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Abstract. The land surface models JULES (two versions) and ORCHIDEE-MICT, each with a revised 15 

representation of permafrost carbon, were coupled to the IMOGEN intermediate complexity climate and 

ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly 

surface climate for a given emission scenario with the land-atmosphere CO2 flux exchange from either 

JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon 

changes in a warming world. Both IMOGEN-JULES and IMOGEN-ORCHIDEE-MICT were forced by 20 

historical and three alternative future CO2 emission scenarios. Those simulations were performed for 

different climate sensitivities and regional climate change patterns based on 22 different Earth System 

Models (ESM) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to 

explore climate uncertainties in the context of permafrost carbon – climate feedbacks. Three future 

emission scenarios consistent with three representative concentration pathways: RCP2.6; RCP4.5 and 25 

RCP8.5 were used. Paired simulations with and without frozen carbon processes were required to 

quantify the impact of the permafrost carbon feedback on climate change. The additional warming from 

the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature 

(ΔT) by year 2100 and 0.5 and 17 % of ΔT by 2300, these ranges reflecting differences in land surface 

models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback 30 

has a greater impact on the low emission scenario (RCP2.6) than on the higher emissions scenarios 



 

2 

 

suggesting that permafrost carbon should be taken into account when evaluating heavy mitigation and 

stabilizations scenarios. Structural differences between the land surface models (particularly the 

representation of the soil carbon decomposition) are found to be a larger source of uncertainties than 

differences in the climate response. Inertia in the permafrost carbon system means that the permafrost 

carbon response depends on the temporal trajectory of warming as well as the absolute amount of 5 

warming. We propose a new policy relevant metric - the Frozen Carbon Residence time (FCRt) in years 

- that can be derived from these complex land surface models and used to quantify the permafrost 

carbon response given any pathway of global temperature change. 

1 Introduction 

The coupling between the global carbon cycle and the rest of the climate system gives rise to a range of 10 

feedbacks to climate on multiple time scales. These feedbacks are expressed in the future by either 

amplifying or mitigating any change implied by a given fossil fuel and cement production emission 

scenario. They are highly uncertain. For example, Jones et al. (2013) showed that inter-model 

uncertainty in the projected change in land carbon uptake of atmospheric CO2 over the 21
st
 century is 

comparable with the implications, on atmospheric CO2, of the spread across emission scenarios. In 15 

addition Earth System Models (ESMs) do not represent all of the relevant feedbacks. In the northern 

high latitudes, the latest generation of climate models in the Coupled Model Intercomparison Project 

Phase 5 (CMIP5) ensemble simulate a warming-induced uptake of carbon, although with a low 

confidence (Ciais et al., 2013).  However, none of these CMIP5 models include a representation of the 

large stocks of ‘old’ permafrost carbon. These stocks are currently stabilised by frozen and/or by 20 

saturated conditions but may become active and release CO2 or CH4 under global warming (Hugelius et 

al., 2014; Gorham, 1991). The addition of the permafrost-carbon response to climate may change the 

CMIP5 model simulations of the northern high latitudes from a sink to a source of carbon and thus a 

positive feedback (Burke et al., 2013; Koven et al., 2011; Ciais et al., 2013). For this reason permafrost 

processes must be routinely included in the simulations of the global carbon cycle. 25 
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Estimates of the impact of climate change on permafrost carbon have typically been performed 

combining estimates of soil thermal changes with those of simplified soil carbon decomposition (Burke 

et al., 2012; Koven et al., 2015; Schneider von Deimling et al., 2015). Schuur et al. (2015) collated 

results from many of these studies and showed that the potential carbon release from today’s permafrost 

zone is between 37 and 174 Gt carbon by the year 2100 and under a “business-as-usual” scenario 5 

(Representative Concentration Pathway RCP 8.5; Meinshausen et al., 2011). This is comparable with 

the later result of Koven et al. (2015) who estimated a permafrost carbon response of 28–113 Gt C for 

the same time period and scenario based on a soil carbon decomposition model in which the response of 

soil carbon to warming was calibrated by the results of laboratory incubation experiments (Schädel et 

al. 2014).  10 

 

The response of the land carbon cycle to climate change can be separated into two different components 

- its response to CO2 and its response to climate approximated by global mean warming (Friedlingstein 

et al., 2006). The carbon - climate feedback parameter, , defined using the CMIP5 models without 

permafrost ranges from a release of 16 to 89 Gt C K
-1

 from the land surface (Arora et al., 2013). For the 15 

CMIP5 models, this is offset by CO2 fertilisation of the land surface, making the land surface a net sink. 

Burke et al. (2013) estimated the permafrost-specific carbon feedback (PF) that was missing in CMIP5 

models, i.e. the relationship between the release of carbon from permafrost soils and global temperature 

change. They estimated PF at 2100 to range from an additional release of 6 to 66 Gt C K
-1

. This is of 

comparable magnitude to all the other land carbon feedbacks and could change the overall land surface 20 

to become a net source of carbon. MacDougall and Knutti (2016) used a permafrost carbon-enabled 

intermediate complexity climate model and confirmed the large magnitude of PF but also showed that 

ƔPF increases significantly over time from around 24 Gt C K
-1

 in 2100, to around 47 Gt C K
-1

 in 2300. 

This suggests that PF could be pathway and time dependent and the linear feedback approach developed 

by Friedlingstein et al. (2003) is not valid when incorporating the response of permafrost carbon to 25 

warming.  
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The additional release of permafrost carbon to the atmosphere amplifies global warming forced by 

anthropogenic emissions, and the amount of permafrost carbon released under various emission 

scenarios and at different time scales has been estimated in a range of studies (e.g. Schaefer et al., 2011, 

Koven et al. 2011; 2015). However, there are currently only a few estimates of the impact of this 

feedback in terms of additional climate change. Burke et al. (2013) and Schneider von Deimling et al 5 

(2012; 2015) used a simple climate energy balance model to show the temperature amplification of the 

permafrost carbon feedback is between 0.02 and 0.36 
O
C by 2100. MacDougall et al. (2012; 2013) 

found that including permafrost carbon within their intermediate complexity climate model increased 

the global mean temperature by an additional 0.1 to 0.8 
O
C by 2100. They found the permafrost carbon 

released under low emission scenarios provides a more significant climate feedback than the permafrost 10 

carbon released under high emission scenarios. Indeed a kilogram of CO2 transferred to the atmosphere 

under a low emissions pathway has a higher radiative efficiency than the same kilogram of CO2 

released under a high emissions pathway. In the MacDougall et al. (2012) study this factor outweighs 

the more limited permafrost carbon loss at lower emissions. Similarly, using the CLIMBER-2 

intermediate complexity climate model, Crichton et al. (2016) suggest a relative increase of peak 15 

temperature change between 10 and 40 %, depending on the emission scenario, with RCP4.5 being 

most affected. 

 

To explore sources of uncertainty in these estimates, we use a coupled climate modelling system of 

intermediate complexity with new generation process-oriented land surface models including 20 

permafrost processes. This framework allows us to make a more comprehensive assessment of the 

permafrost carbon response to climate change and its subsequent impact on global temperature 

including a wide spectrum of uncertainties of future emissions scenario (policy uncertainty); climate 

response to increased radiative forcing (climate sensitivity and regional distribution of climate change); 

and parameterisation of the soil carbon decomposition (terrestrial process uncertainty). Three different 25 

versions of global land surface schemes (JULES-deepRresp; JULES-suppressResp; and ORCHIDEE-

MICT) are coupled with the IMOGEN intermediate complexity climate model (Huntingford et al., 

2010). IMOGEN was tuned to represent the response of 22 available Global Climate Models (GCMs) 
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from CMIP3 (phase 3 of the Coupled Model Intercomparison Project). [The range of climate sensitivity 

and regional distribution of climate change in the CMIP3 models is comparable with that in the CMIP5 

models. ADD RANGE OF CLIMATE SENSITIVITIES] IMOGEN was run out to 2300 using 

harmonised emissions scenarios corresponding to RCP2.6, RCP4.5 and RCP8.5 (Meinshausen et al., 

2011). This work therefore provides a rigorous assessment of the uncertainty range of the permafrost 5 

climate-carbon feedbacks using land surface components representative of the next generation of Earth 

System Models that will be used for the upcoming IPCC assessment. 

2 Materials and Methods 

2.1 JULES land surface scheme 

The Joint UK Land Environment Simulator (JULES - Best et al., 2011; Clark et al., 2011) is the land 10 

surface component of the UK Earth System Model (UKESM - Jones and Sellar, 2016). This paper uses 

a permafrost-adapted version of JULES (version 4.3; Chadburn et al., 2015a). JULES describes the 

physical, biophysical and biochemical processes that control the exchange of radiation, momentum, 

heat, water and carbon between the land surface and the atmosphere. It can be applied at a point or over 

a grid, and requires temporally continuous meteorological forcing data along with atmospheric CO2 15 

concentration. Each point or grid box can contain several different land-cover types or “tiles”, including 

five plant functional types (broadleaf trees, evergreen trees, C3 and C4 grasses and shrubs) as well as 

non-vegetated tiles (urban, water, ice and bare soil). Each tile has its own surface energy balance, but 

the soil underneath is treated as a single column and receives aggregated mean fluxes from the surface 

tiles. TRIFFID, the dynamic vegetation model (Clark et al., 2011), was used to simulate the vegetation 20 

distribution and its response in a changing climate.  

 

Several new modifications have been added into JULES to improve the representation of physical and 

biogeochemical processes in the cold regions. These include the additional impact of the insulation 

effects of a fractional moss layer at the soil surface; updated soil thermal and hydraulic properties to 25 

take account of the presence of organic matter; and a deeper and better resolved soil column (total depth 
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18.3 m), with an additional thermal column at the base of the soil to represent bedrock (Chadburn et al., 

2015a; 2015b). These changes lead to a significant reduction of the error in the annual cycle of soil 

temperature along with a reduction in the active layer bias, from over 1.0 m too deep to only about 0.4 

m too deep. All these developments are included here in an improved JULES version better suited for 

the permafrost simulations discussed here. 5 

 

The standard soil carbon model in JULES is a 4-pool model (decomposable plant material, resistant 

plant material, biomass and humus). When added together these pools represent the total soil carbon 

storage. The model is based on the RothC soil carbon model and described in detail in Clark et al. 

(2011). Burke et al. (2016) adapted the soil carbon model in JULES to include a soil vertical dimension 10 

within each of the carbon pools. This results in a set of pools in every layer of the soil column. The 

respiration rate is determined at each depth (z) for each soil carbon pool (i) and is given by: 

 

                                                      (1)  

 15 

Here ki is a pool specific decay constant (s
-1

), Ci is the amount of soil carbon in pool i (kg m
-2

), FT, Fs 

and Fv parameterise the response of the respiration rate to temperature (Tsoil(z) in K), soil moisture (s(z) 

as a fraction of saturation) and vegetation fraction (v) respectively. The soil respiration is additionally 

modified by including an extra exponential decay of respiration with depth. This accounts for factors 

that are currently missing in the model such as priming effects and microscale anoxia (Koven et al., 20 

2013). The e-folding depth (ζresp in m) of this function is very uncertain and the soil carbon vertical 

distribution depends significantly on its value (Burke et al., 2016). A smaller ζresp means the respiration 

is more suppressed with depth and results in more soil carbon particularly in the deeper soils. 

 

Two different parameterisations (JULES-suppressResp and JULES-deepResp) of the response of 25 

respiration to temperature  (FT) are available within JULES (Clark et al., 2011) and we test both. 

JULES-suppressResp uses an Arrhenius function (FT,Q10 from Equation 2) with Q10=2.0 and ζresp = 0.56 
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m, whereas JULES-deepResp uses  FT,Roth in Equation 3  and  ζresp = 2.5 m. These are shown in Figure 1 

in Burke et al. (2017).  Both functions have some decomposition at temperatures below freezing. 

 

                 

            

           (2) 

 5 

                          
     

            
         (3) 

 

Burke et al. (2016) showed there was very little difference in the timing of the peak soil respiration in 

summer between these two temperature response functions when combined with appropriate e-folding 

depths (ζresp).  10 

 

There is a vertical mixing term representing either bioturbation (i.e. the soil mixing by, for example, 

animals and plant roots), or, in permafrost regions, cryoturbation (soil mixing is from frost heave and 

freeze-thaw processes). The mixing rate changes depending on whether permafrost is present or not 

(Burke et al., 2017, Koven et al., 2013). In the absence of permafrost, the bioturbation mixing rate is 15 

constant at 1 cm
2
 year

-1
. The cryoturbation mixing rate is set at 5 cm

2
 year

-1
. This drops off linearly 

below one meter, reaching zero at 3 m depth. Permafrost is diagnosed at any location where the deepest 

soil layer is below 0 
O
C, assuming that there is only a very minor seasonal cycle in temperature at this 

depth. 

 20 

Soil carbon increases though vegetation litter fall. Although the majority of the litter enters at the soil 

surface, a small amount enters the deeper soil layers, for example, from roots. In JULES the litter 

distribution drops off exponentially with depth with an e-folding parameter of 5 m
-1

. The litter is mixed 

through the soil profile by either bioturbation or cryoturbation. The amount and quality of litter directly 

impacts the soil carbon stocks, therefore it is important for the simulated vegetation distribution to be as 25 

accurate as possible.  

 



 

8 

 

Using pan-arctic JULES simulations with this vertically resolved soil carbon model Burke et al. (2017) 

showed that, at the large scale, the depth distribution of soil organic carbon approximately follows that 

of the observations. Chadburn et al. (2017) suggests that, given the correct input (litter), the depth 

distribution of soil organic carbon is well simulated for mineral soils, but that the model is currently 

unable to reproduce the peat layers of organic soils. 5 

 

Unique to the analysis is that in JULES, a tracer was added to enable the ‘old carbon’ initially within 

the permanently frozen soils to be easily distinguished from the rest of the soil carbon (Burke et al., 

2016). This enables the old permafrost carbon, defined as carbon within the permanently frozen soil at 

the start of the simulation, to be traced throughout the simulation.  10 

2.2 ORCHIDEE-MICT 

Our second land surface model is the ORCHIDEE-MICT model, again enhanced with several new 

processes related to cold region soils. The new soil processes include the implementation of the thermal 

and hydrological effects of soil freezing in a multi-layered soil hydrology scheme (Gouttevin et al., 

2012). Gouttevin et al. (2012) state that the modelling of the soil thermal regime is generally improved 15 

by the representation of soil freezing processes. This enables the dynamics of the active layer to be 

more accurately captured.  This process is important when simulating the response of frozen carbon 

stocks to future warming (Koven et al., 2009; 2011). Also added is a more advanced multi-layer snow 

scheme, which improves the estimation of permafrost physics (Wang et al., 2013). This three-layered 

snow module includes a varying snow density and a varying snow thermal conductivity along with the 20 

thawing and refreezing of water within the snowpack. More specifically, the snow module has been 

introduced to account for the water freezing/thawing processes within snow capturing more accurately 

the impact of the overlying snow cover on soil temperature (Wang et al., 2013). An evaluation of snow 

depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff demonstrate the 

improvement in the simulation of snow processes by this version of ORCHIDEE-MICT over previous 25 

versions. To account for the effects of cryoturbation on redistribution of soil organic carbon (SOC), a 

vertical mixing scheme based on a diffusion equation was introduced into ORCHIDEE-MICT (Koven 
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et al., 2009), with the diffusion length being set to 3 times the local active layer thickness. In the model 

version used here, carbon and temperature are discretised down to the depth of the bottom layer (47.6 

m), whereas the soil depth for hydrology is 2 m. Soil water content in each layer below 2 m is assumed 

to be equal to the monthly average soil moisture at the bottom layer of the top 2 m, and its frozen 

fraction depends on soil temperature of the layer below 2 m.  5 

 

The soil carbon model of ORCHIDEE-MICT is based on the equations in the CENTURY model 

(Parton et al. 1992). It contains 7 pools, namely: above- and below-ground metabolic and structural 

litter, along with active, slow and passive soil organic carbon pools. Decomposition of carbon is 

modulated by soil temperature and moisture functions along with a clay function. Transfer functions 10 

between pools are described using the CENTURY equations (Parton et al. 1992). The temperature 

function FT follows equation (2) for temperatures above 0 °C. At colder soil temperatures below 0 °C, 

FT is reduced linearly decrease to reach zero at -1 °C  (Koven et al. 2011). In this paper, heat production 

by decomposing soil carbon (the ‘heating’ experiment in Koven et al. 2011) is turned off. Unlike 

JULES the ‘old carbon’ cannot be traced throughout the simulation which means the ‘old carbon’ below 15 

the active layer and within the permafrost is only identified at the start of the simulation. As with 

JULES, the dynamic vegetation model was used to simulate the vegetation distribution and litterfall. 

Both of these have a significant impact on the soil carbon stocks.  

2.3 IMOGEN 

The Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) is an intermediate 20 

complexity climate model developed specifically to quantify geographical and seasonal variation in 

meteorological conditions over land in response to changing atmospheric gas composition. It can be 

operated for different anthropogenic emission scenarios, and can capture global land-atmosphere carbon 

feedbacks. IMOGEN is calibrated to emulate different GCMs and, for example, it has recently been 

used to investigate the risk of Amazon dieback under a large range of climate projections (Huntingford 25 

et al., 2013). Here it provides a test bed for evaluating the impact of the permafrost feedback on the 
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global carbon cycle for a variety of emission scenarios, driving GCMs and alternative land surface 

parameterisations describing the northern latitude terrestrial cryosphere response. 

 

IMOGEN contains a simple energy balance model to relate changes in atmospheric greenhouse gas 

concentrations to the global mean land temperature via changes in a radiative forcing. The radiative 5 

forcing itself depends on any pathway in altered atmospheric gas concentrations since the pre-industrial 

period. The Energy Balance Model (EBM) requires four parameters which are readily calibrated against 

given climate model (Huntingford et al., 2010). The four parameters are: climate feedback parameters 

over land and over sea, the oceanic effective thermal diffusivity representing the ocean thermal inertia 

and a land-sea temperature contrast parameter which linearly relates warming over the land to warming 10 

over the ocean (Huntingford and Cox, 2000). 

 

IMOGEN forces its coupled land surface model with local meteorological data temporally downscaled 

from calculated mean monthly values, to 30 minute timescales using a weather generator. These driving 

data, required by both JULES and ORCHIEE-MICT, are 1.5m temperature, relative humidity, wind 15 

speed, precipitation, downward shortwave and longwave radiation and pressure. The mean monthly data 

(that is downscaled) are derived for each GCM, assuming simple linear regressions between the local 

and monthly variations in meteorology and the amount of annual global mean warming over land. This 

“pattern-scaling” concept (Huntingford and Cox, 2000) takes these regression values, and multiplies 

them by the mean warming over land calculated from the EBM in IMOGEN. The patterns of changing 20 

meteorological conditions plus the four energy balance model parameters to give mean land warming 

were calibrated for the 22 CMIP3 climate models (Huntingford et al., 2013). These 22 patterns 

represent the uncertainty in the driving climate models. The monthly anomalies of climate change (from 

EBM and patterns combined) are added to the 1961-1990 WATCH climatology (Weedon et al. 2011), 

which is assumed here to be also representative of pre-industrial conditions. Any biases introduced by 25 

neglecting anthropogenically induced climate change up to that date are assumed to be small compared 

with the errors from using earlier years in the WATCH climatology with poorer observational coverage 
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(Huntingford et al., 2013). This also removes individual GCM biases in the estimation of the pre-

industrial state. 

 

IMOGEN has a closed global carbon cycle when its operation includes a land surface model 

(Huntingford et al., 2013). At the end of each modelled year, atmospheric CO2 concentration is 5 

modified using the difference between prescribed emissions and the global mean ocean-atmosphere  and 

land-atmosphere fluxes of CO2 for that year. The values of Net Ecosystem Productivity (NEP) are 

integrated over all land points for that year and used to derive the land-atmosphere flux. The NEP is 

output from either JULES or ORCHIDEE-MICT. A single “box” model is used to calculate the ocean 

sink. It is a function of both global temperature increase and atmospheric CO2 level (Huntingford et al., 10 

2004). Any changes in atmospheric CO2 concentration then feed back via the energy balance model on 

modelled surface climate changes, which drives the scaled patterns of local and monthly climatology.  

2.4 Experimental design 

The pre-industrial spin up state for each of the different land surface models was estimated using the 

1961-1990 WATCH climatology and pre-industrial atmospheric CO2 concentration at the IMOGEN 15 

resolution of 2.5 degrees latitude and 3.75 degrees longitude. This was done independently for each of 

the three different global land surface model configurations but, in each case it was sufficient to give 

stable soil carbon and vegetation carbon distributions for 1860. In both JULES and ORCHIDEE-MICT 

competition of vegetation was enabled allowing the models to determine both their initial vegetation 

distributions and litterfall and the response of the vegetation distribution and litterfall to climate change. 20 

Anthropogenic land use change was ignored in these simulations, as it is relatively small in the northern 

high latitudes (Klein Goldewijk , 2001). 

 

In JULES a ‘modified accelerated decomposition’ numerical technique (Koven et al., 2013; modified-

AD) was adopted to more quickly spin the JULES soil carbon to an initial equilibrium distribution. The 25 

decay rates of the four soil carbon pools were set to the rate of the fastest pool. In order to appropriately 

adopt the modified-AD method, the diffusion coefficients for the four pools were multiplied by the 
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same factors. The model was then initially spun-up for 500 model years using this modified-AD 

technique and the fixed WATCH climatology representative of pre-industrial times. The decay rates for 

the four pools were then reset and the model spun up for another 2000 years again using the WATCH 

climatology. This needed to be done independently for both JULES-suppressResp and JULES-deepResp - 

although these two model versions have the same physics and vegetation carbon, they have different 5 

soil carbon distributions. ORCHIDEE-MICT was initially spun-up by running the full version of the 

land surface model (30 minute timestep) for 150 years first, again with the WATCH climatology. 

Following this, the soil carbon sub-model forced by above- and below-ground litter input 

(FORCESOIL) was run 10000 model years for 10 times with each time followed by a 2-year run of the 

full ORCHIDEE-MICT. This was followed by another 200 years of ORCHIDEE-MICT to complete the 10 

numerical spinup. Note that due to its permanent burial of carbon below the active layer even after 

100,000 years of spinup, ORCHIDE-MICT’s soil carbon pools continue to gain carbon, but at a very 

small rate (mean Net Ecosystem Productivity over the last 50 years of spinup is 0.16 Gt C yr
-1

). The 

permafrost area, soil and vegetation carbon distributions for these pre-industrial states are described 

here and used to initialise the transient simulations. 15 

 

To quantify the permafrost carbon feedback separately, paired simulations were carried out for each of 

the JULES and the ORCHIDEE simulations; one which includes the response of the climate to the CO2 

emissions from the perturbed (thawing) permafrost carbon (indexed “PF”) and one which excludes it 

(indexed “non-PF”). In JULES the permafrost carbon and non-permafrost carbon are diagnosed 20 

separately at each timestep. For the non-PF case, only the non-permafrost carbon is visible to IMOGEN, 

whereas for the PF simulation all the soil carbon is visible to IMOGEN. In ORCHIDEE-MICT, for the 

case of the non-PF simulations, the pre-industrial permafrost carbon is subtracted from the total soil 

carbon at each timestep. 

 25 

The spun-up coupled system is forced with historical fossil fuel and cement production CO2 emissions 

followed by the emissions representing three of the Representative Concentration Pathways (RCPs) 

used in the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) - 
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RCP2.6, RCP4.5 and RCP8.5 (Moss et al., 2010; Meinshausen et al., 2011). Simulations were carried 

out until year 2300 using the RCP extensions (Meinshausen et al., 2011) to examine the long-term 

relationship between permafrost and climate. Non-CO2 greenhouse gases and aerosols were not 

included in this set of simulations, nor were land use change emissions. The impact of these extra 

emissions will be minor for the purpose of our study focusing on the differences between PF and non-5 

PF simulations. 

3 Results 

3.1 Evaluation of models 

The models were assessed to ensure that the permafrost physics and the soil and vegetation carbon are 

not inconsistent with the observations. Permafrost is assumed to exist in grid cells where the soil is 10 

frozen at 3m depth for a period of 2 years or more. Figure 1 (left panels) shows the simulated 

permafrost extent for JULES [JULES-suppressResp and JULES-deepResp have the same physics and 

hence the same permafrost] and ORCHIDEE-MICT. Superimposed on the simulated permafrost extent 

are the observations from Brown et al. (1998). Both JULES and ORCHIDEE-MICT capture all of the 

observed continuous permafrost (more than 90 % of a grid cell underlain by permafrost). They might be 15 

expected to also capture the regions of discontinuous permafrost (more than 50 % but less than 90 % of 

a grid cell underlain by permafrost) and simulate a permafrost area similar to the observed area of 

continuous and discontinuous permafrost (15 million km
2
). JULES has slightly too much permafrost 

overall with extra permafrost in Eurasia and not enough in North America - this is possibly caused by 

biases in the winter snow depth. ORCHIDEE-MICT systematically simulates more permafrost than 20 

either the observations or JULES. Compared with the zero degree isotherm for the 2 m air temperature 

(Figure 1: right panels), ORCHIDEE-MICT has some permafrost where the annual mean temperature is 

greater than zero suggesting it might be missing a process which increases the thermal insulation in 

winter between the air and the deeper soil. 

 25 
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The simulated vegetation carbon distribution is shown in Figure 2. There are no feedbacks from the soil 

carbon onto the vegetation - via, for example, changing soil hydraulic properties or nitrogen limitation - 

therefore both versions of JULES also have the same vegetation distribution. In general both of the 

models simulate more vegetation carbon than observed which will lead to more litter carbon input. 

Some model overestimation might be expected because there is no land use change included in the 5 

models. There are also some differences in spatial patterns, for example, in JULES the simulated boreal 

forest does not extend far enough east in Siberia. This will reduce the litter inputs in eastern Siberia and 

potentially result in relatively smaller simulated soil carbon stocks in these regions. ORCHIDEE-MICT 

has slightly more vegetation carbon than JULES, but its spatial distribution is more comparable to the 

observations. 10 

 

Figure 3 shows the soil carbon distribution simulated by the three different model versions (top three 

rows) with the left hand panels being the total soil carbon in the top 2 m and the right-hand panels being 

the soil carbon in the permafrost in the top 3 m. Also shown, bottom row, are two different 

observational data sets. The first is the ISRIC-WISE derived soil property estimates on a 30 by 30 15 

arcsec global grid (WISE30sec; Batjes, 2016). The second is the Northern Circumpolar Soil Carbon 

Database version 2 (NCSCDv2; Hugelius et al., 2014). The WISE30sec soil carbon distribution for the 

top 2m of soil is shown at the bottom left and the NCSCDv2 for the top 3 m of the soil is shown at the 

bottom right. These observed distributions are interpolated from a number of discrete soil pedons and 

therefore have a large associated uncertainty not reflected in these figures. The two different 20 

observational data sets have different amounts of soil carbon in the polar region. In the top 2 m of the 

region mapped by the NCSCDv2 there are 873 Gt C in NCSCDv2 but only 622 Gt C in the WISE30sec 

data set. The NCSCDv2 was specifically created for the northern high latitudes, so is likely to be more 

suitable for any assessment of the northern high latitudes soil carbon, but it only covers a limited region 

of the northern latitudes. 25 

 

On inspection of Figure 3 the models have more soil carbon in the top 2m than the WISE30sec 

observations, but this might be expected if the WISE30sec underestimates the northern high latitudes 
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soil carbon. All three models have large amounts of soil carbon in the permafrost regions of Siberia and 

northern Canada. The right hand column shows the simulated soil carbon top 3m of the simulated 

permanently frozen soil volume. These are not directly comparable with the NCSCDv2 observations 

which show the total soil carbon in the top 3 m, the NCSCDv2 observations provide an upper limit on 

the permafrost carbon (586 Gt C for regions > 60 °N). The permafrost carbon in both JULES 5 

simulations falls below this threshold (314 and 488 Gt C for regions > 60 °N), but ORCHIDEE-MICT 

(959 Gt C for regions > 60 °N) has more than the total soil carbon in NCSCDv2.  

 

The simulated distribution of permafrost carbon is strongly controlled by the simulated permafrost 

extent: ORCHIDEE-MICT has too much permafrost and hence too much permafrost carbon, JULES 10 

has too little permafrost in North America and western Russia and consequently low permafrost carbon 

in that region. Although JULES-suppressResp has suppressed respiration with depth and relatively more 

soil carbon deeper in the profile, it has a smaller proportion of its total global soil carbon in the northern 

high latitudes than JULES-deepResp because of the dependence of FT on temperature (Equations 2 and 

3). Despite obvious model biases, these three different models provide reasonable approximations of the 15 

land surface state and we consider then to zero-order as suitable for estimating the permafrost carbon 

feedback. 

3.2 Climate projections 

The simulated areal loss of top 3m or near-surface permafrost under the different RCP scenarios 

considered is shown in Figure 4. For a grid cell to lose permafrost, it must have a temperature greater 20 

than 0ºC at a depth of 3 m for at least one month of the year.  ORCHIDEE-MICT has a much larger 

initial permafrost extent but loses a smaller fraction of its permafrost than JULES under the RCP 

scenarios. The models simulate an increasing rate of permafrost loss with time over the next ~100 years, 

and then tend towards stabilization after 2200 in the RCP scenarios that stabilized forcing around 2100. 

By 2100 between 5 and 63 % of the permafrost is lost, depending on model configuration and emissions 25 

scenario (comparing Figure 4 changes with annotations in Figure1). This potentially very big change in 

permafrost extent falls within the spread given by Koven et al. (2013) for the CMIP5 models. This 
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might be expected because Koven et al. (2013) found that structural differences in snow physics and 

soil hydrology had a significant impact on uncertainties - our set of model simulations has a smaller 

range of these structural uncertainties. Across all scenarios, the near term sensitivity of future 

permafrost area to global mean temperature change is 1.95 to 2.10 million km
2
 ºC

−1
 for JULES and 2.30 

to 2.55 million km
2
 ºC

−1
 for ORCHIDEE-MICT. This is less than the 4.0 ± 0.9 million km

2
 ºC

−1 
found 5 

after stabilization of permafrost by Chadburn et al. (2016) but falls within the 1.8 - 2.6 million km
2
 ºC

−1 

(Chadburn et al., 2015b) found using transient model simulations. By 2300 between 6 and 90 % of the 

near-surface permafrost is lost, a range more consistent with the stabilized estimate of Chadburn et al. 

(2016). In JULES the permafrost area has stabilized by 2300, but ORCHIDEE-MICT is still losing 

near-surface permafrost, in particular for the RCP8.5 scenario, suggesting that ORCHIDEE-MICT has a 10 

larger thermal inertia than JULES. 

 

Figure 5 shows the change in the northern high latitudes vegetation (top row) and soil carbon (middle 

and bottom) over the region polewards of 60° north. In the case of soil carbon two different quantities 

are shown - the non-permafrost (non-pf) soil carbon in the middle row and the total soil carbon in the 15 

bottom row. At the start of the simulation the non-permafrost soil carbon is defined as the soil carbon 

within the active layer, i.e. any ‘old carbon’ below the active layer in the permanently frozen soil is 

excluded. In any given subsequent year, this non-permafrost soil carbon is defined for the same soil 

volume, i.e. within the active layer defined for 1860. This non-permafrost soil carbon is taken to be 

equivalent to the soil carbon assessed by Ito et al. (2015) and Qian et al. (2010) who present results 20 

from simulations of the northern high latitudes carbon balance without any specific permafrost carbon 

included. The bottom row in Figure 5 shows the total northern high latitudes soil carbon including both 

the ‘old carbon’ below the active layer and the non-permafrost soil carbon. The tables in the 

Supplementary Information summarise these changes for four different regions (polewards of 60° north, 

polewards of 55° north, the land surface where permafrost is observed and the land surface where 25 

permafrost is simulated by each model version in 1860). 
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Warming and CO2 fertilization effects stimulate vegetation growth and increase land carbon storage in 

all three land-surface model configurations (Figure 5, top row). This results in an increase of vegetation 

carbon of between 10 and 60 Gt C by 2100 with a greater increase in ORCHIDEE-MICT than JULES 

and a greater increase for the higher emissions scenarios, due to higher atmospheric CO2. Ito et al. 

(2015) used off line land surface models driven by weather data from global climate models under a 5 

high emissions scenario and showed the vegetation carbon change was between -5 and  80 Gt C - a 

much larger spread than found here. Qian et al. (2010) assessed the C4MIP (Coupled Climate Carbon 

Cycle Model Intercomparison Project) models under a high emissions scenario and found an increasing 

vegetation carbon of 17 ± 8 Gt C by 2100 - this range falls within the spread shown here. The 

vegetation carbon increase is slower in JULES than ORCHIDEE-MICT and continues to increase after 10 

2300 whereas in ORCHIDEE-MICT the vegetation is stabilizing by 2300. This is probably linked to the 

different rates of establishment and growth of the boreal forest as it expands polewards in the two 

models. 

 

This enhanced vegetation productivity leads to increased soil carbon storage in biomass litter and input 15 

to soil organic matter pools. In a warming climate, the soil organic matter decomposition also 

accelerates, decreasing the soil carbon. The balance between increased soil carbon input and increased 

decomposition (or reduced turnover time of soil carbon) is relatively uncertain (Jones et al., 2005), 

leading to simulations of either an increase or decrease in non permafrost soil carbon in the northern 

high latitudes under future climate change. All three models show an increase in non-permafrost soil 20 

carbon before 2100. Across all the different climate responses and emission scenarios examined these 

increases range from 10 to 100 GtC and suggest that the increase of litter fall dominates over increased 

respiration. By 2100, Qian et al. (2010) found that the soil carbon in the C4MIP models increases by  21 

± 16 Gt C. Ito et al (2015) showed that, although the majority of their model ensemble members have an 

increase in soil carbon before 2100, there are a few with a decrease. This decrease is not reflected in this 25 

ensemble of model simulations and is probably caused by a combination of unsampled structural 

uncertainty in the current ensemble and unrealistic soil organic carbon distributions in some of the 

models in the Ito et al. (2015) ensemble. The spread of the future response of the non-permafrost soil 
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carbon in RCP8.5 (caused by differences in the driving GCMs) is larger than the differences between 

the different RCP scenarios.  JULES-suppressResp and ORCHIDEE-MICT have an increase in non-

permafrost soil carbon of similar magnitudes; these increases are slightly larger than in JULES-

deepResp. After 2100, in the majority of simulations, the non-permafrost soil carbon is relatively stable. 

The exception to this is RCP8.5 for JULES-deepResp where there is a significant loss of non-permafrost 5 

soil carbon for a few of the simulations.  

 

Qian et al. (2010) and Ito et al., (2015) did not include any specific permafrost carbon. However when 

permafrost carbon is included in the simulations (Figure 5, bottom row), the increase in the total soil 

carbon before 2100 is reduced and in some cases there is a slight decrease. The impact of including 10 

permafrost soil carbon in northern high latitudes soils is highly model dependent. In JULES-

suppressResp, although the total soil carbon increases more compared with the non-permafrost soil 

carbon, there is little noticeable difference in Figure 5. However in ORCHIDEE-MICT and JULES-

deepResp there is a significant decrease in total soil carbon compared with non-permafrost soil carbon, 

which continues past 2300 and especially for RCP8.5. In JULES, uncertainties in the total northern high 15 

latitude soil carbon (given by the spread in the bottom row of Figure 5) caused by uncertainties in the 

climate response are larger than the differences between scenarios. However, the differences between 

the different model versions dominate any differences in scenario or driving climate. 

 

For the ensemble mean of the RCP8.5 scenario, including permafrost carbon in JULES-deepResp and 20 

ORCHIDEE-MICT results in a reduction in the total carbon in the northern permafrost region by 2150 

(when compared with 1860). The majority of the RCP2.6 and RCP4.5 scenarios and JULES-

suppressResp still have more total carbon in the northern permafrost region in 2300 when compared with 

1860, even when permafrost carbon is included. 

3.3 Permafrost carbon feedback 25 

Changes in biomass and in global soil carbon drive the land-atmosphere flux of CO2, which then 

feedbacks influencing the global climate change. IMOGEN can capture this effect. Globally, there is an 
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initial uptake of carbon by the land which reduces over time as the vegetation and soil begins to uptake 

less, and in some cases the soil becomes a source of carbon as respiration carbon loss overtakes litterfall 

carbon input (Figure 6 top row). By 2300 the global land surface has a net carbon balance very close to 

zero for many of the RCP2.6 and RCP4.5 simulations. The RCP8.5 simulations are very uncertain, with 

some climate patterns driving a source of global land carbon and some patterns a sink of global land 5 

carbon.  

 

The contribution of permafrost carbon to the global land flux is also shown in Figure 6 (bottom row). 

Including the permafrost carbon increases the global land CO2 flux to the atmosphere, only slightly for 

JULES-suppressResp but more notably for the other two model versions. This brings the time of peak 10 

annual uptake earlier in the permafrost enabled simulations - it is 10 years earlier for JULES-deepResp 

and ORCHIDEE-MICT and 4 years earlier for JULES-suppressResp and suggests that permafrost thaw 

could cause a significant positive feedback on the climate system. 

 

The impact of including these additional permafrost-related carbon fluxes on the global mean 15 

temperature is less than ~ 0.46 ºC (Figure 7: PF - non-PF simulations). However, the impact is very 

different between the three different model configurations, for example, JULES-deepResp giving an 

additional increase of 0.02 - 0.28 °C (5
th

 - 95
th

 percentile) and JULES-suppressResp giving an additional 

increase of 0.01 - 0.05 °C (5
th

 - 95
th

 percentile). These results appear relatively independent of scenario 

but there are some notable differences between the different model configurations.  20 

Figure 8 shows the temperature change caused by permafrost carbon loss as a percentage of the global 

mean temperature change. RCP2.6 has a much lower overall temperature increase (~2 °C) compared 

with RCP8.5 with a ensemble mean temperature increase of ~7 °C. This is reflected by the larger 

relative impact of the permafrost carbon for the RCP2.6 scenario compared with the RCP8.5 scenario. 

For the RCP2.6 scenario the permafrost carbon loss increases the global mean temperature by between 25 

4 and 18 %, however. Even for JULES-suppressResp, where the loss of permafrost carbon is relatively 

low, the temperature change caused by permafrost carbon is still a relatively large fraction (5 - 8 %) of 

the global mean temperature change. The percentage impact of permafrost carbon is lower (less than 
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4% of the global mean temperature change) for the high emissions scenario. This is because the 

radiative forcing from CO2 is a logarithmic function of CO2 concentration – at higher CO2 

concentrations, 1 kg of CO2 increases the radiative forcing less than at lower concentrations. These 

results, in line with MacDougall et al. (2012) and Crichton et al. (2016), suggest that permafrost carbon 

should be taken into account particularly when evaluating strong mitigation and stabilization scenarios. 5 

3.4 Permafrost carbon climate response 

The carbon cycle response in a changing world can be described via two components, firstly the 

climate-carbon response (γ) which determines the change in carbon storage caused by changes in 

climate. The climate-carbon response, γ, is formally defined as the change in land carbon per degree of 

global mean temperature change (Friedlingstein et al., 2006). The second component is the 10 

concentration-carbon response (β), which determines the change in carbon storage  caused by changes 

in CO2 concentration - sometimes referred to as the ‘fertilization’ effect. Chapter 6 of the most recent 

IPCC report (Ciais et al., 2013) assessed results from models without permafrost carbon and stated that 

there is high confidence that increasing the atmospheric CO2 will increase land uptake and medium 

confidence that climate change will reduce the land uptake. That latter can exhibit regional variation, 15 

potentially with different signs and is predominantly due to the direct effects of higher temperatures. 

The inclusion of permafrost carbon will have a minor impact on the concentration-carbon response (β) 

but will reduce the land carbon uptake and hence increase the climate-carbon response (γ).  

 

At the start of the simulation the carbon that is below the active layer is defined as permafrost carbon. In 20 

JULES this carbon is numerically labelled and its [depth] location can be traced throughout the 

simulation. It is denoted ‘old permafrost carbon’, and is assumed to be the cryogenically stabilized 

carbon pool within the permafrost under pre-industrial conditions. This can only remain the same or 

decrease during the simulation period. It cannot be added to. In ORCHIDEE, although the ‘old 

permafrost carbon’ can be identified under pre-industrial conditions, it cannot be traced throughout the 25 

simulations.   
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Figure 9 shows the time series of the ‘old permafrost carbon’ - by  2100 JULES-deepResp loses between 

20 and 50 Gt of old permafrost carbon, and JULES-suppressResp loses about 20 Gt of old permafrost 

carbon. There are relatively small differences between emissions scenarios compared with the large 

differences between JULES-deepResp and JULES-suppressResp. Koven et al., (2015) found a similar 

result for RCP4.5 with permafrost soil carbon losses of 12.2–33.4 Gt C, but they found a much larger 5 

loss of permafrost carbon for RCP8.5, the high warming scenario. Loss of old permafrost carbon in 

JULES continues out to 2300, with no sign of stabilization. 

 

Figure 10 shows the change in permafrost carbon as a function of global temperature change for three 

time slices: 2100, 2200, and 2300. For each time slice and each model version there is a well defined 10 

relationship which is relatively independent of the driving climate model and the emissions scenario. 

The permafrost carbon climate feedback parameter or γPF is defined as the slope of the relationship 

between the loss of old permafrost carbon and global mean temperature change, i.e. the slope of the 

relationship in Figure 10. γPF increases with the time over which the warming has been applied, for 

example, for JULES-deepResp, γPF is ~10 Gt C K
-1

 at 2100; ~20 Gt C K
-1

 at 2200 and  ~30  Gt C K
-1

 by 15 

2300. These differences are caused by inertia in the permafrost system related to the ongoing low 

temperatures which slow the decomposition rate of the thawed old permafrost carbon. This significant 

time dependence of the permafrost climate feedback (expressed in Gt C K
-1

) means that an alternative 

method of quantifying the permafrost carbon - climate response is required.  

3.5 The Frozen Carbon Residence time (FCRt) 20 

Here we quantify the Frozen Carbon Residence time (FCRt), defined for any time over the simulations 

as the ratio of remaining permafrost carbon to the permafrost carbon loss rate at that time. FCRt can be 

used to estimate permafrost carbon loss given any pathway of global mean temperature and an 

assessment of the initial permafrost carbon. It is derived independently for the two different versions of 

JULES using the old permafrost carbon traced throughout the simulations and the simulated global 25 

temperature change. FCRt is defined for any given year as the old permafrost carbon still in the 

permafrost divided by the loss of permafrost carbon in that year. Figure 11 shows the FCRt as a 
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function of global mean temperature change (GMT) for the two available versions of JULES. There is a 

clear relationship between the FCRt and the global mean temperature change. This is relatively 

independent of scenario but remains highly model dependent.   

The results of an exponential fit between the FCRt and the global temperature change (Equation 4) are 

shown in Figure 11 and Table 1. The data for the fit were restricted so that the global temperature 5 

change was between 0.2 and 5 °C and this relationship should only be applied within that range. 

 

                    
Δ 

 
   where ΔT > 0.2 °C   (4) 

FCRt0 is a reference timescale representing the permafrost carbon turnover time at the transition point 

from accumulation of soil carbon to loss of soil carbon. ΔT is the temperature above which this 10 

transition occurs. If permafrost carbon were totally inert, FCRt0 would be infinite at ΔT=0  °C. However 

in JULES this is a large, but finite number of years and the old permafrost carbon simulated within 

JULES can be considered stable over centennial timescales. There are a couple of process within 

JULES which cause this. Firstly, there is mixing of soil carbon throughout the profile. This mixing 

reduces exponentially with increasing depth but still occurs within the permafrost. In addition, the soil 15 

carbon is still decomposing, albeit at a very slow rate, at temperatures below zero. FCRt0 is slightly 

larger for JULES-suppressResp because the respiration is much slower at depth than in JULES-deepResp. 

The decay term,  , represents the temperature change at which the number of years taken for all of the 

old permafrost carbon to be emitted reduces by 1/e of its initial value. As expected this is much larger 

for JULES-suppressResp than JULES-deepResp.  20 

 

The relationship found in Equation 4 can be used to reconstruct a simple estimate to quantify the loss of 

old permafrost carbon given an annual time series of global mean temperature change and the initial 

permafrost carbon. An example of a reconstructed time series of permafrost carbon is shown in Figure 

12. The JULES simulations of old permafrost are the individual curves from Figure 11 for RCP8.5. The 25 

reconstructed curves fall within the spread of the original results.  
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4 Conclusions 

This paper uses a coupled climate modelling system of intermediate complexity to project additional 

temperature increases of 0.005 to 0.2  °C by year 2100 and 0.01 to 0.34  °C by year 2300 caused by our 

projected permafrost carbon feedback. This is in line with previous results (Schuur et al., 2015). A wide 

range of uncertainties in the future emissions scenario (policy uncertainty); driving climate (spread 5 

across GCMs); and parameterisation of the soil carbon decomposition (process uncertainty) are all 

sampled. The cause of the largest uncertainty is the structural uncertainty in the soil carbon 

decomposition process. This highlights the need to increase our understanding of the response of 

permafrost carbon to temperature change to constrain future projections by utilising observations of, for 

example, the depth dependence of the soil carbon residence time or the soil respiration.  10 

 

There are only a limited number of permafrost related processes included within the land surface 

models. In this example the physical response of permafrost to climate change is mainly through a 

deepening of the active layer. However, in many regions of the northern permafrost region there is a 

high risk of thermokarst a process not included in the models. The model structural uncertainty is based 15 

around differences in the response of the respiration to temperature. However, there are additional 

biogeochemical structural model uncertainties such as the partitioning of organic matter into different 

lability pools along with their turnover times and the dependence of decomposition on moisture, 

including any differences in these processes between organic rich and mineral soils. In addition, the 

results described here only include carbon lost in the form of CO2. There will also be carbon lost as CH4 20 

which will feedback into the atmosphere, although this loss of CH4 is likely to impact the permafrost 

carbon feedback less than the release of CO2 (Schadel et al., 2016). Thawing permafrost is expected to 

release nitrogen that fertilizes plant growth and offset some carbon losses. However Koven et al. (2015) 

suggest that this has a smaller impact on the projected future carbon balance of the region than the 

extent of erpmafrost thanw and decomposability of the soil carbon.  25 

 

The permafrost carbon feedback has the most significant impact on the mitigation scenario where the 

temperature change caused by release of permafrost carbon is between 1.5 and 9 % (by 2100) and 6 and 
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16 % (by 2300) of the global mean temperature change. This has implications for limiting global mean 

temperature change to 1.5 or 2 degrees where the permafrost carbon feedback should be included in any 

analysis of these scenarios. We propose a new metric - the Frozen Carbon Vulnerability timescale 

(FCRt) which can be used to generate the loss of permafrost carbon as a function of global mean 

temperature change for inclusion into any simple assessment of mitigation scenarios.  5 
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Model FCRt0 (years; with 

GMT=0; Equation 4) 

  (°C) R
2
 

JULES-deepResp 6666 2.6 0.92 

JULES-suppressResp 10155 4.9 0.73 

Table 1: Parameters of the exponential fit between permafrost carbon lost per year per remaining 5 

permafrost carbon and global mean temperature change (GMT). 
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Figure 1: Simulated permafrost extent (left panels) and maximum summer thaw depth (right 

panels) for ORCHIDEE-MICT (bottom row) and JULES (top row). Superimposed on the 5 

simulated extent is the observed permafrost from Brown et al. (1998). Continuous permafrost is 

where over 90% of the land surface within the grid cell is underlain by permafrost. The ‘All’ 

contour includes regions which have some permafrost present in the grid cell. The zero degree 
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annual mean isotherm from the WATCH 1961-1990 2 m air temperature is drawn on the right 

hand figures. 

 

  

Figure 2: Simulated vegetation carbon distribution for JULES, ORCHIDEE-MICT for the year 5 

2000 and the observations from the IPCC Tier-1 Global Biomass Carbon Map again for the year 

2000 (http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html). 

 

  

http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html
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Figure 3: The simulated distribution of soil carbon in the top 2m (left hand column) and the 

permafrost carbon in the top 3 m (right hand column) for the three different model versions (first 

three rows). The bottom row shows the WISE30sec observed global data set for the top 2 m 

(Batjes, 2016: left hand bottom figure) and the NCSCDv2 northern high latitudes total soil carbon 

in the top 3 m (Hugelius et al., 2014: right hand bottom figure). In the right hand column the 5 

model simulations show just simulated permafrost carbon whilst the NCSCDv2 observations 

show total soil carbon. 
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Figure 4: The areal change in simulated permafrost area extent for the JULES and ORCHIDEE-

MICT models, and for three different RCP scenarios. The shaded areas in this and subsequent 

figures represent the full ensemble spread, accounting for uncertainty in climate response across 

GCMs emulated. 5 
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Figure 5: The change in the vegetation carbon (top row) non-permafrost soil carbon (non-pf; 

middle row) and total soil carbon (bottom row), all for polewards of 60 degrees north. The 

vegetation carbon and change are the same in JULES-suppressResp and JULES-deepResp. 
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Figure 6: Global land CO2 flux to the atmosphere (positive is a release to the atmosphere) for the 

permafrost enabled simulations (PF - top row). The bottom row shows the impact of adding 5 

permafrost carbon on the global flux of land carbon to the atmosphere, and its associated 

feedback via the climate system (difference between PF and non-PF simulations, i.e. PF minus 

non-PF). 
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Figure 7: The impact of the permafrost carbon release on the change in global air temperature 

(PF - non-PF).  

 

 5 

 

 

Figure 8: The percentage impact of the permafrost carbon feedback on the global mean air 

temperature change (ΔT).  

 10 
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Figure 9: The change in the old permafrost carbon for JULES. Old permafrost carbon is the 

labelled carbon identified as being within the permafrost at the start of the simulation. 
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Figure 10: The relationship between the loss of old carbon from the permafrost region and change 

in global temperature at years 2100, 2200, and 2300. 
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 Figure 11: The permafrost carbon remaining in any given year divided by the loss of permafrost 

carbon in that year (FCRt) as a function of global mean temperature change (ΔT). The black line 5 

is the exponential fit to the model points. 
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Figure 12: Time series of permafrost carbon loss for the RCP4.5 scenario. The black lines show 

the JULES simulations and the red lines show the reconstruction using the initial permafrost 

carbon, the time series of global mean temperature change and the parameters from Table 1.  5 


