Effect of soil saturation on denitrification in a grassland soil

Laura Maritza Cardenas1, Roland Bol, R.2, Dominika Lewicka-Szczebak,3, Andrew Stuart Gregory4, Graham Peter Matthews5, William Richard Whalley4, Thomas Henry Misselbrook1, David Scholefield1 and Reinhard Well3

1Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, United Kingdom
2Institute of Bio- and Geosciences, IBG-3/Agrosphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
3Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee, 50, D-38116 Braunschweig, Germany
4Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
5University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom

*Correspondence to: Laura M. Cardenas (laura.cardenas@rothamsted.ac.uk)

Abstract. Nitrous oxide (N\textsubscript{2}O) is of major importance as a greenhouse gas and precursor of ozone (O\textsubscript{3}) destruction in the stratosphere mostly produced in soils. The soil emitted N\textsubscript{2}O is generally predominantly derived from denitrification and to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N\textsubscript{2}O and N\textsubscript{2} were measured as well as the isotopocules of N\textsubscript{2}O. We found that fluxes variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71\% WFPS). The isotopocules data indicated isotopic similarities in the wettest treatments vs the two drier ones. The
results agreed with previous findings where it is clear there are 2 N-pools with different dynamics:
added N producing intense denitrification, vs soil N resulting in less isotopic fractionation.

Keywords
Grassland, nitrous oxide, isotopologues, isotopocule, greenhouse gases

1 Introduction
Nitrous oxide (N$_2$O) is of major importance as a greenhouse gas and precursor of ozone (O$_3$) destruction in the stratosphere (Crutzen, 1970). Agriculture is a major source of greenhouse gases (GHGs), such as carbon dioxide (CO$_2$), methane (CH$_4$) and also N$_2$O (IPCC, 2006). The application of organic and inorganic fertiliser N to agricultural soils enhances the production of N$_2$O (Baggs et al., 2000). This soil emitted N$_2$O is predominantly derived from denitrification and to a smaller extent, nitrification in soils (Davidson and Verchot, 2000). Denitrification is a microbial process in which reduction of nitrate (NO$_3^-$) occurs to produce N$_2$O, and N$_2$ is the final product of this process, benign for the environment, but represents a loss of N in agricultural systems. Nitrification is an oxidative process in which ammonium (NH$_4^+$) is converted to NO$_3^-$ (Davidson and Verchot, 2000). Both processes are controlled by environmental factors and their interactions, and are influenced by agricultural management (Firestone and Davidson, 1989). It is well recognised that soil water content expressed as water filled pore space (WFPS) is a major controlling factor and as Davidson (1991) illustrated, nitrification is a source of N$_2$O until WFPS values reach about 70%, after which denitrification dominates. In fact, Firestone and Davidson (1989) gave oxygen supply a ranking of 1 in importance as a controlling factor in fertilised soils, above C and N. At WFPS between 45 and 75% a mixture of nitrification and denitrification act as N$_2$O sources. Davidson also suggested that at WFPS values above 90% only N$_2$ is produced. Several studies have later proposed models to relate WFPS with emissions (Schmidt et al., 2000; Dobbie and Smith, 2001; Parton et al., 2001; del Prado et al., 2006; Castellano et al., 2010) but the “optimum” WFPS for N$_2$O emissions varies from soil to soil (Davidson, 1991). Soil structure could be influencing this effect and it has been identified to strongly interact with soil moisture (Ball et al., 1999; van Groenigen et al., 2005) through changes in
WFPS. Particularly soil compaction due to livestock treading and the use of heavy machinery affect soil structure and emissions as reported by studies relating bulk density to fluxes (Klefoth et al., 2014b); and degrees of tillage to emissions (Ludwig et al., 2011).

Compaction is known to affect the size of the larger pores (macropores) thereby reducing the soil air volume and therefore increasing the WFPS (for the same moisture content) (van der Weerden et al., 2012). However, little is known about the effect of compaction on the smaller soil pores (micropores) and this could provide valuable information for understanding the simultaneous behaviour of the dynamics of water in the various pore sizes in soil. Such an understanding would lead to the development of better N₂O mitigation strategies via dealing with soil compaction issues.

The role of water in soils is closely linked to microbial activity but also relates to the degree of aeration and gas diffusivity in soils (Morley and Baggs, 2010). Water facilitates nutrient supply to microbes and restricts gas diffusion, thereby increasing the residence time of gases in soil, and the chance of further N₂O reduction before it can be released to the atmosphere. This is further aided by the restriction of the diffusion of atmospheric O₂ (Dobbie and Smith, 2001), increasing the potential for denitrification. As a consequence, counteracting effects (high microbial activity vs low diffusion) occur simultaneously making it difficult to predict net processes and corresponding outputs (Davidson, 1991). Detailed understanding of the sources of N₂O and the influence of physical factors, i.e. soil structure and its interaction with moisture, is a powerful basis for developing effective mitigation strategies.

Isotopocules of N₂O represent the isotopic substitution of the O and/or the two N atoms within the N₂O molecule. The isotopomers of N₂O, are those differing in the peripheral (β) and central N-positions (α) of the linear molecule (Toyoda and Yoshida, 1999) with the intramolecular ¹⁵N site preference (SP; the difference between δ¹⁵Nα - δ¹⁵Nβ) used to identify production processes at the level of microbial species or enzymes involved (Toyoda et al., 2005; Ostrom, 2011). Moreover, δ¹⁸O, δ¹⁵N and SP of emitted N₂O depend on the denitrification product ratio (N₂O / (N₂+N₂O)), and hence provide insight into the dynamics of N₂O reduction (Well and Flessa, 2009; Lewicka-Szczechak et al.,
2014; Lewicka-Szczebak et al., 2015). Koster et al. (2013) for example recently reported \(\delta^{15}N_{\text{bulk}} \)
values of \(\text{N}_2\text{O} \) between \(-36.8\%\) and \(-31.9\%\) under the conditions of their experiment, which are
indicative of denitrification according to Perez et al. (2006) and Well and Flessa (2009) who proposed
the range \(-54\) to \(-10\%\) relative to the substrate. Baggs (2008) summarised that values between \(-90\)
to \(-40\%\) are indicative of nitrification. Determination of these values are normally carried out in pure
culture studies or in conditions favouring either production or reduction of \(\text{N}_2\text{O} \) (Well and Flessa,
2009). The SP is however considered a better predictor of the \(\text{N}_2\text{O} \) source due to its independence
from the substrate signature (Ostrom, 2011).

Simultaneous occurrence production and reduction of \(\text{N}_2\text{O} \) as in natural conditions presents
a challenge for isotopic factors determination due to uncertainty on \(\text{N}_2 \) reduction and the co-existence
of different microbial communities producing \(\text{N}_2\text{O} \) (Lewicka-Szczebak et al., 2014). Recently, using
data from the experiment reported here, where soil was incubated under aerobic atmosphere and the
complete denitrification process occurs, Lewicka-Szczebak et al. (2015) determined fractionation
factors associated with \(\text{N}_2\text{O} \) production and reduction using a modelling approach. The analysis
comprised measurements of the \(\text{N}_2\text{O} \) and \(\text{N}_2 \) fluxes combined with isotopocule data. Net isotope
effects (\(\eta \) values) are variable to a certain extent as they result from a combination of several processes
causing isotopic fractionation (Well et al., 2012). The results generally confirmed the range of values
of \(\eta \) (net isotope effects) and \(\eta^{18}\text{O}/\eta^{15}\text{N} \) ratios reported by previous studies for \(\text{N}_2\text{O} \) reduction for that
part of the soil volume were denitrification was enhanced by the \(\text{N}+\text{C} \) amendment. This did not apply
for the other part of the soil volume not reached by the \(\text{N}+\text{C} \) amendment, showing that the validity of
published net isotope effects for soil conditions with low denitrification activity still needs to be

evaluated.

Lewicka-Szczebak et al. (2015) observed a clear relationship between \(^{15}\text{N} \) and \(^{18}\text{O} \) isotope
effects during \(\text{N}_2\text{O} \) production and denitrification rates. For \(\text{N}_2\text{O} \) reduction, differential isotope effects
were observed for two distinct soil pools characterized by different product ratios \(\text{N}_2\text{O} / (\text{N}_2+\text{N}_2\text{O}) \).
For moderate product ratios (from 0.1 to 1.0) the range of isotope effects given by previous studies
was confirmed and refined, whereas for very low product ratios (below 0.1) the net isotope effects were much smaller. In this paper, we present the results from the gas emissions measurements from soils collected from a long-term permanent grassland soil to assess the impact of different levels of soil saturation on N₂O and N₂ and CO₂ emissions after compaction. CO₂ emissions were measured in addition as an estimate of aerobic respiration and thus of O₂ consumption, which indicates denitrification is promoted. The measurements included the soil isotopomer (¹⁵Nᵣ, ¹⁵Nᵢ and site preference) analysis of emitted N₂O, which in combination with the bulk ¹⁵N and ¹⁸O was used to distinguish between N₂O from bacterial denitrification and other processes (e.g. nitrification and fungal denitrification) (Lewicka-Szczebak, 2017).

We conducted measurements at defined saturation of pores size fractions as a prerequisite to model denitrification as a function of water status (Butterbach-Bahl et al., 2013 and Müller and Clough, 2014). We have under controlled conditions created a single compaction stress of 200 kPa (typical of soils compacted after grazing) in incremental layers using a uniaxial pneumatic piston to simulate a grazing pressure. We hypothesized that at high water saturation, spatial heterogeneity of N emissions decreases due to more homogeneous distribution of the soil nutrients and/or anaerobic microsites. We also hypothesized that even at high soil moisture a mixture of nitrification and denitrification can occur. We also aimed to assess how these effects (spatial heterogeneity and source processes) occur in a relatively narrow range of moisture (70-100%). As far as we know there no other studies going to this level of detail. We aimed to understand changes in the ratio N₂O/(N₂O+N₂) at the different moisture levels studied in a controlled manner on soil micro and macropores. Moreover, we used isotopocule values of N₂O to evaluate if the contribution of bacterial denitrification to the total N₂O flux was affected by moisture status.

2 Materials and methods

2.1 Soil used in the study

An agricultural soil, under grassland management since at least 1838 (Barré et al., 2010), was collected from a location adjacent to a long-term ley-arable experiment at Rothamsted Research in
Hertfordshire (Highfield, see soil properties in Table 1 and further details in Rothamsted Research, 2006; Gregory et al., 2010). The soil had been under permanent cut mixed-species (predominantly Lolium and Trifolium) vegetation. The soil was sampled as described in Gregory et al. (2010). Briefly it was sampled from the upper 150 mm of the profile, air dried in the laboratory, crumbled and sieved (<4 mm), mixed to make a bulk sample and equilibrated at a pre-determined water content (37 g 100 g⁻¹; Gregory et al., 2010) in air-tight containers at 4°C for at least 48 hours.

1.2. Preparation of soil blocks

The equilibrated soil was then packed into twelve stainless steel blocks (145 mm diameter; h: 100 mm), each of which contained three cylindrical holes (i.d: 50 mm; h: 100 mm each). The cores were packed to a single compaction stress of 200 kPa in incremental layers using a uniaxial pneumatic piston. The three hole-blocks were used to facilitate the compression of the cores. The 200 kPa stress was analogous to a severe compaction event by a tractor (Gregory et al., 2010) or livestock (Scholefield et al., 1985). The total area of the upper surface of soil in each block was therefore 58.9 cm² (3 × 19.6 cm²) and the target volume of soil was set to be 544.28 cm³ (3 × 181.43 cm³) with the objective of leaving a headspace of approximately 45 cm³ (3 × 15 cm³) for the subsequent experiment. The precise height of the soil (and hence the volume) was measured using the displacement measurement system of a DN10 Test Frame (Davenport-Nene, Wigston, Leicester, UK) with a precision of 0.001 mm.

2.3 Equilibration of soil cores at different saturations

The soil was equilibrated to four different initial saturation conditions or treatments (t0) which were based on the likely distribution of water between macropores and micropores. The first treatment was where both the macro- and micropores (and hence the total soil) was fully saturated; the second treatment was where the macropores were half-saturated and the micropores remained fully saturated; the third treatment was where the macropores were fully unsaturated and the micropores again remained fully saturated; and the fourth treatment was where the macropores were fully unsaturated and the micropores were half-saturated. These four treatments are hereafter referred to as SAT/sat;
HALFSAT/sat; UNSAT/sat and UNSAT/halfsat, respectively, where upper-case refers to the saturation condition of the macropores and lower-case refers to the saturation condition of the micropores. In order to set these initial saturation conditions, we referred to the gravimetric soil water release characteristic for the soil, as given in Gregory et al. (2010) (see supplement 1). To achieve target water contents during the incubation, the amount of liquid added with the C/N amendment (15 mL) was taken into account in the total volume of water added. For the SAT/sat and HALFSAT/sat conditions, two sets of three replicate blocks were placed on two fine-grade sand tension tables connected to a water reservoir. For the UNSAT/sat condition a set of three replicate blocks was placed on a tension plate connected to a water reservoir, and the final set of three replicate blocks were placed in pressure plate chambers connected to high-pressure air. All blocks were saturated on their respective apparatus for 24 h, and were then equilibrated for 7 days at the adjusted target matric potentials which were achieved by either lowering the water level in the reservoir (sand tables and tension plate) or by increasing the air pressure (pressure chambers). At the end of equilibration period, the blocks were removed carefully from the apparatus, wrapped in air-tight film, and maintained at 4 °C until the subsequent incubation.

2.4 Incubation

The study was carried out under controlled laboratory conditions, using a specialised laboratory denitrification (DENIS) incubation system (Cardenas et al., 2003). Each block containing three cores was placed in an individual incubation vessel of the automated laboratory system in a randomised block design to avoid effect of vessel. The lids for the vessels containing three holes were lined with the cores in the block to ensure that the solution to be applied later would fall on top of each soil core. Stainless steel bulkheads fitted (size for ¼” tubing) on the lids had a three-layered Teflon coated silicone septum (4 mm thick x 7 mm diameter) for supplying the amendment solution by using a gas tight hypodermic syringe. The bulkheads were covered with a stainless steel nut and only open when amendment was applied. The incubation experiment lasted 13 days. The incubation vessels with the soils were contained in a temperature controlled cabinet and the temperature set at
20°C. The incubation vessels were flushed from the bottom at a rate of 30 ml min⁻¹ with a He/O₂ mixture (21% O₂, natural atmospheric concentration) for 24 h, or until the system and the soils atmosphere were emitting low background levels of both N₂ and N₂O (N₂ can get down to levels of 280 ppm much smaller than atmospheric values). Subsequently, the He/O₂ supply was reduced to 10 ml min⁻¹ and directed across the soil surface and measurements of N₂O and N₂ carried out at approximately 2 hourly cycles to sample from all the 12 vessels. Emissions of CO₂ were simultaneously measured.

2.5 Application of amendment

An amendment solution equivalent to 75 kg N ha⁻¹ and 400 kg C ha⁻¹ was applied as a 5 ml aliquot a solution containing KNO₃ and glucose to each of the three cores in each vessel on day 0 of the incubation. Glucose is added to optimise conditions for denitrification to occur (Morley and Baggs, 2010). The aliquot was placed in a stainless steel container (volume 1.2 l) which had three holes drilled with bulkheads fitted, two to connect stainless steel tubing for flushing the vessel, and the third one to place a septum on a bulkhead to withdraw solution. Flushing was carried out with He for half an hour before the solution was required for application to the soil cores and continued during the application process to avoid atmospheric N₂ contamination (a total of one and a half hours). The amendment solution was manually withdrawn from the container with a glass syringe fitted with a three-way valve onto the soil surface; care was taken to minimise contamination from atmospheric N₂ entering the system. The syringe content was injected to the soil cores via the inlets on the lids consecutively in each lid (three cores) and all vessels, completing a total of 36 applications that lasted about 45 minutes. Incubation continued for twelve days, and the evolution of N₂O, N₂ and CO₂ was measured continuously. At the end of each incubation experiment, the soils were removed from the incubation vessels for further analysis. The three cores in each incubation vessel were pooled in one sample and subsamples taken and analysed for mineral N, total N and C and moisture status.
2.6 Gas measurements

Gas samples were directed to the relevant analysers via an automated injection valve fitted with 2 loops to direct the sample to two gas chromatographs. Emissions of N$_2$O and CO$_2$ were measured by Gas Chromatography (GC), fitted with an Electron Capture Detector (ECD) and separation achieved by a stainless steel packed column (2 m long, 4 mm bore) filled with ‘Porapak Q’ (80–100 mesh) and using N$_2$ as the carrier gas. The detection limit for N$_2$O was equivalent to 2.3 g N ha$^{-1}$ d$^{-1}$. The N$_2$ was measured by GC with a He Ionisation Detection (HID) and separation achieved by a PLOT column (30 m long 0.53 mm i.d.), with He as the carrier gas. The detection limit was 9.6 g N ha$^{-1}$ d$^{-1}$. The response of the two GCs was assessed by measuring a range of concentrations for N$_2$O, CO$_2$ and N$_2$.

Parent standards of the mixtures 10133 ppm N$_2$O + 1015.8 ppm N$_2$; 501 ppm N$_2$O + 253 ppm N$_2$ and 49.5 ppm N$_2$O + 100.6 ppm N$_2$ were diluted by means of Mass Flow controllers with He to give a range of concentrations of: for N$_2$O of up to 750 ppm and for N$_2$ 1015 ppm. For CO$_2$ a parent standard of 30,100 ppm was diluted down to 1136 ppm (all standards were in He as the balance gas). Daily calibrations were carried out for N$_2$O and N$_2$ by using the low standard and doing repeated measurements. The temperature inside the refrigeration cabinet containing the incubation vessels was logged on an hourly basis and checked at the end of the incubation. The gas outflow rates were also measured and recorded daily, and subsequently used to calculate the flux.

2.7 Measurement of N$_2$O isotopic signatures

Gas samples for isotopocule analysis were collected in 115 ml serum bottles sealed with grey butyl crimp-cap septa (Part No 611012, Altmann, Holzkirchen, Germany). The bottles were connected by a Teflon tube to the end of the chamber vents and were vented to the atmosphere through a needle, to maintain flow through the experimental system. Dual isotope and isotopocule signatures of N$_2$O, i.e. δ^{18}O of N$_2$O (δ^{18}O-N$_2$O), average δ^{15}N (δ^{15}N$_{\text{bulk}}$) and δ^{15}N from the central N-position (δ^{15}N$_{\alpha}$) were analysed after cryo-focussing by isotope ratio mass spectrometry as described previously (Well et al., 2008). 15N site preference (SP) was obtained as SP = 2 * (δ^{15}N$_{\alpha}$ – δ^{15}N$_{\text{bulk}}$). Dual isotope and isotopocule ratios of a sample (R_{sample}) were expressed as % deviation from 15N/14N and 18O/16O.
ratios of the reference standard materials (R_{std}), atmospheric N_2 and standard mean ocean water (SMOW), respectively:

$$\delta X = \left(\frac{R_{\text{sample}}}{R_{\text{std}}} - 1 \right) \times 1000$$ \[2\]

where $X = ^{15}N_{\text{bulk}}, ^{15}N^\alpha, ^{15}N^\beta$, or ^{18}O

2.8 Data analysis and additional measurements undertaken

The areas under the curves for the N_2O, CO$_2$ and N_2 data were calculated by using GenStat 11 (VSN International Ltd, Hemel Hempstead, Herts, UK). The resulting areas for the different treatments were analysed by applying analysis of variance (ANOVA). The isotopic ($^{15}N_{\text{bulk}}, ^{18}O$, and site preference (SP) differences between the four treatment for the different sampling dates were analysed by two-way ANOVA. We also used the Student’s t test to check for changes in soil water content over the course of the experiments.

Calculation of the relative contribution of the N_2O derived from bacterial denitrification (%B_{DEN}) was done according to Lewicka-Szczechak et al. (2015). The isotopic value of initially produced N_2O, i.e. prior to its partial reduction (δ_0) was determined using a Rayleigh model (Mariotti et al., 1982), were δ_0 is calculated using the fractionation factor of N_2O reduction ($\eta_{N_2O-N_2}$) for SP and the fraction of residual N_2O (r_{N_2O}) which is equal to the $N_2O/(N_2+N_2O)$ product ratio obtained from direct measurements of N_2 and N_2O flux. An endmember mixing model was then used to calculate the percentage of bacterial N_2O in the total N_2O flux (%B_{DEN}) from calculated δ_0 values and the SP and $\delta^{18}O$ endmember values of bacterial denitrification and fungal denitrification/nitrification. The range in endmember and $\eta_{N_2O-N_2}$ values assumed (adopted from Lewicka-Szczechak, 2017) to calculated maximum and minimum estimates of %B_{DEN} is given in Table 4.

Because both, endmember values and $\eta_{N_2O-N_2}$ values are not constant but subject to the given ranges, we calculated here several scenarios using combinations of maximum, minimum and average endmember and $\eta_{N_2O-N_2}$ values (Table 4) to illustrate the possible range of %B_{DEN} for each sample.

For occasional cases where %$B_{DEN} > 100\%$ the values were set to 100%.
At the same time as preparing the main soil blocks, a set of replicate samples was prepared in exactly the same manner, but in smaller cores (i.d: 50 mm; h: 25 mm). On these samples we analysed soil mineral N, total N and C and moisture at the start of the incubation. The same parameters were measured after incubation by doing destructive sampling from the cores. Mineral N (NO$_3^-$, NO$_2^-$ and NH$_4^+$) was analysed after extraction with KCl by means of a segmented flow analyser using a colorimetric technique (Searle, 1984). Total C and N in the air dried soil were determined using a thermal conductivity detector (TCD, Carlo Erba, model NA2000). Soil moisture was determined by gravimetric analysis after drying at 105°C.

3 Results

3.1 Soil composition

The results after moisture adjustment at the start of the experiment resulted in a range of WFPS of 100 to 71% for the 4 treatments (Table 2). The results from the end of the incubation also confirmed that there remained significant differences in soil moisture between the high moisture treatments (SAT/sat and HALFSAT/sat) and the two lower moisture treatments (Table 3; one-way ANOVA, p<0.05). Soil in the two wettest states lost statistically significant amounts of water (10% (p=0.006) and 4.4% (p<0.001) for SAT/sat and HALFSAT/sat, respectively) over the course of the 13-day incubation experiment. This was inevitable as there was no way to hold a high (near-saturation) matric potential once the soil was inside the DENIS assembly, and water would have begun to drain by gravitational forces out of the largest macropores (>30 µm). An additional factor was the continuous He/O$_2$ delivery over the soil surface which would have caused some drying. We accepted these as unavoidable features of the experimental set-up, but we assume that the main response of the gaseous emissions occurred under the initial conditions, prior to the loss of water over subsequent days. Soil in the two drier conditions had no significant change in their water content over the experimental period (p= 0.153 and 0.051 for UNSAT/sat and UNSAT/halfsat, respectively). The results of the initial soil composition were, for mineral N: 85.5 mg NO$_3^-$-N kg$^{-1}$ dry soil, 136.2 mg NH$_4^+$-N kg$^{-1}$ dry soil. The mineral N contents of the soils at the end of the incubation are reported in Table 3 showing
that NO$_3^-$ was very small in treatments SAT/sat and HALFSAT/sat (~1 mg N kg$^{-1}$ dry soil) compared to UNSAT/sat and UNSAT/halfsat (50-100 mg N kg$^{-1}$ dry soil) at the end of the incubation. Therefore, there was a significant difference in soil NO$_3^-$ between the former, high moisture treatments and the latter drier (UNSAT) treatments which were also significantly different between themselves (p<0.001 for both). The NH$_4^+$ content was similar in treatments SAT/sat, HALFSAT/sat and UNSAT/sat (~100 mg N kg$^{-1}$ dry soil), but slightly lower in treatment UNSAT/halfsat (71.3 mg N kg$^{-1}$ dry soil), however overall differences were not significant probably due to the large variability on the driest treatment (p>0.05).

3.2 Gaseous emissions of N$_2$O, CO$_2$ and N$_2$

All datasets of N$_2$O and N$_2$ emissions showed normal distribution (Fpr.<0.001). The treatments SAT/sat and HALFSAT/sat for all three gases, N$_2$O, CO$_2$ and N$_2$ showed fluxes that were well replicated for all the vessels (see Fig. 1), in contrast for UNSAT/sat and UNSAT/halfsat the emissions between the various replicated vessel in each treatment was not as consistent, leading to a larger within treatment variability in the magnitude and shape of the GHG fluxes measured. The cumulative fluxes also resulted in larger variability for the drier treatments (Table 3).

Nitrous oxide and nitrogen gas. The general trend was that the N$_2$O concentrations in the headspace increased shortly after the application of the amendment (Fig. 1). The duration of the N$_2$O peak for each replicate soil samples was about three days, except for UNSAT/halfsat in which one of the replicate soils exhibit a peak which lasted for about 5 days. The N$_2$O maximum in the SAT/sat and HALFSAT/sat treatments was of similar magnitude (means of 5.5 and 6.5 kg N ha$^{-1}$ d$^{-1}$, respectively) but not those of UNSAT/sat and UNSAT/halfsat (means of 7.1 and 11.9 kg N ha$^{-1}$ d$^{-1}$, respectively). The N$_2$ concentrations always increased before the soil emitted N$_2$O reached the maximum. The lag between both N$_2$O and N$_2$ peak for all samples was only few hours. Peaks of N$_2$ generally lasted just over four days, except in UNSAT/halfsat where one replicate lasted about 6 days (Fig. 1). Unlike in the N$_2$O data, there was larger within treatment variability in the replicates for all
four treatments. The standard deviations of each mean (Table 3) also indicate the large variability in treatments UNSAT/sat and UNSAT/halfsat for both N$_2$O and N$_2$.

The product ratios, i.e. N$_2$O/(N$_2$O+N$_2$) resulted in a peak just after amendment addition by ca. 0.73 (at 0.49 d), 0.65 (at 0.48 d), 0.99 (at 0.35 d) and 0.88 (at 0.42 d) for SAT/sat, HALFSAT/sat, UNSAT/sat and UNSAT/halfsat, respectively, and then decreases gradually until day 3 where it becomes nearly zero for the 2 wettest treatments, and stays stable for the driest treatments between 0.1-0.2 (see Table 5 where the daily means of these ratios are presented).

The cumulative areas of the N$_2$O and N$_2$ peaks analysed by one-way ANOVA resulted in no significant differences between treatments for both N$_2$O and N$_2$ (Table 3). Due to the large variation in treatments UNSAT/sat and UNSAT/halfsat we carried out a pair wise analysis by using a weighted t-test (Cochran, 1957). This analysis resulted in treatment differences between SAT/sat and HALFSAT/sat, HALFSAT/sat and UNSAT/sat, SAT/sat and UNSAT/sat, but only at the 10% significance level (P <0.1 for both N$_2$O and N$_2$).

The results showed that total N emission (N$_2$O+N$_2$) (Table 3) decreased between the highest and lowest soil moistures i.e. from 63.4 for SAT/sat (100% WFPS) to 34.1 kg N ha$^{-1}$ (71% WFPS) for UNSAT/halfsat. The maximum cumulative N$_2$O occurred at around 80% WFPS (Fig. 2) whereas the total N$_2$O+N$_2$ was largest at about 95% and for N$_2$ it was our upper treatment at 100% WFPS.

Carbon dioxide. The background CO$_2$ fluxes (before amendment application, i.e. day -1 to day 0) were high at around 30 kg C ha$^{-1}$ d$^{-1}$ and variable (not shown). The CO$_2$ concentrations in the headspace increased within a few hours after amendment application. The maximum CO$_2$ flux was reached earlier in the drier treatments (about 1-2 days; ~70 kg C ha$^{-1}$ d$^{-1}$) compared to the wettest (3 days; ~40 kg C ha$^{-1}$ d$^{-1}$) and former peaks were also sharper (Fig. 1). The cumulative CO$_2$ fluxes were significantly larger in the two drier unsaturated treatments (ca. 400-420 kg C ha$^{-1}$) when compared to the wetter more saturated treatment (ca. 280-290 kg C ha$^{-1}$, P<0.05) (Table 3).
3.3 Isotopocules of N₂O

The $\delta^{15}\text{N}_{\text{bulk}}$ of the soil emitted N₂O in our study differed significantly among the four treatments and between the seven sampling dates ($p<0.001$ for both); there was also a significant treatment*sampling date interaction ($p<0.001$). The maximum $\delta^{15}\text{N}_{\text{bulk}}$ generally occurred on day 3, except for SAT/sat on day 4 (Table 6).

The maximum $\delta^{18}\text{O-N}_2\text{O}$ values were also found on day 3, except for SAT/sat which peaked at day 2 (Table 6). Overall, the $\delta^{18}\text{O-N}_2\text{O}$ values varied significantly between treatment and sampling dates ($p<0.001$ for both), but there was no significant treatment*time interaction ($p>0.05$).

The site preference (SP) for the SAT/sat treatment had an initial maximum value on day 2 (6.3‰) which decreased thereafter in the period from day 3 to 5 to a mean SP values of the emitted N₂O of 2.0‰ on day 5, subsequently rising to 8.4‰ on day 12 of the experiment (Table 6). The HALFSAT/sat treatment had the highest initial SP values on day 2 and 3 (both 6.4‰), decreasing again to a value of 2.0‰, but now on day 4 followed by subsequent higher SP values of up to 9.2‰ on day 7 (Table 6). The two driest treatments (UNSAT/sat and UNSAT/halfsat) both had an initial maximum on day 3 (11.9‰ and 5.9‰, respectively), and in UNSAT/sat the SP value then decreased to day 7 (3.9‰), but in UNSAT/halfsat treatment after a marginal decrease on day 4 (5.4‰) it then increased throughout the experiment reaching 11.8‰ on day 12 (Table 6). The lowest SP values were generally on day 1 in all treatments. Overall, for all parameters, there was more similarity between the more saturated treatments SAT/sat and HALFSAT/sat, and between the two more dry and aerobic treatments UNSAT/sat and UNSAT/halfsat.

The N₂O / (N₂O + N₂) ratios vs SP for all treatments in the first two days (when N₂O was increasing and the N₂O / (N₂O + N₂) ratio was decreasing) shows a significant negative response of the SP when the ratio increased (Fig. 3). This behaviour suggests that when the emitted gaseous N is dominated by N₂O (ratio close to 1) the SP values will be slightly negative with an intercept of -2‰ (Fig. 3), i.e. within the SP range of bacterial denitrification. With decreasing N₂O / (N₂O + N₂) ratio the SP values of soil emitted N₂O were increasing to values up to 8‰. This is in juxtaposition with
the situation when the N emissions are dominated by N₂ or N₂O is low, where the SP values of soil emitted N₂O were much higher (Fig. 3), pointing to an overall product ratio related to an ‘isotopic shift’ of 10 to 12.5‰. We fitted 3 functions through this data including a second degree polynomial, a linear and logarithmic function. The fitted logarithmic function in Fig. 3, is in almost perfect agreement with Lewicka-Szczebak et al. (2014). Lewicka-Szczebak et al. (2014) data fits on the top left of Fig. 3.

It has been reported that the combination of the isotopic signatures of N₂O potentially identifies the contribution of processes other than bacterial denitrification (Köster et al., 2015; Wu Di et al., 2016; Deppe et al., 2017). The question arises to which extent the relationships between the δ¹⁸O and δ¹⁵Nbulk and between δ¹⁸O and SP within the individual treatments denitrification dynamics. We checked this to evaluate the robustness of isotope effects during N₂O reduction as a prerequisite to calculate the percentage of bacterial denitrification in N₂O production. In our data, maximum δ¹⁸O and SP values, were generally observed at or near the peak of N₂ emissions on days 2-3, independent of the moisture treatment (Table 6 and Fig. 3). δ¹⁵Nbulk values of all treatments were mostly negative when N₂O fluxes started to increase (day 1, Fig. 1, Table 6), except for UNSAT/halfsat in which the lowest value was before amendment application, reaching their highest values between days 3 and 4 for when N₂O fluxes were back to the low initial values, and then decreased during the remaining period. δ¹⁸O values increased about 10 - 20‰ after day 1 reaching maximum values on days 2 or 3 in all treatments, while SP increased in parallel, at least by 3‰ (SAT/sat) and up to 12‰ (UNSAT/sat). While δ¹⁸O exhibited a steady decreasing trend after day 3, SP behaved opposite to δ¹⁵Nbulk with decreasing values while δ¹⁵Nbulk was rising again after days 4 or 5.

We further explored the data by looking at the relationships between the δ¹⁸O and δ¹⁵Nbulk for all the treatments. The δ¹⁸O vs δ¹⁵Nbulk for all treatments is presented separating the data in three periods (Fig. 4): ‘-1’, with δ¹⁸O vs δ¹⁵Nbulk values 1 day prior to the moisture adjustment (and N and C application); ‘1-2’, with values in the first 2 days after the addition of water, N and C were added
and \(\text{N}_2\text{O}\) emissions were generally increasing in all treatments; and, ‘3-12’, the period in days after moisture adjustment and N and C addition when \(\text{N}_2\text{O}\) emissions generally decreased back to baseline soil emissions. There was a strong and significant relationship (\(P<0.001\) and 0.05, respectively) between \(\delta^{18}\text{O}\) vs \(\delta^{15}\text{N}_{\text{bulk}}\) for the high moisture treatments (\(R^2= 0.973\) and 0.923 for SAT/sat and HALFSAT/sat, respectively) at the beginning of the incubation (‘1-2’) when the \(\text{N}_2\text{O}\) emissions are still increasing, in contrast to those of the lower soil moisture treatments that were lower and not significant (\(R^2= 0.294\) and 0.622, for UNSAT/sat and UNSAT/halfsat, respectively). The relationships between \(\delta^{18}\text{O}\) vs \(\delta^{15}\text{N}_{\text{bulk}}\) of emitted \(\text{N}_2\text{O}\) for the ‘3-12’ period were significant for SAT/sat and HALFSAT/sat with \(R^2\) values between 0.549 and 0.896 and \(P\) values \(<0.05\) and 0.001, respectively (Fig. 4). Regressions were also significant for this period for the driest treatments (\(P<0.001\)). Interestingly, with decreasing soil moisture content (Fig. 4a to 4d) the regression lines of ‘1-2’ and ‘3-12’ day period got closer together in the graphs. Overall, the \(\delta^{15}\text{N}_{\text{bulk}}\) isotopic distances between the two lines was larger for a given \(\delta^{18}\text{O}-\text{N}_2\text{O}\) value for SAT/sat and HALFSAT/sat (ca. 20‰) when compared to the UNSAT/sat and UNSAT/halfsat treatments (ca. 13‰) (Fig. 4). So it seems the \(\delta^{15}\text{N}_{\text{bulk}}/\delta^{18}\text{O}-\text{N}_2\text{O}\) signatures are more similar for the drier soils than the two wettest treatments. In addition, Fig 4 exactly reflects the 2-pool dynamics with increasing \(\delta^{15}\text{N}\) and \(\delta^{18}\text{O}\) while the product ratio goes down (days 2,3), then only \(\delta^{15}\text{N}\) continue increasing due to fractionation of the \(\text{NO}_3^-\) during exhaustion of pool 1 in the wet soil (days 3,4,5), finally as pool 1 is depleted and more and more comes from pool 2, the product ratio increases somewhat, and \(\delta^{15}\text{N}\) decreases somewhat since pool 2 is less fractionated and also \(\delta^{18}\text{O}\) decreases due to slightly increasing product ratio. Note that the turning points of \(\delta^{18}\text{O}\) and product ratio (Table 3 and 4) for the wetter soils almost coincide.

Similarly to Fig. 4, \(\delta^{18}\text{O}\) vs the SP (Fig. 5) was analysed for the different phases of the experiment. Generally, the slopes (Table 7) for days 1-2 for the three wettest treatments were similar (~0.2-0.3) following the range of known reduction slopes and also had high and significant (\(P<0.05\)) regression coefficients (\(R^2= 0.65, 0.90\) and 0.87 for SAT/sat, HALFSAT/Sat and UNSAT/sat,
respectively). The slopes on days 3-5 were variable but slightly similar on days 7-12 (between 41 and 0.68) for the same three treatments. They were only significant for the 2 driest treatments (P<0.05). On days 7-12 SAT/sat and UNSAT/sat gave significant correlations (P<0.001 and 0.05, respectively). Figure 5 also shows the “map” for the values of SP and δ^{18}O from all treatments. Reduction lines (vectors) represent minimum and maximum routes of isotopocules values with increasing N\textsubscript{2}O reduction to N\textsubscript{2} based on the reported range in the ratio between the isotope fractionation factors of N\textsubscript{2}O reduction for SP and δ^{18}O (Lewicka-Szczebak et al., 2017). Most samples are located within the vectors (from Lewicka-Szczebak et al. 2017) area of N\textsubscript{2}O production by bacterial denitrification with partial N\textsubscript{2}O reduction to N\textsubscript{2} (within uppermost and lowermost N\textsubscript{2}O reduction vectors representing the extreme values for the bacterial endmember and reduction slopes). Only a few values of the UNSAT/sat and UNSAT/halfsat treatments are located above that vector area and more close or within the vector area of mixing between bacterial denitrification and fungal denitrification/nitrification.

The estimated ranges of the proportion of emitted N\textsubscript{2}O resulting from bacterial denitrification (%B\textsubscript{DEN}) were on day 1 and 2 after the amendment comparable in all four moisture treatments (Table 6). However, during day 3 to 12 the %B\textsubscript{DEN} ranged from 78-100% in SAT/sat and 79-100% HALFSAT/Sat, which was generally higher than that estimated at 54-86% for UNSAT/halfsat treatment. The %B\textsubscript{DEN} of the UNSAT/halfsat in that period was intermediate between SAT/sat and UNSAT/sat with range of range 60-100% (Table 6). The final values were similar to those on day -1 except for the UNSAT/sat treatment.

4 Discussion

4.1 N\textsubscript{2}O and N\textsubscript{2} fluxes

The observed decrease in total N emissions with decreasing initial soil moisture reflects the effect of soil moisture as reported in previous studies (Well et al., 2006). The differences when comparing the cumulative fluxes however, were only marginally (p<0.1) significant (Table 3) mostly due to large variability within replicates in the drier treatments (see Fig. 1b). Davidson et al. (1991) provided a
WFPS threshold for determination of source process, with a value of 60% WFPS as the borderline between nitrification and denitrification as source processes for N\textsubscript{2}O production. The WFPS in all treatments in our study was larger than 70%, above this 60% threshold, and referred to as the “optimum water content” for N\textsubscript{2}O by Scheer et al. (2009), so we can be confident that denitrification was likely to have been the main source process in our experiment. In addition, Bateman et al. (2004) observed the largest N\textsubscript{2}O fluxes at 70% WFPS on a silty loam soil, lower than the 80% value for the largest fluxes from the clay soil in our study (Fig. 2) suggesting that this optimum value could change with soil type. Further, the maximum total measured N lost (N\textsubscript{2}O+N\textsubscript{2}) in our study occurred at about 95% WFPS (Fig. 2), but not many studies report N\textsubscript{2} fluxes for comparison and we are still missing measurements of nitric oxide (NO) (Davidson et al., 2000) and ammonia (NH\textsubscript{3}) to account for the total N losses. It is however possible that the N\textsubscript{2}O+N\textsubscript{2} fluxes in the SAT/sat treatment were underestimated due to low diffusivity in the water filled pores (Well et al., 2001). Gases would have been trapped (particularly in the higher saturation treatments) due to low diffusion and thus possibly masked differences in N\textsubscript{2} and N\textsubscript{2}O production since this fraction of gases was not detected (Harter et al. 2016). It is worth mentioning that there was some drying during the incubation. The flow of the gas is very slow (10 ml/min) simulating a low wind speed so normally this would dry the soil in field conditions too. It would represent a rainfall event where the initial moisture differs between treatments but some drying occurs due to the wind flow. We believe however, that the effect of drying will be more relevant (and significant relative to the initial moisture) later in the incubation.

The smaller standard errors in both N\textsubscript{2}O and N\textsubscript{2} data for the larger soil moisture levels (Table 3 and Fig. 1) could suggest that at high moisture contents nutrient distribution (N and C) on the top of the core is more homogeneous making replicate cores to behave similarly. At the lower soil moisture for both N\textsubscript{2}O and N\textsubscript{2}, it is possible that some cracks appear on the soil surface causing downwards nutrient movement, resulting in heterogeneity in nutrient distribution on the surface and increasing variability between replicates, reflected in the larger standard errors of the fluxes. Laudone et al. (2011) studied, using a biophysical model, the positioning of the hot-spot zones away from the
critical percolation path (described as ‘where air first breaks through the structure as water is removed at increasing tensions’) and found it slowed the increase and decline in emission of CO$_2$, N$_2$O and N$_2$.

They found that hot-spot zones further away from the critical percolation path would reach the anaerobic conditions required for denitrification in shorter time, the products of the denitrification reactions take longer to migrate from the hot-spot zones to the critical percolation path and to reach the surface of the system. The model and its parameters can be used for modelling the effect of soil compaction and saturation on the emission of N$_2$O. They suggest that having determined biophysical parameters influencing N$_2$O production, it remains to determine whether soil structure, or simply saturation, is the determining factor when the biological parameters are constrained. Furthermore, Clough et al. (2013) indicate that microbial scale models need to be included on larger models linking microbial processes and nutrient cycling in order to consider spatial and temporal variation. Kulkarni et al. (2008) refers to “hot spots” and “hot moments” of denitrification as scale dependant and highlight the limitations for extrapolating fluxes to larger scales due to these inherent variabilities.

Well et al. (2003) found that under saturated conditions there was good agreement between laboratory and field measurements of denitrification, and attributed deviations, under unsaturated conditions, to spatial variability of anaerobic microsites and redox potential. Dealing with spatial variability when measuring N$_2$O fluxes in the field remains a challenge, but the uncertainty could be potentially reduced if water distribution is known. Our laboratory study suggests that soil N$_2$O and N$_2$ emission for higher moisture levels would be less variable than for drier soils and suggests that for the former a smaller number of spatially defined samples will be needed to get an accurate field estimate. This applied to a lesser extent to the CO$_2$ fluxes.

Our results, for the two highest water contents (SAT/sat and HALFSAT/sat), indicated that N$_2$O only contributed 20% of the total N emissions, as compared to 40-50% at the lowest water contents (UNSAT/sat and UNSAT/halfsat, Table 3). This was due to reduction to N$_2$ at the high moisture level, confirmed by the larger N$_2$ fluxes, favoured by low gas diffusion which increased the N$_2$O residence time and the chance of further transformation (Klefoth et al., 2014a). We should also
consider the potential underestimation of the fluxes in the highest saturation treatment due to restricted diffusion in the water filled pores (Well et al., 2001). A total of 99% of the soil \(\text{NO}_3^- \) was consumed in the two high water treatments, whereas in the drier UNSAT/sat and UNSAT/halfsat treatments there still was 35% and 70% of the initial amount of \(\text{NO}_3^- \) left in the soil, at the end of the incubation, respectively (Table 3). The total amount of gas lost compared to the \(\text{NO}_3^- \) consumed was almost 3 times for the wetter treatments, and less than twice for the 2 drier ones. This agrees with denitrification as the dominant process source for \(\text{N}_2\text{O} \) with larger consumption of \(\text{NO}_3^- \) at the higher moisture and larger \(\text{N}_2 \) to \(\text{N}_2\text{O} \) ratios (5.7, 4.7 for SAT/sat and HALFSAT/sat, respectively), whereas at the lower moisture, ratios were lower (1.5 and 1.0 for UNSAT/sat and UNSAT/halfsat, respectively) (Davidson, 1991). This also indicates that with WFPS above the 60% threshold for \(\text{N}_2\text{O} \) production from denitrification, there was an increasing proportion of anaerobic microsites with increase in saturation controlling \(\text{NO}_3^- \) consumption and \(\text{N}_2/\text{N}_2\text{O} \) ratios in an almost linear manner. With WFPS values between 71-100 % and \(\text{N}_2/\text{N}_2\text{O} \) between 1.0 and 5.7, a regression can be estimated: \(Y=0.1723 \times -11.82 \) \((R^2=0.8585) \), where \(Y \) is \(\text{N}_2/\text{N}_2\text{O} \) and \(X \) is \%WFPS. In summary, we propose that heterogeneous distribution of anaerobic microsites could have been the limiting factor for complete depletion of \(\text{NO}_3^- \) and conversion to \(\text{N}_2\text{O} \) in the two drier treatments. In addition, in the UNSAT/halssat treatment there was a decrease in soil \(\text{NH}_4^+ \) at the end of the incubation (almost 50%; Table 3) suggesting nitrification could have been occurring at this water content which also agrees with the increase in \(\text{NO}_3^- \), even though WFPS was relatively high (>71%) (Table 3). It is important to note that as we did not assess gross nitrification, the observed net nitrification based on lowering in \(\text{NH}_4^+ \) could underestimate gross nitrification since there might have been substantial \(\text{N} \) mineralisation during the incubation. However, under conditions favouring denitrification at high soil moisture the typical \(\text{N}_2\text{O} \) produced from nitrification is much lower compared to that from denitrification (Lewicka-Szczebak et al., 2017) with the maximum reported values for the \(\text{N}_2\text{O} \) yield of nitrification of 1-3 % (e.g. Deppe et al., 2017). If this is the case, nitrification fluxes could not have exceeded 1 kg N with \(\text{NH}_4^+ \) loss of < 30 kg * 3% ~1 kg N. This would have represented for the driest
treatment, if conditions were suitable only for one day, that nitrification-derived N\textsubscript{2}O would have been 6\% of the total N\textsubscript{2}O produced. Loss of NH\textsubscript{3} was not probable at such low pH (5.6). The corresponding rate of NO3- production using the initial and final soil contents and assuming other processes were less important in magnitude, would have been < 1 mg NO\textsubscript{3}--N kg dry soil-1 d-1 which is a reasonable rate (Hatch et al., 2002). The other three treatments lost similar amounts of soil NH\textsubscript{4}+ during the incubation (23-26\%) which could have been due to some degree of nitrification at the start of the incubation before O\textsubscript{2} was depleted in the soil microsites or due to NH\textsubscript{4}+ immobilisation (Table 3) (Geisseler et al., 2010).

A mass N balance, taking into account the initial and final soil NO\textsubscript{3}-, NH\textsubscript{4}+, added NO\textsubscript{3}- and the emitted N (as N\textsubscript{2}O and N\textsubscript{2}) results in unaccounted N-loss of 177.2, 177.6, 130.6 and 110.8 mg N kg-1 for SAT/sat, HALFSAT/sat, UNSAT/sat and UNSAT/halfsat, respectively, that could have been emitted as other N gases (such as NO), and some, immobilised in the microbial biomass. NO fluxes reported by Loick et al. (2016) for example, result in a ratio N\textsubscript{2}O/NO of 0.4. In summary unaccounted-for N loss is two to three times the total measured gas loss (Table 3). In addition, in the SAT/sat treatment there was probably an underestimation of the produced N\textsubscript{2} and N\textsubscript{2}O due to restricted diffusion at the high WFPS (e.g. Well et al., 2001).

4.2 Isotopocule trends.

Trends of isotopocule values of emitted N\textsubscript{2}O coincided with those of N\textsubscript{2} and N\textsubscript{2}O fluxes. The results from the isotopocule data (Table 6 and Fig. 3) also indicated that generally there were more isotopic similarities between the two wettest treatments when compared to the two contrasting drier soil moisture treatments.

Isotopocule values of emitted N\textsubscript{2}O reflect multiple processes where all signatures are affected by the admixture of several microbial processes, the extent of N\textsubscript{2}O reduction to N\textsubscript{2} as well as the variability of the associated isotope effects (Lewicka-Szczebak et al., 2015). Moreover, for \(\delta^{18}\text{O}\) and \(\delta^{15}\text{N}_{\text{bulk}}\) the precursor signatures are variable (Decock and Six, 2013), for \(\delta^{18}\text{O}\) the O exchange with...
water can be also variable (Lewicka-Szczebak et al., 2017). Since the number of influencing factors clearly exceeds the number of isotopocule values, unequivocal results can only be obtained if certain processes can be excluded or be determined independently, (Lewicka-Szczebak et al., 2015; Lewicka-Szczebak, 2017). The two latter conditions were fulfilled in this study, i.e. N₂O fluxes were high and several order of magnitude above possible nitrification fluxes, since the N₂O – to- NO₃⁻ ratio yield of nitrification products rarely exceeds 1% (Well et al., 2008; Zhu et al., 2012). Moreover, N₂ fluxes and thus N₂O reduction rates were exactly quantified.

The estimated values of % B_{DEN} indicate that in the period immediately after amendment application all moisture treatments were similar, reflecting that the microbial response to N and C added was the same and denitrification dominated. This was the same for the rest of the period for the wetter treatments. In the drier treatments, proportions decreased afterwards and were similar to values before amendment application, possibly due to recovery of more aerobic conditions that could have encouraged other processes to contribute. As N₂ was still produced in the driest treatment, (but in smaller amounts), this indicated ongoing denitrifying conditions and thus large contributions to the total N₂O flux from nitrification were not probable, but some occurred as suggested by NH₄⁺ consumption.

The trends observed reflect the dynamics resulting from the simultaneous application of NO₃⁻ and labile C (glucose) on the soil surface as described in previous studies (Meijide et al., 2010; Bergstermann et al., 2011) where the same soil was used, resulting in two locally distinct NO₃⁻ pools with differing denitrification dynamics. In the soil volume reached by the NO₃⁻/glucose amendment, denitrification was initially intense with high N₂ and N₂O fluxes and rapid isotopic enrichment of the NO₃⁻-N. When the NO₃⁻ and/or glucose of this first pool were exhausted, N₂ and N₂O fluxes were much lower and dominated by the initial NO₃⁻ pool that was not reached by the glucose/NO₃⁻ amendment and that is less fractionated due to its lower exhaustion by denitrification, causing decreasing trends in δ¹⁵N_{bulk} of emitted N₂O.
This is also reflected in Fig 4 where N₂O fluxes from both pools exhibited correlations (and mostly significant) between δ¹⁵Nbulk and δ¹⁸O due to varying N₂O reduction, but δ¹⁵Nbulk values in days 1 and 2 - i.e. the phase when Pool 1 dominated - were distinct from the previous and later phase.

The fit of ¹⁵Nbulk/¹⁸O data to two distinct and distant regression lines can be attributed to two facts: Firstly, in the wet treatment (Fig 4a, b) Pool 1 was probably completely exhausted and there was little NO₃⁻ formation from nitrification (indicated by final NO₃⁻ values close to 0, Table 3) whereas the drier treatment exhibited substantial NO₃⁻ formation and high residual NO₃⁻. Hence, there was probably still some N₂O from Pool 1 after day 2 in the dry treatment but not in the wetter ones. Secondly, the product ratios after day 2 of the drier treatments were higher (0.13 to 0.44) compared to the wetter treatments (0.001 to 0.09). Thus the isotope effect of N₂O reduction was smaller in the drier treatments, leading to a smaller upshift of δ¹⁵Nbulk and thus more negative values after day 2, i.e. with values closer to days 1+2.

This finding further confirms that δ¹⁵N/δ¹⁸O patterns are useful to identify the presence of several N pools, e.g. typically occurring after application of liquid organic fertilizers which has been previously demonstrated using isotopocule patterns (Koster et al., 2015).

Interestingly, the highest δ¹⁵Nbulk and δ¹⁸O values of the emitted N₂O were found in the soils of the HALFSAT/sat treatment, although it may have been expected that the highest isotope values from the N₂O would be found in the wettest soil (SAT/sat) because N₂O reduction to N₂ is favoured under water-saturated conditions due to extended residence time of produced N₂O (Well et al., 2012). However, N₂O/(N₂+N₂O) ratios of the SAT/sat and SAT/halfsat treatments were not different (Table 5). Bol et al. (2004) also found that some estuarine soils under flooded conditions (akin to our SAT/sat) showed some strong simultaneous depletions (rather than enrichments) of the emitted N₂O δ¹⁵Nbulk and δ¹⁸O values. These authors suggested that this observation may have resulted from a flux contribution of an ‘isotopically’ unidentified N₂O production pathway. Another explanation could be complete consumption of some of the produced N₂O in isolated micro-niches in the SAT/sat treatment due to inhibited diffusivity in the fully saturated pores space. N₂ formation in these isolated domains
would not affect the isotopocule values of emitted N₂O and this would thus result in lower apparent isotope effects of N₂O reduction in water saturated environments as suggested by Well et al. (2012).

The SP values obtained were generally below 12‰ in agreement with reported ranges attributed to bacterial denitrification: -2.5 to 1.8‰ (Sutka et al., 2006); 3.1 to 8.9‰ (Well and Flessa, 2009); -12.5 to 17.6‰ (Ostrom, 2011). The SP, believed to be a better predictor of the N₂O source as it is independent of the substrate isotopic signature (Ostrom, 2011), has been suggested as it can be used to estimate N₂O reduction to N₂ in cases when bacterial denitrification can be assumed to dominate N₂O fluxes (Koster et al., 2013; Lewicka-Szczebak et al., 2015). There was a strong correlation between the SP and N₂O / (N₂O+N₂) ratios on the first 2 days of the incubation for all treatments up until the N₂O reached its maximum (Fig. 3) which reflects the accumulation of δ¹⁵N at the alpha position during ongoing N₂O reduction to N₂. Later on in the experiment beyond day 3, this was not observed probably because in that period the product ratio remained almost unchanged and very low (Table 6). Similar observations have been reported by Meijide et al. (2010) and Bergstermann et al. (2011), as they also found a decrease in SP during the peak flux period in total N₂+N₂O emissions, but only when the soil had been kept wet prior to the start of the experiment (Bergstermann et al., 2011). These results confirm from 2 independent studies (Lewicka-Szczebak et al., 2014) that there is a relationship between the product ratios and isotopic signatures of the N₂O emitted. The δ¹⁸O vs SP regressions indicate more similarity between the three wettest treatments as well as high regression coefficients, suggesting this SP/δ¹⁸O ratio could also be used to help identify patterns for emissions and their sources.

4.3 Link to modelling approaches.

Since isotopocule data could be compared to N₂ and N₂O fluxes, the variability of isotope effects of N₂O production and reduction to N₂ by denitrification could be determined from this data set (Lewicka-Szczebak et al., 2015) and this included modelling the two pool dynamics discussed above. It was demonstrated that net isotope effects of N₂O reduction (η(N₂O,N₂)) determined for both NO₃⁻ pools differed. Pool 1 representing amended soil and resulting in high fluxes but moderate
product ratio, exhibited $\eta_{N_2O-N_2}$ values and the characteristic $\eta^{18}O/\eta^{15}N$ ratios similar to those previously reported, whereas for Pool 2 characterized by lower fluxes and very low product ratio, the net isotope effects were much smaller and the $\eta^{18}O/\eta^{15}N$ ratios, previously accepted as typical for N_2O reduction processes (i.e., higher than 2), were not valid. The question arises, if the poor coincidence of Pool 2 isotopologue fluxes with previous N_2O reduction studies reflects the variability of isotope effects of N_2O reduction or if the contribution of other processes like fungal denitrification could explain this (Lewicka-Szczabak et al., 2017). The latter explanation is evaluated in section 4.3.

Liu et al. (2016) noted that on the catchment scale potential N_2O emission rates were related to hydroxylamine and NO_3^-, but not NH_4^+ content in soil. Zou et al. (2014) found high SP (15.0 to 20.1‰) values at WFPS of 73 to 89% suggesting that fungal denitrification and bacterial nitrification contributed to N_2O production to a degree equivalent to that of bacterial denitrification.

To verify the contribution of fungal denitrification and/or hydroxylamine oxidation we can first look at the $\eta_{SP_{N_2O-NO_3}}$ values calculated in the previous modelling study applied on the same dataset, (Table 1, the final modelling Step, Lewicka-Szczebak et al., 2015). For Pool 1 there are no significant differences between the values of various treatments, SP$_0$ ranges from (-1.8±4.9) to (+0.1±2.5). Pool 1 emission was mostly active in days 1-2, hence these values confirm the bacterial dominance in the emission at the beginning of incubation, which originates mainly from the amendment addition and represent similar pathway for all treatments. However, for the Pool 2 emission we could observe a significant difference when compared the two wet treatments (SAT/sat and HALFSAT/sat: (-5.6±7.0)) with the UNSAT/sat treatment (+3.8±5.8). This represents the emission from unamended soil which was dominating after the third day of the incubation and indicates higher nitrification contribution for the drier treatment.

4.4 Contribution of bacterial denitrification.

An endmember mixing approach has been previously used to estimate the fraction of bacterial N_2O ($\%B_{DEN}$), but without independent estimates of N_2O reduction (Zou et al., 2014), but due to the
unknown isotopic shift by N₂O reduction, the ranges of minimum and maximum estimates were large, showing that limited information is obtained without N₂ flux measurement.

In an incubation study with two arable soils, Koster *et al.* (2013) used N₂O/(N₂+N₂O) ratios and isotopocule values of gaseous fluxes to calculate SP of N₂O production (referred to as SP₀), which is equivalent to SP₀ using the Rayleigh model and published values of η_{N₂O-N₂}. The endmember mixing approach based on SP₀ was then used to estimate fungal denitrification and/or hydroxylamine oxidation giving indications for a substantial contribution in a clay soil, but not in a loamy soil. Here we presented for the first time an extensive data set with large range in product ratios and moisture to calculate the contribution of bacterial denitrification (%B_{DEN}) of emitted N₂O from SP₀. The uncertainty of this approach arises from three factors, (i) from the range of SP₀ endmember values for bacterial denitrification of -11 to 0 per mil and 30 to 37 for hydroxylamine oxidation/fungal denitrification, (ii) from the range of net isotope effect values of N₂O reduction (η_{N₂O-N₂}) for SP which vary from -2 to -8 per mil (Lewicka-Szczechak *et al.*, 2015), and iii) system condition (open vs. closed) taken to estimate the net isotope effect (Wu *et al.*, 2016).

The observation that %B_{DEN} of emitted N₂O was generally high (63-100%) in the wettest treatment (SAT/sat) was not unexpected. However interestingly %B_{DEN} in the HALFSAT/sat treatment was very similar (71-98%), pointing to the role of the wetter areas of the soil microaggregates contributing to high %B_{DEN} values. The slightly lower values, i.e. down 60% in UNSAT/sat %B_{DEN} range of 60-100%, suggest that the majority of N₂O derived from bacterial denitrification still results from the wetter microaggregates of the soils, despite the fact that the macropores are now more aerobic. Only, when the micropores become partially wet, as in the UNSAT/halfsat treatment, do the more aerobic soil conditions allow a higher contribution of nitrification/fungal denitrification ranging from 0 - 46% (1 - % B_{DEN}, Table 6) on days 3-12 (Zhu *et al.*, 2013). Differences in the contribution of nitrification/fungal denitrification between the flux phases when different NO₃⁻ pools were presumably dominating are only indicated in the driest treatment, since 1-%B_{DEN} was higher after day 2 (14 to 46%) compared to days 1+2 (0 to 33%).
This larger share of nitrification/fungal denitrification can be attributed to the increasing
collection from Pool 2 to the total flux as indicated by the modeling of higher SP0 for Pool 2 (see
previous section and Lewicka-Szczechak et al. (2015). In addition, indication for elevated
contribution of processes other than bacterial denitrification were only evident in the drier
treatments during phases before and after N2, N2O fluxes were strongly enhanced by glucose
amendment. The data supply no clue whether the other processes were suppressed during the anoxia
induced by glucose decomposition or just masked by the vast glucose-induced bacterial N2O fluxes.

5 Conclusions

The results from this study demonstrated that at high soil moisture levels, there was less variability
in N fluxes between replicates, potentially decreasing the importance of soil hot spots in emissions
at these moisture levels. At high moisture there also was complete depletion of nitrate confirming
denitrification as the main pathway for N2O emissions, and due to less diffusion of the produced
N2O, the potential for further reduction to N2 increased. Under less saturation, but still relatively
high soil moisture, nitrification occurred. Isotopic similarities were observed between similar
saturation levels and patterns of $\delta^{15}N/\delta^{18}O$ and SP/$\delta^{18}O$ are suggested as indicators of source
processes.

Acknowledgments

The authors would like to thank the technical help from Mark Butler during the laboratory
incubation and Andrew Bristow and Patricia Butler for carrying out soil analysis. Also thanks to
Dan Dhanoa for advice on statistical analysis, and to Anette Giesemann and Martina Heuer for help
in N2O isotopic analyses. This study was funded by the UK Biotechnology and Biological Sciences
Research Council (BBSRC) with competitive grants BB/E001580/1 and BB/E001793/1.
Rothamsted Research is sponsored by the BBSRC.
Figures

Figure 1. Mean of the three replicates for N_2O, N_2 and CO_2 emissions from a. SAT/sat treatment; b. HALFSAT/sat; c. UNSAT/sat; d. UNSAT/halfsat. Grey lines correspond to the standard error of the means.

Figure 2 Total N emissions ($\text{N}_2\text{O}+\text{N}_2$)-N, N_2O and N_2 vs WFPS. Fitted functions through each dataset are also shown.

Figure 3 Ratio $\text{N}_2\text{O} / (\text{N}_2\text{O} + \text{N}_2)$ vs. Site Preference (SP) for all for treatments in the first two days. A logarithmic function was fitted through the data, the corresponding equation and correlation coefficient are given.

Figure 4 $\delta^{18}O$ vs $\delta^{15}N_{\text{bulk}}$ in all treatments for three periods (day -1 in diamond symbol, days 1-2 in square symbol and days 3-12 in triangle symbol, respectively) in the experiment: a. SAT/sat treatment; b. HALFSAT/sat; c. UNSAT/sat; d. UNSAT/halfsat. Equations of fitted functions and correlation coefficients are shown. Correlations are unadjusted, the P value tests if the slope is different from zero.

Figure 5 Site Preference vs $\delta^{18}O$ in all treatments for three periods (day -1, days 1-2 and days 3-12) in the experiment: a. SAT/sat treatment; b. HALFSAT/sat; c. UNSAT/sat; d. UNSAT/halfsat. Equations of fitted functions and correlation coefficients are in Table 7 for 1-2, 3-5 and 7-12 (5-12 for c.). Endmember areas for nitrification, N; bacterial denitrification, D; fungal denitrification, FD and nitrifier denitrification, ND and corresponding vectors or reduction lines (black solid lines) are from Lewicka-Szczebak et al., (2017), and represent minimum and maximum routes of isotopocule values with increasing N_2O reduction to N_2 based on the reported range in the ratio between the isotope fractionation factors of N_2O reduction for SP and $\delta^{18}O$ (Lewicka-Szczebak et al., 2017).

Tables

Table 1 Soil properties of the soil used in the experiment

Table 2 The four saturation conditions used for the soil in the experiment
Table 3 Contents of soil moisture, NO$_3^-$, NH$_4^+$ and C:N ratio and cumulative fluxes of N$_2$O and N$_2$ and CO$_2$ from all treatments at the end of the incubation.

Table 4 Scenarios with different combinations of δ^{18}O and SP endmember values and ηN$_2$O-N$_2$ values to calculate maximum and minimum estimates of %B$_{DEN}$ (minimum, maximum and average values adopted from Lewicka-Szczebak et al., (2016).

Table 5 Ratios N$_2$O / (N$_2$O + N$_2$) for all treatments

Table 6 The temporal trends in δ^{15}N$_{bulk}$, δ^{18}O, δ^{15}N$_o$, SP and %B$_{DEN}$ for all experimental treatments

Table 7 Equations of fitted functions and correlation coefficients corresponding to Figure 5 for Site Preference vs δ^{18}O in all treatments for three periods.
References

Agroecosys., 74, 229-243.

Table 1. Highfield soil properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Highfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Rothamsted Research Herts.</td>
<td></td>
</tr>
<tr>
<td>Grid reference</td>
<td>GB National Grid TL129130</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td>00°21'48"W</td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>51°48'18"N</td>
<td></td>
</tr>
<tr>
<td>Soil type</td>
<td>SSEW(^a) group(^b)</td>
<td>Paleo-argillic brown earth</td>
</tr>
<tr>
<td></td>
<td>SSEW(^a) series(^d)</td>
<td>Batcombe</td>
</tr>
<tr>
<td></td>
<td>FAO(^c)</td>
<td>Chromic Luvisol</td>
</tr>
<tr>
<td>Landuse</td>
<td></td>
<td>Grass; unfertilised; cut grass</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>5.63</td>
</tr>
<tr>
<td>Sand (2000-63 µm)</td>
<td>g g(^{-1}) dry soil</td>
<td>0.179</td>
</tr>
<tr>
<td>Silt (63-2 µm)</td>
<td>g g(^{-1}) dry soil</td>
<td>0.487</td>
</tr>
<tr>
<td>Clay (<2 µm)</td>
<td>g g(^{-1}) dry soil</td>
<td>0.333</td>
</tr>
<tr>
<td>Texture</td>
<td>SSEW(^a) class(^c)</td>
<td>Silty clay loam</td>
</tr>
<tr>
<td>Particle density</td>
<td>g cm(^{-3})</td>
<td>2.436</td>
</tr>
<tr>
<td>Organic matter</td>
<td>g g(^{-1}) dry soil</td>
<td>0.089</td>
</tr>
<tr>
<td>Water content for packing</td>
<td>g g(^{-1}) dry soil</td>
<td>0.37</td>
</tr>
</tbody>
</table>

\(^a\)Soil Survey of England and Wales classification system
\(^b\)United Nations Food and Agriculture Organisation World Reference Base for Soil Resources classification system (approximation)
\(^c\)Avery (1980)
\(^d\)Clayden & Hollis (1984)
Table 2. The four saturation conditions set for the Highfield soil.

<table>
<thead>
<tr>
<th>Saturation condition</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/sat</th>
<th>UNSAT/halfsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macropores</td>
<td>Saturated</td>
<td>Half-saturated</td>
<td>Unsaturated</td>
<td>Unsaturated Half-saturated</td>
</tr>
<tr>
<td>Micropores</td>
<td>Saturated</td>
<td>Saturated</td>
<td>Saturated</td>
<td>Half-saturated</td>
</tr>
</tbody>
</table>

As prepared:
- Matric potential, -kPa: 4.1 | 12.3 | 27.3 | 136.9
- Water content, g 100 g⁻¹: 47.7 | 42.5 | 37.2 | 29.4
- Water content, cm⁻³ 100 cm⁻³: 61.1 | 54.4 | 47.7 | 37.3
- Water-filled pore space, %: 98 | 91 | 82 | 68
- Threshold pore size saturated, µm: 73 | 24 | 11 | 2

Final, following amendment:
- Matric potential, -kPa: 0 | 8.6 | 20.0 | 78.1
- Water content, g 100 g⁻¹: 49.8 | 44.6 | 39.3 | 31.5
- Water content, cm⁻³ 100 cm⁻³: 63.8 | 57.1 | 50.4 | 40.0
- Water-filled pore space, %: 100 | 94 | 85 | 71
- Threshold pore size saturated, µm: all | 35 | 15 | 4
Table 3. Contents of soil moisture, NO$_3^-$, NH$_4^+$ and C:N ratio and cumulative fluxes of N$_2$O and N$_2$ and CO$_2$ from all treatments at the end of the incubation. Values in brackets are standard deviation of the mean of three values (emissions are expressed per area and soil weight basis).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Mean moisture</th>
<th>NO$_3^-$, mg N kg$^{-1}$ dry soil</th>
<th>NH$_4^+$, mg N kg$^{-1}$ dry soil</th>
<th>Total C, %</th>
<th>Total N, %</th>
<th>N$_2$O, kg N ha$^{-1}$</th>
<th>N$_2$O, mg N kg$^{-1}$ dry soil</th>
<th>N$_2$, mg N kg$^{-1}$ dry soil</th>
<th>N$_2$, kg N ha$^{-1}$</th>
<th>Total emitted N, kg N ha$^{-1}$</th>
<th>CO$_2$, kg C ha$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT/sat</td>
<td>39.8 (1.3)</td>
<td>1.1 (0.4)</td>
<td>104.3 (1.1)</td>
<td>3.61 (0.04)</td>
<td>0.35 (0.004)</td>
<td>9.4 (1.1)</td>
<td>7.8 (0.9)</td>
<td>54.0 (14.0)</td>
<td>44.8 (11.6)</td>
<td>63.4</td>
<td>289.2 (30.4)</td>
</tr>
<tr>
<td>HALFSAT/sat</td>
<td>40.2 (0.2)</td>
<td>0.8 (1.0)</td>
<td>104.2 (6.8)</td>
<td>3.64 (0.08)</td>
<td>0.36 (0.004)</td>
<td>10.9 (0.4)</td>
<td>9.0 (0.3)</td>
<td>51.7 (9.0)</td>
<td>42.8 (7.4)</td>
<td>62.6</td>
<td>283.0 (35.5)</td>
</tr>
<tr>
<td>UNSAT/sat</td>
<td>36.5 (2.1)</td>
<td>51.2 (37.4)</td>
<td>100.8 (5.7)</td>
<td>3.64 (0.10)</td>
<td>0.36 (0.007)</td>
<td>23.7 (11.0)</td>
<td>20.0 (9.5)</td>
<td>36.0 (28.5)</td>
<td>30.2 (23.7)</td>
<td>59.7</td>
<td>417.6 (57.1)</td>
</tr>
<tr>
<td>UNSAT/halfsat</td>
<td>34.3 (1.1)</td>
<td>100.6 (16.1)</td>
<td>71.3 (33.6)</td>
<td>3.53 (0.08)</td>
<td>0.36 (0.01)</td>
<td>16.8 (15.8)</td>
<td>14.0 (13.1)</td>
<td>17.2 (19.4)</td>
<td>14.3 (16.1)</td>
<td>34.1</td>
<td>399.7 (40.6)</td>
</tr>
</tbody>
</table>
Table 4: Scenarios with different combinations of d18O and Site Preference (SP) endmember values and η_{N_2} values to calculate maximum and minimum estimates of $\%B_{den}$ (minimum, maximum and average values adopted from Lewicka-Szczabak et al., 2017).

<table>
<thead>
<tr>
<th>Scenario Description</th>
<th>SP0BD</th>
<th>SP0FDN</th>
<th>η_{SP}</th>
<th>$\eta_{\text{d}^{18}\text{O}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>model (min endmember plus η)</td>
<td>-11</td>
<td>30</td>
<td>-2</td>
<td>-12</td>
</tr>
<tr>
<td>model (max endmember plus η)</td>
<td>0</td>
<td>37</td>
<td>-8</td>
<td>-12</td>
</tr>
<tr>
<td>model (max endmember)</td>
<td>0</td>
<td>37</td>
<td>-5.4</td>
<td>-12</td>
</tr>
<tr>
<td>model (min endmember)</td>
<td>-11</td>
<td>30</td>
<td>-5.4</td>
<td>-12</td>
</tr>
<tr>
<td>model (max η)</td>
<td>-5</td>
<td>33</td>
<td>-8</td>
<td>-12</td>
</tr>
<tr>
<td>model (min η)</td>
<td>-5</td>
<td>33</td>
<td>-2</td>
<td>-12</td>
</tr>
</tbody>
</table>
Table 5. Ratios $\text{N}_2\text{O} / (\text{N}_2\text{O} + \text{N}_2)$ for all treatments

<table>
<thead>
<tr>
<th>Days</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/haltsat</th>
<th>UNSAT/sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>s.e.</td>
<td>mean</td>
<td>s.e.</td>
</tr>
<tr>
<td>-1</td>
<td>0.276</td>
<td>0.043</td>
<td>0.222</td>
<td>0.009</td>
</tr>
<tr>
<td>0</td>
<td>0.630</td>
<td>0.022</td>
<td>0.538</td>
<td>0.038</td>
</tr>
<tr>
<td>1</td>
<td>0.371</td>
<td>0.025</td>
<td>0.360</td>
<td>0.019</td>
</tr>
<tr>
<td>2</td>
<td>0.096</td>
<td>0.016</td>
<td>0.139</td>
<td>0.015</td>
</tr>
<tr>
<td>3</td>
<td>0.004</td>
<td>0.002</td>
<td>0.015</td>
<td>0.006</td>
</tr>
<tr>
<td>4</td>
<td>0.017</td>
<td>0.002</td>
<td>0.008</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>0.019</td>
<td>0.003</td>
<td>0.012</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>0.068</td>
<td>0.008</td>
<td>0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>7</td>
<td>0.085</td>
<td>0.008</td>
<td>0.047</td>
<td>0.003</td>
</tr>
<tr>
<td>8</td>
<td>0.106</td>
<td>0.004</td>
<td>0.066</td>
<td>0.002</td>
</tr>
<tr>
<td>9</td>
<td>0.089</td>
<td>0.003</td>
<td>0.053</td>
<td>0.005</td>
</tr>
<tr>
<td>10</td>
<td>0.060</td>
<td>0.003</td>
<td>0.090</td>
<td>0.014</td>
</tr>
<tr>
<td>11</td>
<td>0.063</td>
<td>0.002</td>
<td>0.053</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Table 6. The temporal trends in δ^{15}N$_{bulk}$, δ^{18}O, δ^{15}N$_{sat}$, Site Preference (SP) and $\%B_{DEN}$ for all experimental treatments (values in brackets are the standard deviation of the mean)

<table>
<thead>
<tr>
<th>Day</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/sat</th>
<th>UNSAT/halfsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-3.8 (2.1)</td>
<td>-6.2 (1.5)</td>
<td>-14.2 (10.9)</td>
<td>-23.6 (1.1)</td>
</tr>
<tr>
<td>1</td>
<td>-18.9 (1.6)</td>
<td>-25.5 (4.6)</td>
<td>-20.3 (2.6)</td>
<td>-20.8 (2.3)</td>
</tr>
<tr>
<td>2</td>
<td>-7.7 (4.2)</td>
<td>-12.7 (2.7)</td>
<td>-12.2 (2.0)</td>
<td>-13.9 (5.7)</td>
</tr>
<tr>
<td>3</td>
<td>-2.4 (1.8)</td>
<td>14.0 (2.2)</td>
<td>-1.1 (7.6)</td>
<td>-4.4 (3.0)</td>
</tr>
<tr>
<td>4</td>
<td>-0.9 (2.2)</td>
<td>-0.3 (3.6)</td>
<td>-7.8 (4.6)</td>
<td>-9.3 (3.7)</td>
</tr>
<tr>
<td>5</td>
<td>-6.9 (0.9)</td>
<td>-4.3 (6.1)</td>
<td>-11.3 (3.7)</td>
<td>-8.9 (7.7)</td>
</tr>
<tr>
<td>7</td>
<td>-9.6 (1.5)</td>
<td>-10.0 (1.6)</td>
<td>-14.3 (4.7)</td>
<td>-13.4 (13.5)</td>
</tr>
<tr>
<td>12</td>
<td>-7.5 (1.2)</td>
<td>-8.6 (0.9)</td>
<td>-11.8 (2.6)</td>
<td>-21.3 (6.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/sat</th>
<th>UNSAT/halfsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>33.3 (2.6)</td>
<td>32.7 (3.0)</td>
<td>31.4 (9.8)</td>
<td>25.2 (4.9)</td>
</tr>
<tr>
<td>1</td>
<td>42.9 (2.4)</td>
<td>37.1 (3.8)</td>
<td>32.3 (3.6)</td>
<td>33.3 (2.1)</td>
</tr>
<tr>
<td>2</td>
<td>54.0 (5.7)</td>
<td>48.7 (4.5)</td>
<td>42.7 (5.3)</td>
<td>40.5 (5.0)</td>
</tr>
<tr>
<td>3</td>
<td>45.7 (1.5)</td>
<td>59.7 (3.2)</td>
<td>53.4 (5.7)</td>
<td>41.2 (1.0)</td>
</tr>
<tr>
<td>4</td>
<td>42.5 (1.4)</td>
<td>42.0 (3.7)</td>
<td>38.1 (4.5)</td>
<td>39.9 (7.7)</td>
</tr>
<tr>
<td>5</td>
<td>36.0 (2.9)</td>
<td>34.6 (3.7)</td>
<td>30.4 (2.6)</td>
<td>36.5 (6.9)</td>
</tr>
<tr>
<td>7</td>
<td>32.2 (5.5)</td>
<td>31.6 (5.5)</td>
<td>28.4 (4.4)</td>
<td>32.7 (5.4)</td>
</tr>
<tr>
<td>12</td>
<td>34.9 (5.6)</td>
<td>34.1 (2.7)</td>
<td>32.4 (2.9)</td>
<td>28.5 (5.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/sat</th>
<th>UNSAT/halfsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-0.3 (3.4)</td>
<td>-2.6 (1.8)</td>
<td>-9.5 (12.0)</td>
<td>-19.7 (2.1)</td>
</tr>
<tr>
<td>1</td>
<td>-17.4 (1.8)</td>
<td>-24.0 (5.8)</td>
<td>-20.2 (2.0)</td>
<td>-21.1 (2.6)</td>
</tr>
<tr>
<td>2</td>
<td>-4.6 (4.2)</td>
<td>-9.5 (3.6)</td>
<td>-11.1 (1.1)</td>
<td>-13.8 (5.9)</td>
</tr>
<tr>
<td>3</td>
<td>-0.8 (1.3)</td>
<td>17.2 (4.0)</td>
<td>7.6 (4.7)</td>
<td>-2.7 (3.2)</td>
</tr>
<tr>
<td>4</td>
<td>1.0 (2.5)</td>
<td>0.7 (2.2)</td>
<td>-3.5 (3.7)</td>
<td>-2.8 (7.7)</td>
</tr>
<tr>
<td>5</td>
<td>-5.9 (0.7)</td>
<td>-2.9 (5.4)</td>
<td>-9.4 (3.9)</td>
<td>-5.2 (7.9)</td>
</tr>
<tr>
<td>7</td>
<td>-7.8 (2.3)</td>
<td>-5.3 (4.2)</td>
<td>-12.3 (5.6)</td>
<td>-7.7 (11.5)</td>
</tr>
<tr>
<td>12</td>
<td>-3.3 (2.1)</td>
<td>-4.6 (0.6)</td>
<td>-8.1 (4.2)</td>
<td>-15.3 (5.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/sat</th>
<th>UNSAT/halfsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>7.0 (3.9)</td>
<td>7.1 (4.2)</td>
<td>9.4 (2.1)</td>
<td>7.7 (1.9)</td>
</tr>
<tr>
<td>1</td>
<td>2.9 (0.6)</td>
<td>3.0 (2.3)</td>
<td>0.1 (1.8)</td>
<td>-0.7 (1.4)</td>
</tr>
<tr>
<td>2</td>
<td>6.3 (0.64)</td>
<td>6.4 (1.9)</td>
<td>2.2 (2.0)</td>
<td>0.2 (1.9)</td>
</tr>
<tr>
<td>3</td>
<td>3.3 (1.0)</td>
<td>6.4 (6.9)</td>
<td>11.9 (12.4)</td>
<td>5.9 (0.8)</td>
</tr>
<tr>
<td>4</td>
<td>3.7 (0.6)</td>
<td>2.0 (6.2)</td>
<td>8.7 (5.9)</td>
<td>5.4 (3.0)</td>
</tr>
<tr>
<td>5</td>
<td>2.0 (0.4)</td>
<td>3.0 (2.1)</td>
<td>3.9 (0.5)</td>
<td>7.4 (2.3)</td>
</tr>
<tr>
<td>7</td>
<td>5.0 (2.1)</td>
<td>9.2 (5.2)</td>
<td>3.9 (1.8)</td>
<td>11.2 (4.1)</td>
</tr>
<tr>
<td>12</td>
<td>8.4 (3.3)</td>
<td>7.9 (0.8)</td>
<td>7.3 (3.7)</td>
<td>11.8 (5.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>SAT/sat</th>
<th>HALFSAT/sat</th>
<th>UNSAT/sat</th>
<th>UNSAT/halfsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>63-100</td>
<td>60-100</td>
<td>53-85</td>
<td>56-84</td>
</tr>
<tr>
<td>1-2</td>
<td>68-100</td>
<td>67-100</td>
<td>73-100</td>
<td>77-100</td>
</tr>
<tr>
<td>3-12</td>
<td>78-100</td>
<td>79-100</td>
<td>60-100</td>
<td>54-86</td>
</tr>
</tbody>
</table>
Table 7. Equations of fitted functions and correlation coefficients corresponding to Figure 5 for Site Preference (SP) (Y axis) vs δ¹⁸O (X axis) in all treatments for three periods. Correlations are unadjusted, the P value tests if the slope is different from zero.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days 1-2</th>
<th>Days 3-5</th>
<th>Days 7-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT/sat</td>
<td>$y = 0.2151x - 5.8386, R^2 = 0.6529, P=0.05$</td>
<td>$y = 0.1204x - 1.848, R^2 = 0.397, P=0.129$</td>
<td>$y = 0.5872x - 12.223, R^2 = 0.985, P<0.001$</td>
</tr>
<tr>
<td>HALFSAT/sat</td>
<td>$y = 0.3447x - 10.129, R^2 = 0.9048, P=0.004$</td>
<td>$y = 0.18x - 4.5966, R^2 = 0.1728, P=0.266$</td>
<td>$y = 0.4063x - 6.2632, R^2 = 0.6876, P=0.171$</td>
</tr>
<tr>
<td>UNSAT/sat</td>
<td>$y = 0.2709x - 8.9968, R^2 = 0.8664, P=0.007$</td>
<td>$y = 0.7248x - 18.874, R^2 = 0.507, P=0.031$</td>
<td>$y = 0.6848x - 15.236, R^2 = 0.7156, P=0.034$</td>
</tr>
<tr>
<td>UNSAT/halfsat</td>
<td>$y = -0.0146x + 0.2506, R^2 = 0.0024, P=0.927$</td>
<td>$y = 0.3589x - 7.2194, R^2 = 0.4839, P=0.037$</td>
<td>$y = -0.318x + 21.261, R^2 = 0.1491, P=0.450$</td>
</tr>
</tbody>
</table>
\[(N_2O+N_2) - N = -0.0513x^2 + 9.75x - 399.8 \]
\[R^2 = 0.995 \]

\[N_2 - N = 1.34x - 77.18 \]
\[R^2 = 0.981 \]

\[N_2O - N = -0.04x^2 + 6.50x - 242.6 \]
\[R^2 = 0.778 \]
Figure 3

\[y = -5.156 \ln(x) - 1.7698 \]

\[R^2 = 0.6478 \]

- Present study
- Lewicka et al., 2014
\[
y = 1.060x + 62.6 \\
R^2 = 0.973 \\
P < 0.001
\]
\[
y = 1.046x + 42.9 \\
R^2 = 0.549 \\
P = 0.002
\]
\[
y = 1.134x + 37.7 \\
R^2 = 0.866 \\
P = 0.239
\]

4a.

\[
y = 0.907x + 60.3 \\
R^2 = 0.923 \\
P = 0.002
\]
\[
y = 1.122x + 42.5 \\
R^2 = 0.896 \\
P < 0.001
\]

4b.
$y = 0.778x + 50.1$
$R^2 = 0.294$
$P = 0.266$

$y = 1.269x + 48.5$
$R^2 = 0.642$
$P < 0.001$

$y = 0.764x + 50.1$
$R^2 = 0.622$
$P = 0.062$

$y = 0.731x + 44.3$
$R^2 = 0.745$
$P < 0.001$