
Response	to	reviewer	comments	to	manuscript	"Reviews	and	syntheses:	
Systematic	Earth	observations	for	use	in	

terrestrial	carbon	cycle	data	assimilation	systems"	
	
	
We	thank	the	two	reviewers	for	their	careful	inspection	of	the	manuscript.	In	the	following	
we	address	their	comments	point-by-point.	We	use	text	in	italics	to	repeat	the	reviewer	
comments,	normal	text	for	our	response,	and	bold	faced	text	for	quotations	from	the	
manuscript,	with	added	text	marked	in	colour.	
	
Comments	by	referee	1,	Natasha	MacBean:	
Firstly,	I	appreciate	the	distinction	the	authors	try	to	make	between	their	review	and	that	of	
Raupach	et	al.	(2005)	and	Ciais	et	al.	(2014)	by	placing	an	emphasis	on	EO	data	versus	in	situ	
atmospheric	CO2	and	eddy	covariance	data;	however,	these	two	sources	of	data	are	one	of	
the	most	widely	used	in	carbon	cycle	DA	studies,	and	therefore	I	think	it	is	worth	having	a	
separate	section	that	briefly	summarizes	these	data	and	their	uncertainties,	while	keeping	
the	focus	on	EO.	Otherwise	the	description	of	updates	to	the	eddy	covariance	uncertainty	
estimates	in	the	general	section	on	observational	uncertainties	(Section	3.1)	could	feel	out	of	
place.	In	addition,	Section	3.2	discusses	operational	carbon	observing	systems	which	
currently	include	many	in	situ	networks.	
	
We	have	extended	the	description	of	the	in	situ	atmospheric	CO2	and	eddy	covariance	data	
in	the	beginning	of	Section	3	such	that	the	update	to	the	eddy	covariance	uncertainty	
estimates	does	not	feel	out	of	place.	However,	we	do	not	include	a	whole	new	section	on	
those	data	as	it	has	extensively	been	covered	elsewhere.	Also,	we	have	removed	Section	3.2	
and	included	a	shortened	version	of	the	text	in	the	Conclusions	with	reference	to	other	
international	observation	networks.	
	
Section	3.1		
As	mentioned	before,	Raupach	et	al.	(2005)	have	already	reflected	on	the	main	properties	
of	the	data	and	their	error	covariances	for	observations	of	remotely	sensed	land	surface	
properties	(mainly	the	normalised	differential	vegetation	index,	NDVI),	atmospheric	CO2	
concentrations,	land	atmosphere	net	CO2	exchange	fluxes,	and	terrestrial	carbon	stores.	
The	in-situ	measurements	of	CO2	concentrations	are	either	based	on	flask	samples	or	on	
continuous	monitoring	stations.	The	flask	sampling	network	was	established	in	1961	by	
Keeling	(1961)	and	has	been	extended	since	then	to	more	than	200	sites	globally.	The	
continuous	in	situ	network	provides	measurements	at	higher	precisions	and	temporal	
resolution	than	the	flask	networks.	For	both	the	flask	and	the	continuous	stations	
improvements	in	precision	and	in	the	accuracy	have	been	achieved	through	propagation	
of	frequent	comparisons	and	international	standards	(Francey	et	al.,	2001).	
The	global	FluxNet	network	consists	of	more	than	200	sites	globally	measuring	land-
atmosphere	fluxes	of	CO2,	latent	and	sensible	heat	and	others	by	the	eddy	covariance	
technique	at	a	half-hourly	temporal	resolution	(Baldocchi	et	al.,	2001).	Many	other	
(mostly	meteorological)	variables	are	measured	at	these	sites	as	well.	In	the	past	years,	
there	has	been	substantial	progress	in	the	homogenisation	and	availability	of	these	direct	
CO2	flux	measurements.	The	publically	available	FLUXNET2015	data	set	includes	more	



than	1500	site-years	of	data	covering	all	major	biome	types	from	about	165	sites	
worldwide	spanning	a	period	from1991	(for	some	sites)	up	to	2014	(Pastorello	et	al.,	
2017).	There	has	also	been	substantial	progress	in	the	specification	of	uncertainties	in	
eddy-covariance	measurements	of	the	land-atmosphere	net	CO2	exchange	flux	(Net	
Ecosystem	Productivity,	NEP)	and	its	component	fluxes	(GPP	and	ecosystem	respiration,	
Reco).	For	instance,	Lasslop	et	al.	(2008)	analysed	the	error	distribution	and	found	that	the	
eddy	flux	data	can	almost	entirely	be	represented	by	a	superposition	of	Gaussian	
distributions	with	inhomogeneous	variance.	Richardson	et	al.	(2008)	showed	that	the	
measurement	errors	in	NEP	are	heteroscedastic,	i.e.	the	error	variance	varies	with	the	
magnitude	of	the	flux.	In	a	more	recent	study	Raj	et	al.	(2016)	investigated	the	uncertainty	
of	GPP	derived	from	partitioning	the	eddy	covariance	NEP	measurements.	They	used	a	
light-use	efficiency	model	embedded	in	a	Bayesian	framework	to	estimate	the	uncertainty	
in	the	separated	GPP	from	the	posterior	distribution	at	half-hourly	time	steps.	
	
Conclusions	
In	the	context	of	carbon	cycle	data	assimilation	this	paper	reviews	the	requirements	and	
summarises	the	availability	and	characteristics	of	some	selected	observations	with	a	
special	focus	on	remotely	sensed	Earth	observation	data.	Observations	are	key	for	
understanding	the	carbon	cycle	processes	and	are	an	important	component	for	any	data	
assimilation	system.	In	this	context	the	provision	of	systematic	and	sustained	observing	
systems	on	an	operational	basis	is	becoming	more	and	more	important.	
An	example	for	such	an	operational	network	for	in	situ	data	is	the	Integrated	Carbon	
Observing	System	(ICOS,	see	also	https://www.icos-ri.eu).	ICOS	is	a	pan-European	
infrastructure	for	carbon	observations,	which	provides	high-quality	in	situ	observations	
(both	fluxes	as	well	as	atmospheric	concentrations)	over	Europe	and	over	ocean	regions	
adjacent	to	Europe	with	a	long-term	perspective.	ICOS	consists	of	central	facilities	for	co-
ordination,	calibration	and	data	in	conjunction	with	networks	of	atmospheric,	oceanic	and	
ecosystem	observations	as	well	as	a	data	distribution	centre,	the	Carbon	Portal,	providing	
discovery	of	and	access	to	ICOS	data	products	such	as	derived	flux	information.	Other	
(quasi-)operational	networks	measuring	atmospheric	CO2	concentrations	are	maintained,	
for	instance,	by	the	National	Oceanic	and	Atmospheric	Administration	(NOAA)	and	the	
Scripps	Institution	of	Oceanography,	both	USA,	and	the	CSIRO	Global	Atmospheric	
Sampling	Laboratory,	Australia.		
An	example	for	an	operational	space-based	Earth	observing	programme	in	Europe	is	the	
fleet	of	so-called	Sentinel	satellites	of	the	Copernicus	programme.	Copernicus	aims	at	
providing	Europe	with	continuous	and	independent	access	to	Earth	observation	data	and	
associated	services	(transforming	the	satellite	and	additional	in	situ	data	into	value-added	
information	by	processing	and	analysing	the	data)	in	support	of	Earth	System	Science	
(Berger	et	al.,	2012).	Currently,	six	different	Sentinel	missions	are	planned	(and	have	
partly	been	launched).	So	far,	a	dedicated	mission	for	monitoring	the	carbon	cycle,	i.e.	an	
instrument	measuring	the	atmospheric	CO2	composition,	is	not	yet	included	in	the	
Copernicus	monitoring	programme	(see	Ciais	et	al.,	2015),	however,	the	series	of	Sentinel	
satellites	will	be	extended	in	the	future	and	likely	include	a	CO2	mission.	Other	
operational	EO	programmes	are	operated	by	e.g.	NOAA	and	the	Japanese	Aerospace	
Exploration	Agency.	
	



Secondly,	I	suggest	a	slight	re-structuring	so	all	the	examples	of	DA	studies	with	these	data	
are	incorporated	into	one	specific	section,	and	possibly	after	the	description	of	the	different	
types	of	observations.	Currently,	there	are	examples	in	Section	2.3	and	the	introduction	to	
3.3.	Whilst	the	examples	given	in	the	latter	are	specifically	pertinent	to	EO	data,	the	use	of	
EO	data	in	an	assimilation	system	has	been	discussed	already	in	Section	2.3,	and	therefore	
the	lines	are	somewhat	blurred.	
	
As	suggested,	we	have	slightly	restructured	the	DA	examples	in	the	manuscript,	but	we	have	
kept	them	in	two	places	(Sections	2.3	and	3.2)	to	distinguish	between	general	examples	(Sec	
2.3)	and	examples	making	use	of	the	EO	data	on	which	this	manuscript	focusses	(Sec.	3.2).	
We	have	also	clarified	this	approach	in	the	manuscript.		
	
Section	2.3	
Recent	advances	focus	on	multiple	independent	data	stream	assimilation	to	provide	a	
more	rigorous	constraint	on	the	multiple	components	of	terrestrial	ecosystem	models	and	
avoid	equifinality,	i.e.	different	parameter	solutions	providing	the	same	cost	function	
value	at	the	minimum.	Examples	for	such	studies	on	local/regional	scale	are	the	
assimilation	of	eddy	covariance	CO2	fluxes	together	with	observations	of	vegetation	
structural	information	or	carbon	stocks	(e.g.	Richardson	et	al.,	2010;	Keenan	et	al.,	2012;	
Thum	et	al.,	2017).	The	assimilation	of	multiple	data	streams	can	be	performed	either	in	a	
step-wise	(e.g.	Peylin	et	al.,	2016)	or	simultaneous	approach	(e.g.	Kaminski	et	al.,	2012);	in	
the	case	of	non-linear	models	or	non-linear	observation	operators	only	the	simultaneous	
assimilation	makes	optimal	use	of	the	observations	(MacBean	et	al.,	2016).	In	Section	3.2	
we	provide	more	terrestrial	carbon	cycle	data	assimilation	examples	using	some	of	the	
remotely	sensed	products	discussed	in	the	following.	
	
Section	3.2	
FAPAR	has	already	been	demonstrated	to	provide	a	strong	constraint	on	terrestrial	carbon	
and	water	fluxes	through	its	impact	on	the	phenology	components	of	the	carbon	cycle	
model	either	by	assimilating	only	FAPAR	data	(e.g.	Knorr	et	al.,	2010)	or	in	combination	
with	other	data	streams	(e.g.	Kaminski	et	al.,	2012;	Kato	et	al.,	2013;	Forkel	et	al.,	2014).	
	
Finally,	it	would	be	good	to	include	websites/references	for	data	access	in	all	data	tables	(as	
in	Table	1),	and,	given	the	important	emphasis	on	observation	uncertainty,	note	if	
uncertainty	estimates	come	with	the	data.	
	
Except	for	Table	3	all	other	Tables	contain	websites	or	references	to	the	data	products.	
Since	SIF	is	a	relatively	new	product	data	access	is	distributed	among	several	websites	(not	
official	ones	in	some	case),	which	may	not	be	maintained	after	some	years.	Therefore,	we	
did	not	include	URLs	but	nevertheless	added	example	references	to	Table	3.	
	
Lines	109-111:	worth	pointing	out	that	a	better	fit	between	the	posterior	maximum	
likelihood	simulation	and	the	observations	does	not	necessarily	mean	you	have	the	correct	
parameters	and/or	model	structure	(e.g.	MacBean	et	al.,	2016).	
	
Included	this	point	as	suggested:	



In	contrast,	data	assimilation,	in	particular	when	used	for	parameter	optimisation,	
potentially	identifies	structural	model	and/or	data	deficiencies	if	the	model-data	
mismatch	(or	the	benchmark	test)	is	still	inadequate	after	optimisation	(see	also	Figure	
(1)).	On	the	other	hand,	a	better	fit	between	the	posterior	maximum	likelihood	simulation	
(i.e.	using	the	optimised	parameters)	and	the	observations	is	not	necessarily	an	indication	
for	correct	parameters	and/or	model	structure	as	has	been	pointed	out	by	MacBean	et	al.	
(2016).	
	
Section	2.2:	The	distinction	between	sequential	and	variational	DA	could	be	slightly	
confusing	for	the	lay	reader.	I	suggest	the	following:	
Line	133:	make	it	clear	that	sequential	assimilation	happens	at	the	point	of	having	an	
observation	–	otherwise	one	may	wonder	“at	which	discrete	time	steps?”	
	
To	make	the	distinction	between	sequential	and	variational	DA	clearer,	we	changed	this	
sentence	to:	
We	distinguish	two	basic	approaches	in	data	assimilation:	sequential	assimilation,	which	
assimilates	observations	subsequently	at	discrete	model	time-steps,	and	variational	
assimilation,…	
	
Lines	137-139:	I	think	this	could	read	as	if	J	is	only	evaluated	in	the	variational	approach	
(though	that	may	be	helped	by	changing	the	caption	of	Figure	1	–	see	below).	I	suggest	that	
instead	of	just	discussing	the	inner	loop	you	could	make	a	distinction	about	when	J	is	
evaluated	and	at	what	point	the	minimum	is	found	for	both	approaches.	In	addition,	it	might	
be	helpful	to	the	reader	to	have	a	sentence	that	qualitatively	describes	what	the	cost	
function	represents	and	to	explicitly	say	that	the	aim	is	to	minimize	the	cost	function	around	
lines	132-139.	
	
Changed	the	wording	to:	
In	the	sequential	approach	the	assimilation	loop	is	evaluated	sequentially	over	time	
following	the	dynamics	of	the	model.	In	the	case	of	variational	assimilation	the	
assimilation	loop	is	evaluated	iteratively	(assuming	a	non-linear	model).	Both	cases	
evaluate	a	cost	function	J,	formulated	in	the	Bayesian	framework	as:	
	
Figure	1:	I	like	this	figure,	but	I	cannot	see	a	“Model-data	comparison”	box	as	you	describe	in	
the	caption.	I	guess	you	mean	“Evaluation	of	J”?	
	
Indeed,	corrected.	We	have	also	slightly	updated	the	figure	and	caption	following	the	
suggestion	by	referee	2.	
The	loop	between	the	’Evaluation	of	J’	box	to	’Model	and	observation	operator’	
box)	indicates	the	assimilation	process	(assimilation	loop).	Often,	the	analysis	of	residuals	
in	model-data	comparison	leads	to	either	model	improvements	or	adjustment	of	the	
measurement	strategies	(‘model	improvement’	and	‘adjusting	measurement	strategy’	
arrows).	
	
Section	2.3:	Line	195:	Maybe	add	paper	by	Bloom	and	Williams	(2015)	and	latest	CLM	paper	
by	Post	et	al.	(2017)?		
	



Added	the	Post	et	al.	(2017)	reference;	the	paper	by	Bloom	and	Williams	(2015),	although	it	
is	also	a	model-data	fusion	study,	has	a	slightly	different	focus	insofar	as	it	uses	ecological	
‘common	sense’	constraints	and	may	not	fit	that	well	to	the	context	here.	
	
Line	200:	maybe	worth	adding	“.	.	.same	cost	function	value	at	the	minimum”?		
	
Added	as	suggested.	
	
Line	203:	Could	add	Thum	et	al.	(2017)	here.	
	
Added	as	suggested.	
	
Section	3.1:	Worth	mentioning	that	observation	errors	in	a	DA	system	should	include	the	
models	errors,	and	what	could	give	rise	to	errors	in	the	model?	
	
We	have	included	the	following	short	paragraph	on	model	errors:		
These	off-diagonal	elements	are	usually	hard	to	specify,	but	they	are	important	to	
quantify	in	a	data	assimilation	system	because	they	have	considerable	impact	on	the	
solution	because	of	their	influence	on	the	weight	of	the	respective	observations	in	the	
cost	function.		
In	addition	to	the	observational	errors,	models	also	have	errors,	which,	in	a	data	
assimilation	system,	are	usually	included	in	the	observation	errors.	These	errors	in	
dynamical	models	are	mainly	caused	by	process	parameterizations	(instead	of	resolving	
the	process),	and	by	the	discretization	of	analytical	dynamics	into	a	numerical	model.	A	
more	detailed	description	of	the	different	model	error	sources	is	given	in	Scholze	et	al.	
(2012).		
	
Section	3.2:	This	section	is	very	focused	on	Europe.	It	would	be	worthwhile	detailing	efforts	
that	are	underway	in	other	regions,	e.g.	example	the	NASA	Carbon	Monitoring	System	
(http://carbon.nasa.gov).	This	section	also	feels	a	little	out	of	place.	I	might	suggest	
incorporating	it	into	the	introduction	to	Section	3	or	having	it	as	a	perspectives	section	at	the	
end	of	the	article.	
	
We	have	removed	this	section	and	moved	a	shortened	version	of	the	text	to	the	Conclusions	
to	give	a	perspective	on	operational	monitoring	systems	at	the	end	of	the	article	as	
suggested,	see	also	answer	to	the	first	comment	above.	
	
Section	3.3:	Lines	306-308:	worth	pointing	out	that	using	level	2	products	may	increase	the	
observation	uncertainty,	particularly	given	parameters/processes	implemented	in	retrieval	
algorithm	may	not	be	consistent	with	corresponding	equivalent	parameters/processes	in	the	
underlying	model	(and	that	this	may	be	a	benefit	of	using	level	1	products	–	e.g.	Quaife	et	
al.,	2008).	Also	perhaps	worth	explaining	that	for	vegetation	activity	that	VIs	are	an	
intermediate	step	in	that	they	are	“lower	order”	products	–	i.e.	they	are	raw	radiances	but	
also	do	not	require	a	complex	retrieval	algorithm;	instead	they	require	an	atmospheric	
transport	model	and	limited	calculations.	
	



We	are	not	quite	sure	what	the	referee	is	referring	to	here.	The	study	by	Quaife	et	al.	(2008)	
is	based	on	Level	2	data	and	not	Level	1.	Nevertheless,	we	have	included	a	sentence	on	the	
possible	inconsistencies	when	using	Level	2	data.		
However,	there	is	the	risk	that	when	using	level	2	or	higher	products	the	
parameters/processes	implemented	in	the	retrieval	algorithm	may	not	be	consistent	with	
corresponding	equivalent	parameters/processes	in	the	underlying	model,	and	thus	cause	
additional	errors	in	the	assimilation.			
	
Line	316-318:	worth	including	that	NDVI	has	also	been	used	(e.g.	MacBean	et	al.,	2015a),	
and	the	advantages/disadvantages	of	using	Vis.		
	
We	have	included	the	reference	and	referred	to	Section	3.3.2	(where	we	describe	the	
disadvantages	of	such	VIs	over	a	physically	based	quantity	such	as	FAPAR.)	for	a	discussion	
on	the	difference	between	VIs	and	FAPAR.	
…and	recently	developed	products	based	on	biogeochemical	processes,	such	as	sun-
induced	fluorescence	(SIF).	Leaf	area	index	(LAI,	e.g.	Liu	et	al.,	2014),	which	is	in	effect	
closely	related	to	FAPAR,	is	another	geophysical	parameter	representing	
vegetation	activity.	There	is	also	a	range	of	remotely	sensed	vegetation	indices,	of	
which	NDVI	is	an	example.	Both	LAI	and	NDVI	have	been	used	in	data	assimilation	
studies:	an	example	for	NDVI	is	given	by	MacBean	et	al.	(2015)	and	for	LAI	by	Luke	
(2011)	and	Barbu	et	al.	(2014).	In	Section	3.2.2	we	detail	the	difference	between	
NDVI	and	FAPAR,	and	explain	that	FAPAR	is	based	on	physical	principles.	FAPAR	has	
already	been	demonstrated	to	provide	a	strong	constraint…	
	
Line	318:	Forkel	et	al.	(2015)	is	another	example	of	the	use	of	FAPAR	with	a	terrestrial	model.	
	
Included	the	Forkel	et	al.	(2014)	reference.	
	
Line	321:	and	by	optimizing	parameters	related	to	phenology	and	photosynthesis	
(MacBean	et	al.,	2015b).	
	
We	prefer	not	to	cite	a	conference	presentation.	
	
Line	322:	Saying	“Also	assimilation	of	XCO2”	comes	a	bit	out	of	the	blue	here	as	you	
have	just	been	talking	about	vegetation	activity.	Please	could	you	say	what	is	meant	by	
XCO2,	or	refer	to	section	3.3.1.	
	
Changed	the	beginning	of	the	sentence	and	added	a	reference	to	section	3.3.1:		
Remotely	sensed	atmospheric	CO2	concentration	(XCO2,	see	Section	3.3.1)	has	also	been	
assimilated	into	a	diagnostic	terrestrial	carbon	cycle	model	to	derive	net	CO2	fluxes	
consistent	with	independent	in	situ	measurements	of	atmospheric	CO2	and	to	reduce	
posterior	uncertainties	in	the	inferred	net	and	gross	CO2	fluxes	(Kaminski	et	al.,	2016).	
	
Lines	325-332:	Other	examples	of	the	impact	of	soil	moisture	(and	LAI	and	FAPAR)	
data	assimilation	on	LAI	and	C	fluxes	include	the	work	at	CNRM	with	the	ISBA-A-gs	
model,	e.g.	Barbu	et	al.	(2014).	
	



Included	the	Barbu	et	al.	(2014)	reference:	
Remotely	sensed	atmospheric	CO2	concentration	(XCO2,	see	Section	3.3.1)	has	also	been	
assimilated	into	a	diagnostic	terrestrial	carbon	cycle	model	to	derive	net	CO2	fluxes	
consistent	with	independent	in	situ	measurements	of	atmospheric	CO2	as	well	as	to	
reduce	posterior	uncertainties	in	the	inferred	net	and	gross	CO2	fluxes	(Kaminski	et	al.,	
2016).	Barbu	et	al.	(2014)	and	Albergel	et	al.	(2017)	assimilated	both	soil	moisture	and	
LAI	data	into	a	land	surface	model,	but	their	focus	was	on	improving	the	hydrological	and	
land	surface	physical	quantities	and	not	the	carbon	cycle. 

	
Line	334:	several	studies	have	demonstrated	the	added	benefit	of	aboveground	biomass,	
including	articles	already	cited	(Richardson	et	al.,	2010;	Williams	et	al.,	2005;	Keenan	et	al.,	
2012).	Might	be	worth	listing	a	few	examples,	or,	combining	this	section	with	
aforementioned	examples	of	C	cycle	related	DA	studies	(section	2.3).	
	
We	have	added	some	references:	
So	far,	remotely	sensed	biomass	data	have	not	been	used	in	carbon	cycle	data	
assimilation	studies,	but	several	studies	(e.g.	Richardson	et	al.,	2010;	Keenan	et	al.,	2012;	
Thum	et	al.,	2017)	have	demonstrated	the	added	value	of	in	situ	above-ground	biomass	
observations	in	constraining	the	terrestrial	carbon	cycle.	
	
Line	340:	LAI	has	been	used	in	C	cycle	DA	(see	Barbu	et	al.,	2014).	Further	to	my	comment	on	
VIs	above,	perhaps	it	would	be	worth	explaining	somewhere	in	the	text	the	differences	
between	using	VIs,	FAPAR	and	LAI,	why	one	would	use	one	vs	another?	
	
See	answer	above	to	comment	Line	316-318.		
	
Line	341:	Worth	mentioning	the	dataset	of	Li	et	al.	(2011)	that	has	been	used	in	several	
studies	investigating	trends	in	biomass.	In	fact,	I	expect	that	VOD	data	will	be	increasingly	
widely	used	for	optimizing	biomass	in	terrestrial	biosphere	models,	and	therefore	I	would	
suggest	adding	a	discussion	of	what	these	data	actually	represent	in	Section	3.3.5	(i.e.	how	
reliably	can	you	estimate	biomass	(leaf	or	total	aboveground?)	from	what	is	essentially	a	
measure	of	water	content).	
	
See	answer	below	to	comment	Line	675.	
	
Line	343:	I	think	that	LST	might	be	used	in	a	similar	manner	to	soil	moisture	in	DA	in	the	
future,	and	not	just	as	an	input/boundary	condition.	Therefore	perhaps	it	can	be	included	
with	VOD	in	this	context?	
	
Changed	as	suggested:	
However,	these	products	are	rather	used	as	input	or	boundary	conditions	for	terrestrial	
carbon	cycle	models	(burned	area	and	land	cover)	or,	in	the	case	of	land	surface	
temperature	and	vegetation	optical	depth,	they	have	so	far	not	been	used	in	carbon	cycle	
data	assimilation	studies.	
	



Section	3.3.2	Lines	477:	you	mean	significant	difference	in	the	absolute	magnitude	between	
the	products	(as	the	temporal	and	spatial	patterns	are	quite	consistent,	as	you	state)?	This	
was	also	a	conclusion	drawn	by	D’Odorico	et	al.	(2014)	and,	to	some	extent,	Tao	et	al.	
(2015);	therefore,	it	is	worth	mentioning	that	these	studies	agree	on	this	point.	As	
mentioned	above,	here	or	elsewhere	I	think	it	would	be	beneficial	to	have	a	discussion	of	the	
use	of	VIs	and	LAI.	Arguably	LAI	is	the	variable	that	is	most	closely	linked	to	standard	
terrestrial	model	state	variables,	therefore	the	reader	should	understand	why	one	might	use	
any	of	these	three	options	for	optimizing	vegetation	dynamics/activity,	and	the	
advantages/disadvantages	of	each.	For	example,	if	a	modeler	is	mostly	concerned	with	
optimizing	the	overall	magnitude	of	vegetation	activity,	careful	choice	of	which	FAPAR	
product	to	use	is	important	(likely	the	same	for	LAI).	If	they	are	more	concerned	with	
temporal	dynamics,	one	could	argue	that	using	a	normalized	lower	order	product	(e.g.	NDVI)	
that	does	not	require	such	a	sophisticated	retrieval	algorithm	might	be	more	appropriate.	
Perhaps	you	do	not	agree!	But	in	any	case,	a	discussion	would	be	useful	here.	At	the	end	of	
this	section	there	is	a	particular	focus	on	the	JRC-TIP	FAPAR	product	as	opposed	to	one	of	the	
others,	MODIS	for	example.	It	would	be	good	to	explain	the	reason	for	this	choice,	or	to	see	
more	information	on	some	of	the	other	commonly	available	products.	
	
We	have	emphasised	that	the	difference	between	the	products	lies	mainly	in	the	absolute	
magnitude	and	added	that	D’Odorico	et	al.	(2014)	and	Tao	et	al.	(2015)	came	to	the	same	
conclusion:	
Pickett-Heaps	et	al.	(2014)	concluded	that	although	all	six	evaluated	products	display	
robust	spatial	and	temporal	patterns	there	is	considerable	disagreement	in	the	absolute	
magnitude	amongst	the	products	and	none	of	the	products	outperforms	the	others.	This	
has	also	been	confirmed	by	the	studies	of	Dodorico	et	al.	(2014)	and	Tao	et	al.	(2015).	
	
We	extended	the	discussion	on	the	difference	between	Vis	and	FAPAR	by	adding	LAI	into	it	
and	mentioning	the	shortcomings	of	VIs	and	LAI	compared	to	FAPAR:	
These	indices	generally	exhibit	some	improvement	in	one	respect	but	at	the	expense	of	
degradation	in	another	respect.	Pinty	et	al.	(2009)	demonstrate	the	limitations	of	such	VIs	
in	representing	the	complex	radiative	properties	of	the	canopy-soil	system	over	the	visible	
to	NIR	albedo	range.	Satellite-derived	LAI	products	(e.g.	Liu	et	al.,	2014)	seem	to	be	an	
alternative	to	VIs.	LAI	is,	however,	model-dependent,	i.e.	the	correct	interpretation	of	this	
variable	depends	on	the	formulation	of	the	model	used	in	the	retrieval	scheme,	and	may	
differ	from	the	interpretation	adopted	by	the	land	biosphere	model	used	for	assimilating	
the	LAI	product	(Disney	et	al.,	2016).	
A	rational	approach	to	addressing	all	these	issues	together	is	to	design	a	physically-based	
quantity	which	is	determined	by	the	state	of	the	canopy-soil	system.	
	
The	reason	why	there	is	a	slight	focus	on	the	JRC-TIP	product	is	mentioned	in	this	section	
3.3.2.	We	made	this	clearer	now	in	the	manuscript	at	two	places:	
The	JRC-TIP	(Pinty	et	a.,	2007)	is	an	inverse	modelling	system	that	was	explicitly	designed	
to	retrieve	a	set	of	land	surface	variables,	including	FAPAR,	in	a	form	that	is	compliant	
with	the	requirements	for	assimilation	into	terrestrial	biosphere	models,	hence	we	focus	
in	the	following	on	this	product.	
	
TIP	uses	observed	broadband	albedo	in	the	NIR	and	visible	spectral	domains	as	



input.	The	prior	information	used	in	the	retrieval	is	constant	in	space	and	time,	i.e.	all	
variability	is	determined	from	space	(Kaminski	et	al.,	2017).	This	is	in	contrast	to	other	
retrieval	approaches,	which	are	based	on	prescribed	land	cover	maps	(e.g.	Liu	et	al.,	
2014).	
	
Lines	484-485:	Please	could	you	be	clearer	how	the	products	in	this	sentence	link	to	Table	2?	
JRC	MGVI	is	not	described	in	Table	2	for	example.	
	
The	JRC	MGVI	product	is	included	as	a	footnote	in	Table	2	because	it	uses	the	same	
algorithm	as	used	for	the	SeaWiFS	product.	We	clarified	this	in	the	footnote	and	explicitly	
mention	now	JRC	MGVI.	
	
Section	3.3.4	Lines	489-491:	Although	I	appreciate	you	do	not	wish	to	provide	an	exhaustive	
description	of	retrieval	algorithms,	I	think	it	would	be	helpful	to	qualitatively	describe	the	
difference	between	passive	and	active	retrieval	algorithms	in	one	or	two	sentences	here,	as	
well	as	the	fact	different	algorithms	may	produce	either	volumetric	water	content	(absolute	
values)	vs	relative	soil	moisture	values.	I	would	be	interested	to	see	a	discussion	of	GRACE	
land	water	content	in	this	section.	
	
We	included	a	short	description	on	the	retrieval	of	soil	moisture	from	active	instruments	
and	added	a	short	sentence	on	GRACE.	We	did	not	include	a	discussion	of	GRACE	land	water	
measurements	here	because	they	reflect	the	amount	of	ground	water.	This	is	different	to	
the	plant	available	soil	moisture	used	in	terrestrial	ecosystem	models	and	relevant	for	
simulation	of	the	terrestrial	carbon	cycle:	
Both	passive	radiometer	systems,	measuring	the	emitted	microwave	radiance	(’brightness	
590	temperatures’),	and	active	radar	systems,	measuring	backscattered	microwave	
radiance,	can	be	used	to	retrieve	soil	moisture.	Various	approaches	exist	that	convert	
brightness	temperatures	and	backscatter	measurements	into	estimates	of	soil	moisture,	
including	radiative	transfer	model	inversion	approaches	(e.g.	Kerr	et	al.	2012,	Owe	et	al.	
2008),	neural	networks	(e.g.,	Rodríguez	Fernández	et	al.	2015),	linear	regressions	(e.g.,	Al-
Yaari	et	al.	2016),	and	change	detection	methods	(Wagner	et	al.,	1999).	The	latter	is	
commonly	applied	to	scatterometer	measurements	and	yields,	in	contrast	to	the	other	
approaches	which	provide	soil	moisture	as	volumetric	water	content,	soil	moisture	as	a	
percentage	of	total	saturation.	
	
Only	Synthetic	Aperture	Radar	is	able	to	provide	much	higher	spatial	resolutions,	up	to	a	
few	tens	of	meters,	yet	at	the	cost	of	long	revisit	times.	Also	observations	made	by	the	
Gravity	Recovery	and	Climate	Experiment	(GRACE;	Rodell	et	al.	2009)	are	sensitive	to	soil	
moisture,	but	the	estimation	of	soil	moisture	content	from	these	observations	is	not	
straightforward	because	they	are	also	sensitive	to	changes	in	snow,	surface	water,	
groundwater,	and	vegetation.	
	
Section	3.3.5	Line	670:	do	not	need	to	reiterate	what	an	active	sensor	is	here.	
	
Removed	the	half	sentence	on	what	an	active	sensor	is.	
	



Line	675:	I	see	you	do	refer	to	the	VOD	product	of	Liu	et	al.	here.	Still,	I	think	it	would	be	
beneficial	to	detail	that	this	is	based	on	VOD	data	and	describe	briefly	how	VOD	are	derived	
(following	on	from	the	mention	of	VOD	in	the	soil	moisture	section)	and	how	biomass	is	
estimated	from	VOD	and	their	expected	use/value	for	optimizing	biomass	(as	discussed	
above),	as	well	as	for	better	understanding	discrepancies	in	other	sources	of	biomass	data	
that	you	discuss	towards	the	end	of	Section	3.3.5.	
	
We	have	added	that	the	Liu	et	al	(2015)	AGB	product	is	based	on	VOD.	We	did	not	include	a	
discussion	on	how	VOD	is	derived;	that	would	be	outside	our	scope.	
Furthermore,	the	emphasis	is	on	the	AGB	of	forests,	although	a	global	data	set	of	AGB	in	
all	biomes	for	the	period	1993-2012	has	been	produced	based	on	VOD	data	from	global	
passive	microwave	sensors,	hence	with	spatial	resolution	of	10	km	or	coarser	(Liu	et	al.,	
2015).	The	AGB	product	is	derived	from	a	regression	of	VOD	against	observations	of	AGB	
from	ground-based	inventory	data.				
	
Lines	676-684:	updated	reference:	Santoro	et	al.	(2015)	–	update	to	aforementioned	papers	
providing	biomass	estimates	across	a	wider	range	of	biomes	in	the	northern	hemisphere.	
	
Updated	the	reference.	
Santoro	et	al.	(2015)	provide	a	high	resolution	dataset	(0.01°)	over	the	northern	
hemisphere	with	a	relative	RMSE	against	National	Forest	Inventory	between	12%	and	
45%.	
	
Line	711:	Could	you	provide	the	biomass	limit	that	the	P-band	BIOMASS	mission	will	be	able	
to	resolve	(to	compare	with	the	NISAR	mission)?		
	
We	added	the	following	text	to	provide	a	biomass	limit	from	P-band:	
The	ESA	BIOMASS	mission	(European	Space	Agency,	2012),	to	be	launched	in	2021,	is	a	P-
band	radar	that	will	provide	near	global	measurements	of	forest	biomass	and	height.	
Measurements	from	airborne	sensors	indicate	that	even	in	dense	tropical	forests	affected	
by	topography,	the	P-band	frequency	used	by	BIOMASS	will	give	sensitivity	to	biomass	up	
to	350-450	t/ha	(Minh	et	al.,	2014;	Villard	and	Le	Toan,	2015).	
	
Given	you	mention	the	international	soil	moisture	network	in	Section	3.3.4,	it	may	be	worth	
mentioning	the	international	tree	ring	data	bank	in	this	section	
(https://data.noaa.gov/dataset/international-tree-ring-data-bank-itrdb),	as	these	data	
represent	a	promising	new	direction	for	optimizing	biomass	across	a	range	of	biomes.	
	
Included	as	suggested,	we	added	the	following	sentence	at	the	end	of	Section	3.3.5:	
As	well	as	limitations	caused	by	mission	lifetimes,	satellite	measurements	of	biomass	are	
unlikely	to	be	sensitive	enough	to	measure	biomass	increment	except	in	rapidly	growing	
plantations	and	tropical	forests.	Hence	an	important	ancillary	dataset	for	studies	aiming	
to	relate	biomass	to	climate	and	environment	is	tree	ring	data	
(https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring).	
	
Minor	comments	and	typos	Line	252:	maybe	“between”	better	than	“among”?	Line	309-310:	
sentence	could	be	simplified	Line	111:	benchmark	Line	135:	measurement	Line	145:	



knowledge	Line	234	and	241:	related	Line	255:	diagonal	Line	311:	terrestrial	Line	315:	
biogeochemical	Line	420:	that	than	Line	440:	reflectance	Line	576:	complementarily	Line	
727:	satellite	Line	1395:	Updated	Thum	et	al.	(2016)	reference	–	see	below.	
	
All	corrected.	
	
Comments	by	referee	2,	Thomas	Kaminski:	
1.	Model-data	fusion	and	data	assimilation:	L	37	states	that	both	terms	mean	the	same.	Is	
this	true?	If	yes,	I	suggest	to	keep	one	of	the	two	for	the	rest	of	the	manuscript	instead	of	
switching	between	the	two.	If	not	–	maybe	because	by	model-data	fusion	we	could	also	
understand	some	blending	of	observations	with	pre-computed	model	output	–	then	be	more	
precise	in	the	definitions	here	and	below	use	the	appropriate	term	depending	on	context.	
	
We	clarified	the	terminology	by	adding	the	following	sentence	and	used	‘data	assimilation’	
throughout	the	manuscript.	
The	term	model-data	fusion	is	sometimes	understood	in	a	more	general	way,	where	
observational	data	is	blended	with	(pre-computed)	model	output,	whereas	the	term	'data	
assimilation'	refers	to	a	robust	mathematical	framework	for	improving	model	predictions	
with	observational	data.	
	
2.	L	47:	“new	observation”:	maybe	rather	“new	data	stream”	or	“new	type	of	observation”	
	
Changed	as	suggested.	
	
3.	L64:	“In	contrast	to	Ciais	et	al.	(2014),	who	focus	on	carbon-cycle	observations,	we	focus	
here	on	any	kind	of	relevant	observational	data	to	be	(potentially)	assimilated	in	a	terrestrial	
carbon	cycle	data	assimilation	system	(CCDAS).	In	a	CCDAS	the	observations	are	used	to	
constrain	the	underlying	model	(i.e.	to	move	model	output	quantities	closer	to	the	
observations	and	reduce	their	posterior	uncertainties)	usually	by	parameter	optimisation.”	
This	formulation	could	be	improved.	“any	kind	of”	could	be	dropped	in	the	first	sentence,	and	
the	second	sentence	could	read	(for	example):	In	a	CCDAS	non-carbon	observations	can	
be	exploited	to	constrain	the	simulated	carbon	cycle	indirectly	through	the	relations	
implemented	in	the	process	model.	Such	observational	constraints	act	by	ruling	out	
combinations	of	the	unknowns	in	a	CCDAS	(typically	a	combination	of	process	parameters,	
initial-	or	boundary	conditions)	that	are	inconsistent	with	the	observations	and	thereby	
reduce	uncertainties	in	the	simulated	output.”	
	
Changed	as	suggested.	
	
4.	L73:	“Our	focus	lies	on	the	terrestrial	carbon	cycle,	because	of	the	higher	spatial	and	
temporal	variability	in	the	net	exchange	fluxes	and	their	associated	higher	uncertainties	than	
form	the	ocean	and	anthropogenic	components.”	Maybe	not	true	on	all	relevant	scales.	
Maybe	just	drop	the	sentence,	no	need	to	justify	the	terrestrial	focus	in	this	context.	
	
Changed	as	suggested.	
	



5.	L101:	in	fact	the	weighting	is	in	inverse	proportion	of	the	uncertainty,	also	appears	below	
where	Eq	1	is	described	
	
Corrected.	
	
6.	L103:	either	is	maybe	not	appropriate?	
	
Indeed,	removed	‘either’.	
	
7.	L118:	Maybe	you	want	to	put:	“Here,	we	follow	the	notation	as	introduced	by	Rayner	et	
al.	(2016)”	at	the	beginning	of	the	subsection,	i.e.	before	you	start	using	their	notation.	
	
We	included	the	reference	to	Rayner	et	al.	(2016)	in	the	first	sentence	of	the	subsection:	
The	general	problem	of	data	assimilation	can	be	formulated	(following	the	notation	of	
Rayner	et	al.	[2016])	as	follows:…	
	
8.	As	we	are	dealing	with	assimilation	of	“multiple	data	streams”	you	could	mention	that	
usually	each	data	steam	requires	its	own	observation	operators,	and	in	fact	already	here	
refer	to	Kaminski	and	Mathieu	(2016/7),	maybe	even	their	octopus	Figure.	And	for	Eq	1	you	
could	say	that,	for	convenience	of	notation,	now	you	combine	all	of	them	into	a	single	H().	
	
Added	two	sentences	to	clarify	this	point.	The	first	one	in	the	second	paragraph	of	this	
section:	
A	data	assimilation	system	consists	of	three	main	ingredients:	a	set	of	observations,	a	
dynamical	model	including	the	observation	operator,	and	an	assimilation	method.	When	
assimilating	multiple	data	streams	each	data	stream	usually	requires	its	own	observation	
operator	(see	e.g.	Kaminski	and	Mathieu,	2016).	
	
And	a	second	one	after	Equation	(1):	
When	multiple	data	streams	with	different	observation	operators	are	assimilated	there	
will	be	several	summands	of	the	form	of	the	second	term	on	the	right	hand	side	of	
Equation	(1),	one	for	each	data	stream.	
	
9.	L122:	Maybe	drop	this	sentence.	In	fact	the	state	are	mixing	ratios.	
	
Changed	as	suggested.	
	
10.	L133:	“thus	evolves”?	
	
Changed	the	corresponding	sentence	to:	
We	distinguish	two	basic	approaches	in	data	assimilation:	sequential	assimilation,	which	
assimilates	observations	subsequently	at	discrete	model	time-steps,	and	variational	
assimilation,…	
	
11.	L136:	“optimality”	maybe	you	can	find	a	better	word?	Maybe	“adequacy”?	
	
Indeed,	changed	as	suggested.	



	
12.	Figure	1	is	confusing	in	several	respects	(prior	info	enters	cost,	inner/outer	loop	to	be	
confused	with	NWP	terminology,	U(o)	not	necessarily	only	a	model	output,	cost	function	at	
minimum	does	not	imply	availability	of	A,	etc	...).	Maybe	you	just	want	to	drop	it	with	the	
two	sentences	that	describe	it?	
	
We	keep	Figure	1	because	referee	#1	found	it	useful,	but	we	updated	the	figure	and	
changed	the	wording	(inner/outer	loop)	in	the	text	and	caption	to	not	be	confused	with	
NWP.		
	
13.	L113-150	starting	with	“From	Equation	...”	could	also	be	clearer,	shortened	or	dropped	(It	
does	not	follow	from	Eq.	1	that	uncertainties	are	to	be	taken	into	account,	but	Eq.	1	follows	
from	combining	PDF	descriptions	of	prior,	observations,	and	model	with	a	few	
simplifications,	Mean	and	variance	are	not	sufficient	to	characterise	a	multi-variate	
Gaussian,	...)	Same	holds	for	next	paragraph	(“assimilation	problem	is	Gaussian”	does	not	
make	sense;	division	by	the	matrix	B	is	not	straightforward...)	Maybe	just	explain	variables	in	
Eq.	1	and	then	directly	move	to	the	paragraph	starting	with	Rayner	et	al.	(2016).	
	
Dropped	the	whole	paragraph	as	suggested.	
	
14.	L161:	The	“and”	between	citations	is	missing	(“citep”	would	have	worked	for	multiple	
citations),	same	problem	occurs	a	few	times	further	down	below.	
	
Changed.	
	
15.	L205:	what	about	non-linear	observation	operators?	
	
Included	also	‘observation	operators’	in	the	text:	
…;	in	the	case	of	non-linear	models	or	non-linear	observation	operators	only	the	
simultaneous	assimilation…	
	
16.	Section	3.1:	It	is	good	to	introduce	the	different	forms	of	errors.	It	would	also	be	
instructive	to	provide	definitions	of	precision	and	accuracy.	
	
We	think	a	definition	is	not	needed	here	(and	can	be	looked	up	in	a	dictionary	if	needed),	it	
is	more	important	that	the	terms	are	related	to	random	and	systematic	errors,	which	we	
have	done	at	the	end	of	the	respective	bullet	points.	
	
17.	L242:	Is	is	worth	mentioning	that	the	scale	at	which	we	trust	the	model	may	be	larger	
than	a	grid	cell?		
	
Changed	as	suggested:	
For	instance	a	quantity	simulated	by	a	model	is	’representative’	for	a	given	spatial	and	
temporal	resolution	of	the	model	grid.	In	fact,	the	scale	at	which	we	trust	a	model	may	be	
larger	than	a	grid-cell.	
	



L247:	“In	the	case	of	satellite-based	observations	the	representation	error	also	includes	
errors	in	inferring	a	biophysical	quantity	from	the	photons	measured	at	the	sensor.	We	come	
back	to	this	issue	later.”	I	would	think	that	such	errors	in	the	retrieval	rather	go	into	the	
above	two	categories?	
	
Indeed	this	may	be	misleading	and	we	have	removed	this	sentence	here.	
	
18.	L	255:	“they	affect	the	prediction	of	the	optimal	solution	in	the	same	way	as”	could	
maybe	be	replaced	by	“they	have	considerable	impact	on	the	solution.	This	is	because	of	
their	influence	on	the	weight	of	the	respective	observations	in	the	cost	function.”	It	is	very	
good	you	stress	this	point.	In	fact	you	should	take	it	up	in	the	presentation	of	each	data	
stream.	So	far	it	is	only	addressed	in	the	XCO2	and	the	biomass	sections.	
	
Changed	the	sentence	as	suggested.	We	did	not	mention	this	for	each	data	stream	explicitly	
again	because	here	it	is	mentioned	in	general	and	not	related	to	a	particular	data	stream.	
	
19.	L	263:	What	is	inhomogeneous	variance?	
	
Here,	it	means	that	the	variance	of	each	of	the	superposed	Gaussian	distributions	is	not	the	
same.		
	
20.	Section	3.2:	Maybe	add	reference/web	page	of	ICOS?	Is	is	worth	mentioning	similar	
programmes	outside	Europe?	“The	measurements	are	designed”:	maybe	better	“the	
network”	or	“the	observing	system”?	
	
Added	URL	for	ICOS	web	page	and	changed	as	suggested.	
	
	L282:	Paragraph	may	fit	better	into	the	beginning	of	section	3.3.	Where	you	discuss	the	
relevant	observations	provided	by	the	sentinels,	you	are	using	our	current	perspecitve,	i.e.	
S1-5.	You	could	make	this	clear,	because	in	a	few	years	time	are	reader	could	wonder	why	
you	don’t	mention	observations	by	S6	...	etc...	
	
This	section	has	been	removed	and	parts	of	it	are	now	in	the	Conclusions	sections,	see	also	
answer	to	first	comment	from	referee	#1.	
	
21.	L	305	and	310:	On	L305	you	write	EO,	then	Earth	Observation,	then	EO...	something	to	be	
checked	throughout	...	
	
After	introducing	EO	in	the	beginning	of	the	manuscript	we	now	consistently	use	EO	
throughout	the	manuscript.	
	
22.	L344:	For	example	Luke	(2011)	assimilates	LAI.	
We	have	changed	this	section	(see	answers	to	referee	#1)	and	included	the	reference	to	
Luke	(2011).	
	
23.	Section	3.3.1:	Is	it	worth	to	briefly	explain	how	a	total	column	value	can	be	sensitive	or	
insensitive	to	surface	fluxes?		



	
The	following	has	been	added:		
In	the	following	we	focus	the	discussion	on	sensors	that	have	already	delivered	multi-year	
XCO2	and	XCH4	data	sets,	i.e.	SCIAMACHY	and	TANSO.		
These	satellite-derived	XCO2	and	XCH4	data	products	are	sensitive	to	surface	fluxes	
because	CO2	and	CH4	emission	and	uptake	by	surface	sources	and	sinks	results	in	the	
largest	changes	of	the	atmospheric	CO2	and	CH4	mixing	ratio	close	to	the	Earth’s	surface	
and	therefore	modifies	the	observed	vertical	columns.	This	results	in	local	or	regional	
atmospheric	enhancements	(e.g.,	Buchwitz	et	al.,	2017,	discussing	localized	methane	
sources)	or	large-scale	atmospheric	gradients	(e.g.,	Reuter	et	al.,	2014,	discussing	CO2	
uptake	by	the	terrestrial	biosphere).	
	
L400:	“)”	should	be	“(“		
	
Corrected.	
	
L413:	You	could	mention	how	the	aggregation	of	errors	to	the	5	degree	grid	was	performed.		
	
The	following	has	been	added:	
Each	5°×5°	monthly	grid	cell	also	contains	an	estimate	of	the	overall	uncertainty	(also	
shown	in	Fig.	(3))	which	has	been	computed	taking	into	account	random	and	systematic	
error	components.	The	grid-cell	uncertainty	is	computed	from	two	terms:	(i)	using	the	
reported	uncertainties	as	given	in	the	Level	2	(individual	ground	pixel)	product	files	for	
each	of	the	used	satellite	products	(using	an	ensemble	of	SCIAMACHY	and	GOSAT	Level	2	
products)	and	(ii)	using	a	term	accounting	for	potential	regional/temporal	biases	as	
obtained	from	validation	using	TCCON	ground-based	data	(see	above).	The	first	term	
depends	on	the	number	of	individual	observations	added	(the	error	reduces	in	proportion	
to	the	square	root	of	the	number	of	observations	added)	whereas	the	latter	term	is	
constant	and	in	the	range	0.57	–	0.87	ppm	depending	on	satellite	XCO2	product	or	in	the	
range	6	–	10	ppb	for	XCH4.		
	
L435:	Maybe	update	reference	to	latest	version	of	the	CCI	CAR.	
	
Done.	
	
	L439:	Is	is	worth	mentioning	planned	XCO2	missions?	
	
Note	that	additional	missions,	not	discussed	in	detail	in	our	manuscript,	are	already	
mentioned.	Therefore,	we	have	added	here	planned	missions	only	shortly	by	adding	the	
following:	
…China’s	TanSat	(launched	end	of	2016),	which	will	deliver	XCO2	with	similar	
characteristics	to	NASA’s	OCO-2.	It	can	be	expected	that	future	satellites	will	provide	
improved	measurements,	in	particular	with	respect	to	more	localized	emission	sources	
(e.g.,	Bovensmann	et	al.,	2010;	Buchwitz	et	al.,	2013;	Ciais	et	al.,	2015).	
	
24.	Section	3.3.2:	L445:	remove	one	“)”.		
	



Corrected.	
	
L458:	“closely	follows	the	state	of	the	vegetation”	could	be	“is	determined	by	the	state	of	the	
canopy-soil	system”	
	
Changed	as	suggested.	
	
L475:	Disney	et	al.	(2016)	also	compare	two	products.		
	
Included	the	Disney	et	al	(2016)	reference	here:	
McCallum	et	al.	(2010)	looked	at	four	FAPAR	data	sets	over	Northern	Eurasia	for	the	year	
2000,	Pickett-Heaps	et	al.	(2014)	evaluated	six	products	across	Australia,	D’Odorico	et	al.	
(2014)	compared	three	products	over	Europe,	Tao	et	al.	(2015)	assessed	five	products	over	
different	land	cover	types,	and	Disney	et	al.	(2016)	compared	two	FAPAR	products	derived	
from	GlobAlbedo	and	MODIS	data.	
	
L	480:	To	simplify	the	sentence	maybe	move	the	part	in	brackets	up	to	the	definition	of	L460.	
	
Done	as	suggested,	the	text	with	the	definition	of	FAPAR	now	reads:	
The	Fraction	of	Absorbed	Photosynthetically	Active	Radiation	(FAPAR),	which	is	a	
normalised	fraction	with	values	ranging	from	0	to	1,	provides	information	on	the	
photosynthetic	activity	of	the	land	vegetation.		
		
L503:	“see	2”	should	be	“see	table	2”.		
	
Corrected.	
	
Regarding	correlation	of	uncertainty	you	might	add	on	L506:	after	“periods.”:	To	reduce	disk	
space,	by	default,	JRC-TIP	products	are	delivered	without	correlations	among	the	
uncertainties	between	individual	variables,	even	though	these	correlations	are	available.	An	
estimate	of	uncertainty	correlation	in	space	and	time	is	not	provided.	The	JRC-TIP	products	
derived	from	MODIS	(collection	5)	broadband	albedos	minimise	temporal	uncertainty	
correlation	as	each	collection	5	albedo	value	is	derived	as	integral	exclusively	of	observations	
over	non-overlapping	16-day	periods.	
	
Changed	as	suggested,	except	for	the	last	sentence	(which	seems	to	be	too	specific).	
	
25.	Section	3.3.3:	L	514:	“directly	related”	In	the	context	of	data	assimilation,	is	it	worth	
mentioning	that	there	are	complex	processes	which	require	complex	models	as	observation	
operators	for	SIF,	in	order	to	extract	the	maximal	benefit	from	this	data	steam?		
	
Included	a	sentence	on	this	at	the	end	of	the	paragraph:	
But	in	the	context	of	DA	and	in	order	to	extract	the	maximal	benefit	from	SIF	data,	the	
complex	processes	responsible	for	SIF	in	the	plants'	photochemical	systems	(as	mentioned	
above)	require	complex	models	as	observation	operators	for	SIF.	
	
L	524:	“lies”	could	be	“relies”?	



	
Changed	as	suggested.	
	
	L	530:	Why	is	the	simplicity	of	the	forward	model	related	to	the	fact	that	least	squares	is	
applied,	which	might	also	work	with	complex	models?		
	
Changed	to:	
The	retrieval	forward	model	is	thus	simple	and	can	be	linearised	(e.g.	Guanter	et	al.,	2012;	
Köhler	et	al.,	2015},	which	simplifies	the	inversion.	
	
L	540:	Does	“a	compromise”	make	sense	here?	Isn’t	it	rather	the	definition	of	the	grid	size	
that	is	determined	by	a	compromise	and	the	number	of	retrievals	then	just	a	function	of	this	
choice	of	grid	size	(plus	the	other	factors	mentioned)?	When	discussing	the	spatial	and	
temporal	sampling,	it	might	be	instructive	to	mention	the	variability	in	time	as	you	do	it	in	
space.	
	
Typically,	the	smallest	spatial	or	temporal	grid	size	is	defined	as	a	function	of	the	application	
and	region	of	interest	(if	not	global	studies	are	considered),	which	then	defines	the	other	
dimension	(temporal	and	spatial),	and	the	number	of	retrievals	to	be	considered	as	the	
reviewer	is	pointed	out.	A	short	clarification	has	been	added	to	the	text.	
The	number	of	retrievals	to	be	aggregated	into	a	given	grid-cell	results	from	a	compromise	
between	spatial	resolution,	temporal	resolution	and	precision	of	the	gridded	product,	the	
size	of	the	spatial	and	temporal	bins	being	exchangeable	in	terms	of	their	effect	on	the	
random	uncertainty.	
	
26.	Section	3.3.4:	L600:	“cost	of	the”:	maybe	better	“cost	of	long”		
	
Changed	as	suggested.	
	
L652:	“,5.”		
	
Corrected,	should	read	‘see	Figure	5’.	
	
L658:	“to	improve	the	model’s	hydrology”	in	fact	in	a	CCDAS	we	are	after	the	indirect	
constraint	on	carbon,	so	this	restriction	may	not	be	needed	here?	
	
Indeed,	we	have	slightly	changed	the	text:	
…that	allows	for	a	systematic	assimilation	into	land	surface	models.	These	products	have	
been	used	to	improve	model	hydrology	by,	for	example,	Martens	et	al.	(2016)	who	
showed	that…	
	
27.	Conclusions:	L724:	“observational	characteristics	of	the	observational	data”	maybe	you	
meant	error	or	uncertainty	characteristics?		
	
Yes,	corrected.	
	
L730:	“correlations”:	“uncertainty	correlations”	or	“error	correlations”		



	
Corrected	to	‘error	correlations’.	
	
L732:	“For	example,	while	FAPAR	data	constrain	mainly	the	phenology	component	of	a	
terrestrial	carbon	cycle	model,	soil	moisture	data,	in	contrast,	constrain	the	hydrological	
component,”	see	above	regarding	the	indirect	constraints.	You	probably	do	not	need	to	write	
this.	In	fact	FAPAR	can	provide	an	important	constraint	on	hydrology	(see	Kaminski	et	al.,	
2012)	
	
Removed	this	sentence	as	suggested,	this	also	increases	the	readability	of	this	section.	
	
28.	Fig	3:	I’d	suggest	to	go	for	a	6	panel	figure,	the	four	maps	are	tiny;	Better	use	degree	
symbol	in	capton.	
	
We	have	improved	the	figure	along	the	lines	suggested	and	for	the	revised	version	of	the	
manuscript	we	use	the	degree	symbol	in	the	caption.	
	
29.	Table	1:	I	suggest	to	replace	“parameter”	by	“variable”	
	
Changed	as	suggested.	
	
30.	Table	4:	You	could	add	wave	lengths	to	the	bands,	for	many	colleagues	the	band	names	
don’t	mean	anything.	
	
We	do	not	think	that	adding	the	wave	lengths	provides	important	additional	information	in	
the	context	of	the	paper	here,	so	we	kept	the	table	as	is.	
	
There	are	quite	a	number	of	typos.	Many	of	them	(e.g.	“Reflectamce-based”	or	“assessemt”	
or	“observeing”)	can	be	detected	by	a	spell	checker.	
	
All	corrected.	
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Abstract.

The global carbon cycle is an important component of the Earth system and it interacts with the

hydrological
✿✿✿✿✿✿✿✿

hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better under-

standing of the global carbon cycle is required for improved projections of climate change including

corresponding changes in water and food resources and for the verification of measures to reduce5

anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be

achieved by model-data fusion or data assimilation systems, which integrate observations relevant

to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredi-

ents for such systems are a carbon cycle model, an algorithm for the assimilation, and systematic

and well error-characterized
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

error-characterised
✿

observations relevant to the carbon cycle. Relevant10

observations for assimilation include various in-situ
✿✿

in
✿✿✿

situ
✿

measurements in the atmosphere (e.g.

concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon

stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface

properties).

We briefly review the different existing data assimilation techniques and contrast them to model15

benchmarking and evaluation efforts (which also rely on observations). A common requirement for

all assimilation techniques is a full description of the observational data properties. Uncertainty

estimates of the observations are as important as the observations themselves because they similarly

determine the outcome of such assimilation systems. Hence, this article reviews the requirements

of data assimilation systems on observations and provides a non-exhaustive overview of current20

observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on

1



progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.

(2005) emphasising the rapid advance in relevant space-based observations.

1 Introduction

The anthropogenic pertubation
✿✿✿✿✿✿✿✿✿✿

perturbation
✿

of the global carbon cycle has led to a global mean in-25

crease of 43% in atmospheric CO2 (from 280 ppm to 398 ppm) in 2014 compared to pre-industrial

(before 1750) levels (WMO, 2015), and is the main driver for climate change. The main causes for

the increase in CO2 are burning of fossil fuels and land use change, which amount to emissions

of 9.8± 0.5 GtC in 2014. However, only about 44% of these emissions stay in the atmosphere,

the remainder is currently taken up by the land biosphere (≈ 30%) and the surface ocean (≈ 26%)30

(Le Quéré et al., 2015). Positive climate-carbon cycle feedbacks, predominatly
✿✿✿✿✿✿✿✿✿✿✿

predominantly
✿

acting

on land processes, may reduce this sink capacity and thus accelerate global warming (Matthews et al.,

2007). Also, the sink strength of the terrestrial biosphere is more variable than that of the ocean

(Ciais et al., 2013) and its quantification by process-based terrestrial carbon cycle models exhibit

large uncertainties (Le Quéré et al., 2015).35

A common way to reduce uncertainties from process-based modelling is by confronting these

models with observational data. Raupach et al. (2005) pointed out that the systematic combination

of observational data with process modelling, which is commonly refered
✿✿✿✿✿✿

referred
✿

to as ’model-

data fusion’, is an effective strategy for observing the Earth system. Model-data fusion , or more

formally known as data assimilation,
✿✿✿

The
✿✿✿✿

term
✿✿✿✿✿✿✿✿✿

model-data
✿✿✿✿✿✿

fusion
✿

is
✿✿✿✿✿✿✿✿✿

sometimes
✿✿✿✿✿✿✿✿✿✿

understood
✿✿

in
✿

a
✿✿✿✿✿

more40

✿✿✿✿✿✿

general
✿✿✿✿

way,
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿

blended
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

(pre-computed)
✿✿✿✿✿✿

model
✿✿✿✿✿✿

output,
✿✿✿✿✿✿✿✿

whereas
✿✿✿

the

✿✿✿✿

term
✿✿✿✿

’data
✿✿✿✿✿✿✿✿✿✿✿

assimilation’
✿✿✿✿✿

refers
✿✿

to
✿

a
✿✿✿✿✿✿

robust
✿✿✿✿✿✿✿✿✿✿✿

mathematical
✿✿✿✿✿✿✿✿✿

framework
✿✿✿

for
✿✿✿✿✿✿✿✿✿

improving
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

predictions

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿

data.
✿✿✿✿

Data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿

is motivated by several benefits to make best use of obser-

vations and models (Mathieu and O’Neill, 2008). These benefits include, among others, (1) forecast-

ing and initialisation (forward predictions in time based on past observations), (2) model and data45

quality control (regular and systematic confrontation of model output with observations within their

uncertainty statistics), (3) combination of various data streams (combined constraints of indepen-

dent observations can be stronger than the sum of the individual constraints), (4) filling in regions

with sparse observations (consistent propagation of information from data-rich regions to data-poor

regions), (5) estimating unobservable quantities (through process-based relations in the model ob-50

servations constrain modelled quantities which are not directly measured) and (6) observing system

design (what is the delta of a new observation/instrument
✿✿✿

type
✿✿

of
✿✿✿✿✿✿✿✿✿✿

observation).

Systematic observations are a key ingredient for model-data fusion
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿

studies. Here,

we focus on the carbon cycle and the land-atmosphere system. The land-atmosphere components of

the carbon cycle are an important part of an integrated Earth observation system because of the55

close interactions on land between the carbon cycle and the water and energy cycles, and hence its
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importance for climate projections and climate change mitigation strategies through the monitoring

and management of terrestrial greenhouse gas sources and sinks.

Raupach et al. (2005) provide an analysis of the various elements of a Terrestrial Carbon Observa-

tion System (TCOS). The need, design and steps to be taken towards a TCOS were already outlined60

by others before (Cihlar et al., 2002; Global Carbon Project, 2003) but Raupach et al. (2005) sys-

tematically reviewed two major components of a TCOS: the model-data fusion
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation

methods and the observational data and data uncertainty characterisctics
✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿

for some se-

lected, main kinds of relevant data. The requirements for a policy-relevant carbon observing system

have been outlined by Ciais et al. (2014). They review the current systematic carbon-cycle observa-65

tions and illustrate the implementation of such a policy-relevant carbon observing system.

In this paper we provide an update of the observational data and data uncertainty characteristics

as assessed by Raupach et al. (2005) with a focus on exisitng
✿✿✿✿✿✿

existing
✿

but also new and upcoming,

relevant space-based observations(
✿

, in the following referred to as Earth Observation (EO) data).

In contrast to Ciais et al. (2014), who focus on carbon-cycle observations, we focus here on any70

kind of relevant observational data to be (potentially) assimilated in a terrestrial carbon cycle data

assimilation system
✿✿✿✿✿✿

Carbon
✿✿✿✿✿

Cycle
✿✿✿✿✿

Data
✿✿✿✿✿✿✿✿✿✿

Assimilation
✿✿✿✿✿✿✿

System (CCDAS).

In a CCDAS the observations are used
✿✿✿✿✿✿✿✿✿✿

non-carbon
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

exploited to constrain the

underlying model(i. e. to move model output quantities closer to the observations and reduce their

posterior uncertainties ) usually by parameter optimisation
✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle
✿✿✿✿✿✿✿✿

indirectly
✿✿✿✿✿✿✿

through75

✿✿

the
✿✿✿✿✿✿✿✿

relations
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

process
✿✿✿✿✿✿

model.
✿✿✿✿

Such
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿

constraints
✿✿✿

act
✿✿✿

by
✿✿✿✿✿

ruling
✿✿✿✿

out

✿✿✿✿✿✿✿✿✿✿✿

combinations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

unknowns
✿✿

in
✿

a
✿✿✿✿✿✿✿

CCDAS
✿✿✿✿✿✿✿✿

(typically
✿✿

a
✿✿✿✿✿✿✿✿✿✿

combination
✿✿✿

of
✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿✿✿

initial-

✿✿

or
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿✿

conditions)
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

inconsistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿✿✿✿

thereby
✿✿✿✿✿✿

reduce
✿✿✿✿✿✿✿✿✿✿✿

uncertainties

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

output.
✿

In that sense we are somewhat broader in terms of observed variables be-

cause also
✿✿

the ’non-carbon’ observations (such as soil moisture or land surface temperature) are able80

to constrain the carbon cycle indirectly through process information embedded in the underlying

models. At the same time, the focus of our review is narrower than that of Ciais (2014), who also ad-

dressed ocean and anthropogenic components. Our focus lies on the terrestrial carbon cycle, because

of the higher spatial and temporal variability in the net exchange fluxes and their associated higher

uncertainties than form the ocean and anthropogenic components.85

The paper is organized
✿✿✿✿✿✿✿✿

organised as follows: in the next section we contrast data assimilation to

recently established benchmarking activities and give a brief overview of commonly used data as-

similation approaches and their applications in terrestrial carbon cycling. We continue with a short

overview on data characteristics inlcuding
✿✿✿✿✿✿✿✿

including an update on progress for some of the observa-

tions discussed in Raupach et al. (2005). Since there has been much developments in the provision90

of remotely sensed observations we focus here on the characteristics of the most relevant EO data

streams.
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2 Model-data fusion
✿✿✿✿

Data
✿✿✿✿✿✿✿✿✿✿✿

Assimilation

2.1 Data assimilation versus benchmarking

In the recent past the international land surface and terrestrial ecosystem modelling communities95

have recognized
✿✿✿✿✿✿✿✿

recognised
✿

the importance of model benchmarking and evaluation (e.g. Luo et al.,

2012; Foley et al., 2013). One of the reasons for this development is the huge range of model results

from different models in key diagnostics of the land-atmosphere interface such as gross primary

productivity (GPP) and latent heat flux (Prentice et al., 2015).

In general ’benchmarking’ is understood as the quantification of performance against a reference100

using some pre-defined metrics. The reference can either be output from some previous model sim-

ulations, other (ensembles of) models or reference datasets
✿✿✿

data
✿✿✿✿

sets
✿

based on observations if the

model simulates the analogue quantity. Luo et al. (2012) suggest a theoretical framework for bench-

marking land models based on based on standardized
✿✿✿✿✿✿✿✿✿✿

standardised
✿

references and metrics to measure

model performance skills. A large variety of such metrics and their characteristics is introduced by105

Foley et al. (2013). Some examples of benchmarking terrestrial carbon cycle models (either stan-

dalone or coupled to climate models) are given by e.g. Randerson et al. (2009), Cadule et al. (2010)

and Kelley et al. (2013).

The commonality between benchmarking/evaluation and data assimilation lies in the quantitative

assessment of model output. In benchmarking the quantitative assessment is performed by calcu-110

lating some metrics against either observations or other references, while in data assimilation this

is achieved by defining a cost function, which quantifies the mismatch of some simulated model

quantity against observations weighted by
✿✿

the
✿✿✿✿✿✿

inverse
✿✿

of
✿

their uncertainties (including a model un-

certainty). But data assimilation goes beyond benchmarking as it minimises the quantified mismatch

to improve model performance directly by adjusting either initial and boundary conditions, state115

variables and/or model process parameters.

As pointed out by Prentice et al. (2015) there is a need for both model benchmarking and data

assimilation: Benchmarking as a routine application to improve confidence and evaluate the perfor-

mance (over time) in terrestrial carbon cycle modelling. However, if a benchmark test for a given

model fails this could simply imply that the model parameter values have not been specified cor-120

rectly and optmised
✿✿✿✿✿✿✿✿

optimised against observations. In contrast, data assimilation, in particular when

used for parameter optimisation, potentially identifies structural model and/or data deficiencies if

the model-data mismatch (or the benchmar
✿✿✿✿✿✿✿✿✿

benchmark
✿

test) is still inadequate after optimisation

(see also Figure (1)).
✿✿✿

On
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿

a
✿✿✿✿✿

better
✿✿

fit
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

posterior
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿✿

likelihood

✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

(i.e.
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

optimised
✿✿✿✿✿✿✿✿✿✿

parameters)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿

necessarily
✿✿

an
✿✿✿✿✿✿✿✿✿

indication125

✿✿

for
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿

and/or
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

structure
✿✿

as
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿

pointed
✿✿✿

out
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MacBean et al. (2016).
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2.2 Data assimilation methods

The general problem of model-data fusion, or, more strictly speaking, data assimilation can be for-

mulated like this
✿✿✿✿✿✿✿✿

(following
✿✿✿

the
✿✿✿✿✿✿✿✿

notation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rayner et al. (2016))
✿✿✿

as
✿✿✿✿✿✿

follows: Given a model M , a

set of observations y of some observables o=H(z), with z being the state variables of the model130

and H the observation operator, and prior information on some target variables x, produce an up-

dated description of x. x may include elements of z and p (parameter, quantities not changed by

the model, i.e. process parameters, boundary and initial conditions). Here, we follow the notation as

introduced by Rayner et al. (2016). The observation operator maps the model state onto observables.

In the case of a CCDAS assimilating atmospheric CO2 the observation operator is the atmospheric135

transport model mapping the net CO2 surface exchange fluxes as calculated by the terrestrial carbon

cycle onto simulated atmospheric CO2 concentrations. In transport inversions the dynamical model,

the atmospheric transport model, is also the observation operator.

A data-assimilation
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿

system consists of three main ingredients: a set of obser-

vations, a dynamical model including the observation operator,
✿

and an assimilation method.
✿✿✿✿✿

When140

✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿✿✿

multiple
✿✿✿✿

data
✿✿✿✿✿✿✿

streams
✿✿✿✿

each
✿✿✿✿

data
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿

requires
✿✿

its
✿✿✿✿

own
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

operator

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see e.g. Kaminski and Mathieu, 2016). In the Bayesian formulation of the assimilation problem un-

certainties (i.e. the description of quantities by probability density functions, PDFs) are central to

the concept of data assimilation. Both observations as well as models have errors arising for various

reasons. We will detail the observational errors in the next section. Dynamical models as well as145

observation operators have errors arising from the parameterizations, and the discretization of an-

alytical dynamics into a numerical model; for a more complete description of uncertainty in Earth

System models or components of such we refer to Scholze et al. (2012).

We distinguish two basic approaches in data assimilation: sequential assimilation, which assim-

ilates observations at discrete
✿✿✿✿✿✿✿✿✿✿✿

subsequently
✿✿

at
✿✿✿✿✿✿✿

discrete
✿✿✿✿✿

model
✿

time-stepsand thus evolves over time150

according to the dynamical model; and ,
✿✿✿✿

and variational assimilation, which assimilates all observa-

tions at once at their respective measyurement
✿✿✿✿✿✿✿✿✿✿

measurement
✿

time over a given period, the so-called

assimilation window. They differ in their numerical efficiency and optimality
✿✿✿✿✿✿✿✿

adequacy for their spe-

cific use. A general data-assimilation scheme is shown in Figure (1). In the sequential approach the

inner
✿✿✿✿✿✿✿✿✿

assimilation
✿

loop is evaluated sequentially over time following the dynamics of the model. In155

the case of variational assimilation the inner
✿✿✿✿✿✿✿✿✿

assimilation
✿

loop is evaluated iteratively (assuming a

non-linear model)until .
✿✿✿✿

Both
✿✿✿✿✿

cases
✿✿✿✿✿✿✿

evaluate
✿

a cost function minimum is found. The cost function is

formulated as
✿✿

J ,
✿✿✿✿✿✿✿✿✿✿

formulated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

Bayesian
✿✿✿✿✿✿✿✿✿✿

framework
✿✿

as:
✿

J =
1

2

[

(x−xb)TB−1(x−xb)+ (H(x)−y)TR−1(H(x)−y)
]

, (1)

where xb is the prior information, B the prior uncertainty covariance, and R the observational160

uncertainty covariance. From Equation 1 follows that data and prior knowledge cannot be treated

separately from their respective uncertainties (Raupach et al., 2005). In other words, observations
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(or prior knowlegde) for data assimilation are only complete if we know the full probability density

function (PDF), which, in the case of a Gaussian, can be characterised by its mean and variance. In

practical terms, the observational uncertainty covariances weight the model-data mismatch, while165

the prior uncertainty covariances weight the deviation of the target variables from their prior values.

We note here that in the Gaussian case the model and observation operator errors can be added

quadratically to the observation errors.

An important diagnostic in data assimilation is the posterior uncertainty, which usually, because

of its high dimension, is hard to compute. If the assimilation problem is Gaussian the computation of170

the posterior uncertainty covariance matrix simplifies and it can be approximated by the inverse of

the Hessian (2nd derivative)of the cost function. Typically, gradient-based optimisation approaches

approximate the Hessian, alternatively ensembles can be used to derive realisations of the posterior

PDF. The uncertainty reduction relative to the prior (i.e. 1−Uxpo/B with Uxpo the posterior

uncertainty) then is a measure of the observational constraint on the target variables.175

✿✿✿✿✿

When
✿✿✿✿✿✿✿

multiple
✿✿✿✿

data
✿✿✿✿✿✿✿

streams
✿✿✿✿✿

with
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

operators
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿

there
✿✿✿✿

will
✿✿✿

be

✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿

summands
✿✿

of
✿✿✿

the
✿✿✿✿

form
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

term
✿✿

on
✿✿✿

the
✿✿✿✿

right
✿✿✿✿✿

hand
✿✿✿

side
✿✿✿

of
✿✿✿✿✿✿✿

Equation
✿✿✿

(1),
✿✿✿✿

one
✿✿✿

for
✿✿✿✿

each

✿✿✿

data
✿✿✿✿✿✿✿

stream. Rayner et al. (2016) introduce the theory fundamental to data assimilation and illustrate

how the different implementations of data assimilation relate to this theory in a more narrative style

A more complete and mathematically precise introduction to the concepts of data assimilation is180

given in the textbooks by e.g. Daley (1991); Tarantola (2005)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Daley (1991) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tarantola (2005).

2.3 Examples of terrestrial carbon cycle data assimilation

A variety of the methods as described by Rayner et al. (2016) have been applied by the carbon cy-

cle community. One example making use of formal assimilation methdologies
✿✿✿✿✿✿✿✿✿✿✿✿

methodologies for

inferring surface-atmosphere CO2 exchange fluxes is based on atmospheric transport inversions. As185

mentioned before, in atmospheric inversions the observation model is an atmospheric tracer transport

model. In atmospheric inversions both sequential and variational methods have been used together

with observations of atmospheric trace gas concentrations such as from the flask sampling network,

continuous in-situ
✿✿

in
✿✿✿✿

situ and aircraft measurements and more recently also remotely sensed to-

tal column measurements. The techniques for atmospheric transport inversions have been detailed190

in Enting (2002) and a recent comparison of results from different transport inversion is given by

Peylin et al. (2013).

A more recent development is the assimilation of observations into terrestrial biosphere models.

Here, various methods and observations have been used to optimise model process parameters at

different scales. A comparison of a whole suite of these assimilation methods applied to a test case195

using a simplified model at local-scale is given by Trudinger et al. (2007) and Fox et al. (2009).

Kaminski et al. (2002) were among the first who applied a formal algorithm together with obser-

vations of atmospheric CO2 concentrations to constrain the Simple Diagnostic Biosphere Model at
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global scale. This work was continued by the development of the first Carbon Cycle Data Assimila-

tion System
✿✿✿✿✿✿✿✿

(CCDAS)
✿

with a process-based model
✿✿✿✿✿✿✿✿

(BETHY) at its core (Rayner et al., 2005). The200

advantage of using a process-based model at the core of a CCDAS is that once the process parameters

have been optimised the the constrained model can also be used for predictions as demonstrated by

Scholze et al. (2007). Also, such systems are capable of ingesting multiple independent data streams

besides atmospheric CO2 concentrations. Kaminski et al. (2013) provide an overview on the devel-

opments of the CCDAS-BETHY since its first application while Scholze et al. (2016) demonstrate205

the latest application of CCDAS-BETHY assimilating atmospheric CO2 and remotely sensed sur-

face soil moisture simultaneously. Since then several global terrestrial ecosystem models have been

included in Carbon Cycle Data Assimilation Systems
✿✿✿✿✿✿

CCDAS
✿

employing a variational approach

(e.g. Schürmann et al., 2016; Peylin et al., 2016).

Concurrently, there have been several studies at the local/regional scale assimilating various types210

of observations. For instance, Barrett (2002) used a genetic algorithm to infer soil carbon turnover

times in a terrestrial carbon cycle model over Australia from
✿✿

in
✿✿✿

situ
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

of plant production,

biomass, litter and soil carbonobservations. Local eddy covariance flux tower measurements of net

exchange of CO2 and latent and sensible heat fluxes have been assimilated to optimize
✿✿✿✿✿✿✿

optimise pa-

rameter related to photosynthesis, respiration and energy fluxes of terrestrial ecosystem models, us-215

ing Monte Carlo type methods (e.g. Braswell et al., 2005; Knorr and Kattge, 2005; Moore et al., 2008; Ricciuto et al., 2008)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Braswell et al., 2005; Knorr and Kattge, 2005; Moore et al., 2008; Ricciuto et al., 2008; Post et al., 2017),

sequential methods (Williams et al., 2005), as well as variational approaches (e.g. Wang et al., 2001;

Kuppel et al., 2012; Raoult et al., 2016)

Recent advances are focusing
✿✿✿✿✿

focus on multiple independent data stream assimilation to provide220

a more rigorous constraint on the multiple components of terrestrial ecosystem models and avoid

equifinality, i.e. different parameter solutions provide
✿✿✿✿✿✿✿✿

providing
✿

the same cost function value
✿✿

at
✿✿✿

the

✿✿✿✿✿✿✿✿

minimum. Examples for such studies on local/regional scale are the assimilation of eddy covari-

ance CO2 fluxes together with observations of vegetation structural information or carbon stocks

(e.g. Richardson et al., 2010; Keenan et al., 2012) or together with remotely sensed vegetation activity225

such as the Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) (e.g. Kato et al., 2013; Bacour et al., 2015)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Richardson et al., 2010; Keenan et al., 2012; Thum et al., 2017). The assimilation of multiple

data streams can be performed either in a step-wise (e.g. Peylin et al., 2016) or simultaneous ap-

proach (e.g. Kaminski et al., 2012); in the case of non-linear models
✿

or
✿✿✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿✿✿

observation

✿✿✿✿✿✿✿

operators
✿

only the simultaneous assimilation makes optimal use of the observations (MacBean et al.,230

2016).
✿

In
✿✿✿✿✿✿✿

Section
✿✿

3.2
✿✿✿

we
✿✿✿✿✿✿✿

provide
✿✿✿✿

more
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿

examples
✿✿✿✿✿

using
✿✿✿✿✿

some

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

remotely
✿✿✿✿✿✿

sensed
✿✿✿✿✿✿✿

products
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

following.
✿
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3 Data characteristics and provision

Observations are our measurable representation of the ’Truth’. They come with different charac-

teristics in terms of spatial and temporal resolution, coverage of the observed system, and errors.235

In analogy, models are also some representation of the ’Truth’, however, via knowledge embodied

in some form of functional relationships (with their own errors as mentioned before). The paper

by Raupach et al. (2005) has been instrumental in highlighting the challenges in combining models

and observational data for building a TCOS focussing
✿✿✿✿✿✿✿

focusing
✿

on the observational requirements.

Ciais et al. (2014) argue for a globally integrated carbon observation system to improve our under-240

standing of the carbon cycle for predicting future changes and to be able to independently verify the

impact of emission reduction measures. Such a system relies on atmospheric carbon observations

as a backbone but also concerns observations of the terrestrial and ocean carbon cycle. They focus

on a strategy towards a global carbon-cycle monitoring system for achieving the above mentioned

objectives.245

Figure (2) depicts exemplarily the main observations of a TCOS and their space-time charac-

teristics. In the following we briefly summarise the aspects of uncertainty in the observations and

highlight progress on the specification of uncertainty for some of the observations in Fig. (2) as well

as on their monitoring since Raupach et al. (2005).

3.1 Observational uncertainty250

As mentioned before an important ingredient to any model-data fusion
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation system are

not only the observations themsleves
✿✿✿✿✿✿✿✿

themselves
✿

but also the uncertainties associated to them. We

distinguish three main types of observation errors:

• Random: Random errors are always present in measurements and are caused by unpredictable

changes in the measurement system (e.g. electronic noise in electrical instrument). They show255

up as different readings of the same repeated measurement, and thus can be reduced by taking

the average of multiple measurements. Random erros
✿✿✿✿

errors
✿

are usually assumed to be Normal

(Gaussian) distributed, however, in some cases the random error distribution is log-normal

(e.g. precipitation) or skewed by outliers due to unpredictable corruptions of the measurement

system. Random erros are therefore relatad
✿✿✿✿

errors
✿✿✿✿

are
✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

related to the precision of a260

measurement system.

• Systematic (bias): Systematic errors in observations are usually due to some recurring prob-

lems in the overall measurement system. They are caused by instrument miscalibrations or

interferences with the measurement system. They can vary in space and time but they affect

the measurement system in a predictable way. Biases can be both additive (absolute mean265

bias) and multiplicative (biases in the dynamic range affecting the amplitude of a signal). If

the source for systematic errors is known they can usually be fixed and shoud
✿✿✿✿✿

should
✿

be re-
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moved. Systematic erros are therefore relatad
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿

related
✿

to the accuracy of a

measurement system.

• Representativeness. The representation error occurs when information is represented at a scale270

different from the source of the information. For instance a quantity simulated by a model is

’representative’ for a given spatial and temporal resolution of the model grid.
✿

In
✿✿✿✿

fact,
✿✿✿

the
✿✿✿✿✿

scale

✿

at
✿✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿

trust
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿

larger
✿✿✿✿

than
✿

a
✿✿✿✿✿✿✿✿

grid-cell. An individual measurement, how-

ever, represents information influenced by the local environment not resolved by the model

grid (e.g. representation of atmospheric flask data in an atmospheric transport model grid-275

cell). In the case of satellite-based observations the representation error also includes errors

in inferring a biophysical quantity from the photons measured at the sensor. We come back to

this issue later.

For both random and systematic errors not only the magnitude of the error for a single observation

is important, i.e. the diagonal elements in the observational uncertainty covariance matrix B, but also280

the correlations among
✿✿✿✿✿✿

between
✿

errors for different observations. Hence there is a need to specify the

off-diagonal elements in the error covariance matrix B. These off-diagonal elements are usually hard

to specify, however, they are
✿✿

but
✿✿

it
✿✿

is important to quantify
✿✿✿✿

them
✿

in a data assimilation systembecause

they affect the prediction of the optimal solution in the same way as the diagonall elements. .
✿✿✿✿✿

They

✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

considerable
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿✿✿✿

because
✿✿

of
✿✿✿✿

their
✿✿✿✿✿✿✿✿

influence
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

weight
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective285

✿✿✿✿✿✿✿✿✿✿

observations
✿✿

in
✿✿✿

the
✿✿✿✿

cost
✿✿✿✿✿✿✿

function.
✿

✿✿

In
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿

errors,
✿✿✿✿✿✿✿

models
✿✿✿✿

also
✿✿✿✿

have
✿✿✿✿✿✿

errors,
✿✿✿✿✿✿

which,
✿✿

in
✿✿

a
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿✿✿✿

system,
✿✿✿

are
✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors.
✿✿✿✿✿

These
✿✿✿✿✿✿

errors
✿✿

in
✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿✿

models
✿✿✿

are
✿✿✿✿✿✿

mainly

✿✿✿✿✿

caused
✿✿✿

by
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterizations
✿✿✿✿✿✿✿

(instead
✿✿

of
✿✿✿✿✿✿✿✿

resolving
✿✿✿

the
✿✿✿✿✿✿✿✿

process),
✿✿✿✿

and
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿

of

✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

into
✿✿

a
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model.
✿✿

A
✿✿✿✿✿

more
✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿✿

description
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿

model
✿✿✿✿✿

error290

✿✿✿✿✿✿

sources
✿✿

is
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Scholze et al. (2012).
✿

As mentioned before, Raupach et al. (2005) have already reflected on the main properties of

the data and their error covariances for observations of remotely sensed land surface properties

(mainly
✿✿

the
✿✿✿✿✿✿✿✿✿

normalised
✿✿✿✿✿✿✿✿✿✿

differential
✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿

index, NDVI), atmospheric CO2 concentrations, land-

atmosphere net CO2 exchange fluxes, and terrestrial carbon stores.
✿✿✿

The
✿✿

in
✿✿✿✿

situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

of295

✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿

are
✿✿✿✿✿✿

either
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿

flask
✿✿✿✿✿✿✿

samples
✿✿✿

or
✿✿

on
✿✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿✿

stations.
✿✿✿✿

The

✿✿✿✿

flask
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿

network
✿✿✿

was
✿✿✿✿✿✿✿✿✿

established
✿✿

in
✿✿✿✿✿

1961
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Keeling (1961) and
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿✿

extended
✿✿✿✿✿

since
✿✿✿✿

then

✿✿

to
✿✿✿✿

more
✿✿✿✿✿

than
✿✿✿

200
✿✿✿✿✿

sites
✿✿✿✿✿✿✿

globally.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

continuous
✿✿

in
✿✿✿

situ
✿✿✿✿✿✿✿✿

network
✿✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

at
✿✿✿✿✿✿

higher

✿✿✿✿✿✿✿

precision
✿✿✿✿

and
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

flask
✿✿✿✿✿✿✿✿✿

networks.
✿✿✿

For
✿✿✿✿✿

both
✿✿✿

the
✿✿✿✿

flask
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

continuous

✿✿✿✿✿✿

stations
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

in
✿✿✿✿✿✿✿✿

precision
✿✿✿✿

and
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

accuracy
✿✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿

achieved
✿✿✿✿✿✿

through
✿✿✿✿✿✿✿✿✿✿

propagation
✿✿✿

of300

✿✿✿✿✿✿✿

frequent
✿✿✿✿✿✿✿✿✿✿

comparisons
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

international
✿✿✿✿✿✿✿✿

standards
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Francey et al., 2001).
✿

✿✿✿

The
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿

FluxNet
✿✿✿✿✿✿✿

network
✿✿✿✿✿✿✿

consists
✿✿

of
✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿

200
✿✿✿✿

sites
✿✿✿✿✿✿✿

globally
✿✿✿✿✿✿✿✿✿

measuring
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

land-atmosphere

✿✿✿✿✿

fluxes
✿✿

of
✿✿✿✿✿

CO2,
✿✿✿✿✿

latent
✿✿✿

and
✿✿✿✿✿✿✿

sensible
✿✿✿✿

heat
✿✿✿

and
✿✿✿✿✿✿

others
✿✿

by
✿✿✿

the
✿✿✿✿✿

eddy
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿

technique
✿✿

at
✿

a
✿✿✿✿✿✿✿✿✿✿

half-hourly

✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Baldocchi et al., 2001).
✿✿✿✿✿

Many
✿✿✿✿✿

other
✿✿✿✿✿✿

(mostly
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological)
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿✿✿

measured
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✿

at
✿✿✿✿✿

these
✿✿✿✿

sites
✿✿

as
✿✿✿✿

well.
✿

In the past years, there has been substantial progress in the
✿✿✿✿✿✿✿✿✿✿✿✿

homogenisation
✿✿✿✿

and305

✿✿✿✿✿✿✿✿✿

availability
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿

direct
✿✿✿✿

CO2
✿✿✿✿

flux
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

publically
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

FLUXNET2015
✿✿✿✿

data

✿✿

set
✿✿✿✿✿✿✿

includes
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿✿

1500
✿✿✿✿✿✿✿✿

site-years
✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿✿

covering
✿✿✿

all
✿✿✿✿✿

major
✿✿✿✿✿✿

biome
✿✿✿✿✿

types
✿✿✿✿

from
✿✿✿✿✿

about
✿✿✿✿

165
✿✿✿✿

sites

✿✿✿✿✿✿✿✿✿

worldwide
✿✿✿✿✿✿✿

spanning
✿✿

a
✿✿✿✿✿

period
✿✿✿✿✿

from
✿✿✿✿

1991
✿✿✿✿

(for
✿✿✿✿✿

some
✿✿✿✿

sites)
✿✿✿

up
✿✿

to
✿✿✿✿✿

2014
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pastorello et al., 2017).
✿✿✿✿✿✿

There

✿✿✿

has
✿✿✿

also
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

substantial
✿✿✿✿✿✿✿

progress
✿✿

in
✿✿✿

the
✿

specification of uncertainties in eddy-covariance measure-

ments of the land-atmosphere net CO2 exchange flux (Net Ecosystem Productivity, NEP) and its310

component fluxes (GPP and ecosystem respiration, Reco). For instance, Lasslop et al. (2008) anal-

ysed the error distribution and found that the eddy flux data can almost entirely be represented by a

superposition of Gaussian distributions with inhomogeneous variance.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Richardson et al. (2008) showed

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

errors
✿✿✿

in
✿✿✿✿

NEP
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿✿

heteroscedastic,
✿✿✿✿

i.e.
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿

varies
✿✿✿✿

with
✿✿✿✿

the

✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿

the
✿✿✿✿

flux.
✿

In a more recent study Raj et al. (2016) investigated the uncertainy
✿✿✿✿✿✿✿✿✿

uncertainty315

of GPP derived from partitioning the eddy covariance NEP measurements. They used a light-use ef-

ficiency model embedded in a Bayesian framework to estimate the uncertainty in the separated GPP

from the posterior distribution at half-hourly time steps. The availability of the eddy covariance

data has also been heavily improved; the latest release of the FLUXNET2015 dataset now contains

data from about 165 sites worldwide spanning a period from 1991 (for some sites) up to 2014320

(FLUXNET2015).

3.2 Towards operational carbon observation systems

In the European framework there have recently been major developments towards systematic in-situ

observations for use in terrestrial carbon cycle data assimilation systems. The Integrated Carbon

Observing System (ICOS) is a novel pan-European infrastructure for carbon observations, which will325

provide high-quality in-situ observations (both fluxes as well as atmospheric concentrations) over

Europe and over ocean regions adjacent to Europe with a long-term perspective. ICOS consists of

central facilities for co-ordination, calibration and data in conjunction with networks of atmospheric,

oceanic and ecosystem observations as well as a data distribution centre, the Carbon Portal, providing

discovery of and access to ICOS data products such as derived flux information. The ICOS network330

runs in an operational mode, and greenhouse gas concentrations and fluxes will be determined on a

routine basis. The measurements are designed to allow up to daily determination of (mainly natural)

sources and sinks at scales down to approximately 50 x 50 km2 for the European continent.

An example for an operationalised, space-based Earth observing programme is the fleet of so-called

Sentinel satellites of the European Copernicus programme. Copernicus aims at providing Europe335

with a continuous and independent access to Earth observation data and associated services (transforming

the satellite and additional in-situ data into value-added information by processing and analysing the

data) in support of Earth System Science (Berger et al., 2012). So far, six different Sentinel missions

are planned out of which three are in operation and the remainder is scheduled to be launched

during the next years. Each type of the currently foreseen Sentinels has a specific objective and340
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will deliver a range of EO products. Some of these products will be suitable for constraining the

terrestrial carbon cycle, such as soil moisture (Sentinel 1), FAPAR, leaf chlorophyl and water content

and land cover (Sentinel 2 and 3), land surface temperature (Sentinel 3), atmospheric methane and

flourescence (Sentinel 5 and precursor). So far, a dedicated mission for monitoring the carbon cycle,

i.e. an instrument measuring the atmospheric CO2 composition, is not yet included in the Copernicus345

monitoring programme (see Ciais et al., 2015), however, the series of Sentinel satellites is likely to

be extended in the future.

3.2 Examples of systematic observations from satellite EO data

There has been a vast extension of EO capabilites
✿✿✿✿✿✿✿✿✿

capabilities
✿

during the past 10 years or so both in

terms of product quality (including, for instance, improved accuracy) but also quantity (new prod-350

ucts).

In any data assimilation system using satellite EO data one needs to decide in the design phase

of the system whether to assimilate observations at the sensor level (i.e. the spectral radiances for

optical sensors or brightness temperatures for microwave sensor, referred to as level 1 data) or to

assimilate the bio-geophysical variable derived from the radiances through a retrieval algorithm355

(level 2 data product). When assimilating level 1 data the retrieval algorithm is part of the ob-

servation operator linking the model state to the observations in the data assimilation system. A

more detailed description of the two alternatives in assimilating EO satellite observations into mod-

els of the Earth system is given by Kaminski and Mathieu (2016). In carbon cycle data assimila-

tion systems level 2 data products (or even level 3 data, which are provided on a regular space-360

time grid) are most commonly used.
✿✿✿✿✿✿✿

However,
✿✿✿✿✿

there
✿✿

is
✿✿✿

the
✿✿✿✿

risk
✿✿✿

that
✿✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿✿✿

level
✿✿

2
✿✿

or
✿✿✿✿✿✿

higher

✿✿✿✿✿✿✿

products
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameters/processes
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿

may
✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with

✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿

equivalent
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameters/processes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

underlying
✿✿✿✿✿✿✿

model,
✿✿✿

and
✿✿✿✿

thus
✿✿✿✿✿

cause
✿✿✿✿✿✿✿✿✿

additional

✿✿✿✿✿

errors
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation.
✿

In the next subsections we present some selected , and
✿✿✿✿✿✿✿

remotely
✿✿✿✿✿✿

sensed
✿✿✿✿

Earth
✿✿✿✿✿✿✿✿✿✿

Observation
✿✿✿✿✿✿✿✿

products,365

✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿

relevant for terrestrial carbon cycle data assimilationmost relevant remotely sensed Earth

Observation products ,
✿

in more detail. The EO products described below (
✿

:

– atmospheric CO2 , vegetation activity , soil moisture , terrestriaial biomass)

–
✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿

activity
✿✿✿✿✿✿✿

(FAPAR
✿✿✿

and
✿✿✿✿

SIF)
✿

–
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿

370

–
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿

biomass.
✿

✿✿✿✿✿

These
✿✿✿

EO
✿✿✿✿✿✿✿✿

products either have already been used, are in the process of being used, or would po-

tentially be a useful data constraint in a CCDAS. For vegetation activity we distinguish two major

types of products: more ’traditional’ reflectance- or radiative-based products such as fraction of
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absorbed photosynthetically active radiation (FAPAR) and recently developed products based on375

biogeochamical processes
✿✿✿✿✿✿✿✿✿✿✿✿

biogeochemical
✿✿✿✿✿✿✿✿✿

processes,
✿

such as sun-induced flourescence
✿✿✿✿✿✿✿✿✿✿

fluorescence

(SIF). For instance, FAPAR
✿✿✿✿

Leaf
✿✿✿✿

area
✿✿✿✿✿

index
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(LAI, e.g. Liu et al., 2014),
✿✿✿✿✿✿

which
✿✿

is
✿✿

in
✿✿✿✿✿

effect
✿✿✿✿✿✿✿

closely

✿✿✿✿✿

related
✿✿✿

to
✿✿✿✿✿✿✿

FAPAR,
✿✿

is
✿✿✿✿✿✿

another
✿✿✿✿✿✿✿✿✿✿✿

geophysical
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿✿✿✿✿

representing
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿

activity.
✿✿✿✿✿

There
✿✿

is
✿✿✿✿

also

✿

a
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿✿

remotely
✿✿✿✿✿✿

sensed
✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿

indices,
✿✿

of
✿✿✿✿✿✿

which
✿✿✿✿✿

NDVI
✿✿

is
✿✿✿

an
✿✿✿✿✿✿✿

example.
✿✿✿✿✿

Both
✿✿✿✿

LAI
✿✿✿

and
✿✿✿✿✿✿

NDVI

✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿

used
✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

studies:
✿✿

an
✿✿✿✿✿✿✿

example
✿✿✿

for
✿✿✿✿✿

NDVI
✿✿

is
✿✿✿✿✿

given
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MacBean et al. (2015) and380

✿✿

for
✿✿✿✿

LAI
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Luke (2011) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Barbu et al. (2014).
✿✿

In
✿✿✿✿✿✿✿

Section
✿✿✿✿✿

3.2.2
✿✿✿

we
✿✿✿✿✿

detail
✿✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿✿

between

✿✿✿✿✿

NDVI
✿✿✿

and
✿✿✿✿✿✿✿

FAPAR,
✿✿✿✿

and
✿✿✿✿✿✿

explain
✿✿✿

that
✿✿✿✿✿✿✿

FAPAR
✿

is
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿

principles.
✿✿✿✿✿✿

FAPAR
✿

has already been

demonstrated to provide a strong constraint on terrestrial carbon as well as
✿✿✿

and water fluxes through

its impact on the phenology components of the carbon cycle model (e.g. Knorr et al., 2010; Kaminski et al., 2012)

✿✿✿✿✿

either
✿✿

by
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿

only
✿✿✿✿✿✿

FAPAR
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Knorr et al., 2010) or
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿✿✿

with
✿✿✿✿✿

other
✿✿✿✿

data385

✿✿✿✿✿✿

streams
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Kaminski et al., 2012; Kato et al., 2013; Forkel et al., 2014). SIF is a promising obser-

vation to constrain the gross uptake of CO2 by plant photosynthesis. First assimilation results using

SIF observations in a CCDAS show that the uncertainty in global annual GPP is largely reduced

by constraining parameters that describe leaf phenology (Norton et al., 2016). Also assimilation

of XCO2
✿✿✿✿✿✿✿

Remotely
✿✿✿✿✿✿

sensed
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

(XCO2,
✿✿✿✿

see
✿✿✿✿✿✿✿

Section
✿✿✿✿✿

3.2.1)
✿✿✿✿

has
✿✿✿✿

also390

✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

assimilated
✿

into a diagnostic terrestial
✿✿✿✿✿✿✿✿

terrestrial carbon cycle model has been shown to de-

rive net CO2 fluxes consistent with independent in-situ
✿✿

in
✿✿✿✿

situ measurements of atmospheric CO2

as well as
✿✿✿

and
✿

to reduce posterior uncertainties in the infered
✿✿✿✿✿✿

inferred
✿

net and gross CO2 fluxes

(Kaminski et al., 2016).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Barbu et al. (2014) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Albergel et al. (2017) assimilated
✿✿✿✿

both
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture

✿✿✿

and
✿✿✿✿

LAI
✿✿✿✿

data
✿✿✿

into
✿✿

a
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿

model,
✿✿✿

but
✿✿✿✿

their
✿✿✿✿✿

focus
✿✿✿

was
✿✿✿

on
✿✿✿✿✿✿✿✿✿

improving
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿

and
✿✿✿✿

land395

✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿

quantities
✿✿✿

and
✿✿✿

not
✿✿✿

the
✿✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle.
✿

van der Molen et al. (2016) assessed the im-

pact of assimilating various remotely sensed soil moisture products into the SiBCASA ecosystem

model on simulated carbon fluxes in Boreal Eurasia. Although the impact of assimilating ASCAT

surface soil moisture was significant, its skill in this hydrologically complex environment strongly

depends on surface water and vegetation dynamics. In contrast, Scholze et al. (2016) showed that400

when assimilating SMOS soil moisture simultaneously with in-situ
✿

in
✿✿✿✿

situ atmospheric CO2 con-

centrations the reduction of uncertainty in gross and net CO2 fluxes relative to the prior is consid-

erably higher than for assimilating CO2 only, which quantifies the added value of SMOS obser-

vations as a constraint on the terrestrial carbon cycle. So far, remotely sensed biomass data have

not been used in carbon cycle data assimilation studies, however, Thum et al. (2017)
✿✿

but
✿✿✿✿✿✿✿

several405

✿✿✿✿✿✿

studies
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Richardson et al., 2010; Keenan et al., 2012; Thum et al., 2017) have
✿

demonstrated the

added value of in-situ observations of biomass increment in reducing uncertainties in simulated

above ground biomass mainly through the calibration of parameters in the carbon allocation scheme

of the
✿✿

in
✿✿✿

situ
✿✿✿✿✿✿✿✿✿✿✿✿

above-ground
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

constraining
✿✿✿

the terrestrial carbon cyclemodel.

This list of EO products described in this paper is admittedly subjective and there is of course a410

whole range of additional remotely sensed products available, which are relevant for carbon cycle
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studies as well, e.g. burned area (e.g. Giglio et al., 2013), land cover (e.g. Bontemps et al., 2012),

land surface temperature (e.g. Li et al., 2013), leaf area index (which is in effect closely related to

FAPAR) (e.g. Liu et al., 2014) or vegetation optical depth
✿✿✿✿✿✿

(VOD) (e.g. Konings et al., 2016). How-

ever, these products are rather used as input or boundary conditions for terrestrial carbon cycle mod-415

els or, for instance
✿✿✿✿✿✿

(burned
✿✿✿✿

area
✿✿✿

and
✿✿✿✿

land
✿✿✿✿✿

cover)
✿✿✿

or, in the case of vegetation optical depth
✿✿✿✿

land
✿✿✿✿✿✿

surface

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿

VOD, they have so far not been used in carbon cycle data assimilation studies.

3.2.1 Atmospheric CO2 and CH4

Satellite retrievals of atmospheric carbon dioxide (CO2) and methane (CH4) are available from sev-

eral satellite instruments such as mid-tropospheric CO2 and CH4 columns from Infrared Atmo-420

spheric Sounding Interferometer (IASI) (e.g. Crevoisier et al., 2009a, b) on EUMETSAT’s Metop

satellite series, vertical profiles with highest sensitivity in the mid/upper troposphere from AIRS on

Aqua (e.g. Xiong et al., 2013), stratospheric profiles from MIPAS on ENVISAT limb observations

(e.g. Laeng et al., 2015) and from the solar occultation observations of SCIAMACHY on ENVISAT

(Noël et al., 2011, 2016) and ACE-FTS (e.g. Boone et al., 2005; Foucher et al., 2009). These obser-425

vations have however only little or no sensitivity to CO2 and CH4 concentration changes close to

the Earth’s surface and therefore contain only limited information on regional or local CO2 and CH4

sources and sinks. Satellites with high near-surface sensitivity are nadir (downlooking
✿✿✿✿✿✿✿✿✿✿✿

down-looking)

satellites which measure radiance spectra of reflected solar radiation in the relevant spectral bands

in the near-infrared/shortwave-infrared (NIR/SWIR) spectral region, which are located around 1.6430

µm (CO2 and CH4) and around 2.0 µm (CO2). Satellites instruments which perform (or have

performed) these observations are SCIAMACHY onboard ENVISAT (2002–2012) (Burrows et al.,

1995; Bovensmann et al., 1999), TANSO-FTS onboard GOSAT (launched in 2009) (Kuze et al.,

2009, 2014) and NASA’s Orbiting Carbon Observatory 2 (OCO-2) mission (launched in 2014)

(Crisp et al., 2004; Boesch et al., 2011).435

The main CO2 and CH4 data products of these sensors are near-surface-sensitive column-averaged

dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4
✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿

XCH4. The quantities

XCO2 and XCH4
✿✿✿✿✿

XCO2
✿✿✿

and
✿✿✿✿✿✿

XCH4 are both retrieved from SCIAMACHY/ENVISAT (ground pixel

size: 30×50 km2 (along track times across track); swath width 960 km with contiguous ground

pixels) and TANSO-FTS/GOSAT (10 km pixel size; several (e.g. 3 or 5) non-contiguous pixels440

across track). OCO-2 delivers XCO2
✿✿✿✿✿

XCO2
✿

(8 ground pixels across track, each ≈1.3 km) and in the

near future other satellites
✿✿✿✿

other
✿✿✿✿✿✿✿✿

satellites
✿✿✿✿

have
✿✿✿✿

been
✿✿

or
✿

will be launched such as Europe’s Sentinel-5-

Precursor satellite (S5P) (Veefkind et al., 2012), which will deliver (among several other parameters)

XCH4
✿✿✿✿✿

XCH4 (7 km pixel size at nadir, 2600 km swath width with contiguous ground pixels; planned

launch: mid
✿✿✿✿✿✿

autumn
✿

2017) (Butz et al., 2012) and China’s TanSat (planned launch
✿✿✿✿✿✿✿

launched
✿

end of445

2016), which will deliver XCO2
✿✿✿✿✿✿

XCO2 with similar characteristics as
✿✿

to
✿

NASA’s OCO-2.
✿

It
✿✿✿✿

can

✿✿

be
✿✿✿✿✿✿✿✿

expected
✿✿✿

that
✿✿✿✿✿

future
✿✿✿✿✿✿✿✿

satellites
✿✿✿✿

will
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿

improved
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿

in
✿✿✿✿✿✿✿✿

particular
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to

13



✿✿✿✿

more
✿✿✿✿✿✿✿✿

localised
✿✿✿✿✿✿✿

emission
✿✿✿✿✿✿✿

sources
✿✿✿✿✿

(e.g.,
✿✿✿✿✿✿✿✿✿✿✿

Bovensmann
✿✿

et
✿✿✿

al.,
✿✿✿✿✿

2010;
✿✿✿✿✿✿✿✿

Buchwitz
✿✿

et
✿✿✿

al.,
✿✿✿✿✿

2013;
✿✿✿✿✿

Ciais
✿✿

et
✿✿✿

al.,

✿✿✿✿✿

2015).
✿

In the following we will focus the discussion on sensors who
✿✿✿

that have already delivered

multi-year XCO2 and XCH4 year
✿✿✿✿✿

XCO2
✿✿✿

and
✿✿✿✿✿✿

XCH4 data sets, i.e. on SCIAMACHY and TANSO.450

The XCO2 and XCH4
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

satellite-derived
✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿✿

XCH4
✿✿✿✿

data
✿✿✿✿✿✿✿✿

products
✿✿✿

are
✿✿✿✿✿✿✿

sensitive
✿✿✿

to

✿✿✿✿✿✿

surface
✿✿✿✿✿

fluxes
✿✿✿✿✿✿✿

because
✿✿✿✿✿

CO2
✿✿✿✿

and
✿✿✿✿

CH4
✿✿✿✿✿✿✿✿

emission
✿✿✿✿

and
✿✿✿✿✿✿

uptake
✿✿✿

by
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

sources
✿✿✿✿

and
✿✿✿✿✿

sinks
✿✿✿✿✿✿

results

✿✿

in
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿

changes
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿

and
✿✿✿✿

CH4
✿✿✿✿✿✿

mixing
✿✿✿✿✿

ratio
✿✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

Earth’s
✿✿✿✿✿✿✿

surface

✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

modifies
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

columns.
✿✿✿✿✿

This
✿✿✿✿✿

results
✿✿

in
✿✿✿✿✿

local
✿✿

or
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿✿✿✿

atmospheric

✿✿✿✿✿✿✿✿✿✿✿

enhancements
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Buchwitz et al. (2017),
✿✿✿✿✿✿✿✿✿

discussing
✿✿✿✿✿✿✿

localised
✿✿✿✿✿✿✿

methane
✿✿✿✿✿✿✿

sources)
✿✿

or
✿✿✿✿✿✿✿✿✿

large-scale
✿✿✿✿✿✿✿✿✿✿✿

atmospheric455

✿✿✿✿✿✿✿

gradients
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Reuter et al. (2014),
✿✿✿✿✿✿✿✿✿

discussing
✿✿✿✿

CO2
✿✿✿✿✿✿

uptake
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿✿✿✿

biosphere).

✿✿✿

The
✿✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿

XCH4
✿

data products retrieved from SCIAMACHY and TANSO are generated

from the radiance observations using different approaches. Most approaches are based on ’Opti-

mal Estimation’ (OE) (e.g. Rogers, 2000; Reuter et al., 2010), also called Bayesian inference. OE

permits to constrain the retrieval using a priori information on, e.g. atmospheric vertical profiles of460

trace gases and aerosols. In general, the radiances are simulated using a radiative transfer model

(RTM) and RTM and other parameters (state vector elements) are adjusted until an ’optimal’ match

is achieved between observed and simulated radiances. One algorithm (WFM-DOAS (WFMD)

(Buchwitz et al., 2000; Schneising et al., 2008, 2009)) is based on least-squares and does not use a

priori information to constrain the fit parameters. As a consequence, the resulting XCO2 and XCH4465

✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿

XCH4
✿

products are typically somewhat ’noisier’ compared to the OE products.

The XCO2 and XCH4
✿✿✿✿✿

XCO2
✿✿✿

and
✿✿✿✿✿✿

XCH4 data products from SCIAMACHY are generated within

the GHG-CCI project (Buchwitz et al., 2015) of ESA’s Climate Change Initiative (CCI, Hollmann et al.

(2013)) and these products are available from the GHG-CCI website (http://www.esa-ghg-cci.org/).

XCO2
✿✿✿✿✿

XCO2
✿

and/or XCH4
✿✿✿✿✿✿

XCH4 products from GOSAT are generated at several institutions in470

Japan, Europe and the USA and are available from several sources as shown in Table (1). The

quality of these GHG-CCI products and the XCO2 and XCH4
✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿

XCH4
✿

products gener-

ated elsewhere has been significantly improved during recent years (e.g. Schneising et al., 2012;

Yoshida et al., 2013; Dils et al., 2014; Buchwitz et al., 2015) and has now reached quite high ma-

turity when compared to user requirements as formulated in, e.g. GCOS (2011). This can be con-475

cluded, for example, from the quality of the latest version of the GHG-CCI SCIAMACHY and

TANSO XCO2 and XCH4
✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿✿

XCH4 data set (’Climate Research Data Package No. 3’,

CRDP3) (Buchwitz et al., 2016). Based on comparisons with ground-based observations of the To-

tal Carbon Column Observing Network (TCCON, Wunch et al. (2010, 2011)) it has been found that

the GCOS requirements for systematic error (< 1 ppm for XCO2
✿✿✿✿✿

XCO2, < 10 ppb for XCH4
✿✿✿✿✿

XCH4)480

and long-term stability (< 0.2 ppm/year for XCO2
✿✿✿✿✿

XCO2, < 2 ppb/year for XCH4
✿✿✿✿✿

XCH4) are met for

nearly all products. As also shown in Buchwitz et al. (2016), the single observation (ground pixel)

retrieval precision ) (random error primarily due to instrument noise) is about 2 ppm for XCO2

✿✿✿✿✿

XCO2
✿

from SCIAMACHY and TANSO and ≈15 ppb for TANSO XCH4
✿✿✿✿✿✿

XCH4. For SCIAMACHY
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XCH4
✿✿✿✿✿

XCH4 the precision depends on time period and retrieval algorithm and is in the range 35 - 80485

ppb. For some products it has also been investigated to what extent the uncertainty can be reduced

upon averaging (Kulawik et al., 2016) and recommendations are given how to take into account error

correlations (Reuter et al., 2016), i.e. which values to use for the non-diagonal elements of the error

covariance matrix, as an important contrbution
✿✿✿✿✿✿✿✿✿

contribution
✿

to the full characterisation of the data

needs for data assimilaton
✿✿✿✿✿✿✿✿✿✿

assimilation studies.490

Figure (3) presents an overview about GHG-CCI CRDP3 XCO2
✿✿✿✿✿

XCO2
✿

(left) and XCH4
✿✿✿✿✿

XCH4

(right) data set in terms of time series and maps. These figures have been generated by gridding

the underlying individual ground pixel (Level 2) products to generate a 5°×5° monthly Level 3

’Obs4MIPs’ product Buchwitz and Reuter (2016). Each 5°×5° monthly grid cell
✿✿✿✿✿✿✿

grid-cell also con-

tains an estimate of the overall uncertainty (also shown in Fig. (3)) which has been computed tak-495

ing into account random and systematic error components.
✿✿✿

The
✿✿✿✿✿✿✿

grid-cell
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

is
✿✿✿✿✿✿✿✿✿

computed

✿✿✿✿

from
✿✿✿

two
✿✿✿✿✿✿

terms:
✿✿

(i)
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

reported
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

as
✿✿✿✿✿

given
✿✿

in
✿✿✿

the
✿✿✿✿✿

Level
✿

2
✿✿✿✿✿✿✿✿✿

(individual
✿✿✿✿✿✿✿

ground
✿✿✿✿✿

pixel)

✿✿✿✿✿✿

product
✿✿✿✿

files
✿✿✿

for
✿✿✿✿

each
✿✿

of
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿

products
✿✿✿✿✿

(using
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

SCIAMACHY
✿✿✿

and
✿✿✿✿✿✿✿

GOSAT

✿✿✿✿

Level
✿✿

2
✿✿✿✿✿✿✿✿

products)
✿✿✿

and
✿✿✿

(ii)
✿✿✿✿✿

using
✿

a
✿✿✿✿✿

term
✿✿✿✿✿✿✿✿✿

accounting
✿✿✿

for
✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

regional/temporal
✿✿✿✿✿

biases
✿✿

as
✿✿✿✿✿✿✿✿

obtained

✿✿✿✿

from
✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿

using
✿✿✿✿✿✿✿

TCCON
✿✿✿✿✿✿✿✿✿✿✿✿

ground-based
✿✿✿

data
✿✿✿✿

(see
✿✿✿✿✿✿

above).
✿✿✿✿

The
✿✿✿✿

first
✿✿✿✿

term
✿✿✿✿✿✿✿

depends
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

number500

✿✿

of
✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

added
✿✿✿✿

(the
✿✿✿✿

error
✿✿✿✿✿✿✿

reduces
✿✿

in
✿✿✿✿✿✿✿✿✿

proportion
✿✿

to
✿✿

the
✿✿✿✿✿✿

square
✿✿✿✿

root
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿

added)
✿✿✿✿✿✿✿

whereas
✿✿✿

the
✿✿✿✿✿

latter
✿✿✿✿

term
✿✿

is
✿✿✿✿✿✿✿

constant
✿✿✿

and
✿✿

in
✿✿✿

the
✿✿✿✿✿

range
✿✿✿✿

0.57
✿✿

–
✿✿✿✿

0.87
✿✿✿✿

ppm
✿✿✿✿✿✿✿✿✿

depending

✿✿

on
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿

XCO2
✿✿✿✿✿✿

product
✿✿

or
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

range
✿

6
✿✿

–
✿✿

10
✿✿✿✿

ppb
✿✿✿

for
✿✿✿✿✿✿

XCH4.
✿

As can be seen from Fig. (3), the

uncertainty of the satellite XCO2
✿✿✿✿✿

XCO2
✿

retrievals for monthly 5°×5° averages is estimated to be

typically around 0.5 - 1 ppm (values larger than 1 ppm are typically associated with regions where505

only few observations per grid cell exist, e.g. due to clouds or higher latitudes corresponding to low

sun elevation). For XCH4
✿✿✿✿✿✿

XCH4 the uncertainty is on the order of a few ppb (typically 4 - 8 ppb).

In Buchwitz and Reuter (2016), also initial TCCON validation results of the Obs4MIPs products are

presented. It is shown that the XCO2
✿✿✿✿✿

XCO2
✿

product agrees with monthly averaged TCCON XCO2

✿✿✿✿✿

XCO2
✿

within 0.29 ± 1.2 ppm (1σ) and the XCH4
✿✿✿✿✿

XCH4
✿

product within 2.0 ± 10.7 ppb. This is510

hardly worse that
✿✿✿

than
✿

the results which have been obtained by careful validation of the individual

ground pixel retrievals taking into account the best possible spatio-temporal co-location and consid-

ering the averaging kernels, etc. (e.g. Buchwitz et al., 2016). Note that the computed differences of

Obs4MIPs monthly 5°×5° satellite products with monthly averaged TCCON include the errors of

the satellite data, errors of the TCCON products, errors due to neglecting altitude sensitivity differ-515

ences (averaging kernels), and representativity error. This indicates that the representativity error is

quite small (at least for monthly 5°×5° spatio-temporal sampling and resolution), probably on the

order of 0.1 - 0.2 ppm for XCO2
✿✿✿✿✿✿

XCO2 and a few ppb for XCH4
✿✿✿✿✿

XCH4
✿

(it is planned to quantify

this error in the future but currently only these rough estimates are available). Note that detailed

information on all GHG-CCI products is available on the GHG-CCI website in terms of technical520
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documents, links to peer-reviewed publications and figures including detailed maps for each month

and each individual data product.

The SCIAMACHY and TANSO XCO2 and XCH4
✿✿✿✿✿

XCO2
✿✿✿✿

and
✿✿✿✿✿

XCH4
✿

retrievals have been used in

a number of scientific studies to address important questions related to the sources and sinks of atmo-

spheric CO2 and CH4 by atmospheric inversion studies (e.g. Bergamaschi et al., 2013; Houweling et al.,525

2015) and more recently also in a data assimilation context for optimising model parameters (Chevallier et al.,

2017). Obviously, the longer the time series and the more accurate it is, the larger the information

content of a given data set. Therefore, further improvements are desired (Chevallier et al., 2017) and

possible (at least in terms of time series extension but likely also in further reduction of remaining

biases).530

3.2.2 Reflectamce-based
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Reflectance-based
✿

vegetation dynamics/activity

Since the early beginnings of remote sensing the state and evolution of the vegetation has been mon-

itored by satellites. An early attempt to analyse vegetation dynamics from space is to calculate the

Normalized
✿✿✿✿✿✿✿✿✿

Normalised
✿

Difference Vegetation Index (NDVI), defined as the ratio between the dif-

ference of near-infrared, NIR, and visible red, Red, spectral bands and the sum of NIR and Red:535

NDVI = (NIR - Red)/(NIR + Red) , Deering et al. (1975))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Deering et al., 1975). The advantage of

an index such as NDVI lies in its simplicity and applicability to sensors with few spectral bands

such as the Advanced Very High Resolution Radiometer (AVHRR). Therefore this index has been

applied for numerous purposes over the last 30 years or so. But NDVI is not a geophysical variable

and it is sensitive to various perturbing factors such as atmospheric constituents (aerosols, water540

vapor
✿✿✿✿✿

vapour), directional effects (geometry of illumination and observation), changes in soil back-

ground color
✿✿

col
✿✿

or
✿

changes (depending on soil water content)(e.g. Pinty et al., 1993; Goel and Qin,

1994; Leprieur et al., 1994; Dorigo et al., 2007). There have been many attempts in modifying NDVI

and developing additional vegetation indices
✿✿✿✿

(VIs)
✿

to overcome its limitations, for example: Soil-

Adjusted Vegetation Index (Huete, 1988), Atmospherically Resistant Vegetation Index (Kaufman and Tanre,545

1992) or Global Environmental Monitoring Index (Pinty and Verstraete, 1992). These indices gen-

erally exhibit some improvement in one respect but at the expense of some degradation in an-

other respect.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pinty et al. (2009) demonstrate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

limitations
✿✿

of
✿✿✿✿

such
✿✿✿

VIs
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

representing
✿✿

the
✿✿✿✿✿✿✿✿

complex

✿✿✿✿✿✿✿

radiative
✿✿✿✿✿✿✿✿

properties
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿

canopy-soil
✿✿✿✿✿✿

system
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

visible
✿✿

to
✿✿✿✿

NIR
✿✿✿✿✿✿

albedo
✿✿✿✿✿

range.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Satellite-derived

✿✿✿

LAI
✿✿✿✿✿✿✿✿

products
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Liu et al., 2014) seem
✿✿

to
✿✿✿

be
✿✿

an
✿✿✿✿✿✿✿✿✿

alternative
✿✿

to
✿✿✿

VIs.
✿✿✿✿

LAI
✿✿

is,
✿✿✿✿✿✿✿✿

however,
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

dependent,550

✿✿

i.e.
✿✿✿✿

the
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

used
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿

scheme,
✿✿✿

and
✿✿✿✿

may
✿✿✿✿✿

differ
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿✿✿✿✿✿

adopted
✿✿

by
✿✿✿

the
✿✿✿✿

land
✿✿✿✿✿✿✿✿✿

biosphere
✿✿✿✿✿

model
✿✿✿✿✿

used

✿✿

for
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿

the
✿✿✿✿

LAI
✿✿✿✿✿✿✿

product
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Disney et al., 2016a).
✿

A rational approach to address
✿✿✿✿✿✿✿✿

addressing
✿

all these issues at once
✿✿✿✿✿✿

together
✿

is to design a physically

based quantity which closely follows
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physically-based
✿✿✿✿✿✿✿

quantity
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿

determined
✿✿

by
✿

the state of555

the vegetation
✿✿✿✿✿✿✿✿✿✿

canopy-soil
✿✿✿✿✿✿

system. The Fraction of Absorbed Photosynthetically Active Radiation
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(FAPAR)provides some kind of ,
✿✿✿✿✿✿

which
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿✿

normalised
✿✿✿✿✿✿✿

fraction
✿✿✿✿

with
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿

ranging
✿✿✿✿✿

from
✿

0
✿✿✿

to

✿✿

1,
✿✿✿✿✿✿✿

provides
✿

information on the photosynthetic activity of the land vegetation. FAPAR
✿

It
✿

is recog-

nised as an Essential Climate Variable (ECV) (GCOS, 2011) and is based on the land surface ra-

diation budget. It is defined as the fraction of the photosynthetically active radiation (i.e. incoming560

solar radiation in the spectral region 0.4–0.7µm) that is absorbed by the vegetation canopy (see

also Pickett-Heaps et al. (2014) for a mathematical definition). Several FAPAR products are de-

rived from a variety of optical sensors (e.g. ATSR, MERIS, MISR, MODIS, SEVIRI, SeaWiFS,

VEGETATION) at different spatial and temporal resolutions. Although there has been substantial

efforts to harmonize
✿✿✿✿✿✿✿✿

harmonise
✿

products across sensors (Ceccherini et al., 2013) and establish stan-565

dards and validation practices (e.g. Widlowski, 2010) there are still considerable differences among

the products. These differences can mainly be associated to differences in the retrieval method-

ology as well as to the quality of input variables. A recent overview of various FAPAR products

and their specifications, but without an assessemt
✿✿✿✿✿✿✿✿✿

assessment of product uncertainties, is given by

Gobron and Verstraete (2009). Table (2) summarises the characteristics of the most common FAPAR570

products.

Several studies have compared the performance of different satellite-derived FAPAR products:

McCallum et al. (2010) looked at four FAPAR datasets
✿✿✿

data
✿✿✿✿

sets over Northern Eurasia for the year

2000, Pickett-Heaps et al. (2014) evaluated six products across Australia, D’Odorico et al. (2014)

compared three products over Europeand ,
✿

Tao et al. (2015) assessed five products over different land575

cover types
✿

,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Disney et al. (2016a) compared
✿✿✿✿

two
✿✿✿✿✿✿

FAPAR
✿✿✿✿✿✿✿

products
✿✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

GlobAlbedo
✿✿✿✿

and

✿✿✿✿✿✿

MODIS
✿✿✿✿

data. Pickett-Heaps et al. (2014) concluded that although all six evaluated products display

robust spatial and temporal patterns there is considerable disagreement
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿

magnitude

amongst the products and non
✿✿✿✿

none
✿

of the products outperforms the others.
✿✿✿✿

This
✿✿✿

has
✿✿✿✿

also
✿✿✿✿✿

been

✿✿✿✿✿✿✿✿

confirmed
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

studies
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

D’Odorico et al. (2014) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tao et al. (2015).
✿

One of the reasons for580

these differences are different assumptions on the underlying biome types. They also reviewed the

consistency of the FAPAR products against in-situ
✿✿

in
✿✿✿

situ
✿

field measurements, the mean difference

between the EO products and the in-situ
✿✿

in
✿✿✿

situ
✿

field measurements is around 0.1(as FAPAR is a

normalised fraction values range from 0 to 1). This estimate is confirmed by the study of Tao et al.

(2015) who suggest an average uncertainty of 0.14 from validation against total FAPAR and 0.09585

from validation against green FAPAR in-situ
✿✿

in
✿✿✿

situ
✿

measurements. In their comparison of Joint Re-

search Centre–Two-stream Inversion Package (JRC-TIP) MODIS, JRC MGVI
✿✿✿✿✿✿

(based
✿✿

on
✿✿✿✿✿✿✿✿

MERIS)

and Boston University MODIS products (see Tab. 2) D’Odorico et al. (2014) placed special em-

phasis on the assessment of the product uncertainties by not only comparing the uncertainties (or

quality indicators) as proposed by the product teams but also by calculating an independent theoret-590

ical uncertainty based on the triple collocation (TC) method (see Sec. 3.2.4). While the uncertainties

specified by the product teams differed by up to 0.1 among the products, the TC method suggested

more consistent uncertainties among the three products of around 10-20% of the signal.
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The JRC-TIP (Pinty et al., 2007) is an inverse modelling system that was deliberately
✿✿✿✿✿✿✿✿

explicitly

designed to retrieve a set of land surface variables, including FAPAR, in a form that is compliant with595

the requirements for assimilation into terrestrial biosphere models,
✿✿✿✿✿✿

hence
✿✿

we
✿✿✿✿✿

focus
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following

✿✿

on
✿✿✿

this
✿✿✿✿✿✿✿

product. TIP is based on a one-dimensional two-stream representation of the radiative transfer

in the canopy-soil system (Pinty et al., 2006) and applies the same inversion approach as CCDAS,

which is briefly sketched in 2.2 and detailed in Rayner et al. (2016); Kaminski and Mathieu (2016)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rayner et al. (2016) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kaminski and Mathieu (2016). In a first step it retrieves a set of model pa-600

rameters describing the state of the vegetation canopy system including their
✿✿

the
✿

full uncertainty

covariance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

parameters
✿

by combining prior information with observed radiant fluxes. Further,

the model is used to propagate this PDF forward onto the simulated fluxes such as FAPAR. TIP

uses observed broadband albedo in the NIR and visible spectral domains as inputfrom which it

retrieves the effective (.
✿✿✿✿

The
✿✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

retrieval
✿✿

is
✿✿✿✿✿✿✿

constant
✿✿

in
✿✿✿✿✿

space
✿✿✿✿

and
✿✿✿✿✿

time,605

i.e. model-dependent) quantities such as FAPAR, leaf area index (LAI) besides other radiatitve

quantities
✿✿

all
✿✿✿✿✿✿✿✿

variability
✿✿

is
✿✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿

from
✿✿✿✿✿

space
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kaminski et al., 2017).
✿✿✿✿

This
✿✿

is
✿✿

in
✿✿✿✿✿✿✿

contrast
✿✿

to
✿✿✿✿✿

other

✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿✿✿

approaches,
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿✿

prescribed
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿

maps
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Liu et al., 2014). Long-

term global records of JRC-TIP products (see
✿✿✿✿

Table
✿

2) have been retrieved from broadband albedos

provided by MODIS collection 5 (Pinty et al., 2011b, c) and Globalbedo (Disney et al., 2016b)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Disney et al., 2016a).610

Products are provided for each of the respective 16-day (MODIS) and 8-day (Globalbedo) synthe-

sis periods.
✿✿

To
✿✿✿✿✿✿

reduce
✿✿✿✿

disk
✿✿✿✿✿

space,
✿✿✿

by
✿✿✿✿✿✿✿

default,
✿✿✿✿✿✿✿

JRC-TIP
✿✿✿✿✿✿✿✿

products
✿✿✿

are
✿✿✿✿✿✿✿✿

delivered
✿✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿✿

correlations

✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿

variables,
✿✿✿✿✿

even
✿✿✿✿✿✿

though
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

are
✿✿✿✿✿✿✿✿✿

available.

✿✿

An
✿✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿

in
✿✿✿✿✿

space
✿✿✿

and
✿✿✿✿

time
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

provided.
✿

Both JRC-TIP records are

provided in the native 1 km resolution of the albedo input products. In order to maintain the above-615

mentioned compliance with terrestrial models, coarser resolution products are to be derived by ap-

plying JRC-TIP to aggregated albedo inputs (as in Disney et al., 2016b)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(as in Disney et al., 2016a).

JRC-TIP products are validated at site (Pinty et al., 2007, 2008, 2011a) and regional scales (Disney et al., 2016b)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Disney et al., 2016a); more details on JRC-TIP are given in Kaminski et al. (2017).

3.2.3 Biogeochemical-based vegetation activity620

Sun-induced fluorescence (SIF) is an electromagnetic signal emitted as a two-peak spectrum be-

tween 650 and 850 nm by the chlorophyll−a of green plants under solar radiation. SIF can be di-

rectly related to photosynthetic electron transport rates and yields a mechanistic link to photosyn-

thesis and the subsequent gross carbon uptake by terrestrial vegetation (GPP) (Porcar-Castell et al.,

2014). Recent developments in satellite-based spectroscopy have enabled the first retrievals of SIF625

from space (Frankenberg et al., 2011c; Joiner et al., 2011), which holds the promise of enabling new

approaches to globally monitoring terrestrial photosynthesis. For example, a high linear correlation

between data-driven GPP estimates and SIF retrievals at global and annual scales was reported by

Frankenberg et al. (2011c); Guanter et al. (2012). The skills of SIF as a proxy for photosynthetic ac-
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tivity and GPP were also reported by studies over different ecosystems, like the Amazon rainforest630

✿✿✿

rain
✿✿✿✿✿

forest
✿

(Lee et al., 2013; Parazoo et al., 2013), large crop belts (Guanter et al., 2014), and the

boreal forests in Eurasia and North America (Walther et al., 2015).
✿✿✿

But
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

context
✿✿✿

of
✿✿✿

DA
✿✿✿✿

and

✿✿

in
✿✿✿✿

order
✿✿✿

to
✿✿✿✿✿✿

extract
✿✿✿

the
✿✿✿✿✿✿✿✿

maximal
✿✿✿✿✿✿

benefit
✿✿✿✿

from
✿✿✿✿

SIF
✿✿✿✿

data,
✿✿✿

the
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿

processes
✿✿✿✿✿✿✿✿✿✿

responsible
✿✿✿

for
✿✿✿✿

SIF

✿✿

in
✿✿✿

the
✿✿✿✿✿✿

plants’
✿✿✿✿✿✿✿✿✿✿✿✿

photochemical
✿✿✿✿✿✿✿

systems
✿✿✿

(as
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿

above)
✿✿✿✿✿✿

require
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿

models
✿✿

as
✿✿✿✿✿✿✿✿✿✿

observation

✿✿✿✿✿✿✿

operators
✿✿✿

for
✿✿✿✿

SIF.
✿

635

The global retrieval of SIF from space lies
✿✿✿✿✿

relies on the principle of in-filling of solar Fraun-

hofer lines by SIF (Frankenberg et al., 2011b). Fraunhofer lines are absorption features in the solar

spectrum, caused by elements in the solar atmosphere and sufficiently resolved by atmospheric spec-

trometers. Because of the additive nature of SIF, the fractional depth of the Fraunhofer lines detected

by the satellite instrument decreases with the amount of SIF being emitted at the same wavelength.640

The retrieval of SIF from space is then based on the evaluation of the depth of the Fraunhofer lines

present in red and NIR top-of-atmosphere spectra. The retrieval forward model is thus simple and

can be linearised (e.g. Guanter et al., 2012; Köhler et al., 2015b), so the inversioncan be easily solved

by least squares optimisation
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

simplifies
✿✿✿

the
✿✿✿✿✿✿✿✿

inversion.

Fraunhofer line-based SIF retrievals tend to be accurate but not precise: uncertainties are domi-645

nated by a random component associated to instrumental noise, which is linearly mapped into SIF

retrievals. The amplitude of instrumental noise, and hence 1-σ single-retrieval errors, scale with at-

sensor radiance for the most common case of grating-based spectrometers dominated by multiplica-

tive noise. This implies that retrieval errors are mostly driven by surface brightness and sun zenith

angles (Guanter et al., 2015). Because of this high contribution of random errors to the total retrieval650

uncertainty, single SIF retrievals are commonly linearly-aggregated as spatio-temporal composites

in which random errors are reduced. The amount
✿✿✿✿✿✿

number of retrievals to be aggregated into a given

gridbox
✿✿✿✿✿✿

grid-cell
✿

results from a compromise between spatial resolution, temporal resolution and pre-

cision of the gridded product
✿

,
✿✿✿

the
✿✿✿

size
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿

and
✿✿✿✿✿✿✿

temporal
✿✿✿✿

bins
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿✿✿✿✿

exchangeable
✿✿

in
✿✿✿✿✿

terms

✿✿

of
✿✿✿✿

their
✿✿✿✿✿

effect
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿✿✿

uncertainty. The random uncertainty of the resulting spatio-temporal655

composites is then not only driven by surface albedo and illumination, but also by the number of

soundings going into a given gridbox
✿✿✿✿✿✿✿

grid-cell, which is in turn defined by cloudiness and latitude

(in the case of overlapping orbits). Detailed analyses of random errors in SIF retrievals for different

spaceborne
✿✿✿✿✿✿✿✿✿

space-borne
✿

instruments can be found in Frankenberg et al. (2011b) and Guanter et al.

(2015).660

Global SIF data sets have been or are being derived from GOSAT, MetOp’s Global Ozone Mon-

itoring Experiment-2 (GOME-2), ENVISAT’s SCIAMACHY and the OCO-2 mission (Joiner et al.,

2011; Frankenberg et al., 2011c; Guanter et al., 2012; Joiner et al., 2012, 2013; Köhler et al., 2015a,

b; Wolanin et al., 2015; Joiner et al., 2016; Frankenberg et al., 2014).
✿✿

All
✿✿✿✿

four
✿✿✿✿✿✿✿✿

missions
✿✿✿✿✿✿

except
✿✿✿

for

✿✿✿✿✿✿✿✿✿✿✿✿

SCIAMACHY
✿✿✿

are
✿✿✿

still
✿✿✿✿✿✿✿✿✿

operating. Sample SIF maps from GOSAT, GOME-2 and SCIAMACHY for665

July 2010 are displayed in Fig. 4. All four missions except for SCIAMACHY are still operating.
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The spectal
✿✿✿

The
✿✿✿✿✿✿✿

spectral, spatial and temporal sampling of single SIF soundings varies for each in-

strument, as it is summarised in Table 3. For example, GOME-2 and SCIAMACHY provide SIF

retrievals in the red and NIR spectral regions with global coverage and a relatively high temporal

resolution. However, this comes at the expense of a coarse spatial resolution, which is 40×80 km2
670

for GOME-2 (40×40 km2 for GOME-2 on MetOp-A since July 2013) and 30×240 km2 for SCIA-

MACHY. On the other hand, GOSAT and OCO-2 do not provide spatially-continuous measurements

(i.e. no global coverage), but single soundings in the NIR have a much higher spatial resolution

than those of GOME-2 and SCIAMACHY. In particular, OCO-2 soundings correspond to ground

areas of about 4 km2, which is substantially finer than that of the other data sets. The number of675

soundings per day by OCO-2 is also much larger (about 100x) than that by the other instruments

(Frankenberg et al., 2014), which makes OCO-2 SIF to be the most suited data set for studies over

areas not requiring a continuous spatial sampling but benefiting from a high spatial resolution. This

is the case, for example, of tropical and boreal forests: spatial continuity is less critical for those

ecosystems because they are relatively homogeneous over large spatial scales, whereas the high spa-680

tial resolution is important to maximise the number of clear-sky soundings during the parts of the

year with persistent cloudiness.

Concerning near-future perspectives for SIF monitoring, it can be expected that the limitations

in spatial resolution and coverage of existing SIF products will be alleviated with the advent of the

TROPOspheric Monitoring Instrument (TROPOMI) scheduled for launch onboard the Sentinel-5685

Precursor satellite mission by mid 2017 (Table 3). TROPOMI will enable SIF retrievals in the red

and NIR regions similar to GOME-2 and SCIAMACHY, but with a 7 km pixel, daily global coverage

and a number of clear-sky observations per day ≈200 larger than GOME-2 and ≈600 larger than

SCIAMACHY. The SIF product from TROPOMI can therefore be anticipated to have a much higher

spatio-temporal resolution and signal-to-noise ratio than those from GOME-2 and SCIAMACHY690

(Guanter et al., 2015). Complementary
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Complementarily, the FLuorescence EXplorer (FLEX)

(Drusch and FLEX Team, 2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Drusch et al., 2017) has recently been selected for implementation

by ESA, with launch currently expected for 2022. FLEX will provide global measurements of SIF

in the red and NIR with at a relatively low temporal resolution, but with the finest spatial resolution

of all existing and upcoming spaceborne
✿✿✿✿✿✿✿✿✿✿

space-borne instruments.695

3.2.4 Soil moisture

Soil moisture is measured in-situ
✿✿

in
✿✿✿✿

situ
✿

through large-scale soil moisture monitoring networks

(Dorigo et al., 2011; Ochsner et al., 2013) or at various FLUXNET sites (Baldocchi et al., 2001).

Yet, these point observations have only limited coverage in space time, have spatially very diver-

gent properties (Dorigo et al., 2013), and often contain large representativeness errors at the scale700

of global ecosystem models (Gruber et al., 2013). Satellite remote sensing in the microwave domain

has the potential to overcome many of these issues. Microwave remote sensing uses the contrasting
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dielectric properties of water, air, ice, and soil particles to infer the water content in the soil column

(Owe et al., 2008). Both passive radiometer systems, measuring the emitted microwave radiance

(’brightness temperatures’), and active radar systems, measuring backscattered microwave radiance,705

can be used to retrieve soil moisture.
✿✿✿✿✿✿

Various
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

exist
✿✿✿✿

that
✿✿✿✿✿✿

convert
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

backscatter
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

into
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture,
✿✿✿✿✿✿✿✿

including
✿✿✿✿✿✿✿✿

radiative
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿

inversion
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Kerr et al., 2012; Owe et al., 2008),
✿✿✿✿✿

neural
✿✿✿✿✿✿✿✿

networks
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Rodriguez-Fernandez et al., 2015),

✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

regressions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Al-Yaari et al., 2016, e.g.),
✿✿✿

and
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿

detection
✿✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Wagner et al., 1999).

✿✿✿

The
✿✿✿✿✿

latter
✿✿

is
✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿✿✿

applied
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

scatterometer
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

and
✿✿✿✿✿✿

yields,
✿✿

in
✿✿✿✿✿✿✿

contrast
✿✿

to
✿✿✿

the
✿✿✿✿✿

other710

✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿✿

which
✿✿✿✿✿✿✿

provide
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿

as
✿✿✿✿✿✿✿✿✿

volumetric
✿✿✿✿✿

water
✿✿✿✿✿✿

content,
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿

percentage
✿✿

of

✿✿✿✿

total
✿✿✿✿✿✿✿✿✿

saturation. Microwave sensors operate in different frequency (wavelength) domains, of which

L-band (with a wavelength of ≈23 cm) and C-band (≈5 cm) are most commonly used for retriev-

ing soil moisture (Kerr et al., 2012; Owe et al., 2008; Wagner et al., 1999). Smaller wavelengths are

more sensitive to the vegetation canopy covering the soil and increasingly lose their sensitivity to715

water. Still, frequencies up to 19 GHz (≈1.5 cm) have proven potential for providing robust soil

moisture estimates at the global scale for moderately to sparsely vegetated areas (Owe et al., 2008).

Due to the relatively low energy levels and the technical challenges in microwave domain, spa-

tial resolutions of the satellite observations are generally coarse (≈25–50 km) but with high revisit

frequencies (up to 1 day). Only Synthetic Aperture Radar is able to provide much higher spatial720

resolutionsup till a few
✿

,
✿✿✿

up
✿✿

to
✿

a
✿✿✿✿

few
✿✿✿✿

tens
✿✿

of
✿

meters, yet at the cost of the
✿✿✿

long
✿

revisit times.
✿✿✿✿

Also

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

made
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

Gravity
✿✿✿✿✿✿✿✿

Recovery
✿✿✿

and
✿✿✿✿✿✿✿

Climate
✿✿✿✿✿✿✿✿✿✿

Experiment
✿✿✿✿✿✿✿✿

(GRACE;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rodell et al. (2009))

✿✿

are
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿

soil
✿✿✿✿✿✿✿✿✿

moisture,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿

estimation
✿✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿

content
✿✿✿✿✿

from
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

is

✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿✿✿✿✿✿✿

because
✿✿✿✿

they
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

snow,
✿✿✿✿✿✿

surface
✿✿✿✿✿✿

water,
✿✿✿✿✿✿✿✿✿✿✿

groundwater,

✿✿✿

and
✿✿✿✿✿✿✿✿✿

vegetation.
✿

725

Since the release of the first global soil moisture datasets
✿✿✿

data
✿✿✿✿

sets
✿

from microwave sensors in

the early 2000s the number of available soil moisture products and missions has rapidly expanded

(De Jeu and Dorigo, 2016). Several (pre-)operational products are now available from a wide vari-

ety of data providers and space organizations
✿✿✿✿✿✿✿✿✿✿✿

organisations (Table 4). While initially soil moisture

products were based on sensors mainly designed for other purposes (such as ASCAT, AMSR2, and730

Sentinel-1), ESA and NASA launched their own dedicated soil moisture satellite missions SMOS

and SMAP (Kerr et al., 2012; Entekhabi et al., 2010). Apart from the Sentinel-1 mission, which

primarily targets the provision of high resolution observations over Europe, all currently active

missions provide a nearly global coverage at a coarse resolution approximately every 1-2 days.

Differences between the various products exist in their technical design, observation bands, and735

retrieval algorithms, which often result in complementary strengths over different land cover types

(Alyaari et al., 2015; Dorigo et al., 2010; Liu et al., 2011). The missions also differ in their degree of

operationalization: While SMOS and SMAP are primarily scientific concept demonstrators, AMSR2

continues the legacy of C-band radiometer observations started by JAXA and NASA in 2002 with
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the launch of AMSR-E, while ASCAT is embedded in a fully operational program of weather ob-740

serving satellites with a guaranteed continuation at least until 2023 and a follow-on mission already

under development (Wagner et al., 2013). Apart from the target variable surface soil moisture, some

products come with estimates of freeze/thaw state and vegetation optical depth
✿✿✿✿

VOD, which are dis-

entangled from the soil moisture impacts on the measured microwave signal during the retrieval

process.745

As none of the currently active missions covers a period long enough to study climate change

impacts, ESA’s Climate Change Initiative (CCI) endorsed the combination of available soil moisture

products from active and passive microwave sensors into a consistent multi-decadal record. The ESA

CCI soil moisture product currently combines soil moisture products from 11 different sensors into

a homogenized
✿✿✿✿✿✿✿✿✿✿

homogenised
✿

daily product spanning the period 1978-2015 (Liu et al., 2012, 2011;750

Dorigo et al., 2016). Several studies have demonstrated the value of ESA CCI soil moisture for as-

sessing long-term interactions between soil moisture and vegetation productivity (Barichivich et al.,

2014; Chen et al., 2014; Dorigo et al., 2012; Muñoz et al., 2014).

Key to a proper assimilation of remotely sensed soil moisture into carbon models is a correct

characterization
✿✿✿✿✿✿✿✿✿✿✿✿✿

characterisation
✿

of its errors. Apart from instrument errors which are common to755

all observations, the quality of microwave-based soil moisture retrievals is particularly impacted by

vegetation cover, soil frost, snow cover, open water, topography, surface roughness, urban structures,

and radio frequency interference (Dorigo et al., 2010; Kerr et al., 2012). Observations where a strong

adverse impact of these factors is detected are usually masked during processing, which may lead to

data gaps for certain areas or periods of the year (Dorigo et al., 2015). If cases where their impact on760

the soil moisture retrieval is only moderate, the errors that they introduce are either simulated during

the retrieval itself using error propagation methods, or assessed a posteriori against reference data

using various statistical methods (Draper et al., 2013).

While the ASCAT and AMSR2 products come with an estimate of the error variance for each

observation by error propagation (Naeimi et al., 2009; Parinussa et al., 2011) this is still not com-765

mon practice for all soil moisture products. Yet, no error propagation model perfectly represents all

error sources and interactions (Draper et al., 2013). On the other hand, the use of in-situ
✿✿

in
✿✿✿

situ
✿

soil

moisture measurements to estimate random errors is hampered by their heterogeneous nature and

large spatial representativeness errors (Gruber et al., 2013). As an alternative, in recent years triple

collocation analysis (TCA) has firmly established itself as a robust alternative to estimate random er-770

rors in soil moisture datasets
✿✿✿

data
✿✿✿✿

sets without the need of an absolute ’true’ reference (Dorigo et al.,

2010; Scipal et al., 2008). TCA estimates the error variances of three spatially and temporally col-

located soil moisture datasets
✿✿✿

data
✿✿✿✿

sets with independent error structures, e.g. a radiometer-based,

a scatterometer-based, and a land surface model soil moisture dataset
✿✿✿

data
✿✿✿

set. Recently, the TCA

has been intensively elaborated, e.g. to solve for collinearities between errors (Gruber et al., 2016b)775

and non-linear dependencies between datasets
✿✿✿

data
✿✿✿✿

sets (Zwieback et al., 2016). The most remark-
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able advancement has been to express TCA-based error estimates as a signal-to-noise ratio, which

facilitates a direct intercomparison of the skill of datasets
✿✿✿

data
✿✿✿✿

sets
✿

independent of their dynamic

ranges (Gruber et al., 2016a),
✿✿✿

see
✿✿✿✿✿✿

Figure 5. Although the TCA provides an estimate that is en-

tirely independent of any retrieval model assumptions, it only provides a single average error es-780

timate for the entire period under consideration. Thus, synergistic use of error propagation and triple

collocation estimates shall be exploited to better capture the temporal error dynamics needed for

an optimal assimilation into carbon models. Due to the recent progress in product quality, error

characterization
✿✿✿✿✿✿✿✿✿✿✿✿

characterisation, and operationalization, satellite-based soil moisture products have

reached the level of maturity that allows for a systematic assimilation into land surface modelsto785

improve the models’ hydrology . For
✿

.
✿✿✿✿✿

These
✿✿✿✿✿✿✿

products
✿✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

hydrology

✿✿

by,
✿✿✿

for
✿

example, Martens et al. (2016)
✿✿✿

who
✿

showed that the assimilation of SMOS and ESA CCI

soil moisture generally has a small positive impact on soil water storages
✿✿✿✿✿

storage
✿

and evaporative

fluxes as simulated by the GLEAM land evaporation model. Surface soil moisture from ASCAT

is assimilated operationally in near-real-time into ECMWF Land Data Assimilation System to ob-790

tain root-zone soil moisture (Albergel et al., 2012). Global root-zone soil moisture products based

on SMOS and SMAP are derived by a slightly different approach, which assimilate the observed

brightness temperatures instead of the retrieved surface soil moisture products (Lannoy and Reichle,

2016). The assimilation of satellite-based soil moisture products in terrestrial carbon cycle models

has been described above.795

3.2.5 Biomass

Continental-scale biomass maps have been produced from space using both radar and lidar; these

rely on the returns from transmitted power, so are known as active sensors. Biomass here refers to

above-ground biomass (AGB), since there are no methods to measure the below-ground component,

and this is typically inferred from AGB using allometric equations. Furthermore, the emphasis is on800

the AGB of forests, although a global dataset
✿✿✿

data
✿✿✿

set of AGB in all biomes for the period 1993-2012

has been produced based on
✿✿✿✿✿

VOD
✿✿✿✿

data
✿✿✿✿

from
✿

global passive microwave satellite data
✿✿✿✿✿✿

sensors, hence

with spatial resolution of 10 km or coarser (Liu et al., 2015).
✿✿✿✿

The
✿✿✿✿

AGB
✿✿✿✿✿✿✿

product
✿✿

is
✿✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿

a

✿✿✿✿✿✿✿✿

regression
✿✿

of
✿✿✿✿✿

VOD
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

of
✿✿✿✿✿

AGB
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

ground-based
✿✿✿✿✿✿✿✿

inventory
✿✿✿✿✿

data.

Using long time series of C-band radar data provided by the ESA Envisat satellite, the growing805

stock volume of northern hemisphere boreal and temperate forests has been estimated (Santoro et al.,

2011). Although available at 0.01° resolution, the accuracy of growing stock volume at this scale

is comparatively poor, and spatial averaging provides more reliable results: at 0.5° spacing, esti-

mated growing stock volume has a relative accuracy of 20-30% when tested against inventory data

(Santoro et al., 2013). Thurner et al. (2014) used this product to derive the carbon stock (above- and810

below-ground) in boreal, temperate mixed and broadleaf, and temperate coniferous forests of forests

above 30° N (40.7, 24.5 and 14.5 PgC respectively). These values have estimated accuracies of
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around 33-39% under a conservative approach to estimate uncertainty.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Santoro et al. (2015) provide

✿

a
✿✿✿✿

high
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

data
✿✿✿

set
✿✿✿✿✿✿

(0.01°)
✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿✿✿✿✿

hemisphere
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

relative
✿✿✿✿✿

RMSE
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿

National

✿✿✿✿✿

Forest
✿✿✿✿✿✿✿✿

Inventory
✿✿✿✿✿✿✿

between
✿✿✿✿

12%
✿✿✿✿

and
✿✿✿✿✿

45%.815

For tropical forests, the key sensor is the Geoscience Laser Altimeter System (GLAS) onboard the

Ice, Cloud and land Elevation Satellite (ICESat) which failed in 2009 (Lefsky, 2010). Its archive of

forest height estimates was the core dataset
✿✿✿

data
✿✿✿

set exploited to produce two pan-tropical biomass

maps (Saatchi et al., 2011; Baccini et al., 2012) at grid scales of 1 km and 500 m respectively;

Saatchi et al. (2011) also provide a map of the errors associated with the biomass estimates at each820

pixel. This is produced by combining measurement errors, allometry errors, sampling errors, and

prediction errors, which are treated as independent and spatially uncorrelated. Further details are

given in the supplementary material to Saatchi et al. (2011). In an attempt to resolve differences be-

tween these two maps, Avitabile et al. (2016) used an independent reference dataset
✿✿✿✿

data
✿✿

set
✿

of field

observations to remove the biases in the maps and then combined them to estimate the AGB in the825

tropical belt (23.4° S to 23.4° N). Testing against a reference dataset
✿✿✿

data
✿✿✿

set not used in the fusion

process indicated that the fused map had a RMSE 15-21% lower than that of the input maps and

nearly unbiased estimates.

However, there are unresolved questions about large-scale biomass patterns across the Amazon

inferred from in situ and satellite data. Biomass maps derived from satellite data in Saatchi et al.830

(2011) and Baccini et al. (2012) differ significantly from each other and from biomass maps derived

from in situ plots distributed across Amazonia using kriging (Mitchard et al., 2014). Neither satel-

lite product exhibits the strong increase in biomass from southwestern to northeastern Amazonia

inferred from in situ data. Mitchard et al. (2014) attributed this to failure to account for gradients in

wood density and regionally varying tree height-diameter relations when estimating biomass from835

the satellite data. Saatchi et al. (2015) reject this analysis and claim that the trends and patterns in

Mitchard et al. (2014) are erroneous and a consequence of inadequate sampling. Resolving this dis-

agreement is of fundamental importance since it raises basic questions about accuracy, uncertainty,

and representativeness for both in situ and satellite-derived biomass data.

The next 4-5 years will dramatically improve our global knowledge of biomass, with the launch840

of three missions aimed at measuring forest structure and biomass. The ESA BIOMASS mission

(European Space Agency, 2012), to be launched in 2021, is a P-band radar that will provide near-

global measurements of forest biomass and height.
✿✿✿✿✿✿✿✿✿✿✿✿

Measurements
✿✿✿✿

from
✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿

sensors
✿✿✿✿✿✿

indicate
✿✿✿✿

that

✿✿✿✿

even
✿✿

in
✿✿✿✿✿

dense
✿✿✿✿✿✿

tropical
✿✿✿✿✿✿

forests
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

topography,
✿✿

the
✿✿✿✿✿✿✿

P-band
✿✿✿✿✿✿✿✿

frequency
✿✿✿✿

used
✿✿✿

by
✿✿✿✿✿✿✿✿✿

BIOMASS
✿✿✿✿

will

✿✿✿

give
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

to
✿✿✿✿✿✿✿✿

biomass
✿✿

up
✿✿

to
✿✿✿✿✿✿✿✿

350-450
✿✿✿

t/ha
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Minh et al., 2014; Villard and Toan, 2015).
✿

Around845

the same time the NASA-ISRO SAR mission (NISAR) based on an L-band sensor will be deployed,

providing measurements of biomass in lower biomass forests (up to 100 t ha−1). These highly com-

plementary missions will be further complemented by the NASA Global Ecosystem Dynamics In-

vestigation vegetation lidar to be placed on the International Space Station around 2019; this aims to
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provide the first global, high-resolution observations of the vertical structure of tropical and temper-850

ate forests, from which biomass may be estimated.

✿✿

As
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿

limitations
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿✿✿✿

mission
✿✿✿✿✿✿✿✿

lifetimes,
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

of
✿✿✿✿✿✿✿

biomass
✿✿✿

are
✿✿✿✿✿✿✿

unlikely

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿

sensitive
✿✿✿✿✿✿✿

enough
✿✿

to
✿✿✿✿✿✿✿

measure
✿✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿

except
✿✿✿

in
✿✿✿✿✿✿

rapidly
✿✿✿✿✿✿✿

growing
✿✿✿✿✿✿✿✿✿✿

plantations
✿✿✿✿

and

✿✿✿✿✿✿

tropical
✿✿✿✿✿✿

forests.
✿✿✿✿✿✿

Hence
✿✿

an
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

ancillary
✿✿✿✿

data
✿✿✿

set
✿✿

for
✿✿✿✿✿✿

studies
✿✿✿✿✿✿

aiming
✿✿

to
✿✿✿✿✿

relate
✿✿✿✿✿✿✿

biomass
✿✿

to
✿✿✿✿✿✿✿

climate

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

environment
✿✿

is
✿✿✿

tree
✿✿✿✿

ring
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring).855

4 Conclusions

In the context of carbon cycle data assimilation this paper reviews the requirements and summarises

the availability and characteristics of some selected observations with a special focus on remotely

sensed Earth observation data.
✿✿✿✿✿✿✿✿✿✿✿

Observations
✿✿✿

are
✿✿✿

key
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿✿

the
✿✿✿✿✿✿✿

carbon
✿✿✿✿

cycle
✿✿✿✿✿✿✿✿✿

processes860

✿✿✿

and
✿✿✿

are
✿✿

an
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

component
✿✿✿

for
✿✿✿✿

any
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

system.
✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿

context
✿✿✿

the
✿✿✿✿✿✿✿✿

provision
✿✿✿

of

✿✿✿✿✿✿✿✿

systematic
✿✿✿✿

and
✿✿✿✿✿✿✿✿

sustained
✿✿✿✿✿✿✿✿✿

observing
✿✿✿✿✿✿✿

systems
✿✿✿

on
✿✿

an
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿

basis
✿✿

is
✿✿✿✿✿✿✿✿

becoming
✿✿✿✿✿

more
✿✿✿✿

and
✿✿✿✿✿

more

✿✿✿✿✿✿✿✿

important.
✿

✿✿

An
✿✿✿✿✿✿✿✿

example
✿✿✿

for
✿✿✿✿

such
✿✿

an
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿

network
✿✿✿

for
✿✿

in
✿✿✿✿

situ
✿✿✿✿

data
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

Integrated
✿✿✿✿✿✿✿

Carbon
✿✿✿✿✿✿✿✿✿

Observing

✿✿✿✿✿✿

System
✿✿✿✿✿✿

(ICOS,
✿✿✿

see
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

https://www.icos-ri.eu).
✿✿✿✿✿

ICOS
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

pan-European
✿✿✿✿✿✿✿✿✿✿✿✿

infrastructure
✿✿✿

for
✿✿✿✿✿✿

carbon865

✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿✿✿

high-quality
✿✿

in
✿✿✿✿

situ
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

(both
✿✿✿✿✿✿

fluxes
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

atmospheric

✿✿✿✿✿✿✿✿✿✿✿✿

concentrations)
✿✿✿✿

over
✿✿✿✿✿✿

Europe
✿✿✿✿

and
✿✿✿✿

over
✿✿✿✿✿

ocean
✿✿✿✿✿✿

regions
✿✿✿✿✿✿✿

adjacent
✿✿

to
✿✿✿✿✿✿

Europe
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿✿

perspective.

✿✿✿✿✿

ICOS
✿✿✿✿✿✿

consists
✿✿

of
✿✿✿✿✿✿

central
✿✿✿✿✿✿✿

facilities
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

co-ordination,
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿

and
✿✿✿✿

data
✿✿

in
✿✿✿✿✿✿✿✿✿

conjunction
✿✿✿✿

with
✿✿✿✿✿✿✿✿

networks

✿✿

of
✿✿✿✿✿✿✿✿✿✿

atmospheric,
✿✿✿✿✿✿✿

oceanic
✿✿✿

and
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

as
✿✿✿✿

well
✿✿

as
✿

a
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿

centre,
✿✿✿

the
✿✿✿✿✿✿✿

Carbon

✿✿✿✿✿

Portal,
✿✿✿✿✿✿✿✿✿

providing
✿✿✿✿✿✿✿✿

discovery
✿✿

of
✿✿✿✿

and
✿✿✿✿✿

access
✿✿✿

to
✿✿✿✿✿

ICOS
✿✿✿✿

data
✿✿✿✿✿✿✿

products
✿✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿

derived
✿✿✿✿

flux
✿✿✿✿✿✿✿✿✿✿✿

information.870

✿✿✿✿✿

Other
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(quasi-)operational
✿✿✿✿✿✿✿✿

networks
✿✿✿✿✿✿✿✿✿

measuring
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

maintained,
✿✿✿

for

✿✿✿✿✿✿✿

instance,
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

National
✿✿✿✿✿✿✿✿

Oceanic
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

Atmospheric
✿✿✿✿✿✿✿✿✿✿✿✿✿

Administration
✿✿✿✿✿✿✿✿

(NOAA)
✿✿✿✿✿✿✿

Climate
✿✿✿✿✿✿✿✿✿✿

Monitoring

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Diagnostics
✿✿✿✿✿✿✿✿✿

Laboratory,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

Scripps
✿✿✿✿✿✿✿✿✿

Institution
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

Oceanography,
✿✿✿✿

both
✿✿✿✿✿

USA,
✿✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿

CSIRO

✿✿✿✿✿

Global
✿✿✿✿✿✿✿✿✿✿✿

Atmospheric
✿✿✿✿✿✿✿✿

Sampling
✿✿✿✿✿✿✿✿✿✿

Laboratory,
✿✿✿✿✿✿✿✿✿

Australia.

✿✿

An
✿✿✿✿✿✿✿✿

example
✿✿✿

for
✿✿✿

an
✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿✿✿✿

space-based
✿✿✿✿✿

Earth
✿✿✿✿✿✿✿✿

observing
✿✿✿✿✿✿✿✿✿✿

programme
✿✿✿

in
✿✿✿✿✿✿

Europe
✿✿

is
✿✿✿

the
✿✿✿✿✿

fleet875

✿✿

of
✿✿✿✿✿✿✿

so-called
✿✿✿✿✿✿✿✿

Sentinel
✿✿✿✿✿✿✿

satellites
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Copernicus
✿✿✿✿✿✿✿✿✿✿

programme.
✿✿✿✿✿✿✿✿✿✿

Copernicus
✿✿✿✿

aims
✿✿

at
✿✿✿✿✿✿✿✿

providing
✿✿✿✿✿✿✿

Europe

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿

access
✿✿

to
✿✿✿✿

Earth
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

data
✿✿✿

and
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿

services
✿✿✿✿✿✿✿✿✿✿✿✿

(transforming

✿✿

the
✿✿✿✿✿✿✿

satellite
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

additional
✿✿

in
✿✿✿

situ
✿✿✿✿

data
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿✿

value-added
✿✿✿✿✿✿✿✿✿✿

information
✿✿

by
✿✿✿✿✿✿✿✿✿✿

processing
✿✿✿

and
✿✿✿✿✿✿✿✿✿

analysing

✿✿

the
✿✿✿✿✿

data)
✿✿

in
✿✿✿✿✿✿✿

support
✿✿

of
✿✿✿✿✿

Earth
✿✿✿✿✿✿

System
✿✿✿✿✿✿✿

Science
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Berger et al., 2012).
✿✿✿✿✿✿✿✿

Currently,
✿✿✿

six
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

Sentinel

✿✿✿✿✿✿✿

missions
✿✿✿

are
✿✿✿✿✿✿✿

planned
✿✿✿✿

(and
✿✿✿✿✿

have
✿✿✿✿✿

partly
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

launched).
✿✿✿

So
✿✿✿

far,
✿✿

a
✿✿✿✿✿✿✿✿

dedicated
✿✿✿✿✿✿✿

mission
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

monitoring880

✿✿

the
✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle,
✿✿✿

i.e.
✿✿✿

an
✿✿✿✿✿✿✿✿✿

instrument
✿✿✿✿✿✿✿✿✿

measuring
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

composition,
✿

is
✿✿✿

not
✿✿✿

yet
✿✿✿✿✿✿✿✿

included

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Copernicus
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿✿✿✿

programme
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see Ciais et al., 2015),
✿✿✿✿✿✿✿✿

however,
✿✿✿✿

the
✿✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿✿✿

Sentinel

✿✿✿✿✿✿✿

satellites
✿✿✿✿

will
✿✿

be
✿✿✿✿✿✿✿✿

extended
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

future
✿✿✿✿

and
✿✿✿✿✿

likely
✿✿✿✿✿✿✿

include
✿

a
✿✿✿✿✿

CO2
✿✿✿✿✿✿✿

mission.
✿✿✿✿✿✿

Other
✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿

EO

✿✿✿✿✿✿✿✿✿✿

programmes
✿✿✿

are
✿✿✿✿✿✿✿

operated
✿✿✿

by
✿✿✿

e.g.
✿✿✿✿✿✿

NOAA
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

Japanese
✿✿✿✿✿✿✿✿✿

Aerospace
✿✿✿✿✿✿✿✿✿✿

Exploration
✿✿✿✿✿✿✿

Agency.
✿
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The paper also briefly recapitulates the assimilation systems capable of integrating these data, a885

more comprehensive description of the underlying formalism is given in Rayner et al. (2016) while

MacBean et al. (2016) discuss the implementation strategies for a multiple data assimilation system

and its
✿✿✿✿

their
✿

impacts on the results. To take maximum advantage of these data streams in carbon

cycle data assimilation studies it is of utmost importance to have the appropriate knowledge of

the observational
✿✿✿✿✿✿✿✿✿

uncertainty
✿

characteristics of the observational data, here with a focus on atellite890

✿✿✿✿✿✿

satellite
✿

products. This includes an understanding of the observable and its representativeness in

order to develop the appropriate observation operator (see also Kaminski and Mathieu, 2016) but

also the structure of any biases, random errors and error covariances (that is both the diagonal and

off-diagonal elements quantifying the
✿✿✿

error
✿

correlations between different observations).

The benefit of using multiple data streams in a CCDAS lies in the complementarity of the data, and895

thus in the ability to constrain different components of the underlying process model. For example,

while FAPAR data constrain mainly the phenology component of a terrestrial carbon cycle model,

soil moisture data, in contrast, constrain the hydrological component, but both components are

important elements of the model and determine the simulated carbon fluxes. In fact, because of

the model internal interactions and feedbacks among the components the simultaneous assimilation900

of complementary observations has synergistic effects such that the constraint is larger than the sum

of the individual constraints as shown for instance by Kato et al. (2013) assimilating
✿✿✿

who
✿✿✿✿✿✿✿✿✿✿

assimilated

observations of FAPAR and latent heat flux.

As a final remark one important aspect of observational data is their continuity since much of

the important information is contained in response to climate anomalies. Fortunately, the set up of905

operational observeing
✿✿✿✿✿✿✿✿

observing
✿

systems such as ICOS for in-situ
✿✿

in
✿✿✿✿

situ data or Copernicus for

satellite data has created the necessary infrastructure to ensure such a long-term perspective in the

provision of Earth observations.
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Appendix A: List of Acronyms

ACE-FTS Atmospheric Chemistry Experiment - Fourier Transform Spectrometer

AGB Above Ground Biomass

AIRS Atmospheric Infrared Sounder

AMSR2 Advanced Microwave Scanning Radiometer 2

AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System

ASCAT Advanced Scatterometer

ATSR Along Track Scanning Radiometers

AVHRR Advanced Very High Resolution Radiometer

CCDAS Carbon Cycle Data Assimilation System

CCI Climate Change Initiative

ECMWF European Centre for Medium-Range Weather Forecasts

ECV Essential Climate Variable

EO Earth Observation (in this form generally understood as from space)

ESA European Space Agency

FAPAR Fraction of Absorbed Photosynthetically Active Radiation

FLEX FLuorescence EXplorer

GCOM-W1 Global Change Observation Mission 1st-Water

GLAS Geoscience Laser Altimeter System

GLEAM Global Land Evaporation Amsterdam Model

GOME-2 Global Ozone Monitoring Experiment-2

GOSAT Greenhouse Gases Observing Satellite

GPP Gross Primary Productivity

IASI Infrared Atmospheric Sounding Interferometer

ICOS Integrated Carbon Observing System

ICESat Ice, Cloud and land Elevation Satellite

ISRO Indian Space Research Organisation

JAXA Japan Aerospace Exploration Agency

✿✿✿✿✿✿✿✿✿

JRC-MGVI
✿✿✿✿

Joint
✿✿✿✿✿✿✿

Research
✿✿✿✿✿

Centre
✿

–
✿✿✿✿✿✿

MERIS
✿✿✿✿✿✿

Global
✿✿✿✿✿✿✿✿

Vegetation
✿✿✿✿

Index
✿

JRC-TIP Joint Research Centre – Two-stream Inversion Package

✿✿✿

LAI
✿ ✿✿✿

Leaf
✿✿✿✿

Area
✿✿✿✿✿

Index

MERIS Medium Resolution Imaging Spectrometer

MIPAS Michelson Interferometer for Passive Atmospheric Sounding

MISR Multiangle
✿✿✿✿✿✿✿✿

Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NDVI Normalized
✿✿✿✿✿✿✿✿✿

Normalised Difference Vegetation Index

NIR Near Infrared

✿✿✿✿✿

NOAA
✿ ✿✿✿✿✿✿

National
✿✿✿✿✿✿✿

Oceanic
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Atmospheric
✿✿✿✿✿✿✿✿✿✿✿

Administration
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Obs4Mips Observations for Model Intercomparisons Project

OCO-2 Orbiting Carbon Observatory 2

OE Optimal Estimation

PDF Probability Density Function

SAR Synthetic Aperture Radar

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
✿✿✿✿✿✿✿✿✿

Cartography

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SEVIRI Spinning Enhanced Visible and InfraRed Imager

SIF Sun-Induced Fluorescence

SMAP Soil Moisture Active Passive

SMOS Soil Moisture Ocean Salinity

SWIR Shortwave Infrared

TANSO-FTS Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer

TCA Triple Collocation Analysis

TCCON Total Carbon Column Observing Network

TCOS Terrestrial Carbon Observation System

TROPOMI TROPOspheric Monitoring Instrument

✿✿

VI
✿ ✿✿✿✿✿✿✿✿

Vegetation
✿✿✿✿

Index

✿✿✿✿

VOD
✿✿✿✿✿✿✿✿

Vegetation
✿✿✿✿✿✿

Optical
✿✿✿✿

Depth
✿
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Figure 1. Schematic of a data assimilation system with x being the control vector containing the quantities to

be updated by the assimilation. The inner loop (
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the ’Model-data comparison
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of
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J’ box to

’Model and observation operator’ box ) indicates the assimilation process
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(assimilation
✿✿✿✿

loop). Often, the anal-

ysis of residuals in model data
✿✿✿✿✿✿✿✿✿

model-data comparison lead
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✿

to either model improvements or adjustment
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Figure 2. Space-time diagramme
✿✿✿✿✿✿

diagram for a range of observations relevant for a Terrestrial Carbon Obser-

vation System.

50



Figure 3. Timeseries
✿✿✿✿

Time
✿✿✿✿

series
✿

of satellite-derived XCO2
✿✿✿✿✿

XCO2 in 3 latitude bands (see annotation bottom

left, e.g. red line: 30o-60oN
✿✿

30
✿✿✿✿✿

degree
✿✿

to
✿✿✿

60
✿✿✿✿✿

degree
✿✿

N) and maps showing the spatial distribution of XCO2
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XCO2 for April 2014 (top leftmap) and corresponding XCO2
✿✿✿✿✿

XCO2 uncertainty (bottom
✿✿

top
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right). (b) As (a)

but for XCH4
✿✿✿✿✿

XCH4 (maps: September 2014).
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Figure 4. Maps of sun-induced fluorescence (SIF) for July 2010 derived from GOSAT, GOME-2 and SCIA-

MACHY satellite data.
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Figure 5. Signal-to-noise ratio (in dB), estimated with the Triple Collocation Analysis for four different

satellite-based soil moisture products and a Land Surface Model. a) MetOp-A ASCAT based on the TU

Wien method (Wagner et al., 1999); b) AMSR2 based on the LPRM model (Owe et al., 2008); c) SMOS L3

(Kerr et al., 2010); d) SMAP (Jackson, 1993). An SNR of -3 indicates a signal variance that is half of the noise

variance, an SNR of 0 a signal variance equal to the noise variance, an SNR of 3 a signal variance that is twice

the noise variance, and so on. In areas without data the TC could not be computed, e.g. because of too few

observations in one of the datasets
✿✿✿

data
✿✿✿

sets. For details see Gruber et al. (2016b).
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Table 1. Overview SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT XCO2
✿✿✿✿

XCO2
✿✿

and XCH4

✿✿✿✿✿

XCH4
✿

Level 2 data products (individual ground-pixel retrievals). For some products also Level

3, i.e. gridded data products are available (e.g. for CO2_SCI_WFMD and CH4_SCI_WFMD

from http://www.iup.unibremen.de/sciamachy/NIR_NADIR_WFM_DOAS/ and merged SCIAMACHY and

TANSO-FTS XCO2
✿✿✿✿✿

XCO2 and XCH4
✿✿✿✿✿

XCH4 products in Obs4MIPs format from http://www.esa-ghg-cci.org/)

Parameter
✿✿✿✿✿✿

Variable Sensor Available at:

Product (Reference)

XCO2
✿✿✿✿✿

XCO2 SCIAMACHY http://www.esa-ghg-cci.org/

CO2_SCI_BESD (Reuter et al., 2011)

CH4_SCI_WFMD (Schneising et al., 2011)

TANSO http://www.gosat.nies.go.jp/en/

NIES operational GOSAT (Yoshida et al., 2013)

http://www.esa-ghg-cci.org/

CO2_GOS_OCFP (Cogan et al., 2012)

CO2_GOS_SRFP/RemoTeC (Butz et al., 2011)

http://www.iup.uni-bremen.de/ heymann/besd_gosat.php

GOSAT BESD (Heymann et al., 2015)

http://disc.sci.gsfc.nasa.gov/acdisc/documentation/ACOS.html

NASA ACOS (Crisp et al., 2012)

SCIAMACHY & http://www.esa-ghg-cci.org/

TANSO merged CO2_EMMA (Reuter et al., 2013)

OCO-2 http://disc.sci.gsfc.nasa.gov/OCO-2

NASA OCO-2 (Boesch et al., 2011)

XCH4
✿✿✿✿✿

XCH4 SCIAMACHY http://www.esa-ghg-cci.org/

CH4_SCI_WFMD (Schneising et al., 2011)

CH4_SCI_IMAP (Frankenberg et al., 2011a)

TANSO http://www.gosat.nies.go.jp/en/

NIES operational GOSAT (Yoshida et al., 2013)

http://www.esa-ghg-cci.org/

CH4_GOS_OCPR (Parker et al., 2011)

CH4_GOS_SRPR/RemoTeC (Butz et al., 2010)

CH4_GOS_OCFP (Parker et al., 2011)

CH4_GOS_SRFP/RemoTeC (Butz et al., 2011)

SCIAMCHY & http://www.esa-ghg-cci.org/

TANSO merged CH4_EMMA (Reuter et al., 2013)

53



Table 2. Characteristics of a variety of FAPAR products, more details and products are provided by

D’Odorico et al. (e.g. 2014); Pickett-Heaps et al. (e.g. 2014).

Name Time Temporal Definition Reference

period resolution

MODIS 2000-present 8 days Green canopy, direct radiation Myneni et al. (2002)

SeaWiFS1 1997-2006 10 days Green canopy, diffuse radiation Gobron et al. (2006)

TIP-MODIS 2000-present 16 days FAPAR/Green canopy, diffuse radiation Pinty et al. (2011b)

TIP-GlobAlbedo 2002-2011 8 days FAPAR/Green canopy, diffuse radiation Disney et al. (2016b)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Disney et al. (2016a)

Vegetation 1999-present 10 days FAPAR, direct radiation Baret et al. (2007)

1 The same algorithm is also used for MERIS (called JRC MGVI, 2002-2011) and SPOT-Vegetation (2012-present) with a 1.2 km, 10 day resolution (Gobron et al., 2008).

Table 3. Selected characteristics of operating and planned spaceborne instruments able to deliver SIF data.

Names of upcoming instruments are highlighted in italics. NIR stands for near-infrared. It must be noted that

GOME-2 on MetOp-A has been operating with a reduced pixel size of 40×40 km2 since July 2013.
✿✿✿✿✿✿✿✿

References

✿✿

are
✿✿✿✿✿✿✿✿

examples,
✿✿✿

the
✿✿

full
✿✿✿

list
✿✿

is
✿✿✿✿

given
✿✿

in
✿✿✿

the
✿✿✿

text.

✿✿✿✿

Name
✿

Time Overpass Spectral Global Spatial Temporal
✿✿✿✿✿✿✿

Reference
✿

period time sampling coverage resolution resolution

GOSAT 2009–today Midday NIR No 10 km diam. 3 days
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Frankenberg et al. (2011c)

GOME-2 2007–today Morning red & NIR Yes 40×80 km2 <2 days
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Joiner et al. (2013),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Köhler et al. (2015b)

SCIAMACHY 2003–2012 Morning red & NIR Yes 30×240 km2 <3 days
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Joiner et al. (2013),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Köhler et al. (2015b)

OCO-2 2014–today Midday NIR No 1.3×2.3 km2 16 days
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Frankenberg et al. (2014)

TROPOMI ∼2017 Midday red & NIR Yes 7×7 km2 <1 day
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Guanter et al. (2015)

FLEX ∼2022 Morning red & NIR Yes 0.3×0.3 km2 <27 days
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Drusch et al. (2017)
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Table 4. Current (pre-)operational global soil moisture missions and products (for abbreviations / acronyms see

List of Acronyms

Mission Organisation Measurement concept Band Mission start Data access

MetOp - EUMETSAT Real aperture radar C-band Jan. 2007 http://hsaf.meteoam.it/soil-moisture.php

ASCAT (scatterometer) http://land.copernicus.eu/global/products/swi

SMOS ESA Interferometric L-band Nov. 2009 http://www.catds.fr/

radiometer

GCOM-W1 JAXA Radiometer C-band May 2012 http://www.vandersat.com/

AMSR2 http://suzaku.eorc.jaxa.jp/GCOM_W/

SMAP NASA Radiometer L-band Jan. 2015 http://smap.jpl.nasa.gov/

& radar1

Sentinel-1 ESA/ Synthetic aperture C-band Apr. 2014 https://www.eodc.eu/

Copernicus radar

CCI ESA Combined scatterometer L-, C-, X- Nov. 1978 http://www.esa-soilmoisture-cci.org

and radiometer Ku-band

1 SMAP’s radar failed in July 2015
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