Couturier Mathilde Département Biologie, Chimie et Géographie Université du Québec à Rimouski 300 Allée des Ursulines Rimouski, Qc, Canada G5L 3A1

Mathilde.Couturier@uqar.ca

Dear Dr Slomp,

We have found the reviewer's comments valuable and have carefully reviewed and modified the manuscript as justified in the two responses of reviewers published online the 18th March.

Please find attached:

- A revised version of our manuscript entitled "Nitrogen transformations along a shallow subterranean estuary".
- The detailed description (already published) of how and where we have dealt with the reviewer's comments (answers to comments in **bolded characters**).
- A marked-version of the manuscript, all changes are in red character

The manuscript now contains seven figures and three tables. Considering the reviewer's comments, we have proceeded to some changes. We describe here the main changes:

R#1 mentioned his doubt about end-member assignment and the two end-members mixing model. According to our response, we added complementary information based on water stable isotope and detailed all the sampled wells and their distance to the shoreline. Water stable isotope and hydrological context did not reveal another end-member (P.5, L.17), and the closest well (~50m) of the STE showed nitrates concentrations close to the nitrate concentration in the STE (P.8, L12).

We agree that end-member assignment is critical for the N behaviour interpretation. We consider this surficial STE as a continuum between fresh inland groundwater and ocean

where meteoric groundwater transit to the sea. In this case, we rewrote our objectives in the purpose to clarify our view (P4, L6).

We also reconsidered N inventories and N fluxes to better assess this vision of the two endmembers model across a continuum:

Firstly we calculated N inventories in three zones according the salinity. These three inventories gave an insight vision of N concentrations changes along the transect from the inland groundwater to seepage face. Secondly to estimate the impact of biogeochemical transformations on N fluxes, we discussed about the differences between N fluxes delivery to the STE and N fluxes potentially exported to the coastal ocean.

See section 4.2.1(P.13) and 4.2.2(P.14)

As suggested by R#2, we provided further details on the definition of the two flow rates used and clarified our main focus in our objectives (P.4) and section 4.2.2 (P14).

Finally, we rewrote section 4.1.1 and 4.1.2 on nitrate loss and ammonium production along the STE as suggested by R#1. We argued specifically on two processes, and we added one figure on the dissolved iron distribution (Fig. 6). We changed all the figures with the N distributions to add salinity contours to favour the understanding. See Fig. 3/4/6

We believe that this revised version of the manuscript is a substantial improvement. We are grateful to the reviewers for their insightful comments. The data and ideas presented in the present submitted manuscript are original and are not published nor submitted elsewhere.

Best regards,

Mathilde Couturier

Anonymous Referee #1

We kindly thank Reviewer #1 for the review and taking the time to provide constructive comments on our manuscript. We considered all comments in the revised version of our manuscript. Our answers to each comment are detailed in **bold**.

REVIEWER COMMENT: This manuscript details a nice study of N-species distributions in the subterranean estuary (STE). It adds a rather regionally-unique site to the large body of coastal groundwater nutrient studies available for lower latitudes on the North America east coast. I think there are two weaknesses of this paper that should be addressed before publication:

First, the assignment of endmembers is critical for interpreting non-conservative mixing

behavior. The "fresh groundwater" endmember seems poorly matched to the STE study site because the chemical composition is not similar to any of the low salinity regions within the sampled STE. In addition, it's not clear from the few transect contour plots shown, but some of the data suggest that there may be more than two endmembers that contribute to mixing patterns within this STE. Have the authors considered the possibility of shallow and deep fresh groundwater endmembers? They may have similar salinity, but spatially separated and chemically-distinct signatures. This clearly complicates the interpretation, but it may be more accurate. For example, for NOx, Figs 2 and 3 show a fresh, low NOx landward EM; a fresh, high NOx deep seaward EM; and a shallow, saline low NOx seaward EM. This interpretation means that Fig 4 may not show extensive removal of NOx, but simply dominant mixing of low NOx fresh groundwater and seawater.

AUTHOR'S RESPONSE: We agree that a great difference in nitrogen concentration occur between the defined "fresh groundwater end-member" and the range of concentrations measured in the surficial STE. We have three additional response elements: the first one is based on water stable isotopic signature of the water masses, the second is based on the hydrogeological knowledge of the Cap-aux Meules aquifer, and the last is due to the dataset of nitrogen concentrations we obtained from different wells.

1) We investigated the origin of water masses present along the STE using water stable isotopes (δ^{18} O, δ^{2} H; these data have been presented in a manuscript submitted to the Journal of Hydrology). Figure 1S presents the stable isotopic signatures of groundwater and seawater samples. Beach groundwater samples plot along a line defined by:

$\delta^2 H = 5.6 \, \delta^{18} O - 10$,

which is located slightly below the local groundwater – seawater line. The absence of a distinct isotopic composition in the beach groundwater samples suggests that infiltration and recharge of the beach aquifer occurred under modern climatic conditions. Furthermore, the absence of a significant depletion in ¹⁸O between the fresh beach groundwater and inland groundwater samples, suggests a common origin. The depletion in ²H observed along the salinity gradient is related to processes of evaporation, particularly in the saline samples located in the upper recirculation cell.

Fig 1S: Isotopic composition of groundwater samples showing the meteoric groundwaterseawater mixing line and the linear relation between samples from the beach system with their respective equations. The global meteoric water line (GMWL (Craig, 1961)) is also reported. (Confidential figure from Chaillou et al., submitted to Journal of Hydrology).

2) Concerning the hydrogeological context, there is no indication of confined deep aquifers. The seaward portion of the inland aquifer is considered isotropic and homogeneous (see Comte and Banton, 2007; Lemieux et al., 2015). However, we cannot exclude that fine sediments or organic-rich layers act as local impermeable horizons that change the water flow along the STE (see Evans and Wilson, 2017). Excepted the organic horizon located at \sim 30 cm below the Holocene sands in the landward part of the STE (i.e., at the top of the beach), there is no sedimentological indication of such conditions in the sedimentary core we collected using vibracoring technique at the high tide mark (i.e., \sim 2.5 m depth, Chaillou et al., 2014).

3) The different NO_x concentrations reported in the fresh inland groundwater were measured in different private and municipal wells located between 2000m (i.e. P5, a municipal well) and 50m (i.e. PC, a private well) from the studied transect. The nitrate concentrations ranged from 14 to 94 μ M. The concentration in the seaward well PC was about 20 μ M, which is close to the concentrations measured in the fresh beach groundwater samples (see figure 3A, concentration >15 μ M, or the "fresh rich-NO_x EM").

So, based on the water stable isotope signatures and hydrological context, we considered this surficial STE as a continuum between fresh inland groundwater and ocean where meteoric groundwater transit to the sea. This vision does not exclude that denitrification occurred along the transit, before the studied transect or deeper (as outlined by the second reviewer).

P.5, L17: "Based on stable isotopes of water along the STE, Chaillou et al. (submitted) confirmed the contribution of only two water end-members (i.e., fresh meteoric groundwater and seawater) and the absence of additional sceptical seeps."

P.8, L.2:" The concentrations of NO_x (Σ NO₃⁻⁺NO₂⁻) measured in four inland wells ranged from 14 to 94 µmol L⁻¹ with a mean concentration of 65.5 ± 26.7 µmol L⁻¹ (Table 1). In the near shore well, located at 50 m of the shoreline, the concentration reached 20 µmol L⁻¹."

RC: Second, the authors argue variously for N species removal and enrichment. They provide a lot of detailed and well-written general discussion about all the possible sources

of this non-conservative behavior, but very limited evidence for which processes are probably responsible for trends at their site. This would be a much stronger contribution

if the authors could provide more concrete evidence for occurrence of particular geochemical processes.

AR: We, indeed, provided a lot of details about the possible transformation of nitrogen species in the subterranean estuary without any evidence of one dominant mechanism. In this revised version of the manuscript, we provide a more accurate and robust discussion on the occurrence of particular processes. Based on our large dataset, we are able to discriminate the occurrence of dominant mechanisms to explain 1) the nitrate attenuation and 2) the ammonium production.

1) Nitrate attenuation. Denitrification is central to the nitrogen cycle with respect to the subsurface groundwater environment and involves the reduction of nitrate via a chain of microbial reduction reactions to N₂. In aquifers, lack of organic carbon to provide energy to heterotrophic micro-organisms (denitrifying bacteria that use organic carbon as the electron donor) is usually identified as the major factor limiting denitrification rates. Here, organic carbon content is not limited regarding DOC concentrations (DOC > 1.5 mM; see Couturier et al., 2016). Denitrification is probably the dominant N-pathway in this groundwater: subsurface environments with high concentrations of labile organic matter and reducing conditions are likely to be particularly significant zones for denitrification. This process occurs all along the transit, from the aquifer to the discharge zone, upstream of the study transect and deeper as mentioned by the referee #2.

In addition to the absence of oxygen and the presence of organic carbon, reduced iron facilitates the occurrence of denitrification. Iron-oxides play a key role in the biogeochemical processes in this STE. The tidal input of oxygen induces oxic/anoxic oscillation and then the reductive dissolution of Fe-oxyhydroxides leading to total dissolved iron concentrations as high as 1 - 1.6 mM. There is some evidence that groundwaters containing Fe²⁺ contain little or no nitrate (Korom, 1992): Fe²⁺ supports autotrophic denitrification.

In this new version, the spatial distribution of Fe^{2+} will be added and the discussion focuses on these two complementary processes.

2) Ammonium production. The problem that we met here was to explain the origin of the high NH_4^+ concentrations measured along the shallow STE. NO_x cannot support these concentrations. As explained before, there is no evidence of additional water masses input enriched in NH_4^+ and no problem of local sewage inputs (as sceptic tank seeps) was observed. The only pathway to form such concentrations of NH_4^+ is the mineralisation of DOM and POM. POM content in Holocene sands and Permian sandstone aquifer is low (~5%). However, we measured very high DOM concentrations (Couturier et al., 2016) associated to high DON concentrations (>500 μ M,). DON concentrations are particularly high (~ 47 μ M) at the high tide mark, in the landward region of the upper saline recirculation cell. High DON concentrations are associated to high NH_4^+ concentrations.

P.10, L.11: See section 4.1.1. Nitrate loss along the STE and Fig. 6

RC: L7 p7 and elsewhere. Suggest reporting dissolved oxygen in molar units instead of percent to facilitate comparison with other chemical constituents.

AR: We agree with the reviewer. The concentrations of oxygen range from 0.1 to 386μ M. It appears that oxygen is completely consumed *via* the oxidation of DOC and is probably a minor oxidant for reduced metabolites produced in the sub-oxic / anoxic part of the STE. The replenishment of oxygen is not sufficient.

RC: L18 p7. I disagree with the "fresh endmember" choice. Is this really representative of water entering the study STE, especially since the NOx and DON mixing lines don't seem consistent with the STE samples (Fig 4)? Seems like the best choice would be from within the site boundaries.

AR: There is indeed a difference between the defined fresh end-member N value and concentrations in the beach groundwater sample. Values in fresh end-member were measured in 4 different private and municipal wells located between 2000m and 50m from the landward part of the STE. NO_x concentrations ranged from 14 to 94 μ M. The concentration in the closest wells (i.e., 50m) of the STE is about 20 μ M, which is close to the concentration measured in the fresh beach groundwater samples (i.e., 5-12 μ M, see figure 4S).

As explained above, we think this fresh end-member is quite representative of water entering the STE, water stable isotope signature confirms that this fresh end-member is a source of water to the STE. We chose this end-member as we wanted to explain not only the N transformations and source within this shallow surficial subterranean estuary, but also show the transformation along the continuum between fresh inland groundwater and ocean (this idea is more clearly presented in the introduction of the new version of the manuscript). In this case, we found more appropriate to take this end-member. However, we do not exclude that denitrification occurred along the transit, before reaching the study STE as suggested by the referee 2.

Fig.4S: Cross-sections of the transect showing the topography and distributions of NOx. Black contour lines refer to salinity. Depths are relative to mean sea level (i.e., 0 m is mean sea level). Contour lines were derived by linear interpolation (kriging method) of data points; the interpolation model reproduced the empirical data set with a 97% confidence level. White dots represent the depths at which samples were collected using multi-level samplers.

RC: The spatial and salinity patterns almost seem to suggest 3-EM mixing, with were seasonal or spatial/depth differences greater? In L24 p8, note that assessment of removal or addition depends

on 2- vs. 3-EM mixing. Hard to evaluate this further without seeing the spatial distribution of NOx and NH4 similar to Salinity in Fig 2.

AR: We already discussed and justified our 2-EM mixing in the previous comments (p.1-2). The spatial and depth difference observed between the different study periods are controlled by 1) the multi-samplers location along the cross-shore transect (we focused on the top of the beach in 2011 and 2012 and on the intertidal area in 2013 and 2015); 2) the beach morphology that changes over the seasons due to spring tides, storms and ice covers. For example, in 2015, we obtained a post-storm-type profile, with no seaward accumulation in comparison with 2011 and 2012 profiles (see the morphology of the beach surface in Fig. 5S). Because the upper saline recirculating cell moves along a seaward – landward direction (which lead to the displacement of the "biogeochemical reactor"), we need to "normalize" the target species distribution. Here, salinity is used as a conservative proxy of the mixing to obtain a global view of N-species distribution along the STE whatever the recirculation cell location. Nevertheless, we agree with the referee 1 and we will add a figure with the spatial distribution of NO_x and NH₄⁺ similar to salinity.

See Fig. 3. All years are now represented with salinity added as contours lines.

RC: The distances in Figs 1-3 don't match. I also don't like Fig 3 (even though 2012 was apparently the most complete with respect to N species) because it doesn't appear to capture the most landward "inventory" site. Or maybe it's just because the distances are all mixed up.

AR: As mentioned by the referee, distances don't match on Figures 2 and 3; distances in 2012 should be 35 m, and 20m in 2013. We will correct Fig 1-3 with the correct distances in the revised manuscript. Also, as discussed in the last point, we will add the spatial distribution of NO_x and NH_4^+ in 2012, 2013 and 2015.

Distances were corrected. See Fig. 3/4/6

RC: L25 p8. Does NH4 really decrease under high O2 conditions? How was this evaluated? It's not at all apparent from the data shown in Fig 4.

AR: We evaluated this point using linear regression ($R^2=65\%$, p.value<0.05), but we agree with the referee that the decrease is not really apparent on Fig. 4 due to high variability in the groundwater beach.

RC: L3 p9. How much water was pumped before stabilization of GW quality parameters (L3p6)? How much volume was pumped for samples? Could co-existing NOx and NH4 be an artefact of sample volumes that overlap redox boundaries?

AR: We pumped no more than 700mL for stabilization of GW quality parameters and samples. We made preliminary tests in 2011 to avoid overlap. We estimated that, considering the permeability and porosity of the sediments (K= 11.4 m d⁻¹; \emptyset =0.25; Chaillou et al., 2016), and the size of the sampling pore (\emptyset =0.9 cm), the maximal volume is about 1 to 1.5 L (depending of the distance between the sampling pores).

We cannot totally exclude the overlapping of redox boundaries due to sampling artefacts and sampling pore depth. However the co-occurrence of NO_x and NH_4^+ were found under oxygen depleted conditions, each year in same location (i.e., below saline circulation cell and mixing zone). We assume it is not an artefact.

RC: The discussion in section 4.1 doesn't really say much about the current study site. So how variable do the authors think that this STE is with respect to salinity and redox conditions? Does the STE structure change temporally relative to the snowmelt period? How did the June sampling periods relate to snowmelt during the study years?

AR: We think that salinity and redox conditions are quite constant over the year in the spring period (see comments on the spatial distribution). In the Îles-de-la-Madeleine Archipelago, the presence of snow in May is common. Maximal aquifer recharge occurs between April and June (see figure 6S from (Chaillou et al., 2013).

Fig 6S: Water tables from municipal wells of Cap-aux-Meules Island. The black line is the mean simulated level from (Madelin'Eau, 2004).

We assume that high water table level, due to the snowmelt, leads to a dominance of fresh groundwater inland in the STE and spatially limit the landward extension of saline circulation cell. There is no information on the impact of snowmelt on the STE structure. According to our knowledge, our studies are the first work on boreal and snowmelt-affected STE. In a recent work, Heiss and Michael, (2014) showed that the size of the circulation cell and area of the mixing zone were mostly affected by seasonal water table oscillations. The intertidal circulation cell expanded horizontally and vertically as the inland water table declined, displacing the fresh discharge zone and lower interface seaward. When water table is maximum, the beach groundwater was mostly fresh as we observed in the Martinique Beach in June. Calculations based on Darcy flow combined with Rn-based mass balance SGD estimation (Chaillou et al., submitted to the Journal of Hydrology) show that fresh groundwater mainly contribute to total SGD; the seawater infiltration is minimum and only limited to surficial intertidal Holocene sands (~ 30 cm depth). We think this period is important for chemical exports to the ocean.

As pointed by the referee, the section 4.1 is not essential and the information will be added to the section 2.1 "Study area".

RC: L16 p11. If DNRA depends on Corg availability, would it also be expected to be depressed due to high lignin/low labile DOC?

AR: We agree with the reviewer. It is also expected that DNRA will be depressed due to high lignin/low labile DOC. It is why we think those heterotrophic and autotrophic denitrifications are dominant processes to explain the loss of nitrate as previously discussed. This section was removed

RC: The discussion of biogeochemical N-transformations is rather speculative. In Section 4.2.1, the NOx distribution suggests removal (or maybe not, if there are more than two endmembers, see above). If removal, then reduction to N2 and reduction to NH4 are suggested as possibilities. This discussion is well-written, but doesn't really lead to a useful conclusion. In the end, it's not clear to me if any of the discussed pathways are any more likely than the others. ("More work is needed" is not a very satisfying summarizing sentence.)

AR: We agree with the referee. In a previous comment (p.3), we pointed out the main pathways. We will add complementary information in the revised manuscript and present a better structure for our discussion. See section 4.1.1. P10, L11

In Section 4.2.2, I agree that the NH4 source is probably organic matter oxidation, especially considering the sediment layer containing 20% OM. It's not clear to me why it is important whether the NH4 come from decomposition of DON or POM/sediment OM, or the importance of the pathway by which organic carbon is oxidized (sulfate reduction, Eq 5, or something else). It would however be useful if the authors could say something about where the NH4 enrichment occurs in this STE and why (e.g., in Fig 3, at the 15m profile).

AR: We agree and as suggested by the referee we will provide information on the location of the NH_4^+ enrichment. Production of NH_4^+ is mainly located in the mixing zone where salinity ranges from 10 to 20. The highest NH_4^+ concentrations are observed upstream of the saline circulation cell where the highest DON concentrations are found.

RC: L8, p13. I don't see these "hot spots", except maybe deep and seaward in Fig 3. I would find this discussion much more interesting if the authors showed and discussed their results in more detail, and limited the speculation. None of the discussion in this section is specific to this location or to the results found in this study.

AR: We will provide additional figure of NO_x distribution in 2012, 2013 and 2015 in order to show these hot spots in the revised manuscript. We agree that this section is rather speculative. We will add this section to the section 4.2.1 on the nitrate attenuation. We use the term "hotspot" to describe local production of nitrate in a nitrate depleted environment (i.e., in 2013 and 2015, 190 cm and 50 cm depths). We attributed this local production of nitrates to local and sporadic production. Some local production may occur due to micro-environment and non-steady state conditions. Figure 3 was changed. All years of N distributions are now presented

RC: The nutrient inventory approach to flux estimation seems a bit misguided, given the work by e.g., H. Michael and C. Robinson showing the finer structure in transport through the STE (i.e., not just plug flow). For the nutrient inventories, it appears (Fig 1) that the data are from 2013? Or are data from different years somehow combined? If so, what is the spatial region considered for combining different profile locations?

AR: We agree that some studies now succeed in describing finer structure of transport through STE (Abarca et al., 2013; Heiss and Michael, 2014; Robinson et al., 2014). These studies showed SGD are mostly dependent of tide level and water table oscillations. Using radon 222 and water stable isotopic analyses, Chaillou et al., (in revision) described in more details transport through the STE of Martinique Beach. However, variability in geochemical constituent and non-conservative transport is still difficulties to afford accurate nutrient fluxes.

We think there is a misunderstanding of our explanation of inventories approach as we are not just using plug flow. Nutrient inventory approach has the advantage to capture the entire nutrient variability on the depth at given position (see the work of Gonneea et al., 2013). Nutrients inventories are reported from 2013 for NO_x and NH_4^+ , since water flux calculations

were made in 2013 using Darcy's Law. Unfortunately, DON and TDN values are not available in 2013, thus we used data from 2012 to estimate DON and TDN inventories. As location of some multi-level samplers is superimposed from year to year, we used the same multi-level samplers to performed inventories in 2012 and 2013.

P13, L12: Nutrient inventories were calculated by integrating nutrient concentrations at sampling locations according to salinity and multiplying by the sediment porosity (i.e., 0.25; Chaillou et al. 2012). Salinity was used to delimit zones to calculate N-inventories along the flow path in deep fresh groundwater with low salinity (S < 5; N= 57), in the brackish beach groundwater (5 < S < 15; N=19) that runs parallel to the surficial saline circulation cell and, finally, in saline groundwater (S > 15; N=15). Inorganic and organic nitrogen inventories are presented in Table 2.

RC: L12, p15. The "filter" interpretation depends on how you account for dilution. Presumably, the inventories would somehow have to be normalized to salinity? Also, here and the discussion on p16, the non-conservative behavior interpretation (and also flux) depends on endmember assignment. I would argue that the STE is not a sink for terrestrial N because any removal relative to the upland well endmember must have occurred prior to reaching the "onshore" profile (or according to Fig 3, the farthest onshore profile). If anything, the inventories in Fig 5 suggest that groundwater is enriched in N at the HTM profile, and the STE is therefore a source of N to the coastal ocean.

AR: We agree that the non-conservative behavior interpretation depends on end-member assignments. As discussed previously (p.1-2), we are confident with the choice of these two end-members.

We agree that inventories at the HTM profile suggest enrichment, however, at the LTM, inventories show an attenuation of nitrogen species. This is all the difficulties to estimates accurate fluxes to the ocean. The Fig. 5 needs more precision about the discharge zone, the arrow is not representative enough as fresh groundwater discharge should occur after the saline circulation cell. We will correct this figure in the revised manuscript.

Considering Q_{inland} and Q_{beach} measured, and the concentration in fresh inland groundwater as well as the inventories, we observed a loss of total N in the discharge zone. We agree with the reviewer that most of the NO_x species removal must have occurred prior the STE. But results also showed a removal of DON through the beach groundwater (Fig.4). DON concentration comes from the fresh inland groundwater and Couturier et al., (2016) showed that DOM in fresh inland groundwater and in beach groundwater exhibited terrestrial signature.

However we may temper our conclusion. Indeed, total N loss was estimated to 14 mol m⁻¹ y⁻¹ which represents a loss of 13%. Input of DIN concentration is almost similar to the DIN

exported. However, the interesting point is the change in nitrogen exported to the coastal water.

We agree with the reviewer and now presenting inventory based on salinity. These inventories showed an enrichment in N within the beach groundwater.

P14, L2: This strong *in situ* TDN production in the brackish beach groundwater altered the groundwater-borne N pool. Indeed, TDN concentrations in the saline circulation cell are much higher than the input from inland groundwater, even if this TDN is subsequently attenuate in surface sediment in the saline circulation cell due to biogeochemical processes and dilution (Table 2). Our findings showed that even if groundwater-borne TDN, in the form of NO₃⁻ and DON, was mostly attenuated along the groundwater flow path, a "new" N pool was produced within the STE as it was already observed for DOM (Couturier et al., 2016).

RC: L2, p17. It's not clear how relevant these comparisons are. For example, the comparison with the St Lawrence River would probably be more appropriate if the authors scale their shoreline fluxes to the shoreline length for the entire nearshore region receiving the river input (assuming this is justified).

AR: We agree, this comparison was poorly adapted. In the revised manuscript, we will compare our results with nutrients exportation by STE. Thus our results are lower than others reported studies such as Anschutz et al., 2016; Li et al., 2009; Weinstein et al., 2011. P15, L7 "This potential N export corresponds to 141, 1.3 and 33.8 mol m⁻¹ y⁻¹ for NH₄⁺, NO_x, and DON respectively (Table 3), corresponding to an annual N input of ~3100 kg along the 1200 m Martinique Beach shoreline, which is twice the fluxes from groundwater-borne. DIN exported to the seepage face (~142 mol m⁻¹ y⁻¹) was in the range of previous measurements at other sites, such as the Mediterranean coast (France; 530 mol m⁻¹ y⁻¹; Weinstein et al., 2011), the Gulf of Mexico (FL, USA; 414 mol m⁻¹ y⁻¹; Santos et al., 2009), and the Atlantic Coast (Aquitania Coast, France; 150 mol m⁻¹ y⁻¹; Anschutz et al., 2016)."

RC: Should check significant figures in the tables. **AR: We are going to check and correct significant figures in the tables**

RC: Fig. 4. Suggest using different symbol shapes in addition to color to distinguish oxygen level categories.

AR: We agree, we are going to used different symbol shape and color to distinguish oxygen level. Fig. 6

RC: Fig. 5. "saline saltwater" is rather redundant wording. AR: We will correct the grammar and check for redundancy in the revised manuscript

To sum up all our response to the referee, we will address some revisions in the new manuscript:

- Specify our objectives as we present N transformations along a continuum between fresh inland groundwater and ocean through a shallow surficial aquifer

- Precise the definition of the two end-members

- Complete information about the calculation of volumetric fluxes and the nutrient approach

Additional references:

- Abarca, E., Karam, H., Hemond, H.F., Harvey, C.F., 2013. Transient groundwater dynamics in a coastal aquifer: the effects of tides, the lunar cycle and the beach profile. Water Resour. Res. 49, 2473–2488. doi:10.1002/wrcr.20075
- Anschutz, P., Charbonnier, C., Deborde, J., Deirmendjian, L., Poirier, D., Mouret, A., Buquet, D., Lecroart, P., 2016. Terrestrial groundwater and nutrient discharge along the 240-km-long Aquitanian coast. Mar. Chem. na. doi:10.1016/j.marchem.2016.04.002
- Chaillou, G., Couturier, M., Tommi-Morin, G., Rao, A.M., 2014. Total alkalinity and dissolved inorganic carbon production in groundwaters discharging through a sandy beach. Procedia Earth Planet. Sci. 10, 88–99. doi:10.1016/j.proeps.2014.08.017
- Chaillou, G., Lemay-Borduas, F., Couturier, M., 2016. Transport and transformations of groundwater-borne carbon discharging through a sandy beach to coastal ocean. Can. Water Resour. J. 38, 809–828. doi:10.1080/07011784.2015.1111775
- Chaillou, G., Touchette, M., Rémillard, A., Buffin-Bélanger, T., St-Louis, R., Hétu, B., Tita, G., 2013. Synthèse de l'état des connaissances sur les eaux souterraines aux Îles-de-la-Madeleine - Impacts de l'exploration et de l'exploitation des ressources naturelles sur celles-ci.
- Comte, J.-C., Banton, O., 2007. Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers. Geophys. Res. Lett. 34, L10402. doi:10.1029/2007GL029981
- Couturier, M., Nozais, C., Chaillou, G., 2016. Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic matter to coastal ocean. Mar. Chem. 186, 46–57. doi:10.1016/j.marchem.2016.08.001
- Evans, T.B., Wilson, A.M., 2017. Submarine groundwater discharge and solute transport under a transgressive barrier island. J. Hydrol. 547, 97–110. doi:10.1016/j.jhydrol.2017.01.028
- Gonneea, M.E., Mulligan, A.E., Charette, M.A., 2013. Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophys. Res. Lett. 40, 2701– 2706. doi:10.1002/grl.50192
- Heiss, J.W., Michael, H.A., 2014. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, srping-neap and seasonal cycles. Water Resour. Res. 50, 6747–6766. doi:10.1002/2014WR015574
- Lemieux, J.-M., Hassaoui, J., Molson, J., Therrien, R., Therrien, P., Chouteau, M., Ouellet, M., 2015. Simulating the impact of climate change on the groundwater resources of the Magdalen Islands, Québec, Canada. J. Hydrol. Reg. Stud. 3, 400–423. doi:10.1016/j.ejrh.2015.02.011
- Li, X., Hu, B.X., Burnett, W.C., Santos, I.R., Chanton, J.P., 2009. Submarine groundwater discharge driven by tidal pumping in a heterogeneous aquifer. Ground Water 47, 558–568. doi:10.1111/j.1745-6584.2009.00563.x
- Madelin'Eau, 2004. Gestion des eaux souterraines aux Îles-de-la-Madeleine Un défi de développement durable Rapport final.
- Robinson, C., Xin, P., Li, L., Barry, D. a., 2014. Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions. Water Resour. Res. 50, 165–181. doi:10.1002/2013WR013813
- Weinstein, Y., Yechieli, Y., Shalem, Y., Burnett, W., Swarzenski, P.W., Herut, B., 2011. What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean ? Environ. Sci. Technol. 45, 5195–5200.

Anonymous Referee #2

We kindly thank Reviewer #2 for the review and taking the time to provide constructive comments on our manuscript. We considered all comments and suggestions in the revised manuscript. Our answers to each comment are presented in bold.

REVIEWER COMMENT: This paper examines N cycling processes in the subterranean estuary of an island in the Canadian Archipelago. It employs nutrient data collected over multiple years combined with previously published estimates of groundwater flow to try and quantify N removal and addition processes in the STE as well as fluxes to the coastal ocean. Overall the paper is generally well written and the data set are valuable and unique. However, I have two main issues, one having to do with interpretation and another with flux methodology.

Regarding the former, and as noted up front in the title, the study focused on the shallow portion of the STE (upper 2-2.5 m). The general lack of NO3 within this zone as compared to the relatively high NO3 measured in inland fresh groundwater is used to invoke substantial denitrification or other N removal process during groundwater transport to the coast. The problem with this is that their shallow sampling scheme did not allow them to capture the local fresh-saline groundwater interface (even at the furthest seaward multi port piezometer). The authors therefore cannot rule out that a NO3 plume exists beneath the reach of their piezometers. This conclusion should be cut from the paper (or at leased tempered with much of the discussion relating to it removed).

AC: We agree with the reviewer that we cannot effectively totally rule out that a NO_3 ⁻ plume occurs beneath the sampling location or, as suggested by reviewer#1, that a third end-member occur in the STE (i.e., a fresh and rich-NO_x EM) as in some others studies (Kroeger and Charette, 2008; Weinstein et al., 2011).

However, in this study we aim to consider the nitrogen transformations along a continuum between fresh inland groundwater and seawater by way of hydrodynamics conditions. We focus on the difference between the fresh inland groundwater input to the STE and the exportation to the coastal ocean *via* the discharge zone. We, thus, observed nitrogen transformation in relation with fresh groundwater and the upper saline circulation cell. Fresh inland groundwater, which comes from the aquifer, transports rich NOx groundwater to the STE. Even if nitrates concentrations observed in wells (~60 μ M) are higher than in beach groundwater and in the seawater, this is below the Guidelines for Canadian Drinking Water Quality. It's a low anthropogenic system where nitrates concentrations are weak. At the depth defined by our sampling approach, loss of nitrogen appears in the shallow STE, leading to depleted nitrogen exportation to the coastal ocean *via* the discharge zone.

Introduction and objectives will be refined in the revised manuscript and our conclusion will be tempered.

P4, L7: Martinique Beach, located in the Magdalen Islands (Québec, Canada) in the southern limit of the boreal climatic zone, is exposed to little or no external contamination. Site-specific studies in boreal and cold environments are still scarce and climate and

hydrology change rapidly in cold climates (Hinzman et al., 2005). Thus nutrient fluxes by SGD to the coastal ocean in boreal regions and their contribution at local and global scales remains to be elucidated. The objective of this four-year study was to investigate the spatial and temporal variation of N species (inorganic and organic N) through a shallow boreal STE, from inland groundwater to coastal ocean. SGD fluxes of the different N species that are discharged to coastal waters by shallow groundwater at this specific-site were also estimated.

The second main issue is on the definition of Q inland vs. Q beach and how they're used to derive N fluxes through the STE. Based on the description, they should both be equivalent, but are based on different datasets? If Qbeach is an estimate of the fresh SGD, then how can the shallow circulated seawater be (and its associated N load) be included in the flux calculation? If the focus is entirely on the fresh SGD plume, then Q in should equal Q out, therefore the use of two different Q values to derive N fluxes in with N fluxes out is inappropriate. Please provide further details (even though data from other papers is used, this paper needs to stand alone even if finer details can be looked up elsewhere) and also clarify what the main focus of the mass balance is (are saline SGD N fluxes, which are typically dominant, meant to be ignored, excluded?). Overall I support the publication of this paper if these two main issues can be suitable addressed.

AC: Q_{inland} and Q_{beach} used in the manuscript were calculated by Chaillou et al., 2016. We provide further details in the revised manuscript as follow:

Hydrogeologic data from municipal and private water wells were used to estimate the inland Darcy velocity (v_{inland}) as $v_{inland} = -K \times i$, where K is the hydraulic conductivity of the aquifer and i is a mean annual hydraulic gradient from the land to the coast. K and i values were estimated from hydrogeological reports. To convert these results (cm/d) to volumetric freshwater flux (m^3/d) , the crosssectional flow area was determined using GPS measurements of 1200 m of shoreline. Furthermore, based on the Ghyben-Herzberg and Glover relationship (Cooper et al., 1964), the freshwater / saltwater interface was estimated to about 73 m below the water table of the aquifer at the nearest well from the coastline. Hence, a flow depth of 73 m is used to estimate the inland groundwater flux at the coastline (Qinland). Qinland is then the theoretical inland groundwater export from the Permian sandstone aquifer. This rate assumes a uniform hydraulic conductivity (K) at the head of the bay and an isotropic shallow aquifer. This flux agreed quite well with a fresh groundwater flux estimate based on a mass-balance approach developed in the same area by Madelin'Eau, (2004), a private company. In the same manner, a specific discharge of local groundwater was estimated for the beach system (v_{beach}) using Darcy's Law with K^* is the hydraulic conductivity (m day⁻¹) of the unconfined beach aguifer material and dh/dl is the hydraulic gradient (m) measured using three monitoring piezometers perpendicular to the shoreline (L \sim 30 m, from the top of the beach to the low tide mark). Also based on the Ghyben-Herzberg and Glover relationship (Cooper et al., 1964), the top 3.2 m of the aquifer at high tide mark is fresh (except for the narrow surficial saltwater lens). Hence, we used a flow depth of 3.2 m to estimate the fresh groundwater flux (Qbeach) through the beach in May 2013. This flux is two times

higher than the Q_{inland}. This flux was ~ 2 times higher. This difference is not surprising since SGD is highly variable on a seasonal scale: the snowmelt period is characterized by a rapid elevation of the water table in this region. In addition, the proximity of seawater and tides change hydrostatic pressure and contribute to water-level elevation in the unconfined beach aquifer compared to the regional aquifer (Pauw et al., 2014).

These explanations will be summarized and added in the manuscript (in the "study area" section).

In this approach, we used Q_{inland} and N-species concentrations in wells to estimate groundwater-born fluxes, or the volume of matter potentially exported to the coastal zone (it is a common view used at global scale, see Beusen et al., (2013). The N-species flux within the beach were evaluated using Q_{beach} . Here the inventory was based on the entirety of the groundwater column, including the few saline samples collected in the upper saline lens. Because the water table is high (see Heiss and Michael, 2014) and based on water stable isotopes data (see Fig S1, RV1, from Chaillou et al., submitted), we assume that beach groundwater is mainly fresh (~ 50-70% of total SGD is fresh SGD; Chaillou, pers. Comm.). Vertical inventory allow to estimate a total N-species discharge from the shallow surficial STE.

P5, L14: In the Magdalen Islands, the snowmelt leads to a high water table from April to June in the Permian sandstone aquifer (Madelin'Eau, 2004) and in the adjacent beach aquifer (Chaillou et al., 2016). Under these hydrologic conditions, the saline circulation cell and its associated mixing zone are spatially limited, and the inland hydraulic gradient is the main control of total SGD (Heiss and Michael, 2014; Robinson et al., 2007a). Based on the stable isotopes of water along the STE, Chaillou et al., (submitted) confirmed the contribution of only two water end-members (i.e., fresh meteoric groundwater and seawater) and the absence of additional septic tank seepages. They also highlighted the high contribution of fresh groundwater and the limited infiltration of seawater in shallow beach groundwater. In spring 2013, Chaillou et al. (2016) used mean and multi-annual regional water table levels from municipal wells to estimate a regional seaward fresh groundwater flow (Q_{inland}) of about 0.021 m³ s⁻¹. Q_{inland} is then the theoretical inland groundwater export from the Permian sandstone aquifer to the Martinique beach. In Martinique beach, fresh groundwater flow was also evaluated based on a mean hydraulic gradient through the 50m-length of the beach. This specific flow (Q_{beach}) was 0.029 m³ s⁻¹, suggesting that fresh inland groundwater flux contributes to at least 70% of the water flow discharging to the coastal waters.

RC: P1 Line 23: The paper has a general issue with overuse of significant figures. For example, the N fluxes here cannot possibly be accurate to for significant figures (two is probably appropriate). Same with the concentration data (e.g. 6 sig-figs used on p 12, line 10). Please correct throughout the paper.

AC: We agree, we will correct significant figures for the N fluxes and concentration data in the revised manuscript.

RC: P. 2 Line 16: sea-level has recently been shown to be a control on mixing zone dynamics: Gonneea, M.E., A.E. Mulligan, and M.A. Charette. (2013) Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophysical Research Letters, 40, 2701-2706.

AC: Sea level (and reference associated) will be added as an additional control of the mixing zone.

RC: P. 3. Line 24: See Saenz et al for an example of Anammox occurrence in the STE: Sáenz, J.P., E.C. Hopmans, D. Rogers, P.B. Henderson, M.A. Charette, K. Casciotti, S. Schouten, J.S. Damsté, and T. Eglinton. (2012) Distribution of anaerobic ammonia-oxidizing bacteria in a subterranean estuary. Marine Chemistry, 136-137, 7-13. **AC: Reference will be added.**

RC: P5 Line 5: At what depth is the boundary between the beach (sand) aquifer and the sandstone aquifer? Was the inland well sampled within sand or the sandstone unit? **AC: The boundary between the sand and the sandstone aquifer is located at a depth of 20cm (Chaillou et al., 2014). Inland wells were sampled within the sandstone aquifer.**

RC: P7 Line 18: Inconsistent use of super/subscripts throughout. **AC: Corrected**

RC: Fig. 3A: concentration color bars (legend) do not match those in use on the figure/figure contours. Would be ideal if these plots could have the salinity contours as an overlay.

AC: We agree. The legend of Fig 3A will be corrected, and as suggested, salinity contours line will be added as an overlay of these plots (see Fig.5S- see RV1).

To sum up all our response to the referee, we will address some revisions in the new manuscript:

- Specify our objectives as we present N transformations along a continuum between fresh inland groundwater and ocean through a shallow surficial aquifer - Precise the definition of the two end-members

- Complete information about the calculation of volumetric fluxes and the nutrient approach

Additional references:

- Beusen, A.H.W., Slomp, C.P., Bouwman, a F., 2013. Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ. Res. Lett. 8.
- Chaillou, G., Couturier, M., Tommi-Morin, G., Rao, A.M., 2014. Total alkalinity and dissolved inorganic carbon production in groundwaters discharging through a sandy beach. Procedia Earth Planet. Sci. 10, 88–99. doi:10.1016/j.proeps.2014.08.017
- Chaillou, G., Lemay-Borduas, F., Couturier, M., 2016. Transport and transformations of groundwater-borne carbon discharging through a sandy beach to coastal ocean. Can. Water Resour. J. 38, 809–828. doi:10.1080/07011784.2015.1111775
- Cooper, H., Kohout, F., Henry, H., Glover, R., 1964. Seawater in coastal aquifers, Geological. ed.
- Heiss, J.W., Michael, H.A., 2014. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, srping-neap and seasonal cycles. Water Resour. Res. 50, 6747–6766. doi:10.1002/2014WR015574
- Kroeger, K.D., Charette, M., 2008. Nitrogen biogeochemistry of submarine

groundwater discharge. Limnol. Oceanogr. 53, 1025–1039.

- Madelin'Eau, 2004. Gestion des eaux souterraines aux Îles-de-la-Madeleine Un défi de développement durable Rapport final.
- Pauw, P.S., Oude Essink, G.H.P., Leijnse, a., Vandenbohede, a., Groen, J., van der Zee, S.E. a. T.M., 2014. Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers. J. Hydrol. 517, 269–283. doi:10.1016/j.jhydrol.2014.05.042
- Weinstein, Y., Yechieli, Y., Shalem, Y., Burnett, W., Swarzenski, P.W., Herut, B., 2011. What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean ? Environ. Sci. Technol. 45, 5195– 5200.

Nitrogen transformations along a shallow subterranean estuary

Mathilde Couturier^{1,2}, Gwendoline Tommi-Morin^{1,2}, Maude Sirois^{1,3}, Alexandra Rao³, Christian Nozais², Gwénaëlle Chaillou^{1,2}

¹ Canada Research Chair on the Geochemistry of Coastal Hydrogeosystems, BOREAS, group on Nordic System, Département
 ⁵ de Biologie, Chimie, Géographie, Université du Québec à Rimouski, Rimouski, G5L3A1, Canada

² Département de Biologie, Chimie, Géographie, Université du Québec à Rimouski, Rimouski, G5L3A1, Canada

³ Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada

Correspondence to: Mathilde Couturier (Mathilde.Couturier@uqar.ca)

Abstract. The transformations of chemical constituents in subterranean estuaries (STE) control the delivery of nutrient loads from coastal aquifer to the ocean. It is important to determine the processes and sources that alter nutrient concentrations at a local scale in order to estimate accurate regional and global nutrient fluxes *via* submarine groundwater discharge (SGD), particularly in boreal environments, where data are still very scarce. Here, the biogeochemical transformations of nitrogen (N) species were examined within the STE of a microtidal boreal sandy beach located in the Magdalen Islands (Québec, Canada). This study revealed the vertical and horizontal distribution of nitrate (NO₃⁻), nitrite (NO₂⁻), ammonia (NH₄⁺), dissolved organic nitrogen (DON) and total dissolved nitrogen (TDN) measured in beach groundwater during four spring seasons (June 2011, 2012, 2013 and 2015) when aquifer recharge was maximal after snowmelt. Inland

groundwater supplied high concentrations of NO_x and DON to the STE, whereas inputs from seawater infiltration were very limited. Non-conservative behaviour was observed along the groundwater flow path, leading to low NO_x and high NH_4^+

- 20 concentrations in the discharge zone. The long transit time of groundwater within the beach (~166 days), coupled with oxygendepleted conditions and high carbon concentrations created a favourable environment for N transformations such as heterotrophic and autotrophic denitrification and ammonium production. Biogeochemical pathways led to a shift in nitrogen species along the flow path from NO_x-rich to NO_x-poor groundwater. An estimate of SGD fluxes of N was determined to account for biogeochemical transformations within the STE based on a N-species inventory and Darcy's flow. Fresh inland
- 25 groundwater delivered 37 mol NO_x y⁻¹ and per m of shoreline and 63 mol DON m⁻¹ y⁻¹ of to the STE, and NH₄⁺ input was negligible. Near the discharge zone, the potential export of N species was estimated around 140, 1.5 and 33 mol y⁻¹ per meter of shoreline for NH₄⁺, NO_x and DON respectively. In contrast to the fresh inland groundwater, the N load of beach groundwater

near the discharge zone was dominated by NH_4^+ and DON. Our study shows the importance of tidal sands in the biogeochemical transformation of terrestrial N pool. This local export of bioavailable N probably supports benthic production and higher trophic levels leading to its rapid transformation in surface sediments and coastal waters.

1 Introduction

- 5 Land-ocean interfaces are critical transition zones that may affect the ecology and quality of coastal ecosystems (Schlacher and Connolly, 2009). Chemical constituents in submarine groundwater discharge (SGD) are now widely recognized to have a significant impact on coastal ecosystems (Knee and Jordan, 2013; McCoy and Corbett, 2009; Null et al., 2012; Slomp and Van Cappellen, 2004). SGD is conventionally defined as "any flow of water out across the seafloor without regards to its composition and its origin" (Burnett et al., 2006). Thus, before entering coastal waters, fresh groundwater travels through the
- 10 shallow subterranean estuary (STE) (Moore, 1999), a region where mixing between fresh and marine groundwater promotes biogeochemical processes that can lead to rapid changes in nutrient concentrations and induce non-conservative input or removal (Gonneea and Charette, 2014). The STE supports extensive chemical reactions near the discharge interface and is often assumed to be a non-steady-state system (Kroeger and Charette, 2008). Continental factors (e.g., local hydrogeology, recharge, precipitation) as well as marine factors (e.g., tidal and wave pumping, hydrography, and density) induce temporal
- 15 and spatial variability in biogeochemical conditions (see Santos et al. 2012 and references therein). The mixing zone is subject to oscillating conditions, with rapid changes in oxygen saturation, redox potential, and organic matter input controlled by tidal stage and amplitude, sea level as well as seasonal water-table fluctuations (Abarca et al., 2013; Gonneea et al., 2013, Heiss et al., 2014; Robinson et al., 2014). These physical processes are likely to impact the distribution and biogeochemical reactivity of many dissolved constituents (Beck et al., 2007; Kroeger and Charette, 2008). In this context, the STE can either be a source 20 of nutrients or act as a barrier and limit nutrient discharge to coastal environments. Assessing the role of the STE in nutrient

Rivers have long been considered the main conveyors of N to the ocean (Seitzinger et al., 2005, and references therein). Beusen et al. (2013) recently provided evidence that SGD also plays a major role in regional and global marine N cycles. N loads from SGD to near-shore ecosystems were estimated to be 4 Tg N y^{-1} (Voss et al., 2013), and the role of SGD in coastal eutrophication

transformations is crucial to better quantifying global chemical fluxes via SGD (Moore, 2010).

has also been demonstrated (Valiela et al., 1990). These N loads may be an important factor in the development of harmful algal blooms in coastal waters (Anderson et al., 2008; Glibert et al., 2014). Fresh groundwater is often rich in nutrients and others materials from anthropogenic inputs due to coastal development (agriculture, urbanization) (Howarth and Marino, 2006; Null et al., 2012; Rocha et al., 2015), and models predict a 20% increase in N loads from SGD within the next few decades

5 due to coastal development (Beusen et al., 2013).

Estimates of nutrient loads from the SGD to the coastal ocean have often been based on nutrient concentrations in fresh groundwater, with the assumption that nutrient transport through the STE is conservative (Burnett et al., 2006). However, numerous studies have demonstrated that concentrations of dissolved N change throughout the STE because of biological and chemical reactions (Beck et al., 2007; Loveless and Oldham, 2010; Moore, 2010; Santos et al., 2009). Variations in oxygen

- 10 and organic matter input along the hydraulic gradient lead to a combination of heterotrophic processes that can enhance or attenuate the export of N to the coastal ocean (Santoro, 2010). For example, in the Gulf of Mexico (Turkey Point, Florida), the STE acts as a source of ammonium because remineralization of marine organic matter throughout the STE provides nutrients to the SGD exported to the embayment (Santos et al., 2008). In Waquoit Bay (Cape Cod, Massachusetts), Kroeger and Charette (2008) demonstrated that ammonium accumulates in the STE because remineralization of organic matter transported by marine
- 15 and fresh groundwater outpaces nitrification. In contrast, based on the N attenuation observed in a shallow STE due to denitrification (Cockburn Sound, Australia), Loveless and Oldham (2010) calculated nitrate loads to coastal waters that were 1–2 times lower than previous estimates based on nutrient concentrations from fresh groundwater. As these studies show, ignoring non-conservative mixing can lead to an over- or under-estimation of nutrient loads to coastal waters (Beck et al., 2007).
- 20 STEs are transient systems where steady state, and thus the classical diagenetic sequence of redox reactions, are rarely achieved (Sundby, 2006). In transient systems, diagenetic reactions reflect redox oscillations and environmental conditions far from steady state. Redox oscillations, with alternating oxic and anoxic conditions in sediments, allow coupled nitrification– denitrification to take place in the same location within the sediment (Aller, 1994). Alternative pathways of nitrate reduction, such as dissimilatory nitrate reduction to ammonium (DNRA) and ANAMMOX, have also been reported in the STE (Erler et
- al., 2014; Kroeger and Charette, 2008; Rocha et al., 2009; Sáenz et al., 2012). Many of these processes transform dissolved

inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) along the groundwater flow path. DON is assumed to be from natural rather than anthropogenic sources and is often neglected (Hansell and Carlson, 2014). Nevertheless, DON concentrations can be high in SGD and should be considered (Kroeger et al., 2007; Santos et al., 2014).

Martinique Beach, located in the Magdalen Islands (Québec, Canada) in the southern limit of the boreal climatic zone, is
exposed to little or no external contamination. Site-specific studies in boreal and cold environments are still scarce and climate and hydrology change rapidly in cold climates (Hinzman et al., 2005). Thus nutrient fluxes by SGD to the coastal ocean in boreal regions and their contribution at local and global scales remains to be elucidated. The objective of this four-year study was to investigate the spatial and temporal variation of N species (inorganic and organic N) through a shallow boreal STE, from inland groundwater to coastal ocean. SGD fluxes of the different N species that are discharged to coastal waters by
shallow groundwater at this specific-site were also estimated.

2 Materials and methods

2.1 Study area

Martinique Beach is located on the main island of the Magdalen Islands archipelago in the Gulf of St. Lawrence (Québec, Canada; Fig.1). The Martinique Beach system originates from a recent transgression sequence. Rapid rates of sea-level rise

- 15 along the Atlantic coast of Canada over the middle to late Holocene buried the unconfined Permian sandstone aquifer that is now covered by tidal sediment (Gehrels, 1994; Scott et al., 1995a, 1995b). The site experiences semi-diurnal tides with a mean range of 0.8 m and a maximum range of 1.7 m during spring tide. The archipelago has no rivers, thus the aquifer recharge is only from rain and snow, with the highest recharge during spring snowmelt. The mean yearly recharge is about 230 mm (Madelin'Eau, 2004). Because groundwater constitutes the only source of drinking water in the archipelago, the hydrogeology
- 20 is well known and the aquifer constantly monitored (Chaillou et al., 2012; Madelin'Eau, 2007, 2009, 2011). Since anthropogenic pressures like urbanization and agriculture are limited on the archipelago, the main sources of N contamination are from residential and recreational areas. Therefore, Martinique Beach is an ideal system in which to study N transformations in a boreal microtidal subterranean estuary.

The Martinique Beach STE acts as a shallow unconfined aquifer at the nearshore limit of the Permian Aquifer; it releases both

fresh and recirculated saline groundwater to the coastal embayment (Chaillou et al., 2016). It is a low-energy beach under a micro-tidal regime (Jackson et al., 2002; Masselink and Short, 1993). The upper centimeters (20 cm) of the beach consist of marine sands with a median particle size of 0.30 mm (silt content <5%), mainly composed of quartz (95%). The hydraulic conductivity of this sedimentary unit is about 11.40 ± 4.40 m d⁻¹ (Chaillou et al., 2016). Lower hydraulic conductivity was

- 5 measured in the underlying sandstone aquifer (K ~1.80 m d⁻¹; Madelin'Eau, 2007), which is composed of fine silicate and aluminosilicate sands with Fe-coated silicate grains (Chaillou et al., 2014). These two layers are organic-poor (total organic carbon [TOC] < 0.20% weight percent (w.t.) and total nitrogen [TN] < 0.10% w.t.; Chaillou et al., 2014). In the landward part of the beach, however, an old-age soil horizon dated to ~900 B.P. (¹⁴C dating; Juneau, 2012) occurs a few centimeters below the beach surface. This horizon is carbon-rich (TOC > 20% w.t.) but has a low nitrogen content (TN < 0.50% w.t.; Chaillou et al.
- 10 al., 2014).

In the Magdalen Islands, the snowmelt leads to a high water table from April to June in the Permian sandstone aquifer (Madelin'Eau, 2004) and in the adjacent beach aquifer (Chaillou et al., 2016). Under these hydrologic conditions, the saline circulation cell and its associated mixing zone are spatially limited, and the inland hydraulic gradient is the main control of total SGD (Heiss and Michael, 2014; Robinson et al., 2007a). Based on the stable isotopes of water along the STE, Chaillou

- 15 et al., (submitted) confirmed the contribution of only two water end-members (i.e., fresh meteoric groundwater and seawater) and the absence of additional septic tank seepages. They also highlighted the high contribution of fresh groundwater and the limited infiltration of seawater in shallow beach groundwater. In spring 2013, Chaillou et al. (2016) used mean and multi-annual regional water table levels from municipal wells to estimate a regional seaward fresh groundwater flow (Q_{inland}) of about 0.021 m³ s⁻¹. Q_{inland} is then the theoretical inland groundwater export from the Permian sandstone aquifer to the Martinique beach. In Martinique beach, fresh groundwater flow was also evaluated based on a mean hydraulic gradient through
- the 50m-length of the beach. This specific flow (Q_{beach}) was 0.029 m³ s⁻¹, suggesting that fresh inland groundwater flux contributes to at least 70% of the water flow discharging to the coastal waters.

2.2 Groundwater sampling

25

Sampling was carried out in June 2011, 2012, 2013, and 2015 along a 50 m cross-shore transect. In 2011 and 2012, groundwater samples were collected in the landward part of the STE. In 2013 and 2015, we focused on the intertidal and discharge zone,

where fresh meteoric groundwater comes in contact with recirculated seawater. Groundwater extraction was done using multilevel samplers in 2.5 m long PVC pipes (Fig. 1), similar to those described by Martin et al. (2003). Groundwater was collected at 10, 30, 50, 80, 100, 150, 190, and 230 cm below the beach surface. Samplers were re-inserted at the same locations each year using DGPS coordinates. To allow sediments around the samplers to reach equilibrium, sampling started two days after

- 5 their insertion. Groundwater was sampled using a peristaltic pump, and physicochemical parameters (pH, temperature, oxygen, salinity) were measured directly using an on-line flow cell with a calibrated multi-parameter probe (600QS, YSI Inc.). Oxygen measurements are not available for 2015, due to sensor malfunction. After stabilization of physico-chemical parameters, all groundwater samples were filtered through a 0.2 μm polypropylene capsule filter. Samples for nutrient analyses (NH₄⁺, NO₃⁻, and NO₂⁻) were stored in acid-washed polyethylene tubes that were rapidly frozen for later analysis; samples for total dissolved
- 10 iron were stored at 4°C in 50 mL acid-washed polyethylene tubes and acidified with 50 µL of 10% HNO₃; and total dissolved nitrogen (TDN) samples were stored in baked 7 mL vials and acidified with 25 µL of high purity 10% HCl. TDN measurements were only performed in 2012. Groundwater end-member samples were collected in the manner described above from four private and municipal wells (2 or 3 replicates per well) located 50 to 2000 m landward of the most inland sampler in the sandstone aquifer. Seawater end-member samples (N=6) were collected above for above the seabed using a submersible
- 15 pump at about 900 m offshore in Martinique Bay.

2.3 Chemical analyses

NH₄⁺ samples were measured by flow injection gas exchange–conductivity analysis based on the method described by Hall and Aller (1992). The precision was ± 5% with a detection limit of 0.1 µmol L⁻¹. NO₃⁻ and NO₂⁻, referred to as NO_x, were analysed by the colorimetric method developed by Schnetger and Lehners (2014) and measured with a powerwave XS2
microplate spectrophotometer. The precision was 2% and the limit of detection was 0.4 µmol L⁻¹. DIN was calculated as the sum of NH₄⁺, NO₃⁻, and NO₂⁻. TDN was analysed in 2012 by high temperature combustion (HTC) using a Total Organic Carbon analyser (TOC-vpn, Shimadzu) with a TNM-1 module, and a precision of 2%. Dissolved Organic Nitrogen (DON) was calculated as the difference between TDN and DIN (i.e., DON = TDN – [NH₄⁺ + NO_x]). DON calculations were only possible in 2012 based on TDN measurements. The DON measurement is still problematic since it combines the analytical
errors and uncertainties of the three analyses. Nevertheless, there is currently no single accepted method for the measurement

of DON (Hansell and Carlson, 2014). Here we estimated the precision to be around 10%. Dissolved iron was analysed using a 5100PC Flame Atomic Absorption spectrophotometer (5100ZL Zeeman Furnace). Analytical uncertainties were <5%.

3 Results

3.1 Distribution of salinity and oxygen saturation

5 Previous studies have already discussed the distribution of physico-chemical parameters along the groundwater flow path at Martinique Beach based on 2012 and 2013 data (Chaillou et al., 2014, 2016; Couturier et al., 2016). Here, we will briefly present an overview of the salinity and redox conditions in the STE (Fig. 2).

In 2011 and 2012, the landward part of the STE was mostly characterized by suboxic freshwater (dissolved oxygen [DO] < 20%, salinity < 10). The discharge zone with the saline circulation cell was salty and oxygenated ([DO] > 60%, salinity > 20).

- 10 A sharp salinity gradient occurred below the saline circulation cell, with salinity falling to 0 within the upper 50 cm of the sediment. In 2013 and 2015, the focus on the intertidal zone confirmed the occurrence of a small saline circulation cell with sharp gradients of salinity and DO along its perimeter. Fresh and suboxic water were recurrent at 60 cm below the surface in the discharge zone of the beach. A mixing zone composed of brackish water (salinity comprised between 7 and 15) occurred along the perimeter of the saline circulation cell resulting from a mixture of fresh and saline groundwater. This mixing zone
- 15 appeared to be depleted in DO ([DO] < 20%). The rest of the system was composed of fresh groundwater. In 2013, some measurements showing high DO concentrations in the deepest samples may indicate atmospheric contamination during sampling.

3.2 Nutrient distribution from inland groundwater to beach groundwater

The concentrations of NO_x (Σ NO₃⁻⁺NO₂⁻) measured in four inland wells ranged from 14 to 94 µmol L⁻¹ with a mean 20 concentration of 65.5 ± 26.7 µmol L⁻¹ (Table 1). In the near shore well, located 50 m from the shoreline, the concentration reached 20 µmol L⁻¹. NH₄⁺ concentrations were low, with concentrations varying between 0 and 1 µmol L⁻¹. The fresh inland groundwater end-member was rich in TDN as measured in wells in 2012, with DON making up 53% of the TDN (i.e., DON = 110.9 ± 3.4µmol L⁻¹). Compared to fresh inland groundwater, the seawater samples were largely depleted in NO_x with a mean concentration of 0.5 ± 0.5 µmol L⁻¹ (N=6, Table 1). NH₄⁺ concentrations were also low with 0.8 ± 0.5 µmol L⁻¹. As in fresh inland groundwater, TDN in seawater was largely dominated by DON that represented ~80% of the N budget with a mean concentration of $7.3 \pm 0.8 \mu$ mol L⁻¹. Overall, TDN concentrations in the seawater end-member were 20 times lower than in the groundwater end-member.

- 5 Within the STE, NO_x concentrations were low (0–26 μmol L⁻¹ with a mean concentration of 1.9 μmol L⁻¹). These concentrations were five times lower than those measured within the fresh groundwater end-member (Table 1, Fig. 3A). However, some samples collected in the deep and fresh part of the STE reached concentrations greater than 20 μmol L⁻¹ (Fig. 3A). Such hot spots of NO_x concentrations were also recorded in 2011 (up to 15.2 μmol L⁻¹), 2012 (up to 26.1 μmol L⁻¹), and 2015 (up to 19.5 μmol L⁻¹). In contrast to NO_x, NH₄⁺ concentrations were high in the STE, with concentrations ranging from ~20 μmol L⁻¹ to > 500 μmol L⁻¹ (Fig. 3B), and up to 1056 μmol L⁻¹ (2013, Fig. 3B). Ammonium (NH₄⁺) concentrations measured in the STE were 1 to 1000 times higher than end-member values (Table 1, Fig. 3B). In 2013, an area of high concentrations was observed in the mixing zone, in front of the saline circulation cell, where NH₄⁺ concentrations reached values greater than 400 μmol L⁻¹ (Fig. 3B). NH₄⁺ concentrations were still high in the saline circulation cell (e.g., 84–92 μmol L⁻¹), and these were also high compared to the overlying seawater end-member (Table 1). NH₄⁺ concentrations decreased
- 15 sharply with depth in the mixing zone. For example, in June 2013 maximum NH_4^+ concentrations were around 400 µmol L⁻¹ at 30 cm below the beach surface of the intertidal zone and decreased to 50 µmol L⁻¹ at 230 cm (Fig. 3B). NH_4^+ was the main TDN species in the STE (on average NH_4^+ concentrations accounted for 60% of TDN in all samples). Thus, in 2012, the TDN distribution was quite similar to the NH_4^+ distribution (Fig. 4), with high values in the mixing zone. TDN decreased sharply below the saline circulation cell and the mixing zone; values ranged from 50 to 100 µmol L⁻¹ and dropped below detection
- 20 below the saline circulation cell. DON represented 31% of the TDN in beach groundwater, and the highest concentrations were observed in the mixing zone (>200 μmol L⁻¹, Fig. 4). DON levels decreased below the saline circulation cell, with concentrations close to 0.

N species showed different distributions relative to groundwater salinity and DO saturation along the STE (Fig. 5). N species were characterized by non-conservative behaviour relative to the theoretical two-end-member mixing between seawater and

25 fresh inland groundwater. NOx declined from 60 µmol L⁻¹ in fresh inland groundwater to concentrations below detection in

brackish and saline groundwater (Fig. 5A). The highest concentrations of NO_x were encountered when DO saturation was below 60%. While dissolved NO_x showed removal in the flow path, NH_4^+ exhibited excess concentrations relative to conservative mixing between the two end-members (Fig. 5B). NH_4^+ concentrations clearly showed strong production along the salinity gradient of the STE. The highest concentrations of NH_4^+ occurred mainly under suboxic conditions (DO < 20%)

- 5 and decreased significantly with increased DO (p value < 0.05). Both NH₄⁺ and NO_x were observed in 81 of 245 samples (~33% of the data set). These samples were mainly located just below the saline circulation cell and the associated mixing zone, where oxygen-depleted conditions prevailed ([DO] < 20%). In contrast to the behaviour of NO_x and NH₄⁺, TDN and DON exhibited a distinct trend along the salinity gradient: (i) they fell below the theoretical mixing line in fresh and brackish waters (salinity 0 - 10) and this removal occurred in suboxic–anoxic conditions, and (ii) their concentrations increased above
- 10 the theoretical mixing line in saline waters (salinity > 10). There was no significant relationship with DO. Total dissolved iron concentrations were high in the STE and ranged from 1 to 2700 µmol L⁻¹ with a mean concentration of 520 µmol L⁻¹ (Fig. 6). Concentrations increased sharply with depth and below the saline circulation cell. Concentrations of dissolved iron in the upper meter of the STE and in the saline circulation cell are lower, but still high (from 1 to 100 µmol L⁻¹) compared to the overlaying water.

15 4 Discussion

4.1 Biogeochemical controls of DIN concentrations along the groundwater flow path

The non-conservative behaviour of DIN along the groundwater flow path influences the nutrient concentration in discharging groundwater, while at the same time making it difficult to estimate the flux of groundwater-derived DIN to the coastal ocean (Johannes, 1980; Moore, 2010; Valiela et al., 1990). The calculation of chemical fluxes using samples from inland wells may result in significant errors in estimated chemical fluxes. Processes occurring in the STE must be elucidated to improve our understanding of the role of the STE in altering groundwater-derived N. The DIN pool changed from NO_x-rich groundwater in the aquifer to NH₄⁺-rich groundwater in the STE. In our study, NO_x represented 99% of the DIN pool in the fresh inland groundwater end-member but only 37% in the seawater end-member. In the next section, the biogeochemical mechanisms controlling the N pool along the flow path are explored.

4.1.1 Nitrate loss along the STE

 NO_x concentrations were low within the STE in contrast to the high concentrations measured in fresh inland groundwater. There was a strong attenuation in NO_x , with mean concentrations of 60 µmol L⁻¹ in inland wells (~500 to 1500 m from the shoreline) dropping to ~20 µmol L⁻¹ in the nearshore well (50 m from the shoreline) and to 2 µmol L⁻¹ in the STE, near the

5 discharge zone. Such attenuation of NO_x is common in groundwater (Rivett et al., 2008) and denitrification is generally recognized as the most significant mass removal process along the flow path (Korom, 1992). Denitrification is central to the nitrogen cycle in the subsurface groundwater environment. It involves the reduction of NO_x to N₂ gas *via* a chain of microbial reduction reactions.

As oxygen-depleted conditions and high DOC concentrations are encountered along the STE (Couturier et al., 2016),
denitrification may be one of the processes driving rapid groundwater-born NO_x loss. The stoichiometry of nitrate reduction and the oxidation of organic matter by denitrification, given by Jørgensen et al. (2014), is as follows:

(1) $5CH_2O + 4NO_3 + 4H^+ = 2N_2 + 5CO_2 + 7H_2O$

According to this stoichiometry, the mean concentration of DOC observed in the STE (i.e., 1940 μ mol C L⁻¹; Couturier et al., 2016) could be used to reduce 1550 μ mol L⁻¹ of nitrate to dinitrogen by denitrification. With concentrations of NO_x around 20

- 15 μmol L⁻¹ in the nearshore well, this means that all groundwater-borne NO₃⁻ may conceivably be reduced by DOC. However, even if the concentration of DOC in groundwater is high, Couturier et al. (2016) showed that DOM had a strong terrestrial signature along the STE in Martinique Beach. This OC was characterized by a high molecular weight and was enriched in lignin-derived compounds. In an alluvial aquifer, Baker and Vervier (2004) confirmed that the rate of denitrification was best predicted by the concentration of low molecular weight organic acids compared to high molecular weight compounds. In an
- 20 unconfined sandy aquifer, Postma et al. (1991) reported that nitrate reduction was minimal when OC was present as lignin and lignite fragments (i.e., as high molecular weight compounds). Thus, the terrestrial DOC present in the Martinique Beach STE may not promote high rates of heterotrophic denitrification at the study site.
 Nitrate reduction can be supported however by electron donors others than organic matter such as Fe²⁺ (Aller, 1994; Postma,

1990). There is evidence that groundwater containing Fe^{2+} contains little or no nitrate (Korom, 1992). The presence of reduced

25 iron is assumed to facilitate the occurrence of denitrification according to reactions 2 and 3:

(2) $5Fe^{2+} + NO_3^{-} + 12H_2O = 5Fe(OH)_3 + \frac{1}{2}N_2 + 9H^{+}$

(3) $10Fe^{2+} + 2NO_3^- + 14H_2O = 10FeOOH + N_2 + 18H^+$

High DOC concentrations (Couturier et al., 2016) support the reductive dissolution of Fe-oxyhydroxides and led to total dissolved iron concentrations as high as 1000-1600 μ mol L⁻¹, with concentrations reaching 2700 μ mol L⁻¹ in deep groundwater

- 5 below the saline circulation cell (Fig. 6). Thus Fe²⁺ can act as an electron donor and induced a loss of nitrates along the flow path. This autotrophic denitrification is most efficient in aquifers with low nitrate input (Postma et al., 1991) and in margin sediments (Anschutz et al., 2002; Chaillou et al., 2007; Hulth et al., 1999; Hyacinthe et al., 2001). The stoichiometry of reactions 2 and 3 shows that one mole of Fe²⁺ can reduce 0.2 moles of NO₃⁻. Based on the range of Fe²⁺ concentrations measured along the transect, this process is capable of completely reducing groundwater-borne NO_x.
- 10 With a maximum groundwater flow rate of 0.029 m³ s⁻¹ in beach groundwater (Chaillou et al., 2016), the groundwater transit time through the STE (~50 m) is about 166 days, which is long enough to support denitrification reactions and subsequent N transformations. Hot spots of NO_x concentrations (e.g., 7.5 μ mol L⁻¹ at 50 cm depth with [DO] < 10% in 2013, 15.2 μ mol L⁻¹ at 80 cm depth with [DO] < 30% in 2012, in 2015; Fig. 3A) were likely the result of local and sporadic production rather than traces of groundwater-borne NO_x. The downward infiltration of oxygenated seawater by tides could be large enough to oxidize
- 15 NH₄⁺ and produce NO₃⁻ along the saline circulation cell. These concentrations of NO₃⁻ remained weak (< 6 μmol L⁻¹) in the STE probably because of the multiple electron donors that can be used to reduce NO₃⁻ to N₂ under anoxic conditions (i.e., DOC, Fe²⁺, NH₄⁺, H₂S, and FeS).

4.1.2 Ammonium production along the STE

Mineralization of organic matter is likely the most important source of NH4⁺ in the Martinique Beach STE. DON measurements

- 20 in 2012 were high (0–1481 μmol L⁻¹), with a mean value of 80 μmol L⁻¹. DON is a complex mixture of primarily uncharacterized compounds, of which 10 to 70% are estimated to be bioavailable (Seitzinger et al., 2002). DON bioavailability is often reported to be dependent on the nature of compounds (Sipler and Bronk, 2014). In the beach groundwater, DON represented 39% of the TDN, so its mineralization by heterotrophic micro-organisms could be responsible for part of the NH₄⁺ production in the STE (Kroeger et al., 2006). Ammonium production is mainly located upstream the saline circulation cell
- 25 (Fig. 3B), and is linked to the presence of high DON concentrations as observed in June 2012 (Fig. 4). Because ammonification

is highly dependent on the bioavailability of DON, it is difficult to estimate what fraction of NH_4^+ could be derived from DON mineralization. Based on the estimate that 10 to 70% of DON is bioavailable as proposed by Seitzinger et al. (2002), mineralization of DON could lead to the production of 8 to 56 µmol L⁻¹ of NH_4^+ , which represents between 2 and 10% of the NH_4^+ concentration observed in beach groundwater.

5 In coastal sediments, where sulphate is not limiting, sulphate reduction produces NH_4^+ according to the following reaction: (4) $53SO_4^{2-} + (CH_2O)_{106}(NH_3)_{16}(H_3PO_4) = 39CO_2 + 67HCO_3^- + 16 NH_4^+ + 53HS^- + 39H_2O + HPO_4^{2-}$

 NH_4^+ was observed in samples with salinity > 4, with the highest concentrations (~1.25 mmol L⁻¹) at salinity around 15. At salinity 15, we estimate a SO_4^{2-} concentration of 12 mmol L⁻¹ in beach surface groundwater, which is sufficient to produce 3.6 mmol L⁻¹ NH_4^+ by sulphate reduction. This reaction could therefore explain the remainder of NH_4^+ production in beach

10 groundwater.

The breakdown of macroalgal deposits derived from wave and tidal action in sediments can also increase N input to beach groundwater (Kelaher and Levinton, 2003; Rossi et al., 2011) and can potentially add NH_4^+ . At Martinique Beach, algal deposits were not specifically measured but were often observed after storm events. In addition, external contamination from wastewater or sceptic tank seepages cannot be completely excluded. Nevertheless, the absence of traces of NH_4^+ contamination

15 in the landward part of the beach and the stable isotopes of water reported by Chaillou et al. (submitted) do not support an anthropogenic NH₄⁺ input.

4.2 Nutrient transport along the flow path

The non-conservative behaviour of nutrients within the STE makes it difficult to estimate the export of nutrients to the coastal ocean. As pointed out in the review by Moore (2010), robust measurements of nutrient fluxes are needed on a site-specific

- 20 scale to obtain accurate regional and global estimates. In non-conservative systems, however, the determination of appropriate nutrient end-member concentrations for flux calculations is not straightforward. Beck et al. (2007) previously highlighted the need to closely scrutinize the biogeochemical processes in the STE to refine nutrient export fluxes to coastal areas. Here, inorganic and organic N inventories were estimated along the groundwater flow path based on salinity. Then the potential nitrogen fluxes out of the STE were estimated and compared to the fresh inland groundwater-borne nutrient fluxes. Fluxes and
- 25 inventories of the different N species along the groundwater flow path are summarized in Figure 7.

4.2.1 Nitrogen inventories

Nutrient inventories were calculated by integrating nutrient concentrations at sampling locations according to salinity and multiplying by the sediment porosity (i.e., 0.25; Chaillou et al. 2012). Salinity was used to delimit zones to calculate N-inventories along the flow path in deep fresh groundwater with low salinity (S < 5; N = 57), in the brackish beach groundwater

5 (5<S<15; N=19) that runs parallel to the surficial saline circulation cell and, finally, in saline groundwater (S>15; N=15).
 Inorganic and organic nitrogen inventories are presented in Table 2.

10 pool. In DIN, a shift from NO_x to NH₄⁺ occurred from the inland groundwater to deep fresh beach groundwater: NO_x became a negligible fraction (NO_x inventory < 0.5 μ mol m⁻²) whereas NH₄⁺ was the main inorganic fraction representing 46, 53, and 61% of the TDN in fresh, brackish, and saline beach groundwater respectively.

 NH_4^+ was clearly produced along the groundwater flow path through the STE. In brackish groundwater, a strong production of TDN was observed: DIN, NH_4^+ , and DON increased by 169, 168, and 127%, respectively (Figure 7). Based on the previous

- 15 work of Couturier et al. (2016), the source of nitrogen released in the STE was the mineralization of terrestrial rather than marine organic matter. This strong *in situ* TDN production in the brackish beach groundwater altered the groundwater-borne N pool. Indeed, TDN concentrations in the saline circulation cell are much higher than the input from inland groundwater, even if this TDN is subsequently attenuate in surface sediment in the saline circulation cell due to biogeochemical processes and dilution (Table 2). Our findings showed that even if groundwater-borne TDN, in the form of NO₃⁻ and DON, was mostly
- 20 attenuated along the groundwater flow path, a "new" N pool was produced within the STE as it was already observed for DOM (Couturier et al., 2016).

4.2.2 Nitrogen fluxes

The fresh groundwater-borne N fluxes to the STE have been calculated as the product of the mean DON, NO_x and NH_4^+ concentrations of the fresh inland groundwater end-member and the flow of fresh groundwater on shore (Chaillou et al. 2016).

25 The fresh inland groundwater-derived N input estimated on this way was $<0.07 \text{ mol m}^{-1} \text{ y}^{-1}$ and 37 mol m⁻¹ y⁻¹ for NH₄⁺ and

In the inland groundwater wells, fresh groundwater was rich in DON (Table 1). DIN represented only 33% of the TDN, with NO_x making up 95% of the inorganic pool (Table 1). In the fresh beach groundwater (S<5), nutrient inventories showed that DON was still the main N species with an inventory of 18.7 µmol m⁻² (Table 2) that represented more than 50% of the TDN

 NO_x respectively. Estimated DIN and DON fluxes are 37 mol m⁻¹ y⁻¹ and 63 mol m⁻¹ y⁻¹, respectively (Table 3). The estimated groundwater-borne TDN flux was approximately 102 mol m⁻¹ y⁻¹, corresponding to an annual N input of ~1700 kg along the 1200 m Martinique Beach shoreline. This flux is dominated by DON, and NO_x . Inland groundwater clearly acts as a source of nitrogen to the beach groundwater, as has been observed in other STEs, such as in Dor Bay (Mediterranean coast; Weinstein

- 5 et al., 2011), Cockburn Sound (western Australia; Loveless and Oldham, 2010), and Waquoit Bay (Cape Cod, MA; Talbot et al., 2003; Gonneea and Charette, 2014). However, the groundwater-borne N load at Martinique Beach was very low in comparison to the above-mentioned sites, where fresh groundwater NO_x concentrations as high as 300 µmol L⁻¹ were reported. Estimates of nutrients export from the STE to the coastal ocean however are more difficult to estimate. Direct measurements (from surface sediment incubations) are probably the most accurate ways to measure export. However, the spatial patchiness
- 10 of seeps at the discharge zone and the effect of tides on the hydraulic gradient in the beach aquifer lead to significant variability in direct measurements of SGD (Blanco et al., 2008; Welti et al., 2015). Furthermore, indirect estimates – based on the product of solute concentrations in fresh inland groundwater and SGD flux estimates based on isotopic tracers or hydraulic gradients – are more often used to obtain a spatially-integrated estimate of chemical discharge (Beck et al., 2011; Burnett et al., 2006), though they often ignore transformations occurring in surface sediments at the seepage face (Rao and Charette, 2012).
- 15 Integrating the role of *in situ* N transformations is also critical to accurately estimating the impact that coastal boreal systems have on regional and global nutrient budgets. Here, the potential nutrient export from the STE at Martinique beach to the seepage face has been calculated based on Darcy's flow through the 50 m-length of the STE reported by Chaillou et al. (2016). To estimate the potential nitrogen export to the seepage face, we assumed that the TDN produced in the Martinique beach STE is flushed out of the system by the continental hydraulic gradient.
- 20 This potential N export corresponds to 141, 1.3 and 33.8 mol m⁻¹ y⁻¹ for NH₄⁺, NO_x, and DON respectively (Table 3), corresponding to an annual N input of ~3100 kg along the 1200 m Martinique Beach shoreline, which is twice the fluxes from groundwater-borne. DIN exported to the seepage face (~142 mol m⁻¹ y⁻¹) was in the range of previous measurements at other sites, such as the Mediterranean coast (France; 530 mol m⁻¹ y⁻¹; Weinstein et al., 2011), the Gulf of Mexico (FL, USA; 414 mol m⁻¹ y⁻¹; Santos et al., 2009), and the Atlantic Coast (Aquitania Coast, France; 150 mol m⁻¹ y⁻¹; Anschutz et al., 2016).
- 25 However, in most of these studies, DIN pool was mainly dominated by NO_x , while at Martinique beach NH_4^+ represented more

than 90 % of the potential DIN supply to the seepage face. It is noteworthy that fewer studies report NH_4^+ as the main N species exported to the coastal ocean compared to NO_x . Kroeger et al. (2007) showed high proportions of NH_4^+ and DON in SGD fluxes to Tampa Bay (FL, USA) which may be explained in part by historical eutrophication, local hypoxia and anoxia in this area (Janicki et al., 2001). Measurements of DON flux to the coastal ocean are scarce. Kim et al. (2013) reported conservative

- 5 mixing of DON, with export fluxes of 1.31×10⁵ mol d⁻¹ in Hwasun Bay (Jeju Island, Korea) and in the Gulf of Mexico, Santos et al. (2009) estimated that land-derived DON makes up ~52% of the total N exported to the coastal ocean.
 It is difficult to estimate N fluxes by SGD to Martinique Bay, as coupled nitrification- denitrification in the upper 5-10 cm of sediments at the seepage face may remove much of the TDN flux exported from the STE (Gao et al., 2009; Gihring et al., 2010; Rao et al., 2008). Since NH₄⁺ and DON are N species highly bioavailable to micro-organisms, this N export can further
- 10 be directly transformed by the micro-phytobenthos and higher trophic levels (Miller and Ullman, 2004). Even if fresh inland groundwater provide few input of N to the Martinique beach, biogeochemical processes in the beach groundwater lead to the transformation of organic N to inorganic N leading to a potential discharge of transformed N species. This N supply from the beach groundwater could therefore change the local benthic biogeochemical cycles and associated communities (Sawyer, 2015; Welti et al., 2015).

15 5 Conclusion

This study highlights the role of the STE in processing groundwater-derived N in a shallow boreal STE, far from anthropogenic pressures. N was mobilized within the STE since *in situ* production of NH₄⁺ and DON were observed in beach groundwater. Fresh inland groundwaters delivered to the STE are rich in NO_x and DON and depleted in NH₄⁺. DON represented the main N species along the flow path. However, a shift from NO_x to NH₄⁺ occurred due to the removal of NO_x and the addition of NH₄⁺ within the STE. Nitrate loss along the flow path could be attributed to alternative reduction pathways such as Fe oxidation and to the mineralization of OC, since DOC concentrations were high in the STE. Production of NH₄⁺ was mainly due to the mineralisation of DON and sulphate reduction. In consequences, TDN in beach groundwater was higher than the inland fresh groundwater revealing the reactivity of the system. While the input of NO_x represents 32% (37 mol m⁻¹ y⁻¹) of the fresh groundwater input of TDN to the STE, NO_x fluxes potentially exported from the STE to the seepage face only represent 1%

of the total exported TDN. Thus, near the discharge zone, NH_4^+ and DON dominated the TDN load exported to surface sediments and Martinique Bay. This local export of bioavailable N is probably removed in surface sediments, or it may supports benthic production and higher trophic levels. This study highlights the impact of biogeochemical transformations on N species in a boreal STE. Our study showed that biogeochemical transformations, along a continuum between fresh inland groundwater

5 and the ocean, modify the distribution of N species, providing new N species from terrestrial origin to the coastal ocean. These biogeochemically active and dynamic systems reflect the challenge of accurately estimating groundwater nutrient fluxes to the coastal ocean.

6 Acknowledgements

The authors wish to thank Fréderike Lemay-Borduas for her help in the field, Claude and Katia Bourque for access to the

10 beach and Laure Devine for the revision of the English phrasing. Two anonymous referees are gratefully thanked for their thoughtful and constructive comments on the original manuscript. This research was supported by the Canada Research Chair Program, grants from the Natural Sciences and Engineering Research Council of Canada to G. Chaillou, and the Université du Québec à Rimouski. Partial funding was provided by Quebec-Ocean to M. Couturier. All the data resulting from this study are available from the authors upon request (Mathilde.Couturier@uqar.ca).

15 References

Abarca, E., Karam, H., Hemond, H. F. and Harvey, C. F.: Transient groundwater dynamics in a coastal aquifer: the effects of tides, the lunar cycle and the beach profile, Water Resour. Res., 49, 2473–2488, doi:10.1002/wrcr.20075, 2013. Aller, R. C.: Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation, Chem. Geol., 114(3–4), 331–345, doi:10.1016/0009-2541(94)90062-0, 1994.

- 20 Anderson, D. M., Burkholder, J. M., Cochlan, W. P., Gobler, C. J., Heil, C. A., Kudela, R. M., Parsons, M. L., Rensel, J. E. J., Townsend, D. W., Trainer, V. L. and Vargo, G. A.: Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States, Harmful Algae, 8, 39–53, doi:10.1016/j.hal.2008.08.017, 2008. Anschutz, P., Jorissen, F. J., Chaillou, G., Abu-Zied, R. and Fontanier, C.: Recent turbidite deposition in the eastern Atlantic: early diagenesis and biotic recovery, J. Mar. Res., 60(6), 835–854, doi:10.1357/002224002321505156, 2002.
- 25 Anschutz, P., Charbonnier, C., Deborde, J., Deirmendjian, L., Poirier, D., Mouret, A., Buquet, D. and Lecroart, P.: Terrestrial groundwater and nutrient discharge along the 240-km-long Aquitanian coast, Mar. Chem., na,

doi:10.1016/j.marchem.2016.04.002, 2016.

5

Baker, M. A. and Vervier, P.: Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem, Freshw. Biol., 49(2), 181–190, doi:10.1046/j.1365-2426.2003.01175.x, 2004.

Beck, A. J., Tsukamoto, Y., Tovar-Sanchez, A., Huerta-Diaz, M., Bokuniewicz, H. J. and Sanudo-Wilhelmy, S. A.: Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes, Appl. Geochemistry, 22, 477–490, doi:10.1016/j.apgeochem.2006.10.005, 2007.

- Beck, M., Riedel, T., Graue, J., Köster, J., Kowalski, N., Wu, C. S., Wegener, G., Lipsewers, Y., Freund, H., Böttcher, M. E.,
 Brumsack, H.-J., Cypionka, H., Rullkötter, J. and Engelen, B.: Imprint of past and present environmental conditions on microbiology and biogeochemistry of coastal Quaternary sediments, Biogeosciences, 8(1), 55–68, 2011.
- Beusen, A. H. W., Slomp, C. P. and Bouwman, A. F.: Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge, Environ. Res. Lett., 8(3), 34035, doi:1748-9326/8/3/034035, 2013. Burnett, W., Aggarwal, P., Aureli, A., Bokuniewicz, H., Cable, J., Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K., Loveless, A., Moore, W., Oberdorfer, J., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A., Rajar, R., Ramessur, R., Scholten, J., Stieglitz, T., Taniguchi, M. and Turner, J.: Quantifying submarine groundwater discharge in the coastal zone via multiple
- 15 methods, Sci. Total Environ., 367(2–3), 498–543, doi:10.1016/j.scitotenv.2006.05.009, 2006. Chaillou, G., Anschutz, P., Dubrulle, C. and Lecroart, P.: Transient states in diagenesis following the deposition of a gravity layer: dynamics of O2, Mn, Fe and N-species in experimental units, Aquat. Geochemistry, 13(2), 157–172, doi:10.1007/s10498-007-9013-0, 2007.
- Chaillou, G., Touchette, M., Rémillard, A., Buffin-Bélanger, T., St-Louis, R., Hétu, B. and Tita, G.: Synthèse de l'état des
 connaissances sur les eaux souterraines aux Îles-de-la-Madeleine Impacts de l'exploration et de l'exploitation des ressources naturelles sur celles-ci., 2012.

Chaillou, G., Couturier, M., Tommi-Morin, G. and Rao, A. M. .: Total alkalinity and dissolved inorganic carbon production in groundwaters discharging through a sandy beach, Procedia Earth Planet. Sci., 10, 88–99, doi:10.1016/j.proeps.2014.08.017, 2014.

- 25 Chaillou, G., Lemay-Borduas, F. and Couturier, M.: Transport and transformations of groundwater-borne carbon discharging through a sandy beach to coastal ocean, Can. Water Resour. J., 38(2), 809–828, doi:10.1080/07011784.2015.1111775, 2016. Chaillou, G., Lemay-Borduas, F., Larocque, M., Couturier, M., Biehler, A. and Tommi-Morin, G.: Flow and discharge of groundwater from a snowmelt-affected sandy beach, J. Hydrol., n.d.
- Couturier, M., Nozais, C. and Chaillou, G.: Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic
 matter to coastal ocean, Mar. Chem., 186, 46–57, doi:10.1016/j.marchem.2016.08.001, 2016.
 Cyronak, T., Santos, I. R., Erler, D. V. and Eyre, B. D.: Groundwater and porewater as major sources of alkalinity to a fringing
 - coral reef lagoon (Muri Lagoon, Cook Islands), Biogeosciences, 10(4), 2467–2480, doi:10.5194/bg-10-2467-2013, 2013.
 Erler, D. V, Santos, I. R., Zhang, Y., Tait, D. R., Befus, K. M., Hidden, A., Li, L. and Eyre, B. D.: Nitrogen transformations

Gao, H., Schreiber, F., Collins, G., Jensen, M. M., Kostka, J. E., Lavik, G., de Beer, D., Zhou, H. and Kuypers, M. M.: Aerobic denitrification in permeable Wadden Sea sediments, ISME J., 4(3), 417–426, doi:10.1038/ismej.2009.127, 2009. Gehrels, W. R.: Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, USA, J. Coast. Res., 10(4), 990–1009, doi:0749-0208, 1994.

- Gihring, T. M., Canion, A., Riggs, A., Huettel, M. and Kostka, J. E.: Denitrification in shallow, sublittoral Gulf of Mexico permeable sediments, Limnol. Oceanogr., 55(1), 43–54, doi:10.4319/lo.2010.55.1.0043, 2010.
 Glibert, P. M., Icarus Allen, J., Artioli, Y., Beusen, A., Bouwman, L., Harle, J., Holmes, R. and Holt, J.: Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis, Glob. Chang. Biol., 20(12), 3845–3858, doi:10.1111/gcb.12662, 2014.
- Gonneea, M. E. and Charette, M. A.: Hydrologic controls on nutrient cycling in an unconfined coastal aquifer, Environ. Sci. Technol., 48, 14178–14185, doi:10.1021/es503313t, 2014.
 Gonneea, M. E., Mulligan, A. E. and Charette, M. A.: Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge, Geophys. Res. Lett., 40(11), 2701–2706, doi:10.1002/grl.50192, 2013.
 Hall, P. J. and Aller, R. C.: Rapid, small-Volume, flow injection analysis for CO2 and NH4 + in marine and freshwaters,
- Limnol. Oceanogr., 37(5), 1113–1119, 1992.
 Hansell, D. A. and Carlson, C. A.: Biogeochemistry of marine dissolved organic matter., 2014.
 Heiss, J. W. and Michael, H. A.: Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, srping-neap and seasonal cycles, Water Resour. Res., 50, 6747–6766, doi:10.1002/2014WR015574, 2014.
 Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., Griffith, B., Hollister, R. D.,
- 20 Hope, A., Huntington, H. P., Jensen, A. M., Jia, G. J., Jorgenson, T., Kane, D. L., Klein, D. R., Kofinas, G., Lynch, A. H., Lloyd, A. H., Mcguire, A. D., Nelson, F. E., Oechel, W. C., Osterkamp, T. E., Racine, C. H., Romanovsky, V. E., Stone, R. S., Stow, D. A., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker, M. D., Walker, D. A., Webber, P. J., Welker, J. M., Winker, K. S. and Yoshikawa, K.: Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72(3), 251–298, doi:10.1007/s10584-005-5352-2, 2005.
- Howarth, R. W. and Marino, R.: Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades, Limnol. Oceanogr., 51(1) part.2), 364–376, doi:10.4319/lo.2006.51.1_part_2.0364, 2006.
 Hulth, S., Aller, R. C. and Gilbert, F.: Coupled anoxic nitrification/manganese reduction in marine sediments, Geochim. Cosmochim. Acta, 63(1), 49–66, doi:10.1016/S0016-7037(98)00285-3, 1999.
 Hyacinthe, C., Anschutz, P., Carbonel, P., Jouanneau, J. M. and Jorissen, F. J.: Early diagenetic processes in the muddy
- sediments of the bay of biscay, Mar. Geol., 177(1–2), 111–128, doi:10.1016/S0025-3227(01)00127-X, 2001.
 - Jackson, N. ., Nordstrom, K. ., Smith, D. . and Virginia, W.: Geomorphic biotic interactions on beach foreshores in estuaries, J. Coast. Res., 424(36), 414–424, doi:0749-0208, 2002.

Janicki, A., Pribble, R., Janicki, S. and Winowitch, M.: An analysis of long-term trends in Tampa Bay water quality., 2001. Johannes, R. E.: The ecological significance of the submarine discharge of groundwater, Mar. Ecol. Prog. Ser., 3, 365–373, doi:0171-8630/80/0003/0365, 1980.

15

25

Jørgensen, L., Lechtenfeld, O., Benner, R., Middelboe, M. and Stedmon, C. A.: Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater, Biogeosciences Discuss., 11(4), 6151–6184, doi:10.5194/bgd-11-6151-2014, 2014.

5 Juneau, M.-N.: Hausse récente du niveau marin relatif aux Îles de la Madeleine, Master's thesis, Université du Québec à Rimouski, Rimouski., 2012.

Kelaher, B. and Levinton, J.: Variation in detrital enrichment causes spatio-temporal variation in soft-sediment assemblages, Mar. Ecol. Prog. Ser., 261, 85–97, doi:10.3354/meps261085, 2003.

Kim, T., Kwon, E., Kim, I., Lee, S. and Kim, G.: Dissolved organic matter in the subterranean estuary of a volcanic island,

10 Jeju: importance of dissolved organic nitrogen fluxes to the ocean, J. Sea Res., 78, 18–24, doi:10.1016/j.seares.2012.12.009, 2013.

Knee, K. L. and Jordan, T. E.: Spatial distribution of dissolved radon in the Choptank river and its tributaries: implications for groundwater discharge and nitrate inputs, Estuaries and Coasts, 36, 1237–1252, 2013.

Korom, S. F.: Natural denitrification in the saturated zone: a review, Water Resour. Res., 28(6), 1657–1668, doi:10.1029/92WR00252, 1992.

Kroeger, K. D. and Charette, M.: Nitrogen biogeochemistry of submarine groundwater discharge, Limnol. Oceanogr., 53(3), 1025–1039, 2008.

Kroeger, K. D., Cole, M. L. and Valiela, I.: Groundwater-transported dissolved organic nitrogen exports from coastal watersheds, Limnol. Oceanogr., 51(5), 2248–2261, doi:10.4319/lo.2006.51.5.2248, 2006.

20 Kroeger, K. D., Swarzenski, P. W., Greenwood, W. J. and Reich, C.: Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer, Mar. Chem., 104(1–2), 85–97, doi:10.1016/j.marchem.2006.10.012, 2007. Loveless, A. M. and Oldham, C. E.: Natural attenuation of nitrogen in groundwater discharging through a sandy beach, Biogeochemistry, 98(1–3), 75–87, doi:10.1007/s10533-009-9377-x, 2010.

Madelin'Eau: Gestion des eaux souterraines aux Îles-de-la-Madeleine Un défi de développement durable Rapport final., 2004. Madelin'Eau: Secteur sud-est de l'île de grande entrée- Rapport hydrologique., 2007.

Madelin'Eau: Secteur de grande-entrée- flanc nord alimentation en eau potable., 2009. Madelin'Eau: Projet de réalisation d'un forage gazier vertical et conventionel d'une profondeur de 2500 m, municipalité des îles de la Madeleine- Rapport d'étape 1, expertise hydrogéologique., 2011. Martin, J. B., Hartl, K. M., Corbett, D. R., Swarzenski, P. W. and Cable, J. E.: A multi-level pore-water sampler for permeable

Masselink, G. and Short, A.: The effect on tide range on beach morphodynamics and morphology: a conceptual beach model, J. Coast. Res., 9(3), 785–800, 1993.

McCoy, C. and Corbett, D. R.: Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications, J. Environ. Manage., 90(1), 644–51,

doi:10.1016/j.jenvman.2008.03.002, 2009.

5

10

Miller, D. C. and Ullman, W. J.: Ecological consequences of ground water discharge to Delaware Bay, United States, Groundwater, 42(7), 959–970, doi:10.1111/j.1745-6584.2004.tb02635.x, 2004.

Moore, W. S.: The subterranean estuary: a reaction zone of ground water and sea water, Mar. Chem., 65(1–2), 111–125, doi:10.1016/S0304-4203(99)00014-6, 1999.

Moore, W. S.: The effect of submarine groundwater discharge on the ocean., Ann. Rev. Mar. Sci., 2, 59–88, doi:10.1146/annurev-marine-120308-081019, 2010.

Null, K. A., Dimova, N. T., Knee, K. L., Esser, B. K., Swarzenski, P. W., Singleton, M. J., Stacey, M. and Paytan, A.: Submarine groundwater discharge-derived nutrient loads to San Francisco bay: implications to future ecosystem changes, Estuaries and Coasts, 35(5), 1299–1315, doi:10.1007/s12237-012-9526-7, 2012.

- Postma, D.: Kinetics of nitrate reduction by detrital Fe (II)-silicates, Geochim. Cosmochim. Acta, 54(3), 903–908, 1990. Postma, D., Boesen, C., Kristiansen, H. and Larsen, F.: Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes and geochemical modeling, Water Resour. Res., 27(8), 2027–2045, doi:0043-1397/91/91, 1991. Rao, A. M. F. and Charette, M. A.: Benthic nitrogen fixation in an eutrophic estuary affected by groundwater discharge, J.
- 15 Coast. Res., 280(2), 477–485, doi:10.2112/JCOASTRES-D-11-00057.1, 2012. Rao, A. M. F., McCarthy, M. J., Gardner, W. S. and Jahnke, R. a.: Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: N2: Ar and isotope pairing measurements in sediment column experiments, Cont. Shelf Res., 28(4–5), 602–613, 2008.

Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N. and Bemment, C. D.: Nitrate attenuation in groundwater: A review of
biogeochemical controlling processes, Water Res., 42(16), 4215–4232, doi:10.1016/j.watres.2008.07.020, 2008.

Robinson, C., Li, L. and Barry, D. A.: Effect of tidal forcing on a subterranean estuary, Adv. Water Resour., 30(4), 851–865, doi:10.1016/j.advwatres.2006.07.006, 2007a.

Robinson, C., Li, L. and Prommer, H.: Tide-induced recirculation across the aquifer-ocean interface, Water Resour. Res., 43(7), 6–14, doi:10.1029/2006WR005679, 2007b.

- 25 Robinson, C., Xin, P., Li, L. and Barry, D. A.: Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions, Water Resour. Res., 50(1), 165–181, doi:10.1002/2013WR013813, 2014. Rocha, C., Ibanhez, J. and Leote, C.: Benthic nitrate biogeochemistry affected by tidal modulation of Submarine Groundwater Discharge (SGD) through a sandy beach face, Ria Formosa, Southwestern Iberia, Mar. Chem., 115(1–2), 43–58, doi:10.1016/j.marchem.2009.06.003, 2009.
- 30 Rocha, C., Wilson, J., Scholten, J. and Schubert, M.: Retention and fate of groundwater-borne nitrogen in a coastal bay (Kinvara Bay, Western Ireland) during summer, Biogeochemistry, 125(2), 275–299, doi:10.1007/s10533-015-0116-1, 2015. Rossi, F., Incera, M., Callier, M. and Olabarria, C.: Effects of detrital non-native and native macroalgae on the nitrogen and carbon cycling in intertidal sediments, Mar. Biol., 158(12), 2705–2715, doi:10.1007/s00227-011-1768-6, 2011. Sáenz, J. P., Hopmans, E. C., Rogers, D., Henderson, P. B., Charette, M. A., Schouten, S., Casciotti, K. L., Sinninghe Damsté,

J. S. and Eglinton, T. I.: Distribution of anaerobic ammonia-oxidizing bacteria in a subterranean estuary, Mar. Chem., 136, 7–13, doi:10.1016/j.marchem.2012.04.004, 2012.

Santoro, A. E.: Microbial nitrogen cycling at the saltwater-freshwater interface, Hydrogeol. J., 18, 187–202, doi:10.1007/s10040-009-0526-z, 2010.

5 Santos, I., Burnett, W. C., Dittmar, T., Suryaputra, I. G. N. and Chanton, J.: Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary, Geochim. Cosmochim. Acta, 73(5), 1325–1339, doi:10.1016/j.gca.2008.11.029, 2009.

Santos, I., Eyre, B. D. and Huettel, M.: The driving forces of porewater and groundwater flow in permeable coastal sediments: A review, Estuar. Coast. Shelf Sci., 98, 1–15, doi:10.1016/j.ecss.2011.10.024, 2012.

10 Santos, I. R.: Submarine groundwater discharge driving mechanisms and biogeochemical aspects, The Florida State University., 2008.

Santos, I. R., Burnett, W. C., Chanton, J., Mwashote, B., Suryaputra, I. G. N. A. and Dittmar, T.: Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean, Limnol. Oceanogr., 53(2), 705–718, doi:10.4319/lo.2008.53.2.0705, 2008.

Santos, I. R., Bryan, K. R., Pilditch, C. A. and Tait, D. R.: Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats, Mar. Chem., 167, 57–70, doi:10.1016/j.marchem.2014.04.006, 2014.
 Sawyer, A. H.: Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments, Geophys. Res. Lett., 42(2), 403–410, doi:10.1002/2014GL062234, 2015.

Schlacher, T. A. and Connolly, R. M.: Land-ocean coupling of carbon and nitrogen fluxes on sandy beaches, Ecosystems, 12(2), 311–321, doi:10.1007/s10021-008-9224-2, 2009.

Schnetger, B. and Lehners, C.: Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent, Mar. Chem., 160, 91–98, doi:10.1016/j.marchem.2014.01.010, 2014. Scott, D. B., Brown, K., Collins, E. S. and Medioli, F. S.: A new sea-level curve from Nova Scotia: evidence for a rapid

acceleration of sea-level rise in the late mid-Holocene, Can. J. Earth Sci., 32(12), 2071–2080, doi:10.1139/e95-160, 1995a.

- Scott, D. B., Gayes, P. T. and Collins, E. S.: Mid-holocene precedent for a future rise in sea-level along the Atlantic coast of North America, J. Coast. Res., 11(3), 615–622, doi:4298366, 1995b.
 Seitzinger, S. P., Sanders, R. W. and Styles, R.: Bioavailability of DON from natural and anthropogenic sources to estuarine plankton, Limnol. Oceanogr., 47(2), 353–366, doi:10.4319/lo.2002.47.2.0353, 2002.
 Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W. and Bouwman, A. F.: Sources and delivery of carbon, nitrogen
- and phosphorus to the coastal zone: an overview of global Nutrient Export from Watersheds (NEWS) models and their application, Global Biogeochem. Cycles, 19(4), GB4S01, doi:10.1029/2005GB002606, 2005.
 Sipler, R. E. and Bronk, D. A.: Dynamics of dissolved organic nitrogen, in Biogeochemistry of marine dissolved organic matter, edited by D. A. Hansell and C. A. Carlson, pp. 127–184, Academic Press., 2014.

Slomp, C. P. and Van Cappellen, P.: Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls

and potential impact, J. Hydrol., 295(1-4), 64-86, doi:10.1016/j.hydrol.2004.02.018, 2004.

Sundby, B.: Transient state diagenesis in continental margin muds, Mar. Chem., 102(1–2), 2–12, doi:10.1016/j.marchem.2005.09.016, 2006.

Talbot, J. M., Kroeger, K. D., Rago, A., Allen, M. C. and Charette, M. A.: Nitrogen flux and speciation through the subterranean estuary of Waquoit Bay, Massachusetts, Biol. Bull., 205(2), 244–245, doi:10.2307/1543276, 2003.

Valiela, I., Costa, J., Foreman, K., Teal, J. M., Howes, B. and Aubrey, D.: Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters, Biogeochemistry, 10, 177–197, 1990.

Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P. and Ward, B.: The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change, Philos. Trans. R. Soc., 368, 20130121, 2013.

10 Weinstein, Y., Yechieli, Y., Shalem, Y., Burnett, W., Swarzenski, P. W. and Herut, B.: What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean?, Environ. Sci. Technol., 45, 5195–5200, doi:10.1021/es104394r, 2011.

Welti, N., Gale, D., Hayes, M., Kumar, A., Gasparon, M., Gibbes, B. and Lockington, D.: Intertidal diatom communities reflect patchiness in groundwater discharge, Estuar. Coast. Shelf Sci., doi:10.1016/j.ecss.2015.06.006, 2015.

15

5

Table 1: Mean concentrations (μ mol L⁻¹) of nitrogen species in the groundwater and seawater end-members as well as ranges in beach groundwater measured during the study. NO_x and NH₄⁺ was measured in 2011, 2012, 2013 and 2015, and TDN and DON was measured in 2012.

	Inland wells	Seawater	Beach groundwater	
2011–2015	N=10	N=6	N=245	
NO _x	65.5 ± 26.7	0.5 ± 0.5	0–26.1	
$\mathrm{NH_4^+}$	0.1 ± 0.3	0.8 ± 0.5	0.1–1056.2	
2012	N=2	N=3	N=54	
DON	110.9 ± 3.4	7.3 ± 0.8	0–1481.8	
TDN	203 ± 4.5	9.1±1.1	7.4–1704.4	

5 Table 2: Nutrient inventories estimated along the STE. Inventories were calculated in fresh, brackish and saline beach groundwater, the 2013 data set was used. For dissolved organic nitrogen, concentrations measured in 2012 were used.

Ν		Inventories [µmol m ⁻²]				
Beach groundwater		$\mathrm{NH_{4}^{+}}$	NO ₃ -	DIN	DON ^a	TDN ^a
Fresh water (S<5)	57	16	0.1	16.1	18.7	34.8
Brackish water (5 <s<15)< td=""><td>19</td><td>27.3</td><td>0.3</td><td>27.6</td><td>23.9</td><td>51.5</td></s<15)<>	19	27.3	0.3	27.6	23.9	51.5
Saline water (S>15)	15	14.8	0.1	15	8.9	24

^a Calculated on 2012 sampling

10

Table 3: N fluxes delivery to STE and exported to coastal ocean in mol m ⁻¹ y ¹ . Fresh inland groundwater –borne fluxes was
computed as the product of average concentrations of N in groundwater end-member and the volume of fresh groundwater
discharge (Qinland). The exported N fluxes were the product of N inventory at the high tide mark and the flow measured in the
beach (Q _{beach}). Inorganic N fluxes were estimated on 2013 sampling and DON fluxes were based on 2012 sampling.

Fluxes mol m ⁻¹ y ⁻¹	$\mathrm{NH_{4}^{+}}$	NO _x	DIN	DON ^a
Fresh inland groundwater	0.07	37	37	63
Exported N	141	1.3	142.3	33.8

^a Calculated on 2012 sampling with hydrologic flow determined in 2013

Figures captions

Figure 1: Position of the study site in the Magdalen Islands (Québec, Canada) (A, B). (C) Beach profile of the Martinique beach in 2011, 2012, 2013 and 2015; beach profiles were determined using a DGPS; Locations of sampling sites (2011–2013, 2015) along the sandy beach transect. Depths are relative to mean sea level (i.e., 0 m is mean sea level) (C).

5

10

15

20

Figure 2: Cross-sections of the transect (see Fig. 1C) showing the beach profile and mean distribution of salinity and dissolved oxygen in 2011, 2012, 2013, and 2015 (no dissolved oxygen data are available for 2015). Depths are relative to mean sea level (i.e., 0 m is mean sea level). Contour lines were derived by spatial interpolation (kriging method) of data points; the interpolation model reproduced the empirical data set with a 97% confidence level. White dots represent the depths at which samples were collected using multi-level samplers. The dashed line represents the water table level.

Figure 3: Cross-sections of the transect (see Fig. 1C) showing the beach profile and distributions of (A) nitrate + nitrite (NO_x) and (B) ammonium in μ mol L⁻¹ in 2011, 2012, 2013 and 2015. Black contour lines refer to salinity. Depths are relative to mean sea level (i.e., 0 m is mean sea level). All contour lines were derived by spatial interpolation (kriging method) of data points. White dots represent the depths at which samples were collected using multi-level samplers.

Figure 4: Cross-sections of the transect (see Fig. 1C) showing the topography and distributions of DON and TDN in μ mol L⁻¹ in 2012. Black contour lines refer to salinity. Depths are relative to mean sea level (i.e., 0 m is mean sea level). All contour lines were derived by spatial interpolation (kriging method) of data points. White dots represent the depths at which samples were collected using multi-level samplers.

Figure 5: Distribution of NO_x and NH₄⁺ groundwater concentration in μ mol L⁻¹ collected in 2011, 2012, 2013, and 2015 (A, B) and DON and TDN in 2012 (C, D) within the STE relative to salinity grouped for different DO saturation from 0-20%, 20-60% and 60-100%. Extra points are not included to allow a better visibility. Black dots were used when no data on DO saturation were available. Red triangles are mean groundwater end-member values and black squares are mean seawater end-

25 saturation were available. Red triangles are mean groundwater end-member values and black squares are mean seawater endmember values. Standard deviations are black lines associated with end-members. Dashed lines represent the theoretical mixing line between groundwater and seawater end-members.

Figure 6: Cross-sections of the transect (see Fig. 1C) showing the topography and distributions of dissolved iron in μmol L⁻¹
in 2011, 2012, 2013 and 2015. White contour lines refer to salinity. Depths are relative to mean sea level (i.e., 0 m is mean sea level). All contour lines were derived by spatial interpolation (kriging method) of data points. White dots represent the depths at which samples were collected using multi-level samplers.

Figure 7: Schematic representation of 1) N inventories in fresh, brackish and saline beach groundwater (boxes from light grey to dark grey respectively), dashed lines represent the schematic salinity separation. 2) fresh inland groundwater fluxes and potential exported fluxes to coastal water (white boxes). White arrow schematizes the groundwater flow path from the inland groundwater to the seepage face.

Figure 1

Figure 2

Figure 3

Figure 4

2012

Figure 5

Figure 6

Figure 7