

1 **Effect of soil saturation on denitrification in a grassland soil**

2 Laura Maritza Cardenas^{1*}, Roland Bol, R.², Dominika Lewicka-Szczebak,³, Andrew Stuart
3 Gregory⁴, Graham Peter Matthews⁵, William Richard Whalley⁴, Thomas Henry Misselbrook¹,
4 David Scholefield¹ and Reinhard Well³

5

6 ¹Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, United Kingdom

7 ²Institute of Bio- and Geosciences, IBG-3/Agrosphere, Forschungszentrum Jülich GmbH, 52428
8 Jülich, Germany

9 ³Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas,
10 Forestry and Fisheries, Bundesallee, 50, D-38116 Braunschweig, Germany

11 ⁴Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom

12 ⁵University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom

13 *Correspondence to: Laura M. Cardenas (laura.cardenas@rothamsted.ac.uk)

14

15 **Abstract.** Nitrous oxide (N_2O) is of major importance as a greenhouse gas and precursor of
16 ozone (O_3) destruction in the stratosphere mostly produced in soils. The soil emitted N_2O is
17 generally predominantly derived from denitrification and to a smaller extent, nitrification, both
18 processes controlled by environmental factors and their interactions, and are influenced by
19 agricultural management. Soil water content expressed as water filled pore space (WFPS) is a major
20 controlling factor of emissions and its interaction with compaction, has not been studied at the
21 micropore scale. A laboratory incubation was carried out at different saturation levels for a
22 grassland soil and emissions of N_2O and N_2 were measured as well as the isotopocules of N_2O . We
23 found that fluxes variability was larger in the less saturated soils probably due to nutrient
24 distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results
25 agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification
26 could have occurred at the lower saturation, even though moisture was still high (71% WFPS). The
27 isotopocules data indicated isotopic similarities in the wettest treatments vs the two drier ones. The

28 results agreed with previous findings where it is clear there are 2 N-pools with different dynamics:
29 added N producing intense denitrification, vs soil N resulting in less isotopic fractionation.

30 **Keywords**

31 Grassland, nitrous oxide, isotopologues, isotopocule, greenhouse gases

32

33 **1 Introduction**

34 Nitrous oxide (N_2O) is of major importance as a greenhouse gas and precursor of ozone (O_3)
35 destruction in the stratosphere (Crutzen, 1970). Agriculture is a major source of greenhouse gases
36 (GHGs), such as carbon dioxide (CO_2), methane (CH_4) and also N_2O (IPCC, 2006). The application
37 of organic and inorganic fertiliser N to agricultural soils enhances the production of N_2O (Baggs *et*
38 *al.*, 2000). This soil emitted N_2O is predominantly derived from denitrification and to a smaller extent,
39 nitrification in soils (Davidson and Verchot, 2000). Denitrification is a microbial process in which
40 reduction of nitrate (NO_3^-) occurs to produce N_2O , and N_2 is the final product of this process, benign
41 for the environment, but represents a loss of N in agricultural systems. Nitrification is an oxidative
42 process in which ammonium (NH_4^+) is converted to NO_3^- (Davidson and Verchot, 2000). Both
43 processes are controlled by environmental factors and their interactions, and are influenced by
44 agricultural management (Firestone and Davidson, 1989). It is well recognised that soil water content
45 expressed as water filled pore space (WFPS) is a major controlling factor and as Davidson (1991)
46 illustrated, nitrification is a source of N_2O until WFPS values reach about 70%, after which
47 denitrification dominates. In fact, Firestone and Davidson (1989) gave oxygen supply a ranking of 1
48 in importance as a controlling factor in fertilised soils, above C and N. At WFPS between 45 and
49 75% a mixture of nitrification and denitrification act as N_2O sources. Davidson also suggested that at
50 WFPS values above 90% only N_2 is produced. Several studies have later proposed models to relate
51 WFPS with emissions (Schmidt *et al.*, 2000; Dobbie and Smith, 2001; Parton *et al.*, 2001; del Prado
52 *et al.*, 2006; Castellano *et al.*, 2010) but the “optimum” WFPS for N_2O emissions varies from soil to
53 soil (Davidson, 1991). Soil structure could be influencing this effect and it has been identified to
54 strongly interact with soil moisture (Ball *et al.*, 1999; van Groenigen *et al.*, 2005) through changes in

55 WFPS. Particularly soil compaction due to livestock treading and the use of heavy machinery affect
56 soil structure and emissions as reported by studies relating bulk density to fluxes (Kleftho *et al.*,
57 2014b); and degrees of tillage to emissions (Ludwig *et al.*, 2011).

58 Compaction is known to affect the size of the larger pores (macropores) thereby reducing the
59 soil air volume and therefore increasing the WFPS (for the same moisture content) (van der Weerden
60 *et al.*, 2012). However, little is known about the effect of compaction on the smaller soil pores
61 (micropores) and this could provide valuable information for understanding the simultaneous
62 behaviour of the dynamics of water in the various pore sizes in soil. Such an understanding would
63 lead to the development of better N₂O mitigation strategies via dealing with soil compaction issues.

64 The role of water in soils is closely linked to microbial activity but also relates to the degree
65 of aeration and gas diffusivity in soils (Morley and Baggs, 2010). Water facilitates nutrient supply to
66 microbes and restricts gas diffusion, thereby increasing the residence time of gases in soil, and the
67 chance of further N₂O reduction before it can be released to the atmosphere. This is further aided by
68 the restriction of the diffusion of atmospheric O₂ (Dobbie and Smith, 2001), increasing the potential
69 for denitrification. As a consequence, counteracting effects (high microbial activity vs low diffusion)
70 occur simultaneously making it difficult to predict net processes and corresponding outputs
71 (Davidson, 1991). Detailed understanding of the sources of N₂O and the influence of physical factors,
72 i.e. soil structure and its interaction with moisture, is a powerful basis for developing effective
73 mitigation strategies.

74 Isotopocules of N₂O represent the isotopic substitution of the O and/or the two N atoms within
75 the N₂O molecule. The isotopomers of N₂O, are those differing in the peripheral (β) and central N-
76 positions (α) of the linear molecule (Toyoda and Yoshida, 1999) with the intramolecular ¹⁵N site
77 preference (SP; the difference between $\delta^{15}\text{N}^\alpha - \delta^{15}\text{N}^\beta$) used to identify production processes at the
78 level of microbial species or enzymes involved (Toyoda *et al.*, 2005; Ostrom, 2011). Moreover, $\delta^{18}\text{O}$,
79 $\delta^{15}\text{N}$ and SP of emitted N₂O depend on the denitrification product ratio (N₂O / (N₂+N₂O)), and hence
80 provide insight into the dynamics of N₂O reduction (Well and Flessa, 2009; Lewicka-Szczebak *et al.*,

81 2014; Lewicka-Szczebak *et al.*, 2015). Koster *et al.* (2013) for example recently reported $\delta^{15}\text{N}^{\text{bulk}}$
82 values of N_2O between $-36.8\text{\textperthousand}$ and $-31.9\text{\textperthousand}$ under the conditions of their experiment, which are
83 indicative of denitrification according to Perez *et al.* (2006) and Well and Flessa (2009) who proposed
84 the range -54 to $-10\text{\textperthousand}$ relative to the substrate. Baggs (2008) summarised that values between -90
85 to $-40\text{\textperthousand}$ are indicative of nitrification. Determination of these values are normally carried out in pure
86 culture studies or in conditions favouring either production or reduction of N_2O (Well and Flessa,
87 2009). The SP is however considered a better predictor of the N_2O source due to its independence
88 from the substrate signature (Ostrom, 2011).

89 Simultaneous occurrence production and reduction of N_2O as in natural conditions presents
90 a challenge for isotopic factors determination due to uncertainty on N_2 reduction and the co-existence
91 of different microbial communities producing N_2O (Lewicka-Szczebak *et al.*, 2014). Recently, using
92 data from the experiment reported here, where soil was incubated under aerobic atmosphere and the
93 complete denitrification process occurs, Lewicka-Szczebak *et al.* (2015) determined fractionation
94 factors associated with N_2O production and reduction using a modelling approach. The analysis
95 comprised measurements of the N_2O and N_2 fluxes combined with isotopocule data. Net isotope
96 effects (η values) are variable to a certain extent as they result from a combination of several processes
97 causing isotopic fractionation (Well *et al.*, 2012). The results generally confirmed the range of values
98 of η (net isotope effects) and $\eta^{18}\text{O}/\eta^{15}\text{N}$ ratios reported by previous studies for N_2O reduction for that
99 part of the soil volume were denitrification was enhanced by the N+C amendment. This did not apply
100 for the other part of the soil volume not reached by the N+C amendment, showing that the validity of
101 published net isotope effects for soil conditions with low denitrification activity still needs to be
102 evaluated.

103 Lewicka-Szczebak *et al.* (2015) observed a clear relationship between ^{15}N and ^{18}O isotope
104 effects during N_2O production and denitrification rates. For N_2O reduction, differential isotope effects
105 were observed for two distinct soil pools characterized by different product ratios $\text{N}_2\text{O} / (\text{N}_2 + \text{N}_2\text{O})$.
106 For moderate product ratios (from 0.1 to 1.0) the range of isotope effects given by previous studies

107 was confirmed and refined, whereas for very low product ratios (below 0.1) the net isotope effects
108 were much smaller. In this paper, we present the results from the gas emissions measurements from
109 soils collected from a long-term permanent grassland soil to assess the impact of different levels of
110 soil saturation on N_2O and N_2 and CO_2 emissions after compaction. CO_2 emissions were measured in
111 addition as an estimate of aerobic respiration and thus of O_2 consumption, which indicates
112 denitrification is promoted. The measurements included the soil isotopomer ($^{15}\text{N}_\alpha$, $^{15}\text{N}_\beta$ and site
113 preference) analysis of emitted N_2O , which in combination with the bulk ^{15}N and ^{18}O was used to
114 distinguish between N_2O from bacterial denitrification and other processes (e.g. nitrification and
115 fungal denitrification) (Lewicka-Szczebak, 2017).

116 We conducted measurements at defined saturation of pores size fractions as a prerequisite to
117 model denitrification as a function of water status (Butterbach Bahl *et al.*, 2013 and Müller and
118 Clough, 2014). We have under controlled conditions created a single compaction stress of 200 kPa
119 (typical of soils compacted after grazing) in incremental layers using a uniaxial pneumatic piston to
120 simulate a grazing pressure. We hypothesized that at high water saturation, spatial heterogeneity of
121 N emissions decreases due to more homogeneous distribution of the soil nutrients and/or anaerobic
122 microsites. We also hypothesized that even at high soil moisture a mixture of nitrification and
123 denitrification can occur. We also aimed to assess how these effects (spatial heterogeneity and source
124 processes) occur in a relatively narrow range of moisture (70-100%). As far as we know there no
125 other studies going to this level of detail. We aimed to understand changes in the ratio $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$
126 at the different moisture levels studied in a controlled manner on soil micro and macropores.
127 Moreover, we used isotopocule values of N_2O to evaluate if the contribution of bacterial
128 denitrification to the total N_2O flux was affected by moisture status.

129 **2 Materials and methods**

130 **2.1 Soil used in the study**

131 An agricultural soil, under grassland management since at least 1838 (Barré *et al.*, 2010), was
132 collected from a location adjacent to a long-term ley-arable experiment at Rothamsted Research in

133 Hertfordshire (Highfield, see soil properties in Table 1 and further details in Rothamsted Research,
134 2006; Gregory *et al.*, 2010). The soil had been under permanent cut mixed-species (predominantly
135 *Lolium* and *Trifolium*) vegetation. The soil was sampled as described in Gregory *et al.* (2010). Briefly
136 it was sampled from the upper 150 mm of the profile, air dried in the laboratory, crumbled and sieved
137 (<4 mm), mixed to make a bulk sample and equilibrated at a pre-determined water content (37 g 100
138 g⁻¹; Gregory *et al.*, 2010) in air-tight containers at 4° C for at least 48 hours.

139 **1.2.Preparation of soil blocks**

140 The equilibrated soil was then packed into twelve stainless steel blocks (145 mm diameter; h: 100
141 mm), each of which contained three cylindrical holes (i.d: 50 mm; h: 100 mm each). The cores were
142 packed to a single compaction stress of 200 kPa in incremental layers using a uniaxial pneumatic
143 piston. The three hole- blocks were used to facilitate the compression of the cores. The 200 kPa stress
144 was analogous to a severe compaction event by a tractor (Gregory *et al.*, 2010) or livestock
145 (Scholefield *et al.*, 1985). The total area of the upper surface of soil in each block was therefore 58.9
146 cm² (3 × 19.6 cm²) and the target volume of soil was set to be 544.28 cm³ (3 × 181.43 cm³) with the
147 objective of leaving a headspace of approximately 45 cm³ (3 × 15 cm³) for the subsequent experiment.
148 The precise height of the soil (and hence the volume) was measured using the displacement
149 measurement system of a DN10 Test Frame (Davenport-Nene, Wigston, Leicester, UK) with a
150 precision of 0.001 mm.

151 **2.3 Equilibration of soil cores at different saturations**

152 The soil was equilibrated to four different initial saturation conditions or treatments (t0) which were
153 based on the likely distribution of water between macropores and micropores. The first treatment was
154 where both the macro- and micropores (and hence the total soil) was fully saturated; the second
155 treatment was where the macropores were half-saturated and the micropores remained fully saturated;
156 the third treatment was where the macropores were fully unsaturated and the micropores again
157 remained fully saturated; and the fourth treatment was where the macropores were fully unsaturated
158 and the micropores were half-saturated. These four treatments are hereafter referred to as SAT/sat;

159 HALFSAT/sat; UNSAT/sat and UNSAT/halfsat, respectively, where upper-case refers to the
160 saturation condition of the macropores and lower-case refers to the saturation condition of the
161 micropores. In order to set these initial saturation conditions, we referred to the gravimetric soil water
162 release characteristic for the soil, as given in Gregory *et al.* (2010) (see supplement 1). To achieve
163 target water contents during the incubation, the amount of liquid added with the C/N amendment (15
164 mL) was taken into account in the total volume of water added. For the SAT/sat and HALFSAT/sat
165 conditions, two sets of three replicate blocks were placed on two fine-grade sand tension tables
166 connected to a water reservoir. For the UNSAT/sat condition a set of three replicate blocks was placed
167 on a tension plate connected to a water reservoir, and the final set of three replicate blocks were placed
168 in pressure plate chambers connected to high-pressure air. All blocks were saturated on their
169 respective apparatus for 24 h, and were then equilibrated for 7 days at the adjusted target matric
170 potentials which were achieved by either lowering the water level in the reservoir (sand tables and
171 tension plate) or by increasing the air pressure (pressure chambers). At the end of equilibration period,
172 the blocks were removed carefully from the apparatus, wrapped in air-tight film, and maintained at 4
173 °C until the subsequent incubation.

174 **2.4 Incubation**

175 The study was carried out under controlled laboratory conditions, using a specialised
176 laboratory denitrification (DENIS) incubation system (Cardenas *et al.*, 2003). Each block containing
177 three cores was placed in an individual incubation vessel of the automated laboratory system in a
178 randomised block design to avoid effect of vessel. The lids for the vessels containing three holes were
179 lined with the cores in the block to ensure that the solution to be applied later would fall on top of
180 each soil core. Stainless steel bulkheads fitted (size for ¼" tubing) on the lids had a three-layered
181 Teflon coated silicone septum (4 mm thick x 7 mm diameter) for supplying the amendment solution
182 by using a gas tight hypodermic syringe. The bulkheads were covered with a stainless steel nut and
183 only open when amendment was applied. The incubation experiment lasted 13 days. The incubation
184 vessels with the soils were contained in a temperature controlled cabinet and the temperature set at

185 20°C. The incubation vessels were flushed from the bottom at a rate of 30 ml min⁻¹ with a He/O₂
186 mixture (21% O₂, natural atmospheric concentration) for 24 h, or until the system and the soils
187 atmosphere were emitting low background levels of both N₂ and N₂O (N₂ can get down to levels of
188 280 ppm much smaller than atmospheric values). Subsequently, the He/O₂ supply was reduced to 10
189 ml min⁻¹ and directed across the soil surface and measurements of N₂O and N₂ carried out at
190 approximately 2 hourly cycles to sample from all the 12 vessels. Emissions of CO₂ were
191 simultaneously measured.

192 **2.5 Application of amendment**

193 An amendment solution equivalent to 75 kg N ha⁻¹ and 400 kg C ha⁻¹ was applied as a 5 ml aliquot a
194 solution containing KNO₃ and glucose to each of the three cores in each vessel on day 0 of the
195 incubation. Glucose is added to optimise conditions for denitrification to occur (Morley and Baggs,
196 2010). The aliquot was placed in a stainless steel container (volume 1.2 l) which had three holes
197 drilled with bulkheads fitted, two to connect stainless steel tubing for flushing the vessel, and the third
198 one to place a septum on a bulkhead to withdraw solution. Flushing was carried out with He for half
199 an hour before the solution was required for application to the soil cores and continued during the
200 application process to avoid atmospheric N₂ contamination (a total of one and a half hours). The
201 amendment solution was manually withdrawn from the container with a glass syringe fitted with a
202 three-way valve onto the soil surface; care was taken to minimise contamination from atmospheric
203 N₂ entering the system. The syringe content was injected to the soil cores via the inlets on the lids
204 consecutively in each lid (three cores) and all vessels, completing a total of 36 applications that lasted
205 about 45 minutes. Incubation continued for twelve days, and the evolution of N₂O, N₂ and CO₂ was
206 measured continuously. At the end of each incubation experiment, the soils were removed from the
207 incubation vessels for further analysis. The three cores in each incubation vessel were pooled in one
208 sample and subsamples taken and analysed for mineral N, total N and C and moisture status.

209 **2.6 Gas measurements**

210 Gas samples were directed to the relevant analysers via an automated injection valve fitted with 2
211 loops to direct the sample to two gas chromatographs. Emissions of N₂O and CO₂ were measured by
212 Gas Chromatography (GC), fitted with an Electron Capture Detector (ECD) and separation achieved
213 by a stainless steel packed column (2 m long, 4 mm bore) filled with 'Porapak Q' (80–100 mesh) and
214 using N₂ as the carrier gas. The detection limit for N₂O was equivalent to 2.3 g N ha⁻¹ d⁻¹. The N₂ was
215 measured by GC with a He Ionisation Detection (HID) and separation achieved by a PLOT column
216 (30 m long 0.53 mm i.d.), with He as the carrier gas. The detection limit was 9.6 g N ha⁻¹ d⁻¹. The
217 response of the two GCs was assessed by measuring a range of concentrations for N₂O, CO₂ and N₂.
218 Parent standards of the mixtures 10133 ppm N₂O + 1015.8 ppm N₂; 501 ppm N₂O + 253 ppm N₂ and
219 49.5 ppm N₂O + 100.6 ppm N₂ were diluted by means of Mass Flow controllers with He to give a
220 range of concentrations of: for N₂O of up to 750 ppm and for N₂ 1015 ppm. For CO₂ a parent standard
221 of 30,100 ppm was diluted down to 1136 ppm (all standards were in He as the balance gas). Daily
222 calibrations were carried out for N₂O and N₂ by using the low standard and doing repeated
223 measurements. The temperature inside the refrigeration cabinet containing the incubation vessels was
224 logged on an hourly basis and checked at the end of the incubation. The gas outflow rates were also
225 measured and recorded daily, and subsequently used to calculate the flux.

226 **2.7 Measurement of N₂O isotopic signatures**

227 Gas samples for isotopocule analysis were collected in 115 ml serum bottles sealed with grey butyl
228 crimp-cap septa (Part No 611012, Altmann, Holzkirchen, Germany). The bottles were connected by
229 a Teflon tube to the end of the chamber vents and were vented to the atmosphere through a needle, to
230 maintain flow through the experimental system. Dual isotope and isotopocule signatures of N₂O, i.e.
231 δ¹⁸O of N₂O (δ¹⁸O-N₂O), average δ¹⁵N (δ¹⁵N^{bulk}) and δ¹⁵N from the central N-position (δ¹⁵N^a) were
232 analysed after cryo-focussing by isotope ratio mass spectrometry as described previously (Well *et al.*,
233 2008). ¹⁵N site preference (SP) was obtained as SP = 2 * (δ¹⁵N^a – δ¹⁵N^{bulk}). Dual isotope and
234 isotopocule ratios of a sample (R_{sample}) were expressed as % deviation from ¹⁵N/¹⁴N and ¹⁸O/¹⁶O

235 ratios of the reference standard materials (R_{std}), atmospheric N_2 and standard mean ocean water
236 (SMOW), respectively:

237
$$\delta X = (R_{sample}/R_{std} - 1) \times 1000 \quad [2]$$

238 where $X = {}^{15}N^{bulk}, {}^{15}N^\alpha, {}^{15}N^\beta$, or ${}^{18}O$

239 **2.8 Data analysis and additional measurements undertaken**

240 The areas under the curves for the N_2O , CO_2 and N_2 data were calculated by using GenStat 11 (VSN
241 International Ltd, Hemel Hempstead, Herts, UK). The resulting areas for the different treatments were
242 analysed by applying analysis of variance (ANOVA). The isotopic (${}^{15}N^{bulk}$, ${}^{18}O$, and site preference
243 (SP) differences between the four treatment for the different sampling dates were analysed by two-
244 way ANOVA. We also used the Student's *t* test to check for changes in soil water content over the
245 course of the experiments.

246 Calculation of the relative contribution of the N_2O derived from bacterial denitrification
247 ($\%B_{DEN}$) was done according to Lewicka-Szczebak *et al.* (2015). The isotopic value of initially
248 produced N_2O , *i.e.* prior to its partial reduction (δ_0) was determined using a Rayleigh model (Mariotti
249 *et al.*, 1982), were δ_0 is calculated using the fractionation factor of N_2O reduction (η_{N2O-N2}) for SP and
250 the fraction of residual N_2O (r_{N2O}) which is equal to the $N_2O/(N_2+N_2O)$ product ratio obtained from
251 direct measurements of N_2 and N_2O flux. An endmember mixing model was then used to calculate
252 the percentage of bacterial N_2O in the total N_2O flux ($\%B_{DEN}$) from calculated δ_0 values and the SP
253 and $\delta^{18}O$ endmember values of bacterial denitrification and fungal denitrification/nitrification. The
254 range in endmember and η_{N2O-N2} values assumed (adopted from Lewicka-Szczebak, 2017) to
255 calculated maximum and minimum estimates of $\%B_{DEN}$ is given in Table 4.

256 Because both, endmember values and η_{N2O-N2} values are not constant but subject to the given
257 ranges, we calculated here several scenarios using combinations of maximum, minimum and average
258 endmember and η_{N2O-N2} values (Table 4) to illustrate the possible range of $\%B_{DEN}$ for each sample.
259 For occasional cases where $\%B_{DEN} > 100\%$ the values were set to 100%.

260 At the same time as preparing the main soil blocks, a set of replicate samples was prepared in
261 exactly the same manner, but in smaller cores (i.d: 50 mm; h: 25 mm). On these samples we analysed
262 soil mineral N, total N and C and moisture at the start of the incubation. The same parameters were
263 measured after incubation by doing destructive sampling from the cores. Mineral N (NO_3^- , NO_2^- and
264 NH_4^+) was analysed after extraction with KCl by means of a segmented flow analyser using a
265 colorimetric technique (Searle, 1984). Total C and N in the air dried soil were determined using a
266 thermal conductivity detector (TCD, Carlo Erba, model NA2000). Soil moisture was determined by
267 gravimetric analysis after drying at 105°C.

268 **3 Results**

269 **3.1 Soil composition**

270 The results after moisture adjustment at the start of the experiment resulted in a range of WFPS of
271 100 to 71% for the 4 treatments (Table 2). The results from the end of the incubation also confirmed
272 that there remained significant differences in soil moisture between the high moisture treatments
273 (SAT/sat and HALFSAT/sat) and the two lower moisture treatments (Table 3; one-way ANOVA,
274 $p<0.05$). Soil in the two wettest states lost statistically significant amounts of water (10% ($p=0.006$)
275 and 4.4% ($p<0.001$) for SAT/sat and HALFSAT/sat, respectively) over the course of the 13-day
276 incubation experiment. This was inevitable as there was no way to hold a high (near-saturation) matric
277 potential once the soil was inside the DENIS assembly, and water would have begun to drain by
278 gravitational forces out of the largest macropores ($>30 \mu\text{m}$). An additional factor was the continuous
279 He/O_2 delivery over the soil surface which would have caused some drying. We accepted these as
280 unavoidable features of the experimental set-up, but we assume that the main response of the gaseous
281 emissions occurred under the initial conditions, prior to the loss of water over subsequent days. Soil
282 in the two drier conditions had no significant change in their water content over the experimental
283 period ($p= 0.153$ and 0.051 for UNSAT/sat and UNSAT/halfsat, respectively). The results of the
284 initial soil composition were, for mineral N: $85.5 \text{ mg } \text{NO}_3^- \text{-N kg}^{-1}$ dry soil, $136.2 \text{ mg } \text{NH}_4^+ \text{-N kg}^{-1}$ dry
285 soil. The mineral N contents of the soils at the end of the incubation are reported in Table 3 showing

286 that NO_3^- was very small in treatments SAT/sat and HALFSAT/sat ($\sim 1 \text{ mg N kg}^{-1}$ dry soil) compared
287 to UNSAT/sat and UNSAT/halfsat ($50\text{-}100 \text{ mg N kg}^{-1}$ dry soil) at the end of the incubation. Therefore,
288 there was a significant difference in soil NO_3^- between the former, high moisture treatments and the
289 latter drier (UNSAT) treatments which were also significantly different between themselves ($p<0.001$
290 for both). The NH_4^+ content was similar in treatments SAT/sat, HALFSAT/sat and UNSAT/sat (~ 100
291 mg N kg^{-1} dry soil), but slightly lower in treatment UNSAT/halfsat ($71.3 \text{ mg N kg}^{-1}$ dry soil), however
292 overall differences were not significant probably due to the large variability on the driest treatment
293 ($p>0.05$).

294 **3.2 Gaseous emissions of N_2O , CO_2 and N_2**

295 All datasets of N_2O and N_2 emissions showed normal distribution ($\text{Fpr}<0.001$). The treatments
296 SAT/sat and HALFSAT/sat for all three gases, N_2O , CO_2 and N_2 showed fluxes that were well
297 replicated for all the vessels (see Fig. 1), in contrast for UNSAT/sat and UNSAT/halfsat the emissions
298 between the various replicated vessel in each treatment was not as consistent, leading to a larger
299 within treatment variability in the magnitude and shape of the GHG fluxes measured. The cumulative
300 fluxes also resulted in larger variability for the drier treatments (Table 3).

301 *Nitrous oxide and nitrogen gas.* The general trend was that the N_2O concentrations in the
302 headspace increased shortly after the application of the amendment (Fig. 1). The duration of the N_2O
303 peak for each replicate soil samples was about three days, except for UNSAT/halfsat in which one of
304 the replicate soils exhibit a peak which lasted for about 5 days. The N_2O maximum in the SAT/sat
305 and HALFSAT/sat treatments was of similar magnitude (means of 5.5 and $6.5 \text{ kg N ha}^{-1} \text{ d}^{-1}$,
306 respectively) but not those of UNSAT/sat and UNSAT/halfsat (means of 7.1 and $11.9 \text{ kg N ha}^{-1} \text{ d}^{-1}$,
307 respectively). The N_2 concentrations always increased before the soil emitted N_2O reached the
308 maximum. The lag between both N_2O and N_2 peak for all samples was only few hours. Peaks of N_2
309 generally lasted just over four days, except in UNSAT/halfsat where one replicate lasted about 6 days
310 (Fig. 1). Unlike in the N_2O data, there was larger within treatment variability in the replicates for all

311 four treatments. The standard deviations of each mean (Table 3) also indicate the large variability in
312 treatments UNSAT/sat and UNSAT/halfsat for both N₂O and N₂.

313 The product ratios, i.e. N₂O/(N₂O+N₂) resulted in a peak just after amendment addition by ca.
314 0.73 (at 0.49 d), 0.65 (at 0.48 d), 0.99 (at 0.35 d) and 0.88 (at 0.42 d) for SAT/sat, HALFSAT/sat,
315 UNSAT/sat and UNSAT/halfsat, respectively, and then decreases gradually until day 3 where it
316 becomes nearly zero for the 2 wettest treatments, and stays stable for the driest treatments between
317 0.1-0.2 (see Table 5 where the daily means of these ratios are presented).

318 The cumulative areas of the N₂O and N₂ peaks analysed by one-way ANOVA resulted in no
319 significant differences between treatments for both N₂O and N₂ (Table 3). Due to the large variation
320 in treatments UNSAT/sat and UNSAT/halfsat we carried out a pair wise analysis by using a weighted
321 t-test (Cochran, 1957). This analysis resulted in treatment differences between SAT/sat and
322 HALFSAT/sat, HALFSAT/sat and UNSAT/sat, SAT/sat and UNSAT/sat, but only at the 10%
323 significance level (P <0.1 for both N₂O and N₂).

324 The results showed that total N emission (N₂O+N₂) (Table 3) decreased between the highest
325 and lowest soil moistures i.e. from 63.4 for SAT/sat (100% WFPS) to 34.1 kg N ha⁻¹ (71% WFPS)
326 for UNSAT/halfsat. The maximum cumulative N₂O occurred at around 80% WFPS (Fig. 2) whereas
327 the total N₂O+N₂ was largest at about 95% and for N₂ it was our upper treatment at 100% WFPS.

328 *Carbon dioxide.* The background CO₂ fluxes (before amendment application, i.e. day -1 to
329 day 0) were high at around 30 kg C ha⁻¹ d⁻¹ and variable (not shown). The CO₂ concentrations in the
330 headspace increased within a few hours after amendment application. The maximum CO₂ flux was
331 reached earlier in the drier treatments (about 1-2 days; ~70 kg C ha⁻¹ d⁻¹) compared to the wettest (3
332 days; ~40 kg C ha⁻¹ d⁻¹) and former peaks were also sharper (Fig. 1). The cumulative CO₂ fluxes were
333 significantly larger in the two drier unsaturated treatments (ca. 400-420 kg C ha⁻¹) when compared to
334 the wetter more saturated treatment (ca. 280-290 kg C ha⁻¹, P<0.05) (Table 3).

335 **3.3 Isotopocules of N₂O**

336 The $\delta^{15}\text{N}^{\text{bulk}}$ of the soil emitted N₂O in our study differed significantly among the four treatments and
337 between the seven sampling dates (p<0.001 for both); there was also a significant treatment*sampling
338 date interaction (p<0.001). The maximum $\delta^{15}\text{N}^{\text{bulk}}$ generally occurred on day 3, except for SAT/sat
339 on day 4 (Table 6).

340 The maximum $\delta^{18}\text{O-N}_2\text{O}$ values were also found on day 3, except for SAT/sat which peaked
341 at day 2 (Table 6). Overall, the $\delta^{18}\text{O-N}_2\text{O}$ values varied significantly between treatment and sampling
342 dates (p<0.001 for both), but there was no significant treatment*time interaction (p>0.05).

343 The site preference (SP) for the SAT/sat treatment had an initial maximum value on day 2
344 (6.3‰) which decreased thereafter in the period from day 3 to 5 to a mean SP values of the emitted
345 N₂O of 2.0‰ on day 5, subsequently rising to 8.4‰ on day 12 of the experiment (Table 6). The
346 HALFSAT/sat treatment had the highest initial SP values on day 2 and 3 (both 6.4‰), decreasing
347 again to a value of 2.0‰, but now on day 4 followed by subsequent higher SP values of up to 9.2‰
348 on day 7 (Table 6). The two driest treatments (UNSAT/sat and UNSAT/halfsat) both had an initial
349 maximum on day 3 (11.9‰ and 5.9‰, respectively), and in UNSAT/sat the SP value then decreased
350 to day 7 (3.9‰), but in UNSAT/halfsat treatment after a marginal decrease on day 4 (5.4‰) it then
351 increased throughout the experiment reaching 11.8‰ on day 12 (Table 6). The lowest SP values were
352 generally on day 1 in all treatments. Overall, for all parameters, there was more similarity between
353 the more saturated treatments SAT/sat and HALFSAT/sat, and between the two more dry and aerobic
354 treatments UNSAT/sat and UNSAT/halfsat.

355 The N₂O / (N₂O + N₂) ratios vs SP for all treatments in the first two days (when N₂O was
356 increasing and the N₂O / (N₂O + N₂) ratio was decreasing) shows a significant negative response of
357 the SP when the ratio increased (Fig. 3). This behaviour suggests that when the emitted gaseous N is
358 dominated by N₂O (ratio close to 1) the SP values will be slightly negative with an intercept of -2‰
359 (Fig. 3), i.e. within the SP range of bacterial denitrification. With decreasing N₂O / (N₂O + N₂) ratio
360 the SP values of soil emitted N₂O were increasing to values up to 8‰. This is in juxtaposition with

361 the situation when the N emissions are dominated by N₂ or N₂O is low, where the SP values of soil
362 emitted N₂O were much higher (Fig. 3), pointing to an overall product ratio related to an ‘isotopic
363 shift’ of 10 to 12.5‰. We fitted 3 functions through this data including a second degree polynomial,
364 a linear and logarithmic function. The fitted logarithmic function in Fig. 3, is in almost perfect
365 agreement with Lewicka-Szczebak *et al.* (2014). Lewicka-Szczebak *et al.* (2014) data fits on the top
366 left of Fig. 3.

367 It has been reported that the combination of the isotopic signatures of N₂O potentially
368 identifies the contribution of processes other than bacterial denitrification (Köster *et al.*, 2015; Wu
369 Di *et al.*, 2016; Deppe *et al.*, 2017). The question arises to which extent the relationships between the
370 δ¹⁸O and δ¹⁵N^{bulk} and between δ¹⁸O and SP within the individual treatments denitrification
371 dynamics. We checked this to evaluate the robustness of isotope effects during N₂O reduction as a
372 prerequisite to calculate the percentage of bacterial denitrification in N₂O productionIn our data,
373 maximum δ¹⁸O and SP values, were generally observed at or near the peak of N₂ emissions on days
374 2-3, independent of the moisture treatment (Table 6 and Fig. 3). δ¹⁵N^{bulk} values of all treatments were
375 mostly negative when N₂O fluxes started to increase (day 1, Fig. 1, Table 6), except for
376 UNSAT/halfsat in which the lowest value was before amendment application, reaching their highest
377 values between days 3 and 4 for when N₂O fluxes were back to the low initial values, and then
378 decreased during the remaining period. δ¹⁸O values increased about 10 - 20‰ after day 1 reaching
379 maximum values on days 2 or 3 in all treatments, while SP increased in parallel, at least by 3‰
380 (SAT/sat) and up to 12‰(UNSAT/sat). While δ¹⁸O exhibited a steady decreasing trend after day 3,
381 SP behaved opposite to δ¹⁵N^{bulk} with decreasing values while δ¹⁵N^{bulk} was rising again after days 4 or
382 5.

383 We further explored the data by looking at the relationships between the δ¹⁸O and δ¹⁵N^{bulk} for
384 all the treatments. The δ¹⁸O vs δ¹⁵N^{bulk} for all treatments is presented separating the data in three
385 periods (Fig. 4): ‘-1’, with δ¹⁸O vs δ¹⁵N^{bulk} values 1 day prior to the moisture adjustment (and N and
386 C application); ‘1-2’, with values in the first 2 days after the addition of water, N and C were added

387 and N₂O emissions were generally increasing in all treatments; and, '3-12', the period in days after
388 moisture adjustment and N and C addition when N₂O emissions generally decreased back to baseline
389 soil emissions. There was a strong and significant relationship (P<0.001 and 0.05, respectively)
390 between $\delta^{18}\text{O}$ vs $\delta^{15}\text{N}^{\text{bulk}}$ for the high moisture treatments ($R^2= 0.973$ and 0.923 for SAT/sat and
391 HALFSAT/sat, respectively) at the beginning of the incubation ('1-2') when the N₂O emissions are
392 still increasing, in contrast to those of the lower soil moisture treatments that were lower and not
393 significant ($R^2= 0.294$ and 0.622, for UNSAT/sat and UNSAT/halfsat, respectively). The
394 relationships between $\delta^{18}\text{O}$ vs $\delta^{15}\text{N}^{\text{bulk}}$ of emitted N₂O for the '3-12' period were significant for
395 SAT/sat and HALFSAT/sat with R^2 values between 0.549 and 0.896 and P values <0.05 and 0.001,
396 respectively (Fig. 4). Regressions were also significant for this period for the driest treatments
397 (P<0.001). Interestingly, with decreasing soil moisture content (Fig. 4a to 4d) the regression lines of
398 '1-2' and '3-12' day period got closer together in the graphs. Overall, the $\delta^{15}\text{N}^{\text{bulk}}$ isotopic distances
399 between the two lines was larger for a given $\delta^{18}\text{O-N}_2\text{O}$ value for SAT/sat and HALFSAT/sat (ca.
400 20‰) when compared to the UNSAT/sat and UNSAT/halfsat treatments (ca. 13‰) (Fig. 4). So it
401 seems the $\delta^{15}\text{N}^{\text{bulk}} / \delta^{18}\text{O-N}_2\text{O}$ signatures are more similar for the drier soils than the two wettest
402 treatments. In addition, Fig 4 exactly reflects the 2-pool dynamics with increasing $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$
403 while the product ratio goes down (days 2,3), then only $\delta^{15}\text{N}$ continue increasing due to fractionation
404 of the NO₃⁻ during exhaustion of pool 1 in the wet soil (days 3,4,5), finally as pool 1 is depleted and
405 more and more comes from pool 2, the product ratio increases somewhat, and $\delta^{15}\text{N}$ decreases
406 somewhat since pool 2 is less fractionated and also $\delta^{18}\text{O}$ decreases due to slightly increasing product
407 ratio. Note that the turning points of $\delta^{18}\text{O}$ and product ratio (Table 3 and 4) for the wetter soils almost
408 coincide.

409 Similarly to Fig. 4, $\delta^{18}\text{O}$ vs the SP (Fig. 5) was analysed for the different phases of the
410 experiment. Generally, the slopes (Table 7) for days 1-2 for the three wettest treatments were similar
411 (~0.2-0.3) following the range of known reduction slopes and also had high and significant (P<0.05)
412 regression coefficients ($R^2= 0.65$, 0.90 and 0.87 for SAT/sat, HALFSAT/Sat and UNSAT/sat,

413 respectively). The slopes on days 3-5 were variable but slightly similar on days 7-12 (between 41 and
414 0.68) for the same three treatments. They were only significant for the 2 driest treatments ($P<0.05$).
415 On days 7-12 SAT/sat and UNSAT/sat gave significant correlations ($P<0.001$ and 0.05, respectively).
416 Figure 5 also shows the “map” for the values of SP and $\delta^{18}\text{O}$ from all treatments. Reduction lines
417 (vectors) represent minimum and maximum routes of isotopocules values with increasing N_2O
418 reduction to N_2 based on the reported range in the ratio between the isotope fractionation factors of
419 N_2O reduction for SP and $\delta^{18}\text{O}$ (Lewicka-Szczebak *et al.*, (2017)). Most samples are located within
420 the vectors (from Lewicka-Szczebak *et al.* 2017) area of N_2O production by bacterial denitrification
421 with partial N_2O reduction to N_2 (within uppermost and lowermost N_2O reduction vectors
422 representing the extreme values for the bacterial endmember and reduction slopes). Only a few values
423 of the UNSAT/sat and UNSAT/halfsat treatments are located above that vector area and more close
424 or within the vector area of mixing between bacterial denitrification and fungal
425 denitrification/nitrification.

426 The estimated ranges of the proportion of emitted N_2O resulting from bacterial denitrification
427 ($\%B_{DEN}$) were on day 1 and 2 after the amendment comparable in all four moisture treatments (Table
428 6). However, during day 3 to 12 the $\%B_{DEN}$ ranged from 78-100% in SAT/sat and 79-100%
429 HALFSAT/Sat, which was generally higher than that estimated at 54-86% for UNSAT/halfsat
430 treatment. The $\%B_{DEN}$ of the UNSAT/halfsat in that period was intermediate between SAT/sat and
431 UNSAT/sat with range of range 60-100% (Table 6). The final values were similar to those on day -1
432 except for the UNSAT/sat treatment.

433 4 Discussion

434 4.1 N_2O and N_2 fluxes

435 The observed decrease in total N emissions with decreasing initial soil moisture reflects the effect of
436 soil moisture as reported in previous studies (Well *et al.*, 2006). The differences when comparing the
437 cumulative fluxes however, were only marginally ($p<0.1$) significant (Table 3) mostly due to large
438 variability within replicates in the drier treatments (see Fig. 1b). Davidson *et al.* (1991) provided a

439 WFPS threshold for determination of source process, with a value of 60% WFPS as the borderline
440 between nitrification and denitrification as source processes for N_2O production. The WFPS in all
441 treatments in our study was larger than 70%, above this 60% threshold, and referred to as the
442 “optimum water content” for N_2O by Scheer *et al.* (2009), so we can be confident that denitrification
443 was likely to have been the main source process in our experiment. In addition, Bateman *et al.* (2004)
444 observed the largest N_2O fluxes at 70% WFPS on a silty loam soil, lower than the 80% value for the
445 largest fluxes from the clay soil in our study (Fig. 2) suggesting that this optimum value could change
446 with soil type. Further, the maximum total measured N lost ($\text{N}_2\text{O}+\text{N}_2$) in our study occurred at about
447 95% WFPS (Fig. 2), but not many studies report N_2 fluxes for comparison and we are still missing
448 measurements of nitric oxide (NO) (Davidson *et al.*, 2000) and ammonia (NH_3) to account for the
449 total N losses. It is however possible that the $\text{N}_2\text{O}+\text{N}_2$ fluxes in the SAT/sat treatment were
450 underestimated due to low diffusivity in the water filled pores (Well *et al.*, 2001). Gases would have
451 been trapped (particularly in the higher saturation treatments) due to low diffusion and thus possibly
452 masked differences in N_2 and N_2O production since this fraction of gases was not detected (Harter *et*
453 *al.* 2016). It is worth mentioning that there was some drying during the incubation. The flow of the
454 gas is very slow (10 ml/min) simulating a low wind speed so normally this would dry the soil in field
455 conditions too. It would represent a rainfall event where the initial moisture differs between
456 treatments but some drying occurs due to the wind flow. We believe however, that the effect of drying
457 will be more relevant (and significant relative to the initial moisture) later in the incubation.

458 The smaller standard errors in both N_2O and N_2 data for the larger soil moisture levels (Table
459 3 and Fig. 1) could suggest that at high moisture contents nutrient distribution (N and C) on the top
460 of the core is more homogeneous making replicate cores to behave similarly. At the lower soil
461 moisture for both N_2O and N_2 , it is possible that some cracks appear on the soil surface causing
462 downwards nutrient movement, resulting in heterogeneity in nutrient distribution on the surface and
463 increasing variability between replicates, reflected in the larger standard errors of the fluxes. Laudone
464 *et al.* (2011) studied, using a biophysical model, the positioning of the hot-spot zones away from the

465 critical percolation path (described as ‘where air first breaks through the structure as water is removed
466 at increasing tensions’) and found it slowed the increase and decline in emission of CO₂, N₂O and N₂.
467 They found that hot-spot zones further away from the critical percolation path would reach the
468 anaerobic conditions required for denitrification in shorter time, the products of the denitrification
469 reactions take longer to migrate from the hot-spot zones to the critical percolation path and to reach
470 the surface of the system. The model and its parameters can be used for modelling the effect of soil
471 compaction and saturation on the emission of N₂O. They suggest that having determined biophysical
472 parameters influencing N₂O production, it remains to determine whether soil structure, or simply
473 saturation, is the determining factor when the biological parameters are constrained. Furthermore,
474 Clough *et al.* (2013) indicate that microbial scale models need to be included on larger models linking
475 microbial processes and nutrient cycling in order to consider spatial and temporal variation. Kulkarni
476 *et al.* (2008) refers to “hot spots” and “hot moments” of denitrification as scale dependant and
477 highlight the limitations for extrapolating fluxes to larger scales due to these inherent variabilities.
478 Well *et al.* (2003) found that under saturated conditions there was good agreement between laboratory
479 and field measurements of denitrification, and attributed deviations, under unsaturated conditions, to
480 spatial variability of anaerobic microsites and redox potential. Dealing with spatial variability when
481 measuring N₂O fluxes in the field remains a challenge, but the uncertainty could be potentially
482 reduced if water distribution is known. Our laboratory study suggests that soil N₂O and N₂ emission
483 for higher moisture levels would be less variable than for drier soils and suggests that for the former
484 a smaller number of spatially defined samples will be needed to get an accurate field estimate. This
485 applied to a lesser extent to the CO₂ fluxes.

486 Our results, for the two highest water contents (SAT/sat and HALFSAT/sat), indicated that
487 N₂O only contributed 20% of the total N emissions, as compared to 40-50% at the lowest water
488 contents (UNSAT/sat and UNSAT/halfsat, Table 3). This was due to reduction to N₂ at the high
489 moisture level, confirmed by the larger N₂ fluxes, favoured by low gas diffusion which increased the
490 N₂O residence time and the chance of further transformation (Kleftho *et al.*, 2014a). We should also

491 consider the potential underestimation of the fluxes in the highest saturation treatment due to
492 restricted diffusion in the water filled pores (Well *et al.*, 2001). A total of 99% of the soil NO_3^- was
493 consumed in the two high water treatments, whereas in the drier UNSAT/sat and UNSAT/halfsat
494 treatments there still was 35% and 70% of the initial amount of NO_3^- left in the soil, at the end of the
495 incubation, respectively (Table 3). The total amount of gas lost compared to the NO_3^- consumed was
496 almost 3 times for the wetter treatments, and less than twice for the 2 drier ones. This agrees with
497 denitrification as the dominant process source for N_2O with larger consumption of NO_3^- at the higher
498 moisture and larger N_2 to N_2O ratios (5.7, 4.7 for SAT/sat and HALFSAT/sat, respectively), whereas
499 at the lower moisture, ratios were lower (1.5 and 1.0 for UNSAT/sat and UNSAT/halfsat,
500 respectively) (Davidson, 1991). This also indicates that with WFPS above the 60% threshold for N_2O
501 production from denitrification, there was an increasing proportion of anaerobic microsites with
502 increase in saturation controlling NO_3^- consumption and $\text{N}_2/\text{N}_2\text{O}$ ratios in an almost linear manner.
503 With WFPS values between 71-100 % and $\text{N}_2/\text{N}_2\text{O}$ between 1.0 and 5.7, a regression can be
504 estimated: $Y=0.1723 X - 11.82$ ($R^2=0.8585$), where Y is $\text{N}_2/\text{N}_2\text{O}$ and X is % WFPS. In summary, we
505 propose that heterogeneous distribution of anaerobic microsites could have been the limiting factor
506 for complete depletion of NO_3^- and conversion to N_2O in the two drier treatments. In addition, in the
507 UNSAT/halfsat treatment there was a decrease in soil NH_4^+ at the end of the incubation (almost 50%;
508 Table 3) suggesting nitrification could have been occurring at this water content which also agrees
509 with the increase in NO_3^- , even though WFPS was relatively high (>71%) (Table 3). It is important
510 to note that as we did not assess gross nitrification, the observed net nitrification based on lowering
511 in NH_4^+ could underestimate gross nitrification since there might have been substantial N
512 mineralisation during the incubation. However, under conditions favouring denitrification at high soil
513 moisture the typical N_2O produced from nitrification is much lower compared to that from
514 denitrification (Lewicka-Szczebak *et al.*, 2017) with the maximum reported values for the N_2O yield
515 of nitrification of 1-3 % (e.g. Deppe *et al.*, 2017). If this is the case, nitrification fluxes could not have
516 exceeded 1 kg N with NH_4^+ loss of < 30 kg * 3% ~1 kg N. This would have represented for the driest

517 treatment, if conditions were suitable only for one day, that nitrification-derived N₂O would have
518 been 6% of the total N₂O produced. Loss of NH₃ was not probable at such low pH (5.6). The
519 corresponding rate of NO₃⁻ production using the initial and final soil contents and assuming other
520 processes were less important in magnitude, would have been < 1 mg NO₃⁻-N kg dry soil⁻¹ d⁻¹ which
521 is a reasonable rate (Hatch *et al.*, 2002). The other three treatments lost similar amounts of soil NH₄⁺
522 during the incubation (23-26%) which could have been due to some degree of nitrification at the start
523 of the incubation before O₂ was depleted in the soil microsites or due to NH₄⁺ immobilisation (Table
524 3) (Geisseler *et al.*, 2010).

525

526 A mass N balance, taking into account the initial and final soil NO₃⁻, NH₄⁺, added NO₃⁻ and
527 the emitted N (as N₂O and N₂) results in unaccounted N-loss of 177.2, 177.6, 130.6 and 110.8 mg N
528 kg⁻¹ for SAT/sat, HALFSAT/sat, UNSAT/sat and UNSAT/halfsat, respectively, that could have been
529 emitted as other N gases (such as NO), and some, immobilised in the microbial biomass. NO fluxes
530 reported by Loick *et al.* (2016) for example, result in a ratio N₂O/NO of 0.4. In summary unaccounted-
531 for N loss is two to three times the total measured gas loss (Table 3). In addition, in the SAT/sat
532 treatment there was probably an underestimation of the produced N₂ and N₂O due to restricted
533 diffusion at the high WFPS (e.g. Well *et al.*, 2001).

534 **4.2 Isotopocule trends.**

535 Trends of isotopocule values of emitted N₂O coincided with those of N₂ and N₂O fluxes. The results
536 from the isotopocule data (Table 6 and Fig. 3) also indicated that generally there were more isotopic
537 similarities between the two wettest treatments when compared to the two contrasting drier soil
538 moisture treatments.

539 Isotopocule values of emitted N₂O reflect multiple processes where all signatures are affected
540 by the admixture of several microbial processes, the extent of N₂O reduction to N₂ as well as the
541 variability of the associated isotope effects (Lewicka-Szczebak *et al.*, 2015). Moreover, for $\delta^{18}\text{O}$ and
542 $\delta^{15}\text{N}^{\text{bulk}}$ the precursor signatures are variable (Decock and Six, 2013), for $\delta^{18}\text{O}$ the O exchange with

543 water can be also variable (Lewicka-Szczebak *et al.*, 2017). Since the number of influencing factors
544 clearly exceeds the number of isotopocule values, unequivocal results can only be obtained if certain
545 processes can be excluded or be determined independently, (Lewicka-Szczebak *et al.*, 2015; Lewicka-
546 Szczebak, 2017). The two latter conditions were fulfilled in this study, i.e. N_2O fluxes were high and
547 several order of magnitude above possible nitrification fluxes, since the N_2O – to- NO_3^- ratio yield of
548 nitrification products rarely exceeds 1% (Well *et al.*, 2008; Zhu *et al.*, 2012). Moreover, N_2 fluxes
549 and thus N_2O reduction rates were exactly quantified.

550 The estimated values of % B_{DEN} indicate that in the period immediately after amendment
551 application all moisture treatments were similar, reflecting that the microbial response to N and C
552 added was the same and denitrification dominated. This was the same for the rest of the period for
553 the wetter treatments. In the drier treatments, proportions decreased afterwards and were similar to
554 values before amendment application, possibly due to recovery of more aerobic conditions that could
555 have encouraged other processes to contribute. As N_2 was still produced in the driest treatment, (but
556 in smaller amounts), this indicated ongoing denitrifying conditions and thus large contributions to the
557 total N_2O flux from nitrification were not probable, but some occurred as suggested by NH_4^+
558 consumption.

559 The trends observed reflect the dynamics resulting from the simultaneous application of
560 NO_3^- and labile C (glucose) on the soil surface as described in previous studies (Meijide *et al.*,
561 2010; Bergstermann *et al.*, 2011) where the same soil was used, resulting in two locally distinct
562 NO_3^- pools with differing denitrification dynamics. In the soil volume reached by the NO_3^- /glucose
563 amendment, denitrification was initially intense with high N_2 and N_2O fluxes and rapid isotopic
564 enrichment of the NO_3^- -N. When the NO_3^- and/or glucose of this first pool were exhausted, N_2 and
565 N_2O fluxes were much lower and dominated by the initial NO_3^- pool that was not reached by the
566 glucose/ NO_3^- amendment and that is less fractionated due to its lower exhaustion by denitrification,
567 causing decreasing trends in $\delta^{15}\text{N}^{\text{bulk}}$ of emitted N_2O .

568 This is also reflected in Fig 4 where N₂O fluxes from both pools exhibited correlations (and
569 mostly significant) between $\delta^{15}\text{N}^{\text{bulk}}$ and $\delta^{18}\text{O}$ due to varying N₂O reduction, but $\delta^{15}\text{N}^{\text{bulk}}$ values in
570 days 1 and 2 - i.e. the phase when Pool 1 dominated - were distinct from the previous and later phase.

571 The fit of $^{15}\text{N}^{\text{bulk}} / ^{18}\text{O}$ data to two distinct and distant regression lines can be attributed to
572 two facts: Firstly, in the wet treatment (Fig 4a, b) Pool 1 was probably completely exhausted and
573 there was little NO₃⁻ formation from nitrification (indicated by final NO₃⁻ values close to 0, Table 3)
574 whereas the drier treatment exhibited substantial NO₃⁻ formation and high residual NO₃⁻. Hence,
575 there was probably still some N₂O from Pool 1 after day 2 in the dry treatment but not in the wetter
576 ones. Secondly, the product ratios after day 2 of the drier treatments were higher (0.13 to 0.44)
577 compared to the wetter treatments (0.001 to 0.09). Thus the isotope effect of N₂O reduction was
578 smaller in the drier treatments, leading to a smaller upshift of $\delta^{15}\text{N}^{\text{bulk}}$ and thus more negative values
579 after day 2, i.e. with values closer to days 1 +2.

580 This finding further confirms that $\delta^{15}\text{N}/\delta^{18}\text{O}$ patterns are useful to identify the presence of
581 several N pools, e.g. typically occurring after application of liquid organic fertilizers which has
582 been previously demonstrated using isotopocule patterns (Koster *et al.*, 2015).

583 Interestingly, the highest $\delta^{15}\text{N}^{\text{bulk}}$ and $\delta^{18}\text{O}$ values of the emitted N₂O were found in the soils
584 of the HALFSAT/sat treatment, although it may have been expected that the highest isotope values
585 from the N₂O would be found in the wettest soil (SAT/sat) because N₂O reduction to N₂ is favoured
586 under water-saturated conditions due to extended residence time of produced N₂O (Well *et al.*, 2012).
587 However, N₂O/(N₂+N₂O) ratios of the SAT/sat and SAT/halfsat treatments were not different (Table
588 5). Bol *et al.* (2004) also found that some estuarine soils under flooded conditions (akin to our
589 SAT/sat) showed some strong simultaneous depletions (rather than enrichments) of the emitted N₂O
590 $\delta^{15}\text{N}^{\text{bulk}}$ and $\delta^{18}\text{O}$ values. These authors suggested that this observation may have resulted from a flux
591 contribution of an ‘isotopically’ unidentified N₂O production pathway. Another explanation could be
592 complete consumption of some of the produced N₂O in isolated micro-niches in the SAT/sat treatment
593 due to inhibited diffusivity in the fully saturated pores space. N₂ formation in these isolated domains

594 would not affect the isotopocule values of emitted N₂O and this would thus result in lower apparent
595 isotope effects of N₂O reduction in water saturated environments as suggested by Well *et al.* (2012).

596 The SP values obtained were generally below 12‰ in agreement with reported ranges
597 attributed to bacterial denitrification: -2.5 to 1.8‰ (Sutka *et al.*, 2006); 3.1 to 8.9‰ (Well and
598 Flessa, 2009); -12.5 to 17.6‰ (Ostrom, 2011). The SP, believed to be a better predictor of the N₂O
599 source as it is independent of the substrate isotopic signature (Ostrom, 2011), has been suggested as
600 it can be used to estimate N₂O reduction to N₂ in cases when bacterial denitrification can be
601 assumed to dominate N₂O fluxes (Koster *et al.*, 2013; Lewicka-Szczebak *et al.*, 2015). There was a
602 strong correlation between the SP and N₂O / (N₂O+N₂) ratios on the first 2 days of the incubation
603 for all treatments up until the N₂O reached its maximum (Fig. 3) which reflects the accumulation of
604 δ¹⁵N at the alpha position during ongoing N₂O reduction to N₂. Later on in the experiment beyond
605 day 3, this was not observed probably because in that period the product ratio remained almost
606 unchanged and very low (Table 6). Similar observations have been reported by Meijide *et al.* (2010)
607 and Bergstermann *et al.* (2011), as they also found a decrease in SP during the peak flux period in
608 total N₂+N₂O emissions, but only when the soil had been kept wet prior to the start of the
609 experiment (Bergstermann *et al.*, 2011). These results confirm from 2 independent studies
610 (Lewicka-Szczebak *et al.*, 2014) that there is a relationship between the product ratios and isotopic
611 signatures of the N₂O emitted. The δ¹⁸O vs SP regressions indicate more similarity between the
612 three wettest treatments as well as high regression coefficients, suggesting this SP/δ¹⁸O ratio could
613 also be used to help identify patterns for emissions and their sources.

614 **4.3 Link to modelling approaches.**

615 Since isotopocule data could be compared to N₂ and N₂O fluxes, the variability of isotope effects of
616 N₂O production and reduction to N₂ by denitrification could be determined from this data set
617 (Lewicka-Szczebak *et al.*, 2015) and this included modelling the two pool dynamics discussed
618 above. It was demonstrated that net isotope effects of N₂O reduction (η_{N₂O-N₂}) determined for both
619 NO₃⁻ pools differed. Pool 1 representing amended soil and resulting in high fluxes but moderate

620 product ratio, exhibited η_{N2O-N2} values and the characteristic $\eta^{18}O/\eta^{15}N$ ratios similar to those
621 previously reported, whereas for Pool 2 characterized by lower fluxes and very low product ratio,
622 the net isotope effects were much smaller and the $\eta^{18}O/\eta^{15}N$ ratios, previously accepted as typical
623 for N_2O reduction processes (i.e., higher than 2), were not valid. The question arises, if the poor
624 coincidence of Pool 2 isotopologue fluxes with previous N_2O reduction studies reflects the
625 variability of isotope effects of N_2O reduction or if the contribution of other processes like fungal
626 denitrification could explain this (Lewicka-Szczałba *et al.*, 2017). The latter explanation is
627 evaluated in section 4.3

628 Liu *et al.* (2016) noted that on the catchment scale potential N_2O emission rates were related
629 to hydroxylamine and NO_3^- , but not NH_4^+ content in soil. Zou *et al.* (2014) found high SP (15.0 to
630 20.1‰) values at WFPS of 73 to 89% suggesting that fungal denitrification and bacterial
631 nitrification contributed to N_2O production to a degree equivalent to that of bacterial denitrification.

632 To verify the contribution of fungal denitrification and/or hydroxylamine oxidation we can
633 first look at the $\eta SP_{N2O-NO3}$ values calculated in the previous modelling study applied on the same
634 dataset, (Table 1, the final modelling Step, Lewicka-Szczałba *et al.*, 2015). For Pool 1 there are no
635 significant differences between the values of various treatments, SP_0 ranges from (-1.8±4.9) to
636 (+0.1±2.5). Pool 1 emission was mostly active in days 1-2, hence these values confirm the bacterial
637 dominance in the emission at the beginning of incubation, which originates mainly from the
638 amendment addition and represent similar pathway for all treatments. However, for the Pool 2
639 emission we could observe a significant difference when compared the two wet treatments (SAT/sat
640 and HALFSAT/sat: (-5.6±7.0)) with the UNSAT/sat treatment (+3.8±5.8). This represents the
641 emission from unamended soil which was dominating after the third day of the incubation and
642 indicates higher nitrification contribution for the drier treatment.

643 **4.4 Contribution of bacterial denitrification.**

644 An endmember mixing approach has been previously used to estimate the fraction of bacterial N_2O
645 (% B_{DEN}), but without independent estimates of N_2O reduction (Zou *et al.*, 2014), but due to the

646 unknown isotopic shift by N_2O reduction, the ranges of minimum and maximum estimates were large,
647 showing that limited information is obtained without N_2 flux measurement.

648 In an incubation study with two arable soils, Koster *et al.* (2013) used $\text{N}_2\text{O}/(\text{N}_2+\text{N}_2\text{O})$ ratios
649 and isotopocule values of gaseous fluxes to calculate SP of N_2O production (referred to as SP_0),
650 which is equivalent to SP_0 using the Rayleigh model and published values of $\eta_{\text{N}_2\text{O}-\text{N}_2}$. The
651 endmember mixing approach based on SP_0 was then used to estimate fungal denitrification and/or
652 hydroxylamine oxidation giving indications for a substantial contribution in a clay soil, but not in a
653 loamy soil. Here we presented for the first time an extensive data set with large range in product
654 ratios and moisture to calculate the contribution of bacterial denitrification ($\% \text{B}_{\text{DEN}}$) of emitted N_2O
655 from SP_0 . The uncertainty of this approach arises from three factors, (i) from the range of SP_0
656 endmember values for bacterial denitrification of -11 to 0 per mil and 30 to 37 for hydroxylamine
657 oxidation/fungal denitrification, (ii) from the range of net isotope effect values of N_2O reduction
658 ($\eta_{\text{N}_2\text{O}-\text{N}_2}$) for SP which vary from -2 to -8 per mil (Lewicka-Szczebak *et al.*, 2015), and iii) system
659 condition (open vs. closed) taken to estimate the net isotope effect (Wu *et al.*, 2016).

660 The observation that $\% \text{B}_{\text{DEN}}$ of emitted N_2O was generally high (63-100%) in the wettest
661 treatment (SAT/sat) was not unexpected. However interestingly $\% \text{B}_{\text{DEN}}$ in the HALFSAT/sat
662 treatment was very similar (71-98%), pointing to the role of the wetter areas of the soil
663 microaggregates contributing to high $\% \text{B}_{\text{DEN}}$ values. The slightly lower values, i.e. down 60% in
664 UNSAT/sat $\% \text{B}_{\text{DEN}}$ range of 60-100%, suggest that the majority of N_2O derived from bacterial
665 denitrification still results from the wetter microaggregates of the soils, despite the fact that the
666 macropores are now more aerobic. Only, when the micropores become partially wet, as in the
667 UNSAT/halfsat treatment, do the more aerobic soil conditions allow a higher contribution of
668 nitrification/fungal denitrification ranging from 0 - 46% (1 - $\% \text{B}_{\text{DEN}}$, Table 6) on days 3-12 (Zhu *et*
669 *al.*, 2013). Differences in the contribution of nitrification/fungal denitrification between the flux
670 phases when different NO_3^- pools were presumably dominating are only indicated in the driest
671 treatment, since 1- $\% \text{B}_{\text{DEN}}$ was higher after day 2 (14 to 46%) compared to days 1+2 (0 to 33 %).

672 This larger share of nitrification/fungal denitrification can be attributed to the increasing
673 contribution from Pool 2 to the total flux as indicated by the modeling of higher SP_0 for Pool 2 (see
674 previous section and Lewicka-Szczebak *et al.* (2015). In addition, indication for elevated
675 contribution of processes other than bacterial denitrification were only evident in the drier
676 treatments during phases before and after N_2 , N_2O fluxes were strongly enhanced by glucose
677 amendment. The data supply no clue whether the other processes were suppressed during the anoxia
678 induced by glucose decomposition or just masked by the vast glucose-induced bacterial N_2O fluxes.
679

680 **5 Conclusions**

681 The results from this study demonstrated that at high soil moisture levels, there was less variability
682 in N fluxes between replicates, potentially decreasing the importance of soil hot spots in emissions
683 at these moisture levels. At high moisture there also was complete depletion of nitrate confirming
684 denitrification as the main pathway for N_2O emissions, and due to less diffusion of the produced
685 N_2O , the potential for further reduction to N_2 increased. Under less saturation, but still relatively
686 high soil moisture, nitrification occurred. Isotopic similarities were observed between similar
687 saturation levels and patterns of $\delta^{15}N/\delta^{18}O$ and $SP/\delta^{18}O$ are suggested as indicators of source
688 processes.

689 **Acknowledgments**

690 The authors would like to thank the technical help from Mark Butler during the laboratory
691 incubation and Andrew Bristow and Patricia Butler for carrying out soil analysis. Also thanks to
692 Dan Dhanoa for advice on statistical analysis, and to Anette Giesemann and Martina Heuer for help
693 in N_2O isotopic analyses. This study was funded by the UK Biotechnology and Biological Sciences
694 Research Council (BBSRC) with competitive grants BB/E001580/1 and BB/E001793/1.
695 Rothamsted Research is sponsored by the BBSRC.
696

698 **Figures**

699 **Figure 1.** Mean of the three replicates for N_2O , N_2 and CO_2 emissions from a. SAT/sat treatment; b.
700 HALFSAT/sat; c. UNSAT/sat; d. UNSAT/halfsat. Grey lines correspond to the standard error of the
701 means.

702 **Figure 2** Total N emissions ($\text{N}_2\text{O} + \text{N}_2$)-N, N_2O and N_2 vs WFPS. Fitted functions through each
703 dataset are also shown.

704 **Figure 3** Ratio $\text{N}_2\text{O} / (\text{N}_2\text{O} + \text{N}_2)$ vs. Site Preference (SP) for all for treatments in the first two days.
705 A logarithmic function was fitted through the data, the corresponding equation and correlation
706 coefficient are given.

707 **Figure 4** $\delta^{18}\text{O}$ vs $\delta^{15}\text{N}_{\text{bulk}}$ in all treatments for three periods (day -1 in diamond symbol, days 1-2 in
708 square symbol and days 3-12 in triangle symbol, respectively) in the experiment: a. SAT/sat
709 treatment; b. HALFSAT/sat; c. UNSAT/sat; d. UNSAT/halfsat. Equations of fitted functions and
710 correlation coefficients are shown. Correlations are unadjusted, the P value tests if the slope is
711 different from zero.

712 **Figure 5** Site Preference vs $\delta^{18}\text{O}$ in all treatments for three periods (day -1, days 1-2 and days 3-12)
713 in the experiment: a. SAT/sat treatment; b. HALFSAT/sat; c. UNSAT/sat; d. UNSAT/halfsat.
714 Equations of fitted functions and correlation coefficients are in Table 7 for 1-2, 3-5 and 7-12 (5-12
715 for c.). Endmember areas for nitrification, N; bacterial denitrification, D; fungal denitrification, FD
716 and nitrifier denitrification, ND and corresponding vectors or reduction lines (black solid lines) are
717 from Lewicka-Szczebak et al., (2017), and represent minimum and maximum routes of isotopocule
718 values with increasing N_2O reduction to N_2 based on the reported range in the ratio between the
719 isotope fractionation factors of N_2O reduction for SP and $\delta^{18}\text{O}$ (Lewicka-Szczebak et al., 2017).

720 **Tables**

721 **Table 1** Soil properties of the soil used in the experiment

722 **Table 2** The four saturation conditions used for the soil in the experiment

723 **Table 3** Contents of soil moisture, NO_3^- , NH_4^+ and C:N ratio and cumulative fluxes of N_2O and N_2
724 and CO_2 from all treatments at the end of the incubation.

725 **Table 4** Scenarios with different combinations of $\delta^{18}\text{O}$ and SP endmember values and $\eta\text{N}_2\text{O-N}_2$
726 values to calculate maximum and minimum estimates of $\%B_{\text{DEN}}$ (minimum, maximum and average
727 values adopted from Lewicka-Szczebak *et al.*, (2016).

728 **Table 5** Ratios $\text{N}_2\text{O} / (\text{N}_2\text{O} + \text{N}_2)$ for all treatments

729 **Table 6** The temporal trends in $\delta^{15}\text{N}_{\text{bulk}}$, $\delta^{18}\text{O}$, $\delta^{15}\text{N}_a$, SP and $\%B_{\text{DEN}}$ for all experimental treatments

730 **Table 7** Equations of fitted functions and correlation coefficients corresponding to Figure 5 for Site
731 Preference vs $\delta^{18}\text{O}$ in all treatments for three periods.

732 **References**

733 Baggs, E.M., 2008. A review of stable isotope techniques for N₂O source partitioning in soils:
734 recent progress, remaining challenges and future considerations. *Rapid Commun. Mass Sp.*, 22,
735 1664-1672.

736 Baggs, E.M., Rees, R.M., Smith, K.A., Vinten, A.J.A., 2000. Nitrous oxide emission from soils
737 after incorporating crop residues. *Soil Use Manage.*, 16, 82-87.

738 Ball, B.C., Scott, A., Parker, J.P., 1999. Field N₂O, CO₂ and CH₄ fluxes in relation to tillage,
739 compaction and soil quality in Scotland. *Soil Till. Res.*, 53, 29-39.

740 Barré, P., Eglin, T., Christensen, B.T., Ciais, P., Houot, S., Kätterer, T., van Oort, F., Peylin, P.,
741 Poulton, P.R., Romanenkov, V., Chenu, C., 2010. Quantifying and isolating stable soil organic
742 carbon using long-term bare fallow experiments. *Biogeosciences*, 7, 3839-3850.

743 Bateman, E., Cadisch, G., Baggs, E., 2004. Soil water content as a factor that controls N₂O
744 production by denitrification and autotrophic and heterotrophic nitrification. *Controlling nitrogen*
745 *flows and losses. 12th Nitrogen Workshop, University of Exeter, UK, 21-24 September 2003*, 290-
746 292.

747 Bergstermann, A., Cardenas, L., Bol, R., Gilliam, L., Goulding, K., Meijide, A., Scholefield, D.,
748 Vallejo, A., Well, R., 2011. Effect of antecedent soil moisture conditions on emissions and
749 isotopologue distribution of N₂O during denitrification. *Soil Biol. Biochem.*, 43, 240-250.

750 Bol, R., Rockmann, T., Blackwell, M., Yamulki, S., 2004. Influence of flooding on delta N-15,
751 delta O-18, (1)delta N-15 and (2)delta N-15 signatures of N₂O released from estuarine soils - a
752 laboratory experiment using tidal flooding chambers. *Rapid Commun. Mass Sp.*, 18, 1561-1568.

753 Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S. 2013.
754 Nitrous oxide emissions from soils: how well do we understand the processes and their controls?
755 *Phil Trans R Soc B.*, 368: 20130122, <http://dx.doi.org/10.1098/rstb.2013.0122>.

756 Cardenas, L.M., Hawkins, J.M.B., Chadwick, D., Scholefield, D., 2003. Biogenic gas emissions
757 from soils measured using a new automated laboratory incubation system. *Soil Biol. Biochem.*, 35,
758 867-870.

759 Cardenas, L.M., Thorman, R., Ashleee, N., Butler, M., Chadwick, D., Chambers, B., Cuttle, S.,
760 Donovan, N., Kingston, H., Lane, S., Dhanoa, M.S., Scholefield, D., 2010. Quantifying annual N₂O
761 emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. *Agr.*
762 *Ecosyst. Environ.*, 136, 218-226.

763 Castellano, M.J., Schmidt, J.P., Kaye, J.P., Walker, C., Graham, C.B., Lin, H., Dell, C.J., 2010.
764 Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across
765 an agricultural landscape. *Global Change Biol.*, 16, 2711-2720.

766 Clough, T.J., Muller, C., Laughlin, R.J., 2013. Using stable isotopes to follow excreta N dynamics
767 and N₂O emissions in animal production systems. *Animal : an international journal of animal*
768 *bioscience*, 7 Suppl 2, 418-426.

769 Cochran, W.G. and Cox, G.M., 1957. *Experimental Design*. John Wiley & Sons New York.

770 Crutzen, P.J., 1970. Influence of Nitrogen Oxides on Atmospheric Ozone Content. *Quarterly*
771 *Journal of the Royal Meteorological Society*, 96, 320.

772 Davidson, E.A., 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In:
773 Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and
774 halomethanes. J.E. Rogers and W.B. Whitman (eds.). American Society for Microbiology,
775 Washington, D.C., pp. 219-235.

776 Davidson, E.A., Hart, S.C., Shanks, C.A., Firestone, M.K., 1991. Measuring Gross Nitrogen
777 Mineralization, Immobilization, and Nitrification by N-15 Isotopic Pool Dilution in Intact Soil
778 Cores. *J. Soil Sci.*, 42, 335-349.

779 Davidson, E.A., Keller, M., Erickson, H.E., Verchot, L.V., Veldkamp, E., 2000. Testing a
780 conceptual model of soil emissions of nitrous and nitric oxides. *Bioscience*, 50, 667-680.

781 Davidson, E.A., Verchot, L.V., 2000. Testing the hole-in-the-pipe model of nitric and nitrous oxide
782 emissions from soils using the TRAGNET database. *Global Biogeochem. Cy.*, 14, 1035-1043.

783 Decock, C., Six, J., 2013. On the potential of delta O-18 and delta N-15 to assess N₂O reduction to
784 N₂ in soil. *Eur. J. Soil Sci.*, 64, 610-620.

785 del Prado, A., Merino, P., Estavillo, J.M., Pinto, M., Gonzalez-Murua, C., 2006. N₂O and NO
786 emissions from different N sources and under a range of soil water contents. *Nutr. Cycl.*
787 *Agroecosys.*, 74, 229-243.

788 Deppe, M., Well, R., Giesemann, A., Spott, O., Flessa, H. 2017. Soil N₂O fluxes and related
789 processes in laboratory incubations simulating ammonium fertilizer depots. *Soil Biol. Biochem.*,
790 104, 68-80.

791 Dobbie, K.E., Smith, K.A., 2001. The effects of temperature, water-filled pore space and land use
792 on N₂O emissions from an imperfectly drained gleysol. *Eur. J. Soil Sci.*, 52, 667-673.

793 Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N₂O production and
794 consumption in soil. *Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere*,
795 47, 7-21.

796 Geisseler, D., Horwath, W.R., Joergensen, R.G., Ludwig, B., 2010. Pathways of nitrogen utilization
797 by soil microorganisms - A review. *Soil Biol. Biochem.*, 42, 2058-2067.

798 Gregory, A.S., Bird, N.R.A., Whalley, W.R., Matthews, G.P., Young, I.M., 2010. Deformation and
799 Shrinkage Effects on the Soil Water Release Characteristic. *Soil Sci. Soc. Am. J.*, 74, 4.

800 Harter, J., Guzman-Bustamente, I., Kuehfuss, S., Ruser, R., Well, R., Spott, O., Kappler, A.,
801 Behrens, S. 2016. Gas entrapment and microbial N₂O reduction reduce N₂O emissions from a
802 biochar-amended sandy clay loam soil. *Scientific Reports*, 6.

803 Hatch, D.J., Sprosen, M.S., Jarvis, S.C., Ledgard, S.F., 2002. Use of labelled nitrogen to measure
804 gross and net rates of mineralization and microbial activity in permanent pastures following
805 fertilizer applications at different time intervals. *Rapid Commun. Mass Sp.*, 16, 2172-2178.

806 IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006 IPCC
807 Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas
808 Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds).
809 Published: IGES, Japan.

810 Klefth, R.R., Clough, T.J., Oenema, O., Groenigen, J.W., 2014a. Soil bulk density and moisture
811 content influence relative gas diffusivity and the reduction of nitrogen-15 nitrous oxide. *Vadose*
812 *Zone J.*, 13, 0089-0089.

813 Klefth, R.R., Clough, T.J., Oenema, O., Van Groenigen, J.-W., 2014b. Soil Bulk Density and
814 Moisture Content Influence Relative Gas Diffusivity and the Reduction of Nitrogen-15 Nitrous
815 Oxide. *Vadose Zone J.*, 13.

816 Koster, J.R., Cardenas, L.M., Bol, R., Lewicka-Szczebak, D., Senbayram, M., Well, R., Giesemann,
817 A., Ditttert, K., 2015. Anaerobic digestates lower N₂O emissions compared to cattle slurry by
818 affecting rate and product stoichiometry of denitrification - An N₂O isotopomer case study. *Soil*
819 *Biol. Biochem.*, 84, 65-74.

820 Koster, J.R., Well, R., Ditttert, K., Giesemann, A., Lewicka-Szczebak, D., Muhling, K.H.,
821 Herrmann, A., Lammel, J., Senbayram, M., 2013. Soil denitrification potential and its influence on
822 N₂O reduction and N₂O isotopomer ratios. *Rapid Commun. Mass Sp.*, 27, 2363-2373.

823 Kulkarni, M.V., Groffman, P.M., Yavitt, J.B., 2008. Solving the global nitrogen problem: it's a gas!
824 *Frontiers in Ecology and the Environment*, 6, 199-206.

825 Laudone, G.M., Matthews, G.P., Bird, N.R.A., Whalley, W.R., Cardenas, L.M., Gregory, A.S.,
826 2011. A model to predict the effects of soil structure on denitrification and N₂O emission. *J.*
827 *Hydrol.*, 409, 283-290.

828 Lewicka-Szczebak, D., Augustin J., Giesemann A., Well R., 2017. Quantifying N₂O reduction to
829 N₂ based on N₂O isotopocules - validation with independent methods (Helium incubation and ¹⁵N
830 gas flux method). *Biogeosciences*, 14, 711-732..

831 Lewicka-Szczebak, D., Dyckmans, J., Kaiser, J., Marca, A., Augustin, J., Well, R., 2016. Oxygen
832 isotope fractionation during N₂O production by soil denitrification. *Biogeosciences*, 13, 1129-1144.

833 Lewicka-Szczebak, D., Well, R., Bol, R., Gregory, A.S., Matthews, G.P., Misselbrook, T., Whalley,
834 W.R., Cardenas, L.M., 2015. Isotope fractionation factors controlling isotopocule signatures of soil-

835 emitted N₂O produced by denitrification processes of various rates. *Rapid Commun. Mass Sp.*, 29,
836 269-282.

837 Lewicka-Szczebak, D., Well, R., Koster, J.R., Fuss, R., Senbayram, M., Dittert, K., Flessa, H.,
838 2014. Experimental determinations of isotopic fractionation factors associated with N₂O production
839 and reduction during denitrification in soils. *Geochim. Cosmochim. Ac.*, 134, 55-73.

840 Liu, S.R., Herbst, M., Bol, R., Gottselig, N., Putz, T., Weymann, D., Wiekenkamp, I., Vereecken,
841 H., Bruggemann, N., 2016. The contribution of hydroxylamine content to spatial variability of N₂O
842 formation in soil of a Norway spruce forest. *Geochim. Cosmochim. Ac.*, 178, 76-86.

843 Loick, N., Dixon, L., Abalos, D., Vallejo, A., Matthews, G.P., McGeough, K.L., Well, R., Watson,
844 C.J., Laughlin, R.J., Cardenas, L.M., 2016. Denitrification as a Source of Nitric Oxide Emissions
845 from a UK Grassland Soil. *Soil Biol. Biochem.*, 95, 1-7.

846 Ludwig, B., Bergstermann, A., Priesack, E., Flessa, H., 2011. Modelling of crop yields and N₂O
847 emissions from silty arable soils with differing tillage in two long-term experiments. *Soil Till. Res.*,
848 112, 114-121.

849 Mariotti, A., Germon, J.C., Leclerc, A., 1982. Nitrogen isotope fractionation associated with the
850 NO-2-- N₂O step of denitrification in soils. *Canadian J. Soil Sci.*, 62, 227-241.

851 Meijide, A., Cardenas, L.M., Bol, R., Bergstermann, A., Goulding, K., Well, R., Vallejo, A.,
852 Scholefield, D., 2010. Dual isotope and isotopomer measurements for the understanding of N₂O
853 production and consumption during denitrification in an arable soil. *Eur. J. Soil Sci.*, 61, 364-374.

854 Morley, N., Baggs, E.M., 2010. Carbon and oxygen controls on N₂O and N₂ production during
855 nitrate reduction. *Soil Biol. Biochem.*, 42, 1864-1871.

856 Mualem, Y., 1976. New model for predicting hydraulic conductivity of unsaturated porous-media.
857 *Water Resour. Res.*, 12, 513-522.

858 Muller, C. and Clough, T. J. 2014. Advances in understanding nitrogen flows and transformations:
859 gaps and research pathways. *J. Agric. Sci.*, 152: S34-S44.

860 Ostrom, N., Ostrom, P., 2011. The isotopomers of nitrous oxide: analytical considerations and
861 application to resolution of microbial production pathways. In: Baskaran M (ed). *Handbook*
862 *Environ Isot Geochem*. Springer: Berlin Heidelberg, 453-476.

863 Parton, W.J., Holland, E.A., Del Grosso, S.J., Hartman, M.D., Martin, R.E., Mosier, A.R., Ojima,
864 D.S., Schimel, D.S., 2001. Generalized model for NO_x and N₂O emissions from soils. *J. Geophys.*
865 *Res-Atmos.*, 106, 17403-17419.

866 Perez, T., Garcia-Montiel, D., Trumbore, S., Tyler, S., De Camargo, P., Moreira, M., Piccolo, M.,
867 Cerri, C., 2006. Nitrous oxide nitrification and denitrification N-15 enrichment factors from
868 Amazon forest soils. *Ecol. Appl.*, 16, 2153-2167.

869 Scheer, C., Wassmann, R., Butterbach-Bahl, K., Lamers, J.P.A., Martius, C., 2009. The relationship
870 between N₂O, NO, and N₂ fluxes from fertilized and irrigated dryland soils of the Aral Sea Basin,
871 Uzbekistan. *Plant Soil*, 314, 273-283.

872 Schmidt, U., Thoni, H., Kaupenjohann, M., 2000. Using a boundary line approach to analyze N₂O
873 flux data from agricultural soils. *Nutr. Cycl. Agroecosys.*, 57, 119-129.

874 Scholefield, D., Patto, P.M., Hall, D.M., 1985. Laboratory Research on the Compressibility of 4
875 Topsoils from Grassland. *Soil Till. Res.*, 6, 1-16.

876 Searle, P.L., 1984. The Berthelot or Indophenol Reaction and Its Use in the Analytical-Chemistry of
877 Nitrogen - a Review. *Analyst*, 109, 549-568.

878 Sutka, R.L., Ostrom, N.E., Ostrom, P.H., Breznak, J.A., Gandhi, H., Pitt, A.J., Li, F., 2006.
879 Distinguishing nitrous oxide production from nitrification and denitrification on the basis of
880 isotopomer abundances. *Appl. Environ. Microb.*, 72, 638-644.

881 Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., Tanji, Y., 2005. Fractionation of N₂O
882 isotopomers during production by denitrifier. *Soil Biol. Biochem.*, 37, 1535-1545.

883 Toyoda, S., Yoshida, N., 1999. Determination of nitrogen isotopomers of nitrous oxide on a
884 modified isotope ratio mass spectrometer. *Anal. Chem.*, 71, 4711-4718.

885 van der Weerden, T.J., Kelliher, F.M., de Klein, C.A.M., 2012. Influence of pore size distribution
886 and soil water content on nitrous oxide emissions. *Soil Research*, 50, 125-135.

887 van Genuchten, M.T., 1980. A closed form equation for predicting the hydraulic conductivity of
888 unsaturated soils. *Soil Sci. Soc. Am. J.*, 44, 892-898.

889 van Groenigen, J.W., Kuikman, P.J., de Groot, W.J.M., Velthof, G.L., 2005. Nitrous oxide emission
890 from urine-treated soil as influenced by urine composition and soil physical conditions. *Soil Biol.*
891 *Biochem.*, 37, 463-473.

892 Well, R., Augustin, J., Davis, J., Griffith, S.M., Meyer, K., Myrold, D.D., 2001. Production and
893 transport of denitrification gases in shallow ground water. *Nutr. Cycl. Agroecosys.*, 60, 65-75.

894 Well, R., Augustin, J., Meyer, K., Myrold, D.D., 2003. Comparison of field and laboratory
895 measurement of denitrification and N₂O production in the saturated zone of hydromorphic soils.
896 *Soil Biol. Biochem.*, 35, 783-799.

897 Well, R., Eschenbach, W., Flessa, H., von der Heide, C., Weymann, D., 2012. Are dual isotope and
898 isotopomer ratios of N₂O useful indicators for N₂O turnover during denitrification in nitrate-
899 contaminated aquifers? *Geochim. Cosmochim. Ac.*, 90, 265-282.

900 Well, R., Flessa, H., 2009. Isotopologue signatures of N₂O produced by denitrification in soils.
901 *J.Geophys. Res-Biogeo.*, 114.

902 Well, R., Flessa, H., Xing, L., Ju, X.T., Romheld, V., 2008. Isotopologue ratios of N₂O emitted
903 from microcosms with NH₄⁺ fertilized arable soils under conditions favoring nitrification. *Soil Biol.*
904 *Biochem.*, 40, 2416-2426.

905 Well, R., Kurganova, I., de Gerenyu, V.L., Flessa, H., 2006. Isotopomer signatures of soil-emitted
906 N₂O under different moisture conditions - A microcosm study with arable loess soil. *Soil Biol.*
907 *Biochem.*, 38, 2923-2933.

908 Wu, D., Koster, J.R., Cardenas, L.M., Brüggemann, N., Lewicka-Szczebak, D., Bol, R., 2016. N₂O
909 source partitioning in soils using N-15 site preference values corrected for the N₂O reduction effect.
910 *Rapid Commun. Mass Sp.*, 30, 620-626.

911 Wu, D., Senbayram, M., Well, R., Brüggemann, N., Pfeiffer, B., Loick, N., Stempfhuber, B.,
912 Dittert, K., Bol, R. (2017) Nitrification inhibitors mitigate N₂O emissions more effectively under
913 straw-induced conditions favoring denitrification. *Soil Biol. Biochem.*, 104, 197-207.

914 Zhu, X., Burger, M., Doane, T.A., Horwath, W.R., 2013. Ammonia oxidation pathways and nitrifier
915 denitrification are significant sources of N₂O and NO under low oxygen availability. *P. Natl. Acad.*
916 *Sci. USA.*, 110, 6328-6333.

917 Zou, Y., Hirono, Y., Yanai, Y., Hattori, S., Toyoda, S., Yoshida, N., 2014. Isotopomer analysis of
918 nitrous oxide accumulated in soil cultivated with tea (*Camellia sinensis*) in Shizuoka, central Japan.
919 *Soil Biol. Biochem.*, 77, 276-291.

920

921

922

923 Table 1. Highfield soil properties

924

Property	Units	Highfield	925
			926
Location		Rothamsted Research	927
		Herts.	928
Grid reference	GB National Grid	TL129130	929
	Longitude	00°21'48"W	930
	Latitude	51°48'18"N	931
Soil type	SSEW ^a group ^c	Paleo-argillic brown earth	932
	SSEW ^a series ^d	Batcombe	933
	FAO ^{bc}	Chromic Luvisol	934
Landuse		Grass; unfertilised; cut	935
pH		5.63	
Sand (2000-63 µm)	g g ⁻¹ dry soil	0.179	936
Silt (63-2 µm)	g g ⁻¹ dry soil	0.487	937
Clay (<2 µm)	g g ⁻¹ dry soil	0.333	938
Texture	SSEW ^a class ^c	Silty clay loam	939
Particle density	g cm ⁻³	2.436	940
Organic matter	g g ⁻¹ dry soil	0.089	941
Water content for packing	g g ⁻¹ dry soil	0.37	942

943 ^aSoil Survey of England and Wales classification system944 ^bUnited Nations Food and Agriculture Organisation World Reference Base for Soil Resources classification
945 system (approximation)946 ^cAvery (1980)947 ^dClayden & Hollis (1984)

948

949

950 Table 2. The four saturation conditions set for the Highfield soil.
951

Saturation condition	SAT/sat	HALFSAT/sat	UNSAT/sat	UNSAT/halfsat
Macropores	Saturated	Half-saturated	Unsaturated	Unsaturated
Micropores	Saturated	Saturated	Saturated	Half-saturated
<i>As prepared:</i>				
Matric potential, -kPa	4.1	12.3	27.3	136.9
Water content, g 100 g ⁻¹	47.7	42.5	37.2	29.4
Water content, cm ⁻³ 100 cm ⁻³	61.1	54.4	47.7	37.3
Water-filled pore space, %	98	91	82	68
Threshold pore size saturated, μm	73	24	11	2
<i>Final, following amendment:</i>				
Matric potential, -kPa	0	8.6	20.0	78.1
Water content, g 100 g ⁻¹	49.8	44.6	39.3	31.5
Water content, cm ⁻³ 100 cm ⁻³	63.8	57.1	50.4	40.0
Water-filled pore space, %	100	94	85	71
Threshold pore size saturated, μm	all	35	15	4

952

953

954

955

956

957

958

Table 3. Contents of soil moisture, NO_3^- , NH_4^+ and C:N ratio and cumulative fluxes of N_2O and N_2 and CO_2 from all treatments at the end of the incubation. Values in brackets are standard deviation of the mean of three values (emissions are expressed per area and soil weight basis).

Treatment	% Mean moisture	NO_3^- , mg N kg^{-1} dry soil	NH_4^+ , mg N kg^{-1} dry soil	Total C, %	Total N, %	N_2O , kg N ha^{-1}	N_2O , mg N kg^{-1} dry soil	N_2 , kg N ha^{-1}	N_2 , mg N kg^{-1} dry soil	Total emitted N, kg N ha^{-1}	CO_2 , kg C ha^{-1}
SAT/sat	39.8 (1.3)	1.1 (0.4)	104.3 (1.1)	3.61 (0.04)	0.35 (0.004)	9.4 (1.1)	7.8 (0.9)	54.0 (14.0)	44.8 (11.6)	63.4	289.2 (30.4)
HALFSAT/sat	40.2 (0.2)	0.8 (1.0)	104.2 (6.8)	3.64 (0.08)	0.36 (0.004)	10.9 (0.4)	9.0 (0.3)	51.7 (9.0)	42.8 (7.4)	62.6	283.0 (35.5)
UNSAT/sat	36.5 (2.1)	51.2 (37.4)	100.8 (5.7)	3.64 (0.10)	0.36 (0.007)	23.7 (11.0)	20.0 (9.5)	36.0 (28.5)	30.2 (23.7)	59.7	417.6 (57.1)
UNSAT/halfsat	34.3 (1.1)	100.6 (16.1)	71.3 (33.6)	3.53 (0.08)	0.36 (0.01)	16.8 (15.8)	14.0 (13.1)	17.2 (19.4)	14.3 (16.1)	34.1	399.7 (40.6)

959

960

961 Table 4: Scenarios with different combinations of $d^{18}\text{O}$ and Site Preference (SP) endmember values and $\eta_{\text{N}_2\text{O}}$
 962 N_2 values to calculate maximum and minimum estimates of %Bden (minimum, maximum and average values
 963 adopted from Lewicka-Szczabak et al., 2017).
 964

	SP0BD	SP0FDN	ηSP	$\eta^{18}\text{O}$
model (min endmember plus η)	-11	30	-2	-12
model (max endmember plus η)	0	37	-8	-12
model (max endmember)	0	37	-5.4	-12
model (min endmember)	-11	30	-5.4	-12
model (max η)	-5	33	-8	-12
model (min η)	-5	33	-2	-12

965
 966
 967

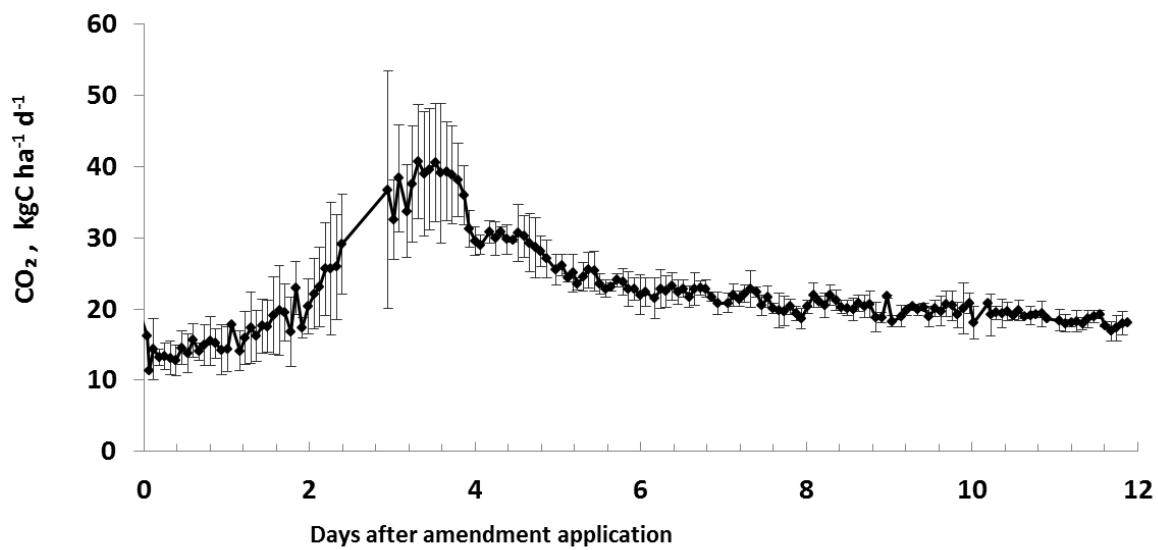
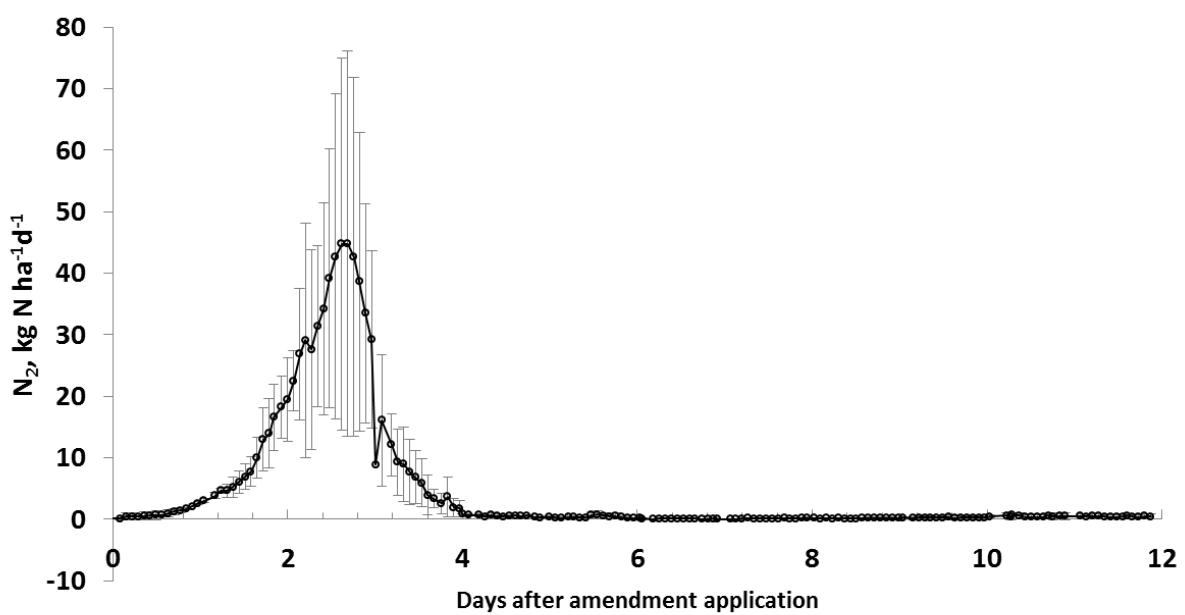
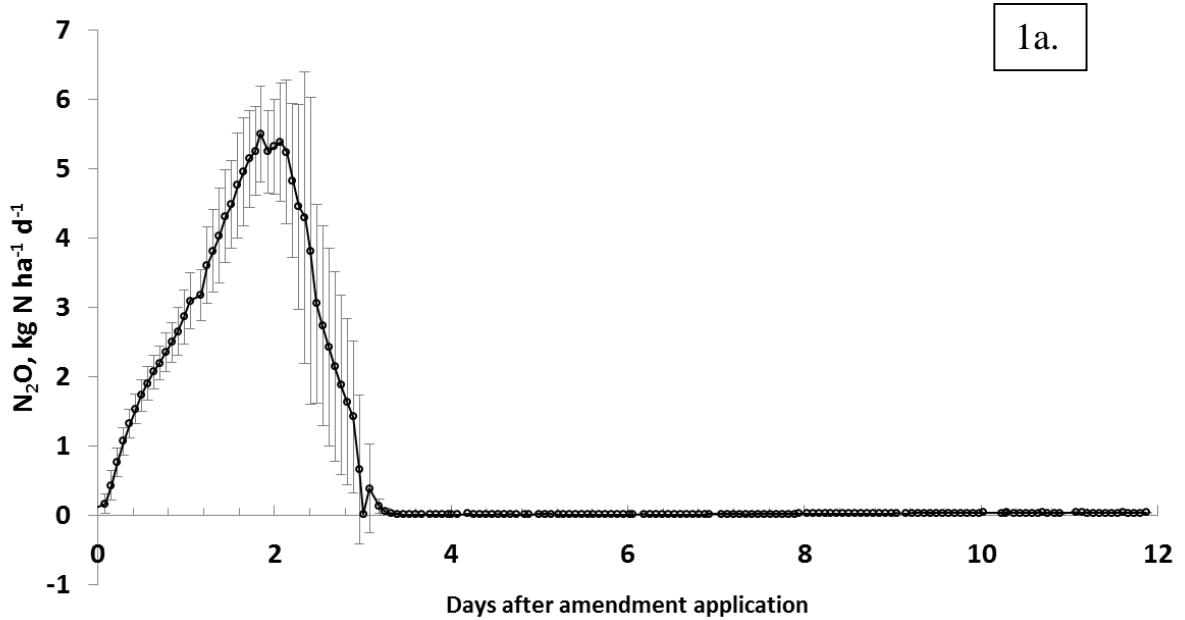
968 Table 5. Ratios N₂O / (N₂O + N₂) for all treatments

969

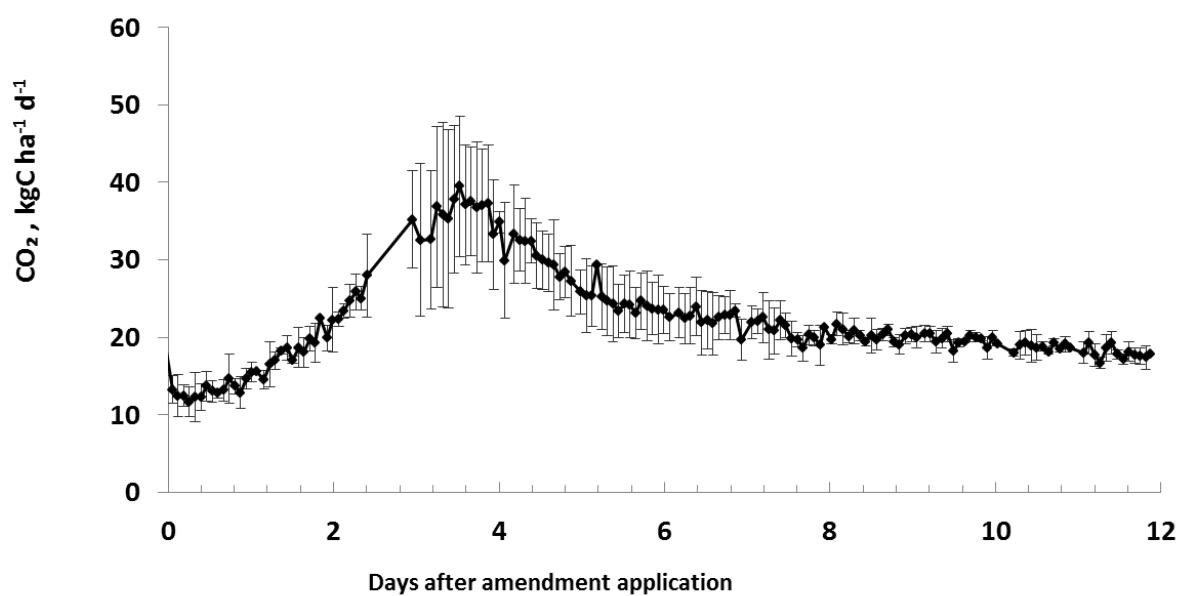
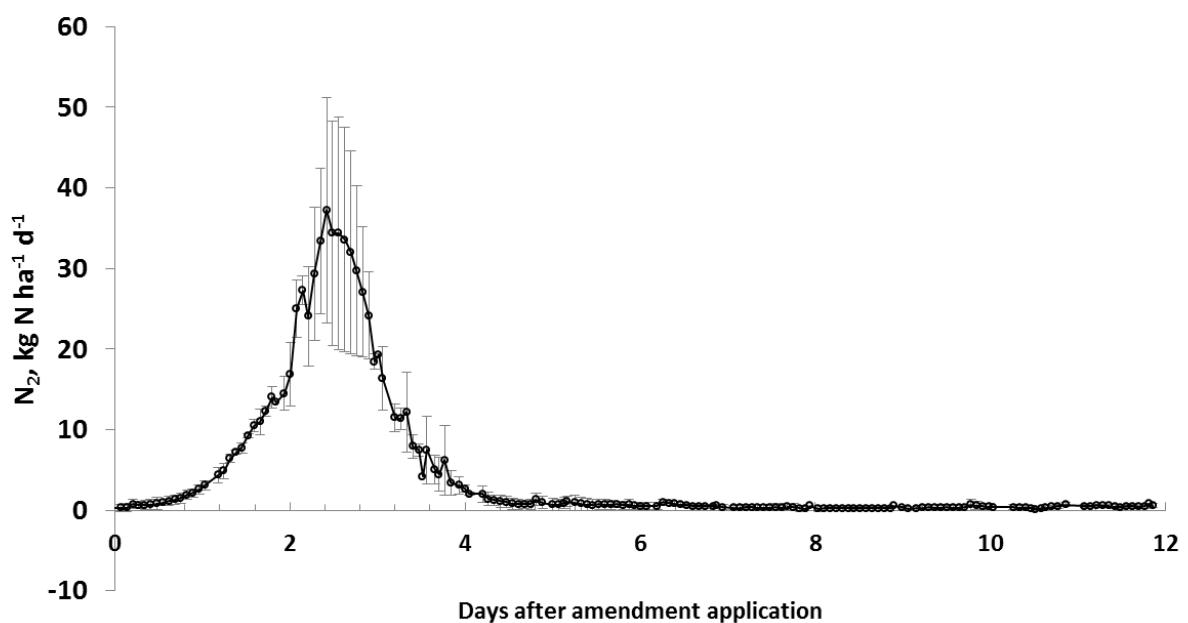
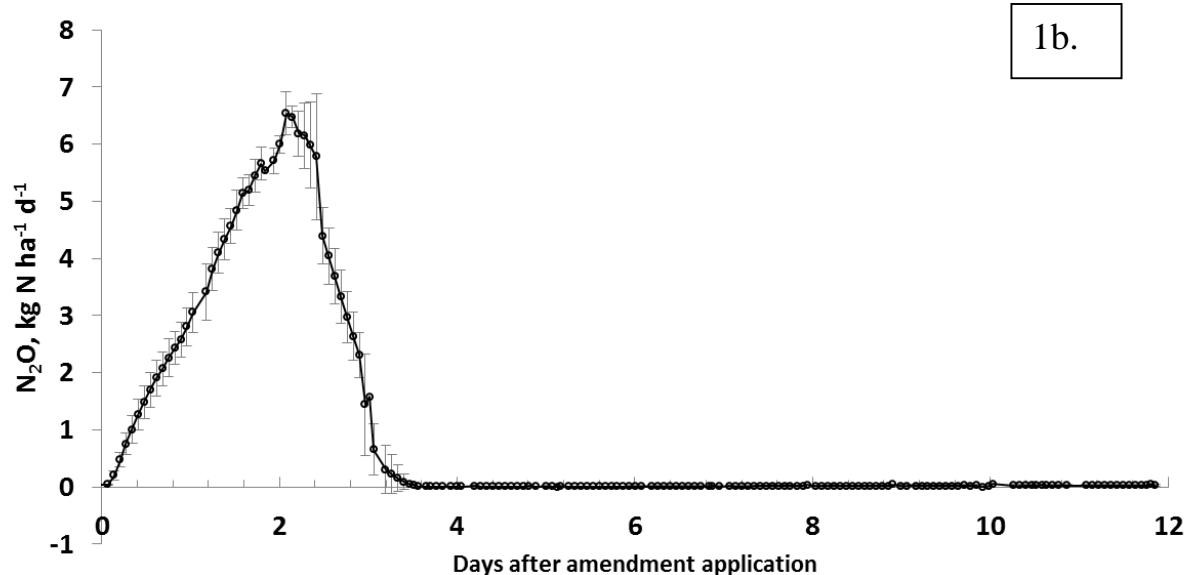
	SAT/sat		HALFSAT/sat		UNSAT/halfsat		UNSAT/sat	
Days	mean	s.e.	mean	s.e.	mean	s.e.	mean	s.e.
-1	0.276	0.043	0.222	0.009	0.849	0.043	0.408	0.076
0	0.630	0.022	0.538	0.038	0.763	0.053	0.861	0.043
1	0.371	0.025	0.360	0.019	0.622	0.018	0.644	0.031
2	0.096	0.016	0.139	0.015	0.425	0.005	0.296	0.020
3	0.004	0.002	0.015	0.006	0.439	0.052	0.256	0.025
4	0.017	0.002	0.008	0.001	0.475	0.049	0.232	0.012
5	0.019	0.003	0.012	0.001	0.503	0.037	0.174	0.010
6	0.068	0.008	0.020	0.001	0.459	0.052	0.135	0.010
7	0.085	0.008	0.047	0.003	0.333	0.057	0.127	0.003
8	0.106	0.004	0.066	0.002	0.277	0.006	0.122	0.002
9	0.089	0.003	0.053	0.005	0.265	0.006	0.122	0.005
10	0.060	0.003	0.090	0.014	0.428	0.086	0.118	0.006
11	0.063	0.002	0.053	0.002	0.414	0.051	0.125	0.005

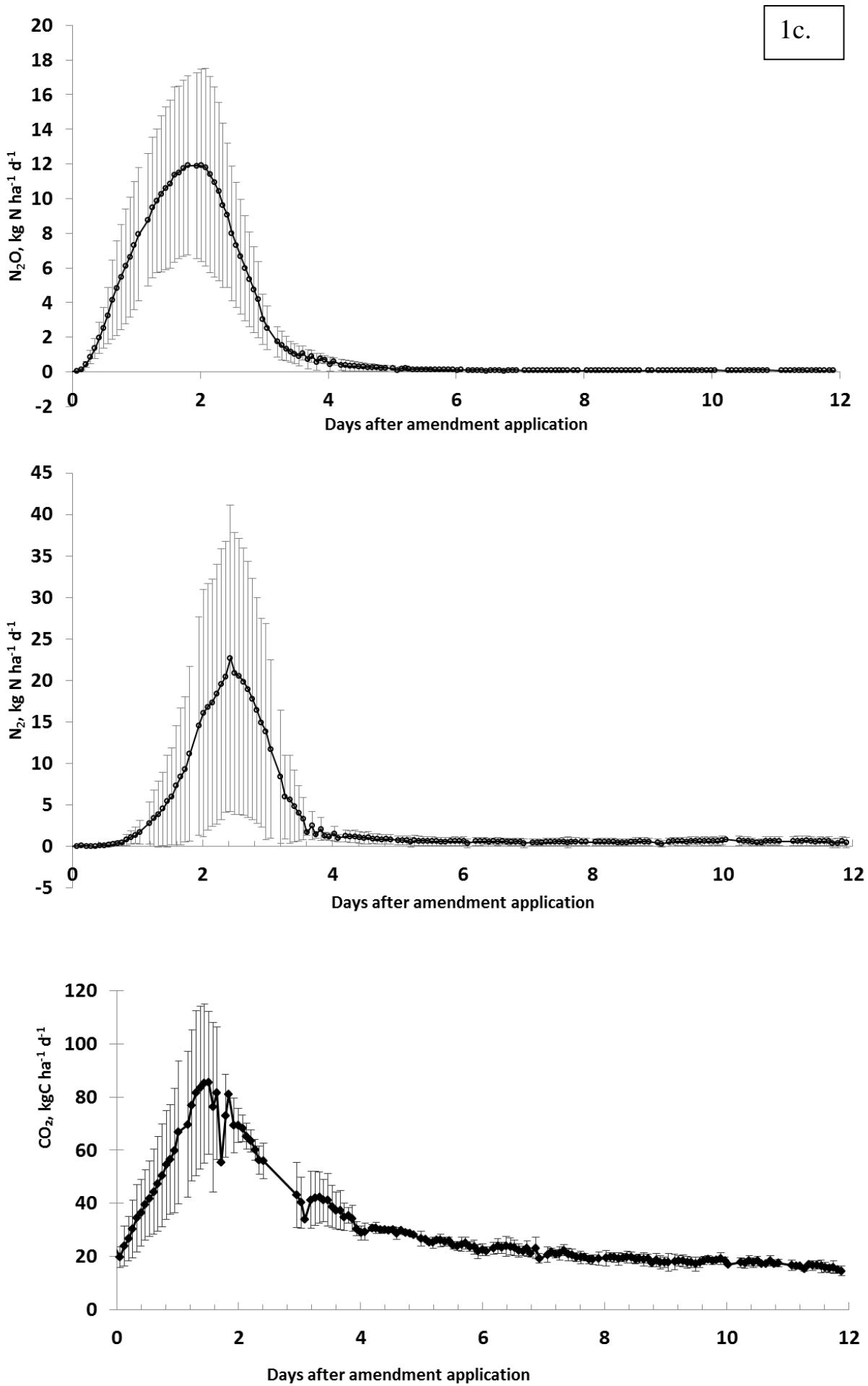
970

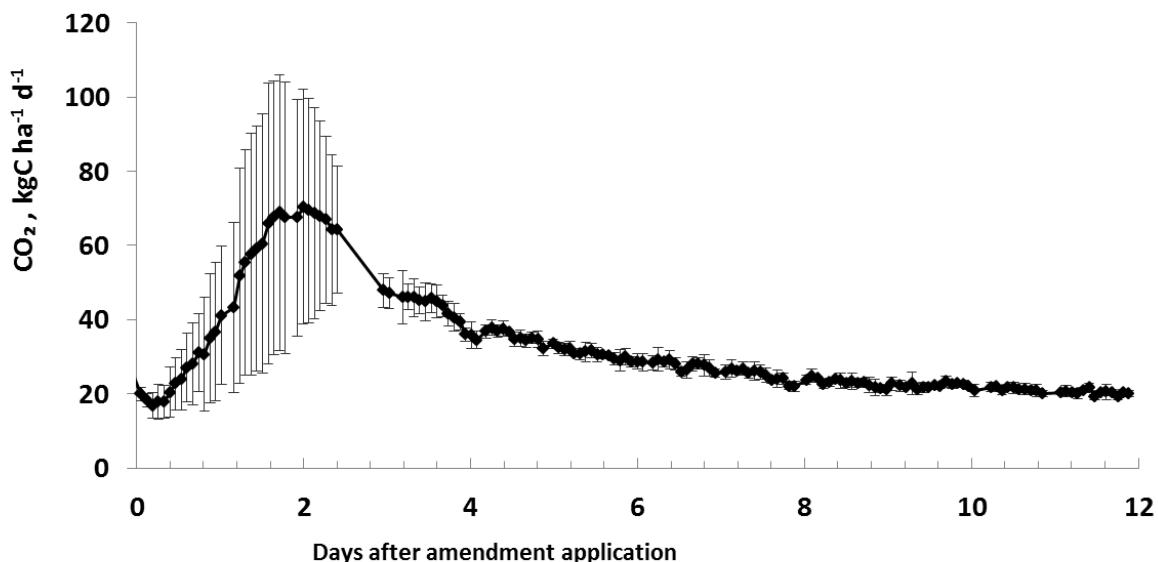
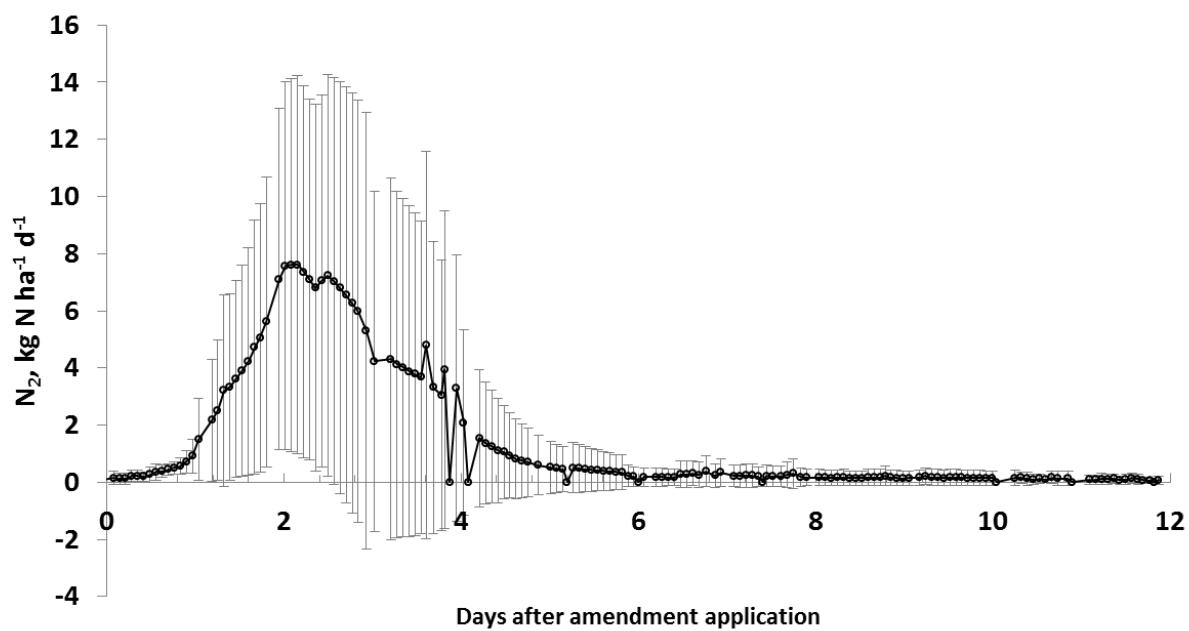
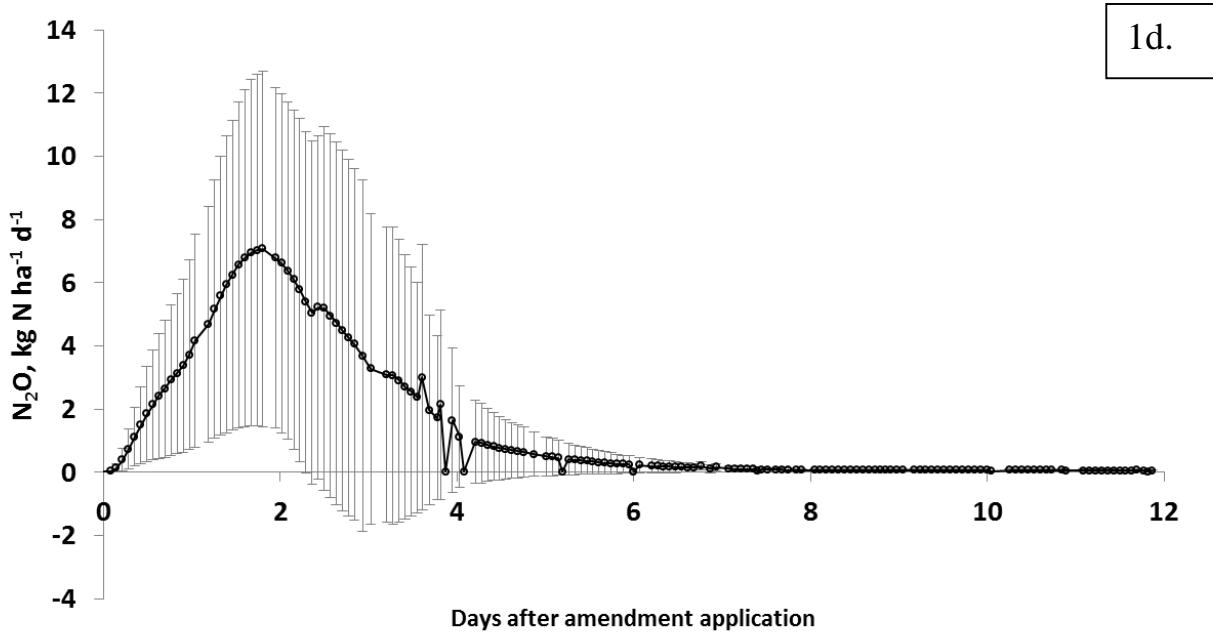
971

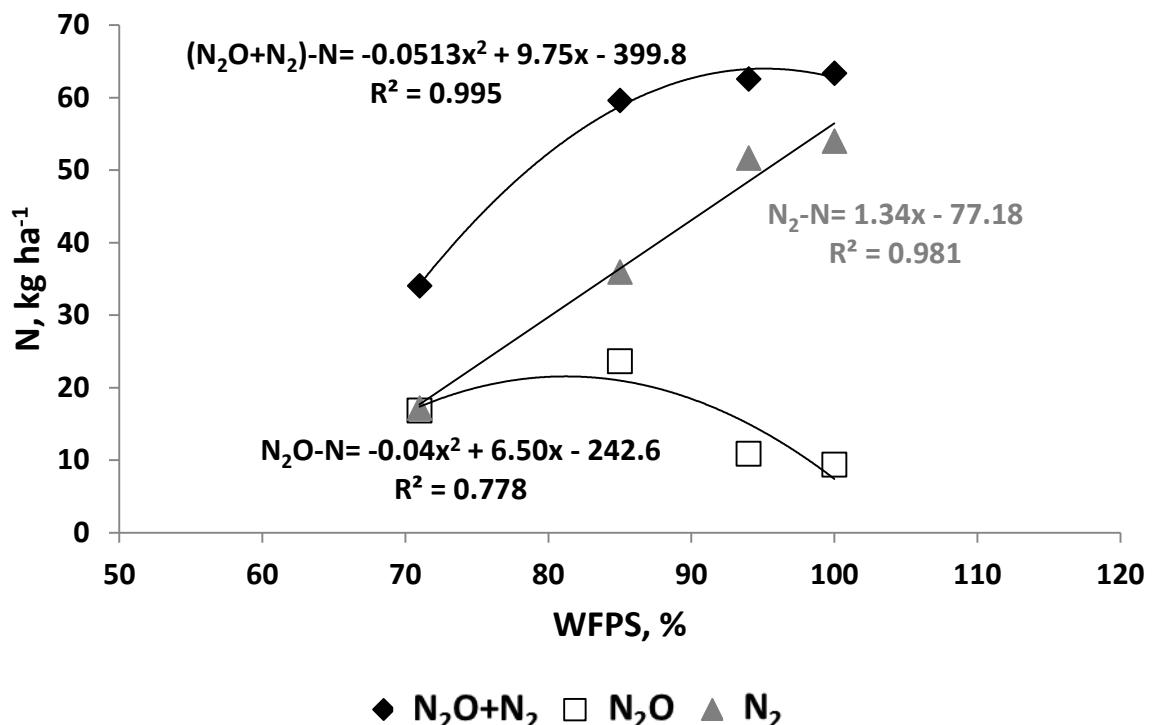



972 Table 6. The temporal trends in $\delta^{15}\text{N}_{\text{bulk}}$, $\delta^{18}\text{O}$, $\delta^{15}\text{N}_{\text{a}}$, Site Preference (SP) and %B_{DEN} for all experimental
973 treatments (values in brackets are the standard deviation of the mean)

Day	$\delta^{15}\text{N}_{\text{bulkAIR}} (\text{\textperthousand})$			
	SAT/sat	HALFSAT/sat	UNSAT/sat	UNSAT/halfsat
-1	-3.8 (2.1)	-6.2 (1.5)	-14.2 (10.9)	-23.6 (1.1)
1	-18.9 (1.6)	-25.5 (4.6)	-20.3 (2.6)	-20.8 (2.3)
2	-7.7 (4.2)	-12.7 (2.7)	-12.2 (2.0)	-13.9 (5.7)
3	-2.4 (1.8)	14.0 (2.2)	-1.1 (7.6)	-4.4 (3.0)
4	-0.9 (2.2)	-0.3 (3.6)	-7.8 (4.6)	-9.3 (3.7)
5	-6.9 (0.9)	-4.3 (6.1)	-11.3 (3.7)	-8.9 (7.7)
7	-9.6 (1.5)	-10.0 (1.6)	-14.3 (4.7)	-13.4 (13.5)
12	-7.5 (1.2)	-8.6 (0.9)	-11.8 (2.6)	-21.3 (6.9)
	$\delta^{18}\text{O}_{\text{SMOW}} (\text{\textperthousand})$			
	SAT/sat	HALFSAT/sat	UNSAT/sat	UNSAT/halfsat
-1	33.3 (2.6)	32.7 (3.0)	31.4 (9.8)	25.2 (4.9)
1	42.9 (2.4)	37.1 (3.8)	32.3 (3.6)	33.3 (2.1)
2	54.0 (5.7)	48.7 (4.5)	42.7 (5.3)	40.5 (5.0)
3	45.7 (1.5)	59.7 (3.2)	53.4 (5.7)	41.2 (1.0)
4	42.5 (1.4)	42.0 (3.7)	38.1 (4.5)	39.9 (7.7)
5	36.0 (2.9)	34.6 (3.7)	30.4 (2.6)	36.5 (6.9)
7	32.2 (5.5)	31.6 (5.5)	28.4 (4.4)	32.7 (5.4)
12	34.9 (5.6)	34.1 (2.7)	32.4 (2.9)	28.5 (5.0)
	$\delta^{15}\text{N}_{\text{a,AIR}} (\text{\textperthousand})$			
	SAT/sat	HALFSAT/sat	UNSAT/sat	UNSAT/halfsat
-1	-0.3 (3.4)	-2.6 (1.8)	-9.5 (12.0)	-19.7 (2.1)
1	-17.4 (1.8)	-24.0 (5.8)	-20.2 (2.0)	-21.1 (2.6)
2	-4.6 (4.2)	-9.5 (3.6)	-11.1 (1.1)	-13.8 (5.9)
3	-0.8 (1.3)	17.2 (4.0)	7.6 (4.7)	-2.7 (3.2)
4	1.0 (2.5)	0.7 (2.2)	-3.5 (3.7)	-2.8 (7.7)
5	-5.9 (0.7)	-2.9 (5.4)	-9.4 (3.9)	-5.2 (7.9)
7	-7.8 (2.3)	-5.3 (4.2)	-12.3 (5.6)	-7.7 (11.5)
12	-3.3 (2.1)	-4.6 (0.6)	-8.1 (4.2)	-15.3 (5.5)
	SP _{AIR}			
	SAT/sat	HALFSAT/sat	UNSAT/sat	UNSAT/halfsat
-1	7.0 (3.9)	7.1 (4.2)	9.4 (2.1)	7.7 (1.9)
1	2.9 (0.6)	3.0 (2.3)	0.1 (1.8)	-0.7 (1.4)
2	6.3 (0.64)	6.4 (1.9)	2.2 (2.0)	0.2 (1.9)
3	3.3 (1.0)	6.4 (6.9)	11.9 (12.4)	5.9 (0.8)
4	3.7 (0.6)	2.0 (6.2)	8.7 (5.9)	5.4 (3.0)
5	2.0 (0.4)	3.0 (2.1)	3.9 (0.5)	7.4 (2.3)
7	5.0 (2.1)	9.2 (5.2)	3.9 (1.8)	11.2 (4.1)
12	8.4 (3.3)	7.9 (0.8)	7.3 (3.7)	11.8 (5.3)
	Estimated range of %B _{DEN}			
	SAT/sat	HALFSAT/sat	UNSAT/sat	UNSAT/halfsat
-1	63-100	60-100	53-85	56-84
1-2	68-100	67-100	73-100	77-100
3-12	78-100	79-100	60-100	54-86

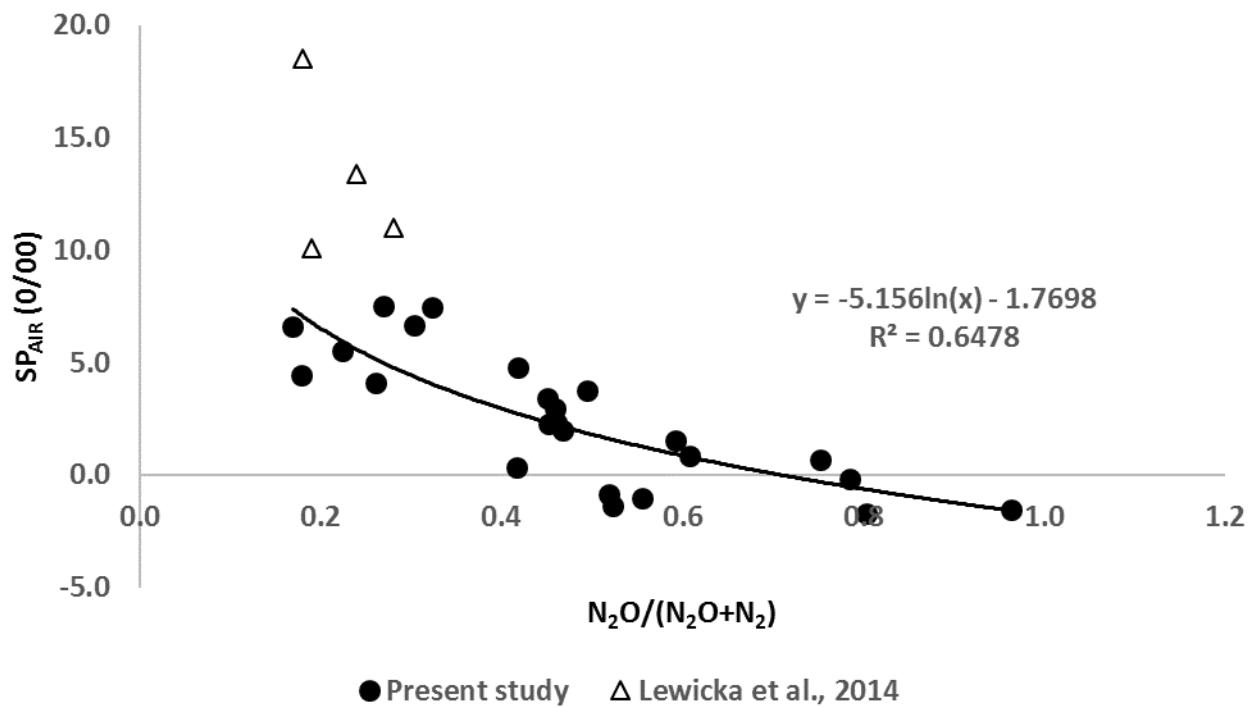



974 Table 7. Equations of fitted functions and correlation coefficients corresponding to Figure 5 for Site
 975 Preference (SP) (Y axis) vs $\delta^{18}\text{O}$ (X axis) in all treatments for three periods. Correlations are
 976 unadjusted, the P value tests if the slope is different from zero.
 977

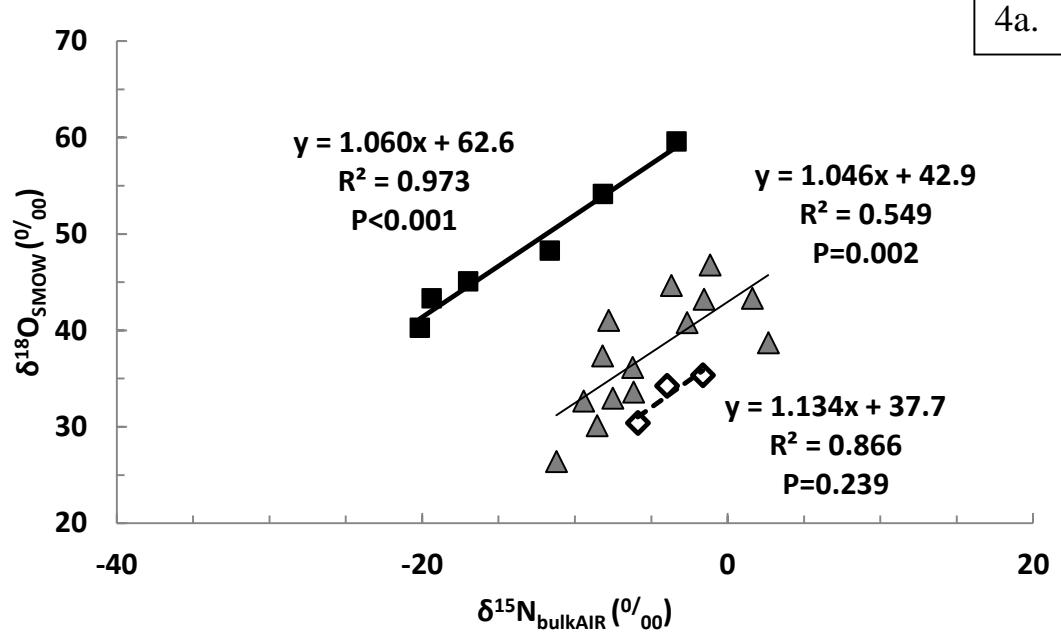

Treatment	Days 1-2	Days 3-5	Days 7-12
SAT/sat	$y = 0.2151x - 5.8386, R^2 = 0.6529$ P=0.05	$y = 0.1204x - 1.848,$ $R^2 = 0.397$ P=0.129	$y = 0.5872x - 12.223,$ $R^2 = 0.985$ P<0.001
HALFSAT/sat	$y = 0.3447x - 10.129, R^2 = 0.9048$ P=0.004	$y = 0.18x - 4.5966,$ $R^2 = 0.1728$ P=0.266	$y = 0.4063x - 6.2632,$ $R^2 = 0.6876$ P=0.171
UNSAT/sat	$y = 0.2709x - 8.9968, R^2 = 0.8664$ P=0.007	$y = 0.7248x - 18.874,$ $R^2 = 0.507$ P=0.031	$y = 0.6848x - 15.236,$ $R^2 = 0.7156$ P=0.034
UNSAT/halfsat	$y = -0.0146x + 0.2506, R^2 = 0.0024$ P=0.927	$y = 0.3589x - 7.2194,$ $R^2 = 0.4839$ P=0.037	$y = -0.318x + 21.261,$ $R^2 = 0.1491$ P=0.450

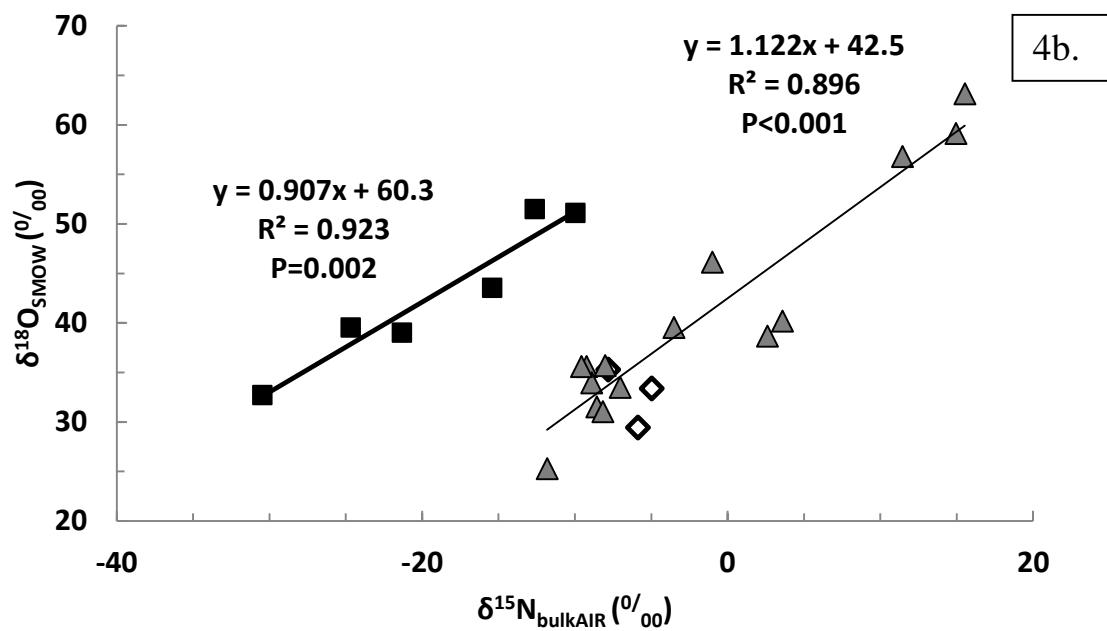



978
 979

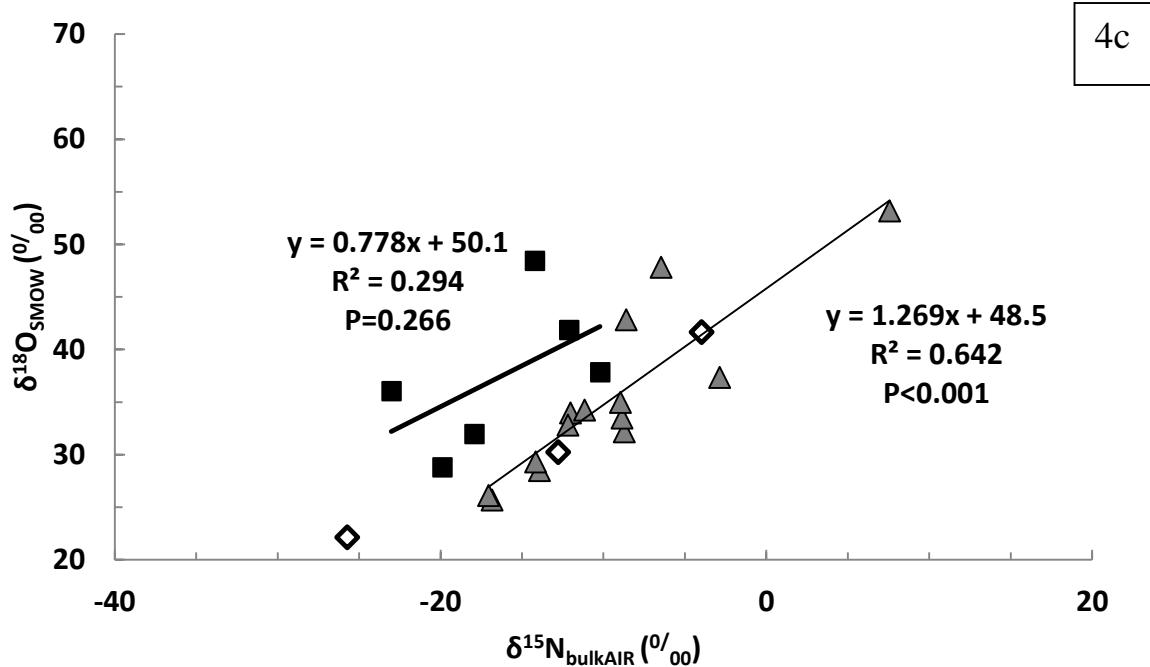


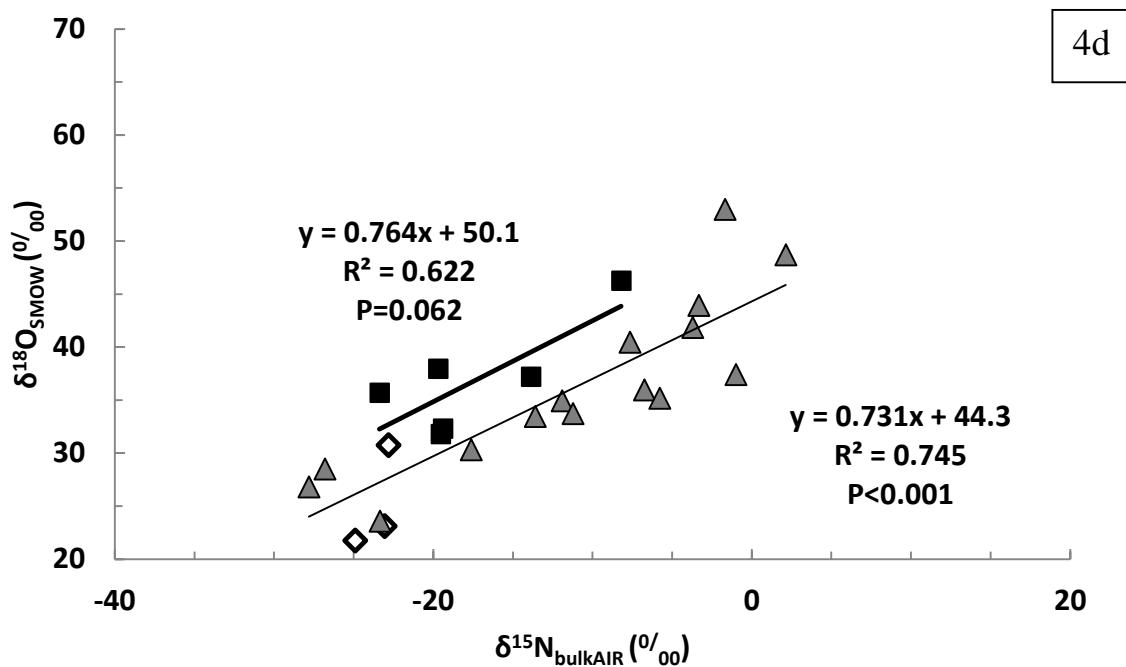
1b.

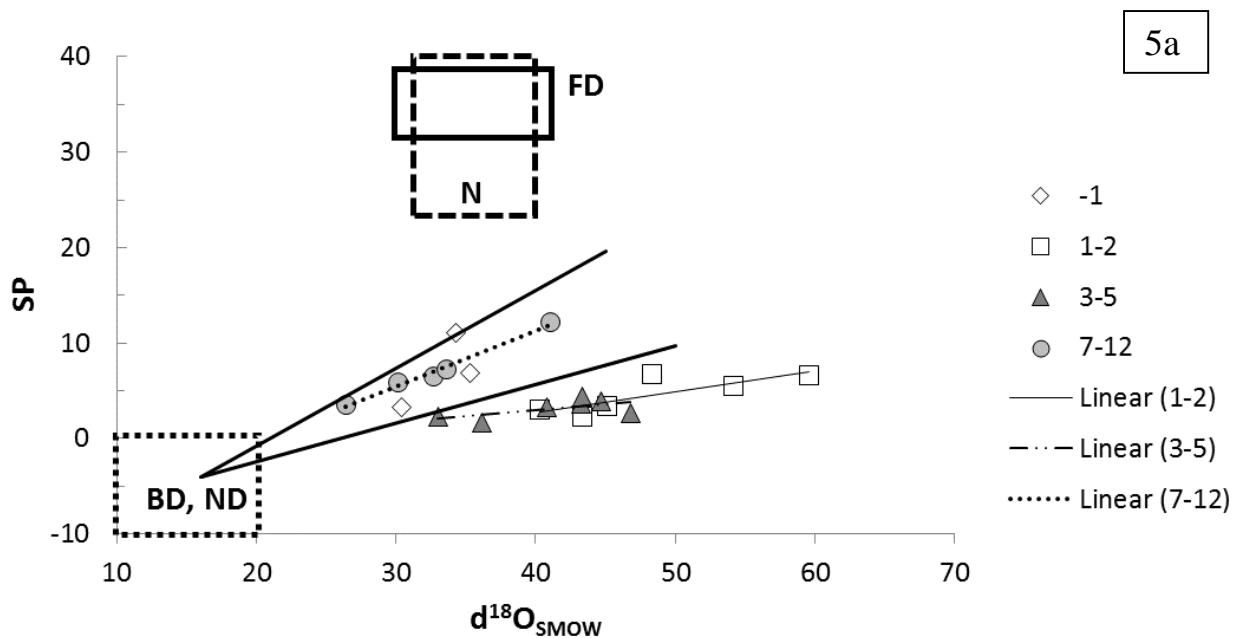


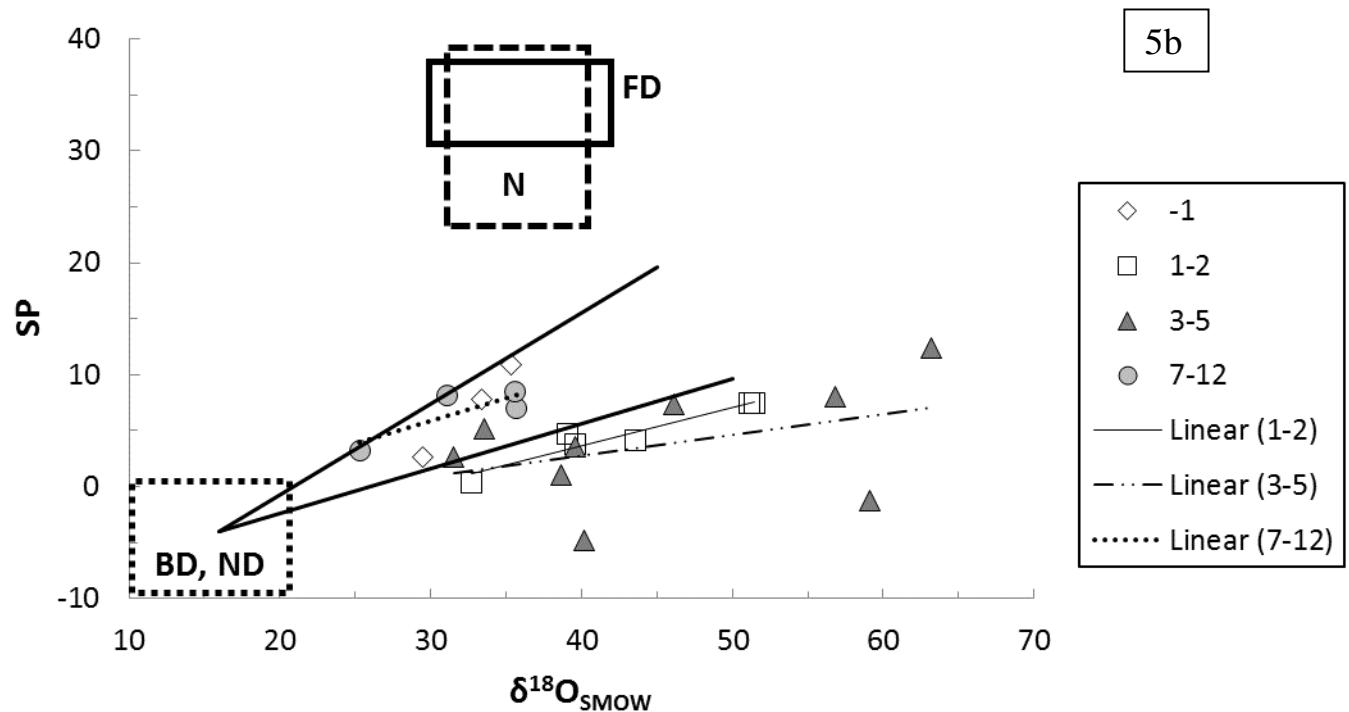


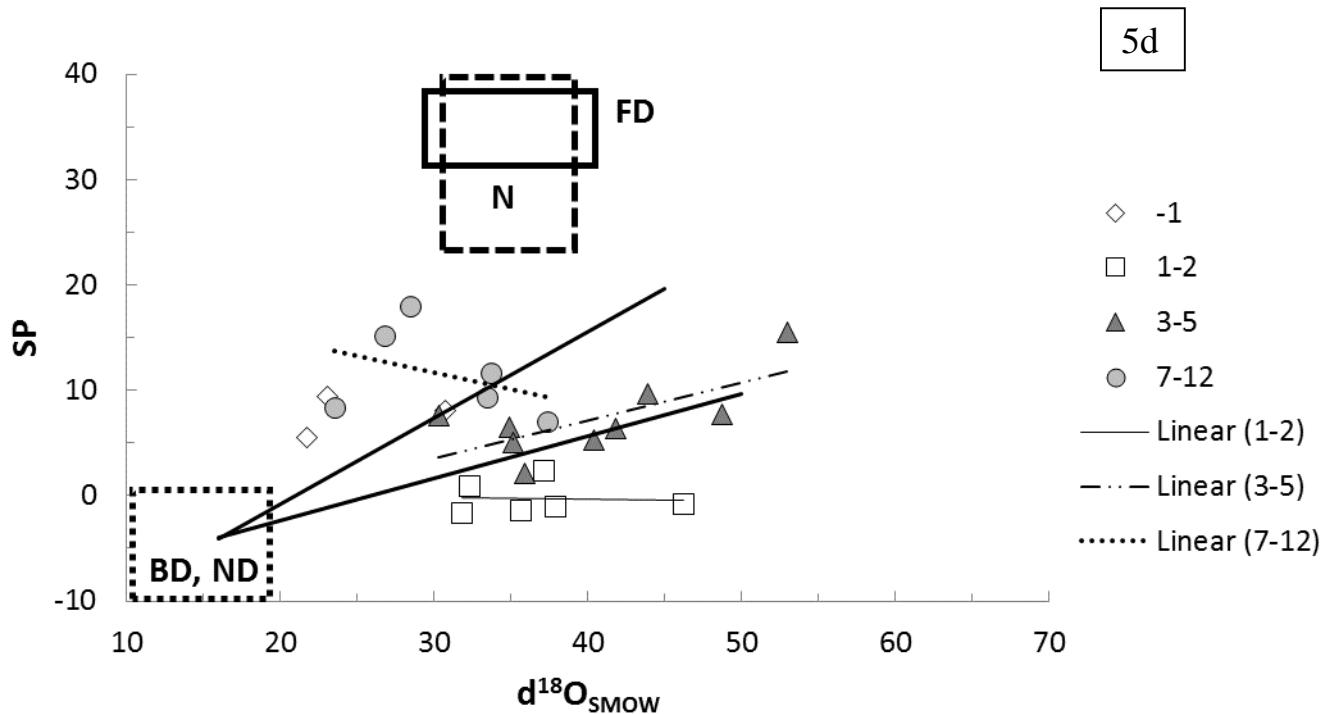

984
985 Figure 2
986
987


988
989 Figure 3
990
991


992
993
994
995


996
997


998
999
1000


1001
1002
1003

1004
1005
1006

1007
1008
1009
1010
1011
1012
1013
1014
1015

