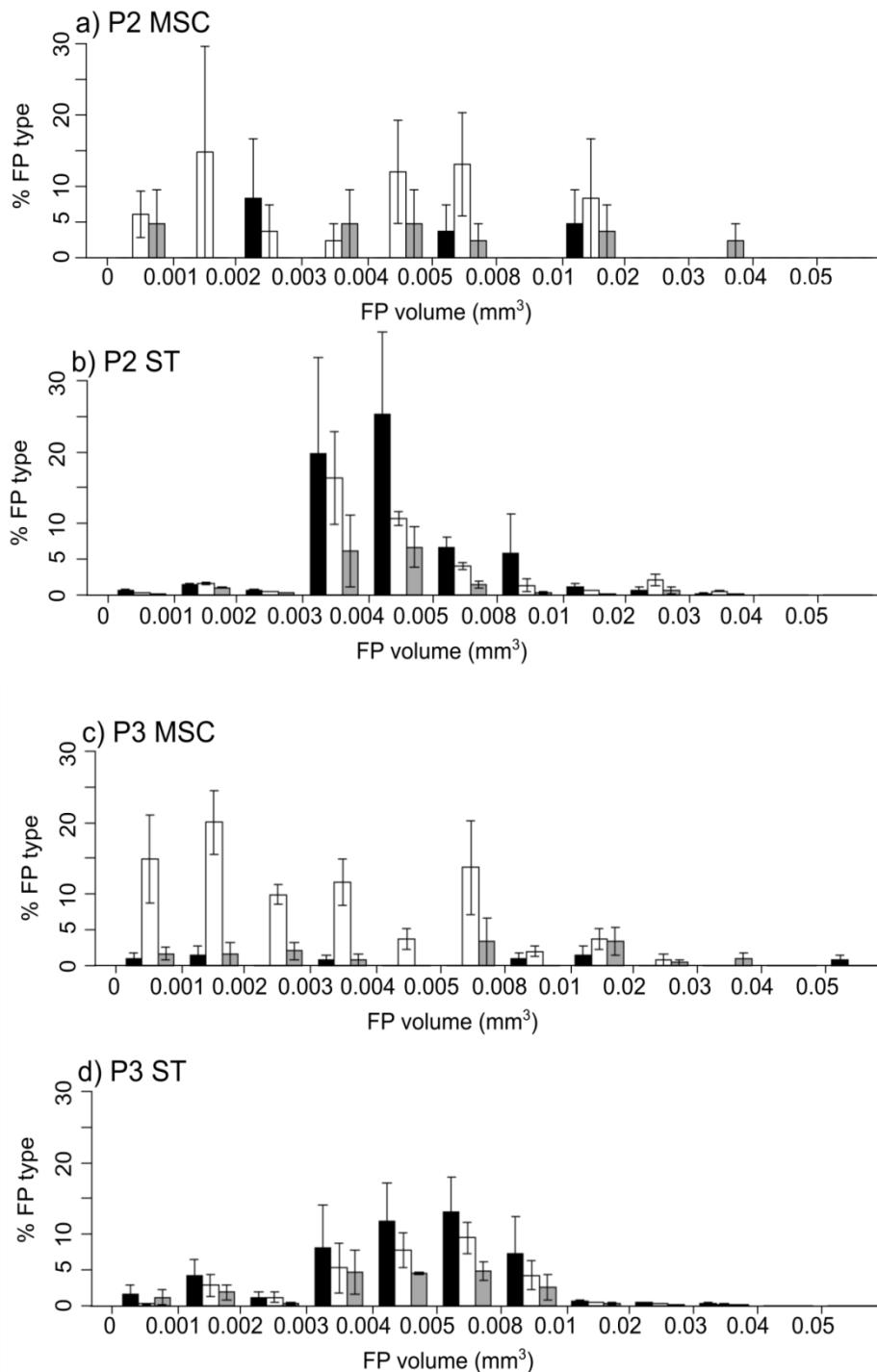
609

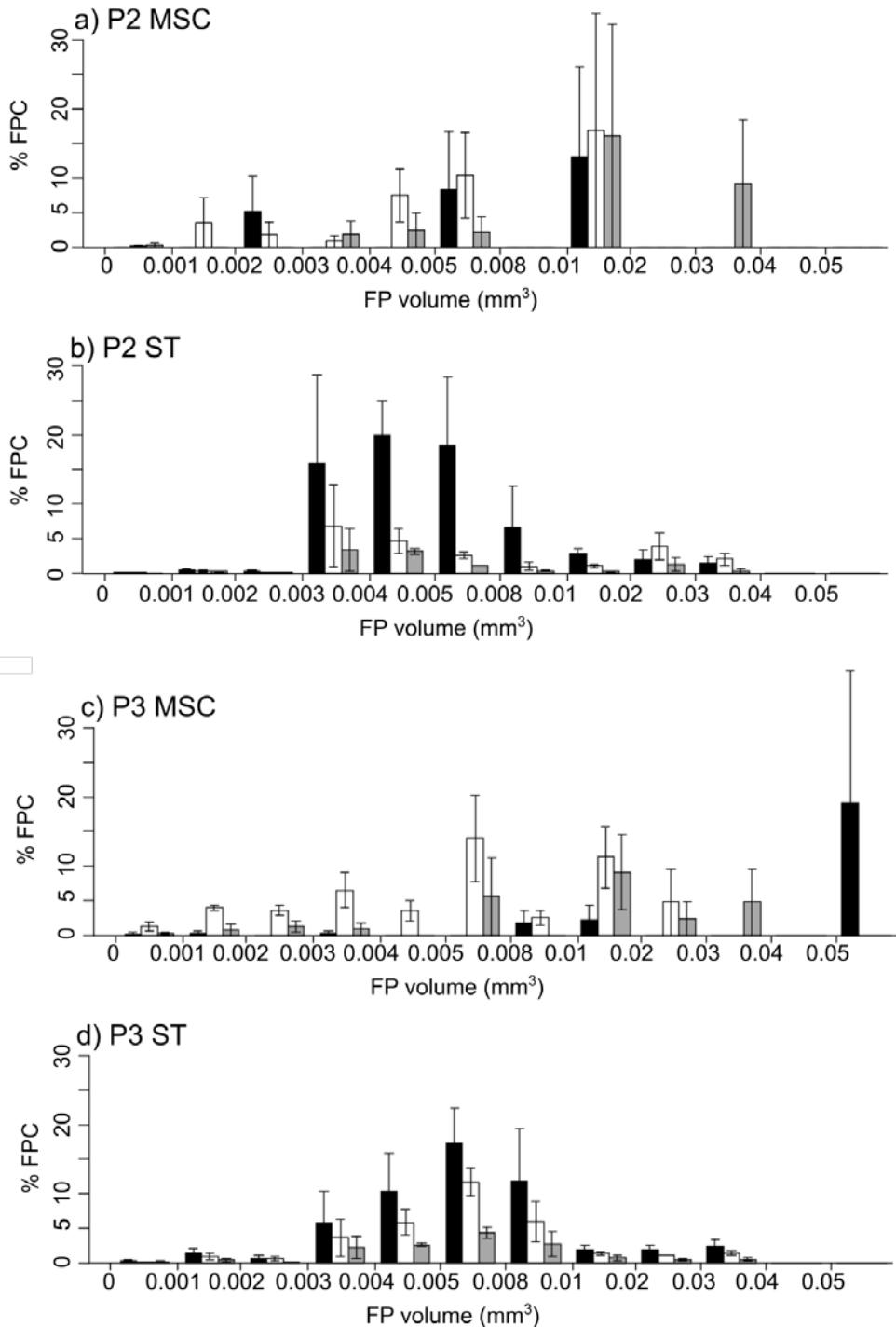
610

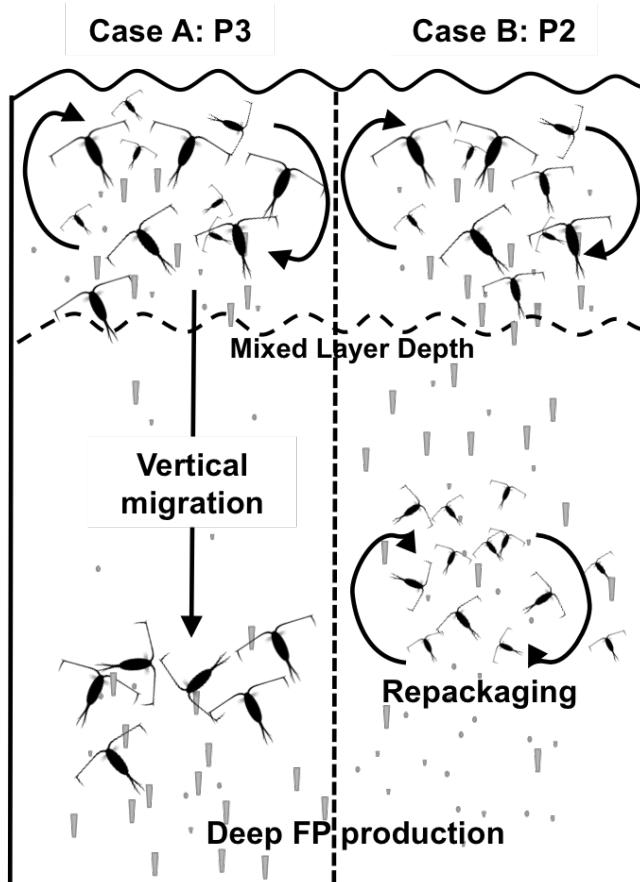

611 **Figure 1: Stations sampled in the Scotia Sea. White lines indicate average frontal positions. APF=Antarctic Polar Front (Orsi et al.,**
612 **SACCF = Southern Antarctic Circumpolar Current Front (Thorpe et al., 2002), SB-ACC=Southern Boundary - Antarctic**
613 **Circumpolar Current (Orsi et al., 1995). White dotted lines indicates the position of the ice edge on 3rd Dec 2013 (OSTIA Sea Ice**
614 **satellite data).**


615

616 **Figure 2:** Average zooplankton abundances ($\times 10^3$ Ind. m^{-2} (0-200m)) measured in the Scotia Sea in December 2013 and 2014
617 using a 200 μm mesh. Small microcopepods (black), large calanoids (white), other copepods (striped), small euphausiids (light
618 grey), other zooplankton (dark grey) (see text for full details on groups). Error bars show \pm SE of total zooplankton abundance
619 based on multiple Bongo net tows at each site.


620


621
 622 **Figure 3: Faecal pellet size distributions for P2 (left) and P3 (right) in the Scotia Sea.** The percent (%) abundance of faecal pellets
 623 in each size class (volume, mm^3) is presented for; a) estimated egested faecal pellet size distributions based on mesozooplankton
 624 abundances (200 μm mesh), b) faecal pellets measured in marine snow catchers (MSC) at MLD+110 m averages ($\pm\text{SE}$), and c)
 625 faecal pellets in sediment traps (ST). Krill faecal pellets have been removed. Note the uneven faecal pellet volume size classes, and
 626 log scale on the Y axis for a.


627
628 **Figure 4:** Light microscopy photographs of faecal pellets collected from Marine Snow Catchers (A-C) and sediment traps (D-F).
629 The different morphological classes are illustrated; a)+d)) round, b)+e) cylindrical, c)+f) ovoid. Scale bar = 0.5 mm.

631
632
633
634 **Figure 5:** Percent (%) contribution of each pellet type to total faecal pellet abundance, ovoid (black), cylindrical and elliptical (white) and round (grey). FP from a) P2 Marine Snow Catcher, b) P2 sediment trap, c) P3 Marine Snow Catcher, d) P3 sediment trap. Krill faecal pellets have been removed. Note the uneven faecal pellet volume size classes.

635
636 **Figure 6: Percent (%) contribution of each pellet type to total faecal pellet carbon, ovoid (black), cylindrical and elliptical (white)**
637 **and round (grey). FP from a) P2 Marine Snow Catcher, b) P2 sediment trap, c) P3 Marine Snow Catcher, d) P3 sediment trap.**
638 Krill faecal pellets have been removed. Note the uneven faecal pellet volume size classes.

639

640
641
642

Figure 7: Schematic to illustrate the dominant mechanisms of deep FP production that are suggested to be occurring at our study sites P2 (right) and P3 (left). In Case A, intact FP reach the deep ocean via vertical migration of zooplankton, whereas in Case B, FP at depth are due to in situ repackaging of sinking detritus by deep dwelling zooplankton.