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Abstract.

The global carbon cycle is an important component of the Earth system and it interacts with

the hydrological, energy and nutrient cycles as well as ecosystem dynamics. A better understand-

ing of the global carbon cycle is required for improved projections of climate change including

corresponding changes in water and food resources and for the verification of measures to reduce5

anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be

achieved by model-data fusion or data assimilation systems, which integrate observations relevant

to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients

for such systems are a carbon cycle model, an algorithm for the assimilation, and systematic and

well error-characterized observations relevant to the carbon cycle. Relevant observations for assimi-10

lation include various in-situ measurements in the atmosphere (e.g. concentrations of CO2 and other

gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing

observations (e.g. atmospheric composition, vegetation and surface properties).

We briefly review the different existing data assimilation techniques and contrast them to model

benchmarking and evaluation efforts (which also rely on observations). A common requirement for15

all assimilation techniques is a full description of the observational data properties. Uncertainty

estimates of the observations are as important as the observations themselves because they similarly

determine the outcome of such assimilation systems. Hence, this article reviews the requirements

of data assimilation systems on observations and provides a non-exhaustive overview of current

observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on20

progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.

(2005) emphasising the rapid advance in relevant space-based observations.
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1 Introduction

The anthropogenic pertubation of the global carbon cycle has led to a global mean increase of 43%

in atmospheric CO2 (from 280 ppm to 398 ppm) in 2014 compared to pre-industrial (before 1750)25

levels (WMO, 2015), and is the main driver for climate change. The main causes for the increase in

CO2 are burning of fossil fuels and land use change, which amount to emissions of 9.8±0.5 GtC in

2014. However, only about 44% of these emissions stay in the atmosphere, the remainder is currently

taken up by the land biosphere (≈ 30%) and the surface ocean (≈ 26%) (Le Quéré et al., 2015). Pos-

itive climate-carbon cycle feedbacks, predominatly acting on land processes, may reduce this sink30

capacity and thus accelerate global warming (Matthews et al., 2007). Also, the sink strength of the

terrestrial biosphere is more variable than that of the ocean (Ciais et al., 2013) and its quantification

by process-based terrestrial carbon cycle models exhibit large uncertainties (Le Quéré et al., 2015).

A common way to reduce uncertainties from process-based modelling is by confronting these

models with observational data. Raupach et al. (2005) pointed out that the systematic combination35

of observational data with process modelling, which is commonly refered to as ’model-data fusion’,

is an effective strategy for observing the Earth system. Model-data fusion, or more formally known

as data assimilation, is motivated by several benefits to make best use of observations and models

(Mathieu and O’Neill, 2008). These benefits include, among others, (1) forecasting and initialisation

(forward predictions in time based on past observations), (2) model and data quality control (regular40

and systematic confrontation of model output with observations within their uncertainty statistics),

(3) combination of various data streams (combined constraints of independent observations can be

stronger than the sum of the individual constraints), (4) filling in regions with sparse observations

(consistent propagation of information from data-rich regions to data-poor regions), (5) estimating

unobservable quantities (through process-based relations in the model observations constrain mod-45

elled quantities which are not directly measured) and (6) observing system design (what is the delta

of a new observation/instrument).

Systematic observations are a key ingredient for model-data fusion studies. Here, we focus on the

carbon cycle and the land-atmosphere system. The land-atmosphere components of the carbon cycle

are an important part of an integrated Earth observation system because of the close interactions on50

land between the carbon cycle and the water and energy cycles, and hence its importance for climate

projections and climate change mitigation strategies through the monitoring and management of

terrestrial greenhouse gas sources and sinks.

Raupach et al. (2005) provide an analysis of the various elements of a Terrestrial Carbon Obser-

vation System (TCOS). The need, design and steps to be taken towards a TCOS were already out-55

lined by others before (Cihlar et al., 2002; Global Carbon Project, 2003) but Raupach et al. (2005)

systematically reviewed two major components of a TCOS: the model-data fusion methods and

the observational data and data uncertainty characterisctics for some selected, main kinds of rele-

vant data. The requirements for a policy-relevant carbon observing system have been outlined by
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Ciais et al. (2014). They review the current systematic carbon-cycle observations and illustrate the60

implementation of such a policy-relevant carbon observing system.

In this paper we provide an update of the observational data and data uncertainty characteristics

as assessed by Raupach et al. (2005) with a focus on exisitng but also new and upcoming, relevant

space-based observations (in the following referred to as Earth Observation (EO) data). In contrast

to Ciais et al. (2014), who focus on carbon-cycle observations, we focus here on any kind of rele-65

vant observational data to be (potentially) assimilated in a terrestrial carbon cycle data assimilation

system (CCDAS). In a CCDAS the observations are used to constrain the underlying model (i.e. to

move model output quantities closer to the observations and reduce their posterior uncertainties)

usually by parameter optimisation. In that sense we are somewhat broader in terms of observed vari-

ables because also ’non-carbon’ observations (such as soil moisture or land surface temperature) are70

able to constrain the carbon cycle indirectly through process information embedded in the underly-

ing models. At the same time, the focus of our review is narrower than that of Ciais (2014), who

also addressed ocean and anthropogenic components. Our focus lies on the terrestrial carbon cycle,

because of the higher spatial and temporal variability in the net exchange fluxes and their associated

higher uncertainties than form the ocean and anthropogenic components.75

The paper is organized as follows: in the next section we contrast data assimilation to recently

established benchmarking activities and give a brief overview of commonly used data assimilation

approaches and their applications in terrestrial carbon cycling. We continue with a short overview

on data characteristics inlcuding an update on progress for some of the observations discussed in

Raupach et al. (2005). Since there has been much developments in the provision of remotely sensed80

observations we focus here on the characteristics of the most relevant EO data streams.

2 Model-data fusion

2.1 Data assimilation versus benchmarking

In the recent past the international land surface and terrestrial ecosystem modelling communi-

ties have recognized the importance of model benchmarking and evaluation (e.g. Luo et al., 2012;85

Foley et al., 2013). One of the reasons for this development is the huge range of model results from

different models in key diagnostics of the land-atmosphere interface such as gross primary produc-

tivity (GPP) and latent heat flux (Prentice et al., 2015).

In general ’benchmarking’ is understood as the quantification of performance against a reference

using some pre-defined metrics. The reference can either be output from some previous model sim-90

ulations, other (ensembles of) models or reference datasets based on observations if the model simu-

lates the analogue quantity. Luo et al. (2012) suggest a theoretical framework for benchmarking land

models based on based on standardized references and metrics to measure model performance skills.

A large variety of such metrics and their characteristics is introduced by Foley et al. (2013). Some
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examples of benchmarking terrestrial carbon cycle models (either standalone or coupled to climate95

models) are given by e.g. Randerson et al. (2009), Cadule et al. (2010) and Kelley et al. (2013).

The commonality between benchmarking/evaluation and data assimilation lies in the quantitative

assessment of model output. In benchmarking the quantitative assessment is performed by calculat-

ing some metrics against either observations or other references, while in data assimilation this is

achieved by defining a cost function, which quantifies the mismatch of some simulated model quan-100

tity against observations weighted by their uncertainties (including a model uncertainty). But data

assimilation goes beyond benchmarking as it minimises the quantified mismatch to improve model

performance directly by adjusting either initial and boundary conditions, state variables and/or model

process parameters.

As pointed out by Prentice et al. (2015) there is a need for both model benchmarking and data105

assimilation: Benchmarking as a routine application to improve confidence and evaluate the perfor-

mance (over time) in terrestrial carbon cycle modelling. However, if a benchmark test for a given

model fails this could simply imply that the model parameter values have not been specified correctly

and optmised against observations. In contrast, data assimilation, in particular when used for param-

eter optimisation, potentially identifies structural model and/or data deficiencies if the model-data110

mismatch (or the benchmar test) is still inadequate after optimisation (see also Figure (1)).

2.2 Data assimilation methods

The general problem of model-data fusion, or, more strictly speaking, data assimilation can be for-

mulated like this: Given a model M , a set of observations y of some observables o = H(z), with

z being the state variables of the model and H the observation operator, and prior information on115

some target variables x, produce an updated description of x. x may include elements of z and p

(parameter, quantities not changed by the model, i.e. process parameters, boundary and initial condi-

tions). Here, we follow the notation as introduced by Rayner et al. (2016). The observation operator

maps the model state onto observables. In the case of a CCDAS assimilating atmospheric CO2 the

observation operator is the atmospheric transport model mapping the net CO2 surface exchange120

fluxes as calculated by the terrestrial carbon cycle onto simulated atmospheric CO2 concentrations.

In transport inversions the dynamical model, the atmospheric transport model, is also the observation

operator.

A data-assimilation system consists of three main ingredients: a set of observations, a dynamical

model including the observation operator and an assimilation method. In the Bayesian formulation125

of the assimilation problem uncertainties (i.e. the description of quantities by probability density

functions, PDFs) are central to the concept of data assimilation. Both observations as well as models

have errors arising for various reasons. We will detail the observational errors in the next section.

Dynamical models as well as observation operators have errors arising from the parameterizations,
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and the discretization of analytical dynamics into a numerical model; for a more complete description130

of uncertainty in Earth System models or components of such we refer to Scholze et al. (2012).

We distinguish two basic approaches in data assimilation: sequential assimilation, which assim-

ilates observations at discrete time-steps and thus evolves over time according to the dynamical

model; and variational assimilation, which assimilates all observations at once at their respective

measyurement time over a given period, the so-called assimilation window. They differ in their nu-135

merical efficiency and optimality for their specific use. A general data-assimilation scheme is shown

in Figure (1). In the sequential approach the inner loop is evaluated sequentially over time following

the dynamics of the model. In the case of variational assimilation the inner loop is evaluated itera-

tively (assuming a non-linear model) until a cost function minimum is found. The cost function is

formulated as140

J =
1
2

[
(x−xb)T B−1(x−xb) + (H(x)−y)T R−1(H(x)−y)

]
, (1)

where xb is the prior information, B the prior uncertainty covariance, and R the observational

uncertainty covariance. From Equation 1 follows that data and prior knowledge cannot be treated

separately from their respective uncertainties (Raupach et al., 2005). In other words, observations

(or prior knowlegde) for data assimilation are only complete if we know the full probability density145

function (PDF), which, in the case of a Gaussian, can be characterised by its mean and variance. In

practical terms, the observational uncertainty covariances weight the model-data mismatch, while

the prior uncertainty covariances weight the deviation of the target variables from their prior values.

We note here that in the Gaussian case the model and observation operator errors can be added

quadratically to the observation errors.150

An important diagnostic in data assimilation is the posterior uncertainty, which usually, because

of its high dimension, is hard to compute. If the assimilation problem is Gaussian the computation of

the posterior uncertainty covariance matrix simplifies and it can be approximated by the inverse of

the Hessian (2nd derivative) of the cost function. Typically, gradient-based optimisation approaches

approximate the Hessian, alternatively ensembles can be used to derive realisations of the poste-155

rior PDF. The uncertainty reduction relative to the prior (i.e. 1−Uxpo/B with Uxpo the posterior

uncertainty) then is a measure of the observational constraint on the target variables.

Rayner et al. (2016) introduce the theory fundamental to data assimilation and illustrate how the

different implementations of data assimilation relate to this theory in a more narrative style A more

complete and mathematically precise introduction to the concepts of data assimilation is given in the160

textbooks by e.g. Daley (1991); Tarantola (2005).

2.3 Examples of terrestrial carbon cycle data assimilation

A variety of the methods as described by Rayner et al. (2016) have been applied by the carbon cy-

cle community. One example making use of formal assimilation methdologies for inferring surface-
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atmosphere CO2 exchange fluxes is based on atmospheric transport inversions. As mentioned before,165

in atmospheric inversions the observation model is an atmospheric tracer transport model. In atmo-

spheric inversions both sequential and variational methods have been used together with observations

of atmospheric trace gas concentrations such as from the flask sampling network, continuous in-situ

and aircraft measurements and more recently also remotely sensed total column measurements. The

techniques for atmospheric transport inversions have been detailed in Enting (2002) and a recent170

comparison of results from different transport inversion is given by Peylin et al. (2013).

A more recent development is the assimilation of observations into terrestrial biosphere models.

Here, various methods and observations have been used to optimise model process parameters at

different scales. A comparison of a whole suite of these assimilation methods applied to a test case

using a simplified model at local-scale is given by Trudinger et al. (2007) and Fox et al. (2009).175

Kaminski et al. (2002) were among the first who applied a formal algorithm together with obser-

vations of atmospheric CO2 concentrations to constrain the Simple Diagnostic Biosphere Model at

global scale. This work was continued by the development of the first Carbon Cycle Data Assimi-

lation System with a process-based model at its core (Rayner et al., 2005). The advantage of using

a process-based model at the core of a CCDAS is that once the process parameters have been opti-180

mised the the constrained model can also be used for predictions as demonstrated by Scholze et al.

(2007). Also, such systems are capable of ingesting multiple independent data streams besides at-

mospheric CO2 concentrations. Kaminski et al. (2013) provide an overview on the developments of

the CCDAS-BETHY since its first application while Scholze et al. (2016) demonstrate the latest ap-

plication of CCDAS-BETHY assimilating atmospheric CO2 and remotely sensed surface soil mois-185

ture simultaneously. Since then several global terrestrial ecosystem models have been included in

Carbon Cycle Data Assimilation Systems employing a variational approach (e.g. Schürmann et al.,

2016; Peylin et al., 2016).

Concurrently, there have been several studies at the local/regional scale assimilating various types

of observations. For instance, Barrett (2002) used a genetic algorithm to infer soil carbon turnover190

times in a terrestrial carbon cycle model over Australia from plant production, biomass, litter and soil

carbon observations. Local eddy covariance flux tower measurements of net exchange of CO2 and

latent and sensible heat fluxes have been assimilated to optimize parameter related to photosynthe-

sis, respiration and energy fluxes of terrestrial ecosystem models, using Monte Carlo type methods

(e.g. Braswell et al., 2005; Knorr and Kattge, 2005; Moore et al., 2008; Ricciuto et al., 2008), se-195

quential methods (Williams et al., 2005), as well as variational approaches (e.g. Wang et al., 2001;

Kuppel et al., 2012; Raoult et al., 2016)

Recent advances are focusing on multiple independent data stream assimilation to provide a more

rigorous constraint on the multiple components of terrestrial ecosystem models and avoid equifinal-

ity, i.e. different parameter solutions provide the same cost function value. Examples for such studies200

on local/regional scale are the assimilation of eddy covariance CO2 fluxes together with observations
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of vegetation structural information or carbon stocks (e.g. Richardson et al., 2010; Keenan et al.,

2012) or together with remotely sensed vegetation activity such as the Fraction of Absorbed Pho-

tosynthetic Active Radiation (FAPAR) (e.g. Kato et al., 2013; Bacour et al., 2015). The assimilation

of multiple data streams can be performed either in a step-wise (e.g. Peylin et al., 2016) or simulta-205

neous approach (e.g. Kaminski et al., 2012); in the case of non-linear models only the simultaneous

assimilation makes optimal use of the observations (MacBean et al., 2016).

3 Data characteristics and provision

Observations are our measurable representation of the ’Truth’. They come with different charac-

teristics in terms of spatial and temporal resolution, coverage of the observed system, and errors.210

In analogy, models are also some representation of the ’Truth’, however, via knowledge embodied

in some form of functional relationships (with their own errors as mentioned before). The paper

by Raupach et al. (2005) has been instrumental in highlighting the challenges in combining models

and observational data for building a TCOS focussing on the observational requirements. Ciais et al.

(2014) argue for a globally integrated carbon observation system to improve our understanding of the215

carbon cycle for predicting future changes and to be able to independently verify the impact of emis-

sion reduction measures. Such a system relies on atmospheric carbon observations as a backbone

but also concerns observations of the terrestrial and ocean carbon cycle. They focus on a strategy

towards a global carbon-cycle monitoring system for achieving the above mentioned objectives.

Figure (2) depicts exemplarily the main observations of a TCOS and their space-time charac-220

teristics. In the following we briefly summarise the aspects of uncertainty in the observations and

highlight progress on the specification of uncertainty for some of the observations in Fig. (2) as well

as on their monitoring since Raupach et al. (2005).

3.1 Observational uncertainty

As mentioned before an important ingredient to any model-data fusion system are not only the225

observations themsleves but also the uncertainties associated to them. We distinguish three main

types of observation errors:

• Random: Random errors are always present in measurements and are caused by unpredictable

changes in the measurement system (e.g. electronic noise in electrical instrument). They show

up as different readings of the same repeated measurement, and thus can be reduced by tak-230

ing the average of multiple measurements. Random erros are usually assumed to be Normal

(Gaussian) distributed, however, in some cases the random error distribution is log-normal

(e.g. precipitation) or skewed by outliers due to unpredictable corruptions of the measurement

system. Random erros are therefore relatad to the precision of a measurement system.
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• Systematic (bias): Systematic errors in observations are usually due to some recurring prob-235

lems in the overall measurement system. They are caused by instrument miscalibrations or

interferences with the measurement system. They can vary in space and time but they affect

the measurement system in a predictable way. Biases can be both additive (absolute mean

bias) and multiplicative (biases in the dynamic range affecting the amplitude of a signal). If

the source for systematic errors is known they can usually be fixed and shoud be removed.240

Systematic erros are therefore relatad to the accuracy of a measurement system.

• Representativeness. The representation error occurs when information is represented at a scale

different from the source of the information. For instance a quantity simulated by a model is

’representative’ for a given spatial and temporal resolution of the model grid. An individ-

ual measurement, however, represents information influenced by the local environment not245

resolved by the model grid (e.g. representation of atmospheric flask data in an atmospheric

transport model gridcell). In the case of satellite-based observations the representation error

also includes errors in inferring a biophysical quantity from the photons measured at the sen-

sor. We come back to this issue later.

For both random and systematic errors not only the magnitude of the error for a single observation250

is important, i.e. the diagonal elements in the observational uncertainty covariance matrix B, but also

the correlations among errors for different observations. Hence there is a need to specify the off-

diagonal elements in the error covariance matrix B. These off-diagonal elements are usually hard to

specify, however, they are important to quantify in a data assimilation system because they affect the

prediction of the optimal solution in the same way as the diagonall elements.255

As mentioned before, Raupach et al. (2005) have already reflected on the main properties of the

data and their error covariances for observations of remotely sensed land surface properties (mainly

NDVI), atmospheric CO2 concentrations, land-atmosphere net CO2 exchange fluxes, and terres-

trial carbon stores. In the past years, there has been substantial progress in the specification of un-

certainties in eddy-covariance measurements of the land-atmosphere net CO2 exchange flux (Net260

Ecosystem Productivity, NEP) and its component fluxes (GPP and ecosystem respiration, Reco). For

instance, Lasslop et al. (2008) analysed the error distribution and found that the eddy flux data can

almost entirely be represented by a superposition of Gaussian distributions with inhomogeneous

variance. In a more recent study Raj et al. (2016) investigated the uncertainy of GPP derived from

partitioning the eddy covariance NEP measurements. They used a light-use efficiency model em-265

bedded in a Bayesian framework to estimate the uncertainty in the separated GPP from the posterior

distribution at half-hourly time steps. The availability of the eddy covariance data has also been

heavily improved; the latest release of the FLUXNET2015 dataset now contains data from about

165 sites worldwide spanning a period from 1991 (for some sites) up to 2014 (FLUXNET2015).
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3.2 Towards operational carbon observation systems270

In the European framework there have recently been major developments towards systematic in-

situ observations for use in terrestrial carbon cycle data assimilation systems. The Integrated Carbon

Observing System (ICOS) is a novel pan-European infrastructure for carbon observations, which will

provide high-quality in-situ observations (both fluxes as well as atmospheric concentrations) over

Europe and over ocean regions adjacent to Europe with a long-term perspective. ICOS consists of275

central facilities for co-ordination, calibration and data in conjunction with networks of atmospheric,

oceanic and ecosystem observations as well as a data distribution centre, the Carbon Portal, providing

discovery of and access to ICOS data products such as derived flux information. The ICOS network

runs in an operational mode, and greenhouse gas concentrations and fluxes will be determined on a

routine basis. The measurements are designed to allow up to daily determination of (mainly natural)280

sources and sinks at scales down to approximately 50 x 50 km2 for the European continent.

An example for an operationalised, space-based Earth observing programme is the fleet of so-

called Sentinel satellites of the European Copernicus programme. Copernicus aims at providing

Europe with a continuous and independent access to Earth observation data and associated services

(transforming the satellite and additional in-situ data into value-added information by processing285

and analysing the data) in support of Earth System Science (Berger et al., 2012). So far, six different

Sentinel missions are planned out of which three are in operation and the remainder is scheduled to be

launched during the next years. Each type of the currently foreseen Sentinels has a specific objective

and will deliver a range of EO products. Some of these products will be suitable for constraining the

terrestrial carbon cycle, such as soil moisture (Sentinel 1), FAPAR, leaf chlorophyl and water content290

and land cover (Sentinel 2 and 3), land surface temperature (Sentinel 3), atmospheric methane and

flourescence (Sentinel 5 and precursor). So far, a dedicated mission for monitoring the carbon cycle,

i.e. an instrument measuring the atmospheric CO2 composition, is not yet included in the Copernicus

monitoring programme (see Ciais et al., 2015), however, the series of Sentinel satellites is likely to

be extended in the future.295

3.3 Examples of systematic observations from satellite EO data

There has been a vast extension of EO capabilites during the past 10 years or so both in terms of

product quality (including, for instance, improved accuracy) but also quantity (new products).

In any data assimilation system using satellite EO data one needs to decide in the design phase

of the system whether to assimilate observations at the sensor level (i.e. the spectral radiances for300

optical sensors or brightness temperatures for microwave sensor, referred to as level 1 data) or to as-

similate the bio-geophysical variable derived from the radiances through a retrieval algorithm (level

2 data product). When assimilating level 1 data the retrieval algorithm is part of the observation

operator linking the model state to the observations in the data assimilation system. A more detailed
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description of the two alternatives in assimilating EO satellite observations into models of the Earth305

system is given by Kaminski and Mathieu (2016). In carbon cycle data assimilation systems level

2 data products (or even level 3 data, which are provided on a regular space-time grid) are most

commonly used.

In the next subsections we present some selected, and for terrestrial carbon cycle data assimi-

lation most relevant remotely sensed Earth Observation products in more detail. The EO products310

described below (atmospheric CO2, vegetation activity, soil moisture, terrestriaial biomass) either

have already been used, are in the process of being used, or would potentially be a useful data

constraint in a CCDAS. For vegetation activity we distinguish two major types of products: more

’traditional’ reflectance- or radiative-based products such as fraction of absorbed photosynthetically

active radiation (FAPAR) and recently developed products based on biogeochamical processes such315

as sun-induced flourescence (SIF). For instance, FAPAR has already been demonstrated to provide

a strong constraint on terrestrial carbon as well as water fluxes through its impact on the phenol-

ogy components of the carbon cycle model (e.g. Knorr et al., 2010; Kaminski et al., 2012). SIF is a

promising observation to constrain the gross uptake of CO2 by plant photosynthesis. First assimi-

lation results using SIF observations in a CCDAS show that the uncertainty in global annual GPP320

is largely reduced by constraining parameters that describe leaf phenology (Norton et al., 2016).

Also assimilation of XCO2 into a diagnostic terrestial carbon cycle model has been shown to derive

net CO2 fluxes consistent with independent in-situ measurements of atmospheric CO2 as well as

to reduce posterior uncertainties in the infered net and gross CO2 fluxes (Kaminski et al., 2016b).

van der Molen et al. (2016) assessed the impact of assimilating various remotely sensed soil mois-325

ture products into the SiBCASA ecosystem model on simulated carbon fluxes in Boreal Eurasia.

Although the impact of assimilating ASCAT surface soil moisture was significant, its skill in this

hydrologically complex environment strongly depends on surface water and vegetation dynamics. In

contrast, Scholze et al. (2016) showed that when assimilating SMOS soil moisture simultaneously

with in-situ atmospheric CO2 concentrations the reduction of uncertainty in gross and net CO2 fluxes330

relative to the prior is considerably higher than for assimilating CO2 only, which quantifies the added

value of SMOS observations as a constraint on the terrestrial carbon cycle. So far, remotely sensed

biomass data have not been used in carbon cycle data assimilation studies, however, Thum et al.

(2016) demonstrated the added value of in-situ observations of biomass increment in reducing un-

certainties in simulated above ground biomass mainly through the calibration of parameters in the335

carbon allocation scheme of the terrestrial carbon cycle model.

This list of EO products described in this paper is admittedly subjective and there is of course a

whole range of additional remotely sensed products available, which are relevant for carbon cycle

studies as well, e.g. burned area (e.g. Giglio et al., 2013), land cover (e.g. Bontemps et al., 2012),

land surface temperature (e.g. Li et al., 2013), leaf area index (which is in effect closely related to340

FAPAR) (e.g. Liu et al., 2014) or vegetation optical depth (e.g. Konings et al., 2016). However, these
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products are rather used as input or boundary conditions for terrestrial carbon cycle models or, for

instance in the case of vegetation optical depth, they have so far not been used in carbon cycle data

assimilation studies.

3.3.1 Atmospheric CO2 and CH4345

Satellite retrievals of atmospheric carbon dioxide (CO2) and methane (CH4) are available from sev-

eral satellite instruments such as mid-tropospheric CO2 and CH4 columns from Infrared Atmo-

spheric Sounding Interferometer (IASI) (e.g. Crevoisier et al., 2009a, b) on EUMETSAT’s Metop

satellite series, vertical profiles with highest sensitivity in the mid/upper troposphere from AIRS

on Aqua (e.g. Xiong et al., 2013), stratospheric profiles from MIPAS on ENVISAT limb obser-350

vations (e.g. Laeng et al., 2015) and from the solar occultation observations of SCIAMACHY on

ENVISAT (Noël et al., 2011, 2016) and ACE-FTS (e.g. Boone et al., 2005; Foucher et al., 2009).

These observations have however only little or no sensitivity to CO2 and CH4 concentration changes

close to the Earth’s surface and therefore contain only limited information on regional or local

CO2 and CH4 sources and sinks. Satellites with high near-surface sensitivity are nadir (downlook-355

ing) satellites which measure radiance spectra of reflected solar radiation in the relevant spectral

bands in the near-infrared/shortwave-infrared (NIR/SWIR) spectral region, which are located around

1.6 µm (CO2 and CH4) and around 2.0 µm (CO2). Satellites instruments which perform (or have

performed) these observations are SCIAMACHY onboard ENVISAT (2002–2012) (Burrows et al.,

1995; Bovensmann et al., 1999), TANSO-FTS onboard GOSAT (launched in 2009) (Kuze et al.,360

2009, 2014) and NASA’s Orbiting Carbon Observatory 2 (OCO-2) mission (launched in 2014)

(Crisp et al., 2004; Boesch et al., 2011).

The main CO2 and CH4 data products of these sensors are near-surface-sensitive column-averaged

dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The quantities XCO2 and XCH4

are both retrieved from SCIAMACHY/ENVISAT (ground pixel size: 30×50 km2 (along track times365

across track); swath width 960 km with contiguous ground pixels) and TANSO-FTS/GOSAT (10

km pixel size; several (e.g. 3 or 5) non-contiguous pixels across track). OCO-2 delivers XCO2 (8

ground pixels across track, each≈1.3 km) and in the near future other satellites will be launched such

as Europe’s Sentinel-5-Precursor satellite (S5P) (Veefkind et al., 2012), which will deliver (among

several other parameters) XCH4 (7 km pixel size at nadir, 2600 km swath width with contiguous370

ground pixels; planned launch: mid 2017) (Butz et al., 2012) and China’s TanSat (planned launch end

of 2016), which will deliver XCO2 with similar characteristics as NASA’s OCO-2. In the following

we will focus the discussion on sensors who have already delivered multi-year XCO2 and XCH4

year data sets, i.e. on SCIAMACHY and TANSO.

The XCO2 and XCH4 data products retrieved from SCIAMACHY and TANSO are generated375

from the radiance observations using different approaches. Most approaches are based on ’Op-

timal Estimation’ (OE) (e.g. Rogers, 2000; Reuter et al., 2010), also called Bayesian inference.
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OE permits to constrain the retrieval using a priori information on, e.g. atmospheric vertical pro-

files of trace gases and aerosols. In general, the radiances are simulated using a radiative transfer

model (RTM) and RTM and other parameters (state vector elements) are adjusted until an ’opti-380

mal’ match is achieved between observed and simulated radiances. One algorithm (WFM-DOAS

(WFMD) (Buchwitz et al., 2000; Schneising et al., 2008, 2009)) is based on least-squares and does

not use a priori information to constrain the fit parameters. As a consequence, the resulting XCO2

and XCH4 products are typically somewhat ’noisier’ compared to the OE products.

The XCO2 and XCH4 data products from SCIAMACHY are generated within the GHG-CCI385

project (Buchwitz et al., 2015) of ESA’s Climate Change Initiative (CCI, Hollmann et al. (2013))

and these products are available from the GHG-CCI website (http://www.esa-ghg-cci.org/). XCO2

and/or XCH4 products from GOSAT are generated at several institutions in Japan, Europe and the

USA and are available from several sources as shown in Table (1). The quality of these GHG-CCI

products and the XCO2 and XCH4 products generated elsewhere has been significantly improved390

during recent years (e.g. Schneising et al., 2012; Yoshida et al., 2013; Dils et al., 2014; Buchwitz et al.,

2015) and has now reached quite high maturity when compared to user requirements as formulated

in, e.g. GCOS (2011). This can be concluded, for example, from the quality of the latest version

of the GHG-CCI SCIAMACHY and TANSO XCO2 and XCH4 data set (’Climate Research Data

Package No. 3’, CRDP3) (Buchwitz et al., 2016). Based on comparisons with ground-based obser-395

vations of the Total Carbon Column Observing Network (TCCON, Wunch et al. (2010, 2011)) it

has been found that the GCOS requirements for systematic error (< 1 ppm for XCO2, < 10 ppb

for XCH4) and long-term stability (< 0.2 ppm/year for XCO2, < 2 ppb/year for XCH4) are met for

nearly all products. As also shown in Buchwitz et al. (2016), the single observation (ground pixel)

retrieval precision) random error primarily due to instrument noise) is about 2 ppm for XCO2 from400

SCIAMACHY and TANSO and ≈15 ppb for TANSO XCH4. For SCIAMACHY XCH4 the pre-

cision depends on time period and retrieval algorithm and is in the range 35 - 80 ppb. For some

products it has also been investigated to what extent the uncertainty can be reduced upon averaging

(Kulawik et al., 2016) and recommendations are given how to take into account error correlations

(Reuter et al., 2016), i.e. which values to use for the non-diagonal elements of the error covariance405

matrix, as an important contrbution to the full characterisation of the data needs for data assimilaton

studies.

Figure (3) presents an overview about GHG-CCI CRDP3 XCO2 (left) and XCH4 (right) data set

in terms of time series and maps. These figures have been generated by gridding the underlying in-

dividual ground pixel (Level 2) products to generate a 5°×5° monthly Level 3 ’Obs4MIPs’ product410

Buchwitz and Reuter (2016). Each 5°×5° monthly grid cell also contains an estimate of the over-

all uncertainty (also shown in Fig. (3)) which has been computed taking into account random and

systematic error components. As can be seen from Fig. (3), the uncertainty of the satellite XCO2

retrievals for monthly 5°×5° averages is estimated to be typically around 0.5 - 1 ppm (values larger
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than 1 ppm are typically associated with regions where only few observations per grid cell exist,415

e.g. due to clouds or higher latitudes corresponding to low sun elevation). For XCH4 the uncertainty

is on the order of a few ppb (typically 4 - 8 ppb). In Buchwitz and Reuter (2016), also initial TCCON

validation results of the Obs4MIPs products are presented. It is shown that the XCO2 product agrees

with monthly averaged TCCON XCO2 within 0.29 ± 1.2 ppm (1 σ) and the XCH4 product within

2.0 ± 10.7 ppb. This is hardly worse that the results which have been obtained by careful valida-420

tion of the individual ground pixel retrievals taking into account the best possible spatio-temporal

co-location and considering the averaging kernels, etc. (e.g. Buchwitz et al., 2016). Note that the

computed differences of Obs4MIPs monthly 5°×5° satellite products with monthly averaged TC-

CON include the errors of the satellite data, errors of the TCCON products, errors due to neglecting

altitude sensitivity differences (averaging kernels), and representativity error. This indicates that the425

representativity error is quite small (at least for monthly 5°×5° spatio-temporal sampling and res-

olution), probably on the order of 0.1 - 0.2 ppm for XCO2 and a few ppb for XCH4 (it is planned

to quantify this error in the future but currently only these rough estimates are available). Note that

detailed information on all GHG-CCI products is available on the GHG-CCI website in terms of

technical documents, links to peer-reviewed publications and figures including detailed maps for430

each month and each individual data product.

The SCIAMACHY and TANSO XCO2 and XCH4 retrievals have been used in a number of scien-

tific studies to address important questions related to the sources and sinks of atmospheric CO2 and

CH4 by atmospheric inversion studies (e.g. Bergamaschi et al., 2013; Houweling et al., 2015) and

more recently also in a data assimilation context for optimising model parameters (Chevallier et al.,435

2016). Obviously, the longer the time series and the more accurate it is, the larger the information

content of a given data set. Therefore, further improvements are desired (Chevallier et al., 2016) and

possible (at least in terms of time series extension but likely also in further reduction of remaining

biases).

3.3.2 Reflectamce-based vegetation dynamics/activity440

Since the early beginnings of remote sensing the state and evolution of the vegetation has been

monitored by satellites. An early attempt to analyse vegetation dynamics from space is to calculate

the Normalized Difference Vegetation Index (NDVI, defined as the ratio between the difference of

near-infrared, NIR, and visible red, Red, spectral bands and the sum of NIR and Red: NDVI = (NIR

- Red)/(NIR + Red), Deering et al. (1975)). The advantage of an index such as NDVI lies in its445

simplicity and applicability to sensors with few spectral bands such as the Advanced Very High Res-

olution Radiometer (AVHRR). Therefore this index has been applied for numerous purposes over

the last 30 years or so. But NDVI is not a geophysical variable and it is sensitive to various perturb-

ing factors such as atmospheric constituents (aerosols, water vapor), directional effects (geometry

of illumination and observation), changes in soil background color changes (depending on soil wa-450
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ter content)(e.g. Pinty et al., 1993; Goel and Qin, 1994; Leprieur et al., 1994; Dorigo et al., 2007).

There have been many attempts in modifying NDVI and developing additional vegetation indices to

overcome its limitations, for example: Soil-Adjusted Vegetation Index (Huete, 1988), Atmospheri-

cally Resistant Vegetation Index (Kaufman and Tanre, 1992) or Global Environmental Monitoring

Index (Pinty and Verstraete, 1992). These indices generally exhibit some improvement in one respect455

but at the expense of some degradation in another respect.

A rational approach to address all these issues at once is to design a physically based quantity

which closely follows the state of the vegetation. The Fraction of Absorbed Photosynthetically Ac-

tive Radiation (FAPAR) provides some kind of information on the photosynthetic activity of the

land vegetation. FAPAR is recognised as an Essential Climate Variable (ECV) (GCOS, 2011) and is460

based on the land surface radiation budget. It is defined as the fraction of the photosynthetically active

radiation (i.e. incoming solar radiation in the spectral region 0.4–0.7µm) that is absorbed by the veg-

etation canopy (see also Pickett-Heaps et al. (2014) for a mathematical definition). Several FAPAR

products are derived from a variety of optical sensors (e.g. ATSR, MERIS, MISR, MODIS, SEVIRI,

SeaWiFS, VEGETATION) at different spatial and temporal resolutions. Although there has been465

substantial efforts to harmonize products across sensors (Ceccherini et al., 2013) and establish stan-

dards and validation practices (e.g. Widlowski, 2010) there are still considerable differences among

the products. These differences can mainly be associated to differences in the retrieval methodology

as well as to the quality of input variables. A recent overview of various FAPAR products and their

specifications, but without an assessemt of product uncertainties, is given by Gobron and Verstraete470

(2009). Table (2) summarises the characteristics of the most common FAPAR products.

Several studies have compared the performance of different satellite-derived FAPAR products:

McCallum et al. (2010) looked at four FAPAR datasets over Northern Eurasia for the year 2000,

Pickett-Heaps et al. (2014) evaluated six products across Australia, D’Odorico et al. (2014) com-

pared three products over Europe and Tao et al. (2015) assessed five products over different land475

cover types. Pickett-Heaps et al. (2014) concluded that although all six evaluated products display

robust spatial and temporal patterns there is considerable disagreement amongst the products and

non of the products outperforms the others. One of the reasons for these differences are differ-

ent assumptions on the underlying biome types. They also reviewed the consistency of the FAPAR

products against in-situ field measurements, the mean difference between the EO products and the480

in-situ field measurements is around 0.1 (as FAPAR is a normalised fraction values range from 0 to

1). This estimate is confirmed by the study of Tao et al. (2015) who suggest an average uncertainty

of 0.14 from validation against total FAPAR and 0.09 from validation against green FAPAR in-situ

measurements. In their comparison of Joint Research Centre–Two-stream Inversion Package (JRC-

TIP) MODIS, JRC MGVI and Boston University MODIS products (see Tab. 2) D’Odorico et al.485

(2014) placed special emphasis on the assessment of the product uncertainties by not only compar-

ing the uncertainties (or quality indicators) as proposed by the product teams but also by calculating
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an independent theoretical uncertainty based on the triple collocation (TC) method (see Sec. 3.3.4).

While the uncertainties specified by the product teams differed by up to 0.1 among the products, the

TC method suggested more consistent uncertainties among the three products of around 10-20% of490

the signal.

The JRC-TIP (Pinty et al., 2007) is an inverse modelling system that was deliberately designed

to retrieve a set of land surface variables, including FAPAR, in a form that is compliant with the

requirements for assimilation into terrestrial biosphere models. TIP is based on a one-dimensional

two-stream representation of the radiative transfer in the canopy-soil system (Pinty et al., 2006) and495

applies the same inversion approach as CCDAS, which is briefly sketched in 2.2 and detailed in

Rayner et al. (2016); Kaminski and Mathieu (2016). In a first step it retrieves a set of model param-

eters describing the state of the vegetation canopy system including their full uncertainty covariance

by combining prior information with observed radiant fluxes. Further, the model is used to propagate

this PDF forward onto the simulated fluxes such as FAPAR. TIP uses observed broadband albedo500

in the NIR and visible spectral domains as input from which it retrieves the effective (i.e. model-

dependent) quantities such as FAPAR, leaf area index (LAI) besides other radiatitve quantities.

Long-term global records of JRC-TIP products (see 2) have been retrieved from broadband albe-

dos provided by MODIS collection 5 (Pinty et al., 2011b, c) and Globalbedo (Disney et al., 2016).

Products are provided for each of the respective 16-day (MODIS) and 8-day (Globalbedo) synthesis505

periods. Both JRC-TIP records are provided in the native 1 km resolution of the albedo input prod-

ucts. In order to maintain the above-mentioned compliance with terrestrial models, coarser resolu-

tion products are to be derived by applying JRC-TIP to aggregated albedo inputs (as in Disney et al.,

2016). JRC-TIP products are validated at site (Pinty et al., 2007, 2008, 2011a) and regional scales

(Disney et al., 2016); more details on JRC-TIP are given in Kaminski et al. (2016a).510

3.3.3 Biogeochemical-based vegetation activity

Sun-induced fluorescence (SIF) is an electromagnetic signal emitted as a two-peak spectrum be-

tween 650 and 850 nm by the chlorophyll−a of green plants under solar radiation. SIF can be di-

rectly related to photosynthetic electron transport rates and yields a mechanistic link to photosyn-

thesis and the subsequent gross carbon uptake by terrestrial vegetation (GPP) (Porcar-Castell et al.,515

2014). Recent developments in satellite-based spectroscopy have enabled the first retrievals of SIF

from space (Frankenberg et al., 2011c; Joiner et al., 2011), which holds the promise of enabling new

approaches to globally monitoring terrestrial photosynthesis. For example, a high linear correlation

between data-driven GPP estimates and SIF retrievals at global and annual scales was reported by

Frankenberg et al. (2011c); Guanter et al. (2012). The skills of SIF as a proxy for photosynthetic ac-520

tivity and GPP were also reported by studies over different ecosystems, like the Amazon rainforest

(Lee et al., 2013; Parazoo et al., 2013), large crop belts (Guanter et al., 2014), and the boreal forests

in Eurasia and North America (Walther et al., 2015).

15

Biogeosciences Discuss., doi:10.5194/bg-2016-557, 2017
Manuscript under review for journal Biogeosciences
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



The global retrieval of SIF from space lies on the principle of in-filling of solar Fraunhofer lines

by SIF (Frankenberg et al., 2011b). Fraunhofer lines are absorption features in the solar spectrum,525

caused by elements in the solar atmosphere and sufficiently resolved by atmospheric spectrometers.

Because of the additive nature of SIF, the fractional depth of the Fraunhofer lines detected by the

satellite instrument decreases with the amount of SIF being emitted at the same wavelength. The

retrieval of SIF from space is then based on the evaluation of the depth of the Fraunhofer lines

present in red and NIR top-of-atmosphere spectra. The retrieval forward model is thus simple and530

can be linearised (e.g. Guanter et al., 2012; Köhler et al., 2015b), so the inversion can be easily

solved by least squares optimisation.

Fraunhofer line-based SIF retrievals tend to be accurate but not precise: uncertainties are domi-

nated by a random component associated to instrumental noise, which is linearly mapped into SIF

retrievals. The amplitude of instrumental noise, and hence 1-σ single-retrieval errors, scale with535

at-sensor radiance for the most common case of grating-based spectrometers dominated by multi-

plicative noise. This implies that retrieval errors are mostly driven by surface brightness and sun

zenith angles (Guanter et al., 2015). Because of this high contribution of random errors to the to-

tal retrieval uncertainty, single SIF retrievals are commonly linearly-aggregated as spatio-temporal

composites in which random errors are reduced. The amount of retrievals to be aggregated into a540

given gridbox results from a compromise between spatial resolution, temporal resolution and preci-

sion of the gridded product. The random uncertainty of the resulting spatio-temporal composites is

then not only driven by surface albedo and illumination, but also by the number of soundings going

into a given gridbox, which is in turn defined by cloudiness and latitude (in the case of overlapping

orbits). Detailed analyses of random errors in SIF retrievals for different spaceborne instruments can545

be found in Frankenberg et al. (2011b) and Guanter et al. (2015).

Global SIF data sets have been or are being derived from GOSAT, MetOp’s Global Ozone Mon-

itoring Experiment-2 (GOME-2), ENVISAT’s SCIAMACHY and the OCO-2 mission (Joiner et al.,

2011; Frankenberg et al., 2011c; Guanter et al., 2012; Joiner et al., 2012, 2013; Köhler et al., 2015a,

b; Wolanin et al., 2015; Joiner et al., 2016; Frankenberg et al., 2014). Sample SIF maps from GOSAT,550

GOME-2 and SCIAMACHY for July 2010 are displayed in Fig. 4. All four missions except for

SCIAMACHY are still operating. The spectal, spatial and temporal sampling of single SIF sound-

ings varies for each instrument, as it is summarised in Table 3. For example, GOME-2 and SCIA-

MACHY provide SIF retrievals in the red and NIR spectral regions with global coverage and a

relatively high temporal resolution. However, this comes at the expense of a coarse spatial resolu-555

tion, which is 40×80 km2 for GOME-2 (40×40 km2 for GOME-2 on MetOp-A since July 2013) and

30×240 km2 for SCIAMACHY. On the other hand, GOSAT and OCO-2 do not provide spatially-

continuous measurements (i.e. no global coverage), but single soundings in the NIR have a much

higher spatial resolution than those of GOME-2 and SCIAMACHY. In particular, OCO-2 soundings

correspond to ground areas of about 4 km2, which is substantially finer than that of the other data560
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sets. The number of soundings per day by OCO-2 is also much larger (about 100x) than that by the

other instruments (Frankenberg et al., 2014), which makes OCO-2 SIF to be the most suited data set

for studies over areas not requiring a continuous spatial sampling but benefiting from a high spatial

resolution. This is the case, for example, of tropical and boreal forests: spatial continuity is less criti-

cal for those ecosystems because they are relatively homogeneous over large spatial scales, whereas565

the high spatial resolution is important to maximise the number of clear-sky soundings during the

parts of the year with persistent cloudiness.

Concerning near-future perspectives for SIF monitoring, it can be expected that the limitations

in spatial resolution and coverage of existing SIF products will be alleviated with the advent of the

TROPOspheric Monitoring Instrument (TROPOMI) scheduled for launch onboard the Sentinel-5570

Precursor satellite mission by mid 2017 (Table 3). TROPOMI will enable SIF retrievals in the red

and NIR regions similar to GOME-2 and SCIAMACHY, but with a 7 km pixel, daily global coverage

and a number of clear-sky observations per day ≈200 larger than GOME-2 and ≈600 larger than

SCIAMACHY. The SIF product from TROPOMI can therefore be anticipated to have a much higher

spatio-temporal resolution and signal-to-noise ratio than those from GOME-2 and SCIAMACHY575

(Guanter et al., 2015). Complementary, the FLuorescence EXplorer (FLEX) (Drusch and FLEX Team,

2015) has recently been selected for implementation by ESA, with launch currently expected for

2022. FLEX will provide global measurements of SIF in the red and NIR with at a relatively low

temporal resolution, but with the finest spatial resolution of all existing and upcoming spaceborne

instruments.580

3.3.4 Soil moisture

Soil moisture is measured in-situ through large-scale soil moisture monitoring networks (Dorigo et al.,

2011; Ochsner et al., 2013) or at various FLUXNET sites (Baldocchi et al., 2001). Yet, these point

observations have only limited coverage in space time, have spatially very divergent properties

(Dorigo et al., 2013), and often contain large representativeness errors at the scale of global ecosys-585

tem models (Gruber et al., 2013). Satellite remote sensing in the microwave domain has the potential

to overcome many of these issues. Microwave remote sensing uses the contrasting dielectric prop-

erties of water, air, ice, and soil particles to infer the water content in the soil column (Owe et al.,

2008). Both passive radiometer systems, measuring the emitted microwave radiance (’brightness

temperatures’), and active radar systems, measuring backscattered microwave radiance, can be used590

to retrieve soil moisture. Microwave sensors operate in different frequency (wavelength) domains, of

which L-band (with a wavelength of ≈23 cm) and C-band (≈5 cm) are most commonly used for re-

trieving soil moisture (Kerr et al., 2012; Owe et al., 2008; Wagner et al., 1999). Smaller wavelengths

are more sensitive to the vegetation canopy covering the soil and increasingly lose their sensitivity

to water. Still, frequencies up to 19 GHz (≈1.5 cm) have proven potential for providing robust soil595

moisture estimates at the global scale for moderately to sparsely vegetated areas (Owe et al., 2008).
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Due to the relatively low energy levels and the technical challenges in microwave domain, spa-

tial resolutions of the satellite observations are generally coarse (≈25–50 km) but with high revisit

frequencies (up to 1 day). Only Synthetic Aperture Radar is able to provide much higher spatial

resolutions up till a few meters, yet at the cost of the revisit times.600

Since the release of the first global soil moisture datasets from microwave sensors in the early

2000s the number of available soil moisture products and missions has rapidly expanded (De Jeu and Dorigo,

2016). Several (pre-)operational products are now available from a wide variety of data providers

and space organizations (Table 4). While initially soil moisture products were based on sensors

mainly designed for other purposes (such as ASCAT, AMSR2, and Sentinel-1), ESA and NASA605

launched their own dedicated soil moisture satellite missions SMOS and SMAP (Kerr et al., 2012;

Entekhabi et al., 2010). Apart from the Sentinel-1 mission, which primarily targets the provision

of high resolution observations over Europe, all currently active missions provide a nearly global

coverage at a coarse resolution approximately every 1-2 days. Differences between the various prod-

ucts exist in their technical design, observation bands, and retrieval algorithms, which often result in610

complementary strengths over different land cover types (Alyaari et al., 2015; Dorigo et al., 2010;

Liu et al., 2011). The missions also differ in their degree of operationalization: While SMOS and

SMAP are primarily scientific concept demonstrators, AMSR2 continues the legacy of C-band ra-

diometer observations started by JAXA and NASA in 2002 with the launch of AMSR-E, while AS-

CAT is embedded in a fully operational program of weather observing satellites with a guaranteed615

continuation at least until 2023 and a follow-on mission already under development (Wagner et al.,

2013). Apart from the target variable surface soil moisture, some products come with estimates of

freeze/thaw state and vegetation optical depth, which are disentangled from the soil moisture impacts

on the measured microwave signal during the retrieval process.

As none of the currently active missions covers a period long enough to study climate change620

impacts, ESA’s Climate Change Initiative (CCI) endorsed the combination of available soil moisture

products from active and passive microwave sensors into a consistent multi-decadal record. The ESA

CCI soil moisture product currently combines soil moisture products from 11 different sensors into

a homogenized daily product spanning the period 1978-2015 (Liu et al., 2012, 2011; Dorigo et al.,

2016). Several studies have demonstrated the value of ESA CCI soil moisture for assessing long-term625

interactions between soil moisture and vegetation productivity (Barichivich et al., 2014; Chen et al.,

2014; Dorigo et al., 2012; Muñoz et al., 2014).

Key to a proper assimilation of remotely sensed soil moisture into carbon models is a correct

characterization of its errors. Apart from instrument errors which are common to all observations, the

quality of microwave-based soil moisture retrievals is particularly impacted by vegetation cover, soil630

frost, snow cover, open water, topography, surface roughness, urban structures, and radio frequency

interference (Dorigo et al., 2010; Kerr et al., 2012). Observations where a strong adverse impact of

these factors is detected are usually masked during processing, which may lead to data gaps for
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certain areas or periods of the year (Dorigo et al., 2015). If cases where their impact on the soil

moisture retrieval is only moderate, the errors that they introduce are either simulated during the635

retrieval itself using error propagation methods, or assessed a posteriori against reference data using

various statistical methods (Draper et al., 2013).

While the ASCAT and AMSR2 products come with an estimate of the error variance for each ob-

servation by error propagation (Naeimi et al., 2009; Parinussa et al., 2011) this is still not common

practice for all soil moisture products. Yet, no error propagation model perfectly represents all error640

sources and interactions (Draper et al., 2013). On the other hand, the use of in-situ soil moisture

measurements to estimate random errors is hampered by their heterogeneous nature and large spatial

representativeness errors (Gruber et al., 2013). As an alternative, in recent years triple collocation

analysis (TCA) has firmly established itself as a robust alternative to estimate random errors in soil

moisture datasets without the need of an absolute ’true’ reference (Dorigo et al., 2010; Scipal et al.,645

2008). TCA estimates the error variances of three spatially and temporally collocated soil moisture

datasets with independent error structures, e.g. a radiometer-based, a scatterometer-based, and a land

surface model soil moisture dataset. Recently, the TCA has been intensively elaborated, e.g. to solve

for collinearities between errors (Gruber et al., 2016b) and non-linear dependencies between datasets

(Zwieback et al., 2016). The most remarkable advancement has been to express TCA-based error es-650

timates as a signal-to-noise ratio, which facilitates a direct intercomparison of the skill of datasets in-

dependent of their dynamic ranges (Gruber et al., 2016a), 5. Although the TCA provides an estimate

that is entirely independent of any retrieval model assumptions, it only provides a single average er-

ror estimate for the entire period under consideration. Thus, synergistic use of error propagation and

triple collocation estimates shall be exploited to better capture the temporal error dynamics needed655

for an optimal assimilation into carbon models. Due to the recent progress in product quality, er-

ror characterization, and operationalization, satellite-based soil moisture products have reached the

level of maturity that allows for a systematic assimilation into land surface models to improve the

models’ hydrology. For example, Martens et al. (2016) showed that the assimilation of SMOS and

ESA CCI soil moisture generally has a small positive impact on soil water storages and evaporative660

fluxes as simulated by the GLEAM land evaporation model. Surface soil moisture from ASCAT

is assimilated operationally in near-real-time into ECMWF Land Data Assimilation System to ob-

tain root-zone soil moisture (Albergel et al., 2012). Global root-zone soil moisture products based

on SMOS and SMAP are derived by a slightly different approach, which assimilate the observed

brightness temperatures instead of the retrieved surface soil moisture products (Lannoy and Reichle,665

2016). The assimilation of satellite-based soil moisture products in terrestrial carbon cycle models

has been described above.
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3.3.5 Biomass

Continental-scale biomass maps have been produced from space using both radar and lidar; these

rely on the returns from transmitted power, so are known as active sensors. Biomass here refers to670

above-ground biomass (AGB), since there are no methods to measure the below-ground component,

and this is typically inferred from AGB using allometric equations. Furthermore, the emphasis is on

the AGB of forests, although a global dataset of AGB in all biomes for the period 1993-2012 has

been produced based on global passive microwave satellite data, hence with spatial resolution of 10

km or coarser (Liu et al., 2015).675

Using long time series of C-band radar data provided by the ESA Envisat satellite, the growing

stock volume of northern hemisphere boreal and temperate forests has been estimated (Santoro et al.,

2011). Although available at 0.01° resolution, the accuracy of growing stock volume at this scale

is comparatively poor, and spatial averaging provides more reliable results: at 0.5° spacing, esti-

mated growing stock volume has a relative accuracy of 20-30% when tested against inventory data680

(Santoro et al., 2013). Thurner et al. (2014) used this product to derive the carbon stock (above- and

below-ground) in boreal, temperate mixed and broadleaf, and temperate coniferous forests of forests

above 30° N (40.7, 24.5 and 14.5 PgC respectively). These values have estimated accuracies of

around 33-39% under a conservative approach to estimate uncertainty.

For tropical forests, the key sensor is the Geoscience Laser Altimeter System (GLAS) onboard685

the Ice, Cloud and land Elevation Satellite (ICESat) which failed in 2009 (Lefsky, 2010). Its archive

of forest height estimates was the core dataset exploited to produce two pan-tropical biomass maps

(Saatchi et al., 2011; Baccini et al., 2012) at grid scales of 1 km and 500 m respectively; Saatchi et al.

(2011) also provide a map of the errors associated with the biomass estimates at each pixel. This is

produced by combining measurement errors, allometry errors, sampling errors, and prediction errors,690

which are treated as independent and spatially uncorrelated. Further details are given in the supple-

mentary material to Saatchi et al. (2011). In an attempt to resolve differences between these two

maps, Avitabile et al. (2016) used an independent reference dataset of field observations to remove

the biases in the maps and then combined them to estimate the AGB in the tropical belt (23.4° S to

23.4° N). Testing against a reference dataset not used in the fusion process indicated that the fused695

map had a RMSE 15-21% lower than that of the input maps and nearly unbiased estimates.

However, there are unresolved questions about large-scale biomass patterns across the Amazon

inferred from in situ and satellite data. Biomass maps derived from satellite data in Saatchi et al.

(2011) and Baccini et al. (2012) differ significantly from each other and from biomass maps derived

from in situ plots distributed across Amazonia using kriging (Mitchard et al., 2014). Neither satel-700

lite product exhibits the strong increase in biomass from southwestern to northeastern Amazonia

inferred from in situ data. Mitchard et al. (2014) attributed this to failure to account for gradients in

wood density and regionally varying tree height-diameter relations when estimating biomass from

the satellite data. Saatchi et al. (2015) reject this analysis and claim that the trends and patterns in

20

Biogeosciences Discuss., doi:10.5194/bg-2016-557, 2017
Manuscript under review for journal Biogeosciences
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



Mitchard et al. (2014) are erroneous and a consequence of inadequate sampling. Resolving this dis-705

agreement is of fundamental importance since it raises basic questions about accuracy, uncertainty,

and representativeness for both in situ and satellite-derived biomass data.

The next 4-5 years will dramatically improve our global knowledge of biomass, with the launch

of three missions aimed at measuring forest structure and biomass. The ESA BIOMASS mission

(European Space Agency, 2012), to be launched in 2021, is a P-band radar that will provide near-710

global measurements of forest biomass and height. Around the same time the NASA-ISRO SAR

mission (NISAR) based on an L-band sensor will be deployed, providing measurements of biomass

in lower biomass forests (up to 100 t ha−1). These highly complementary missions will be further

complemented by the NASA Global Ecosystem Dynamics Investigation vegetation lidar to be placed

on the International Space Station around 2019; this aims to provide the first global, high-resolution715

observations of the vertical structure of tropical and temperate forests, from which biomass may be

estimated.

4 Conclusions

In the context of carbon cycle data assimilation this paper reviews the requirements and summarises

the availability and characteristics of some selected observations with a special focus on remotely720

sensed Earth observation data. The paper also briefly recapitulates the assimilation systems capable

of integrating these data, a more comprehensive description of the underlying formalism is given in

Rayner et al. (2016) while MacBean et al. (2016) discuss the implementation strategies for a mul-

tiple data assimilation system and its impacts on the results. To take maximum advantage of these

data streams in carbon cycle data assimilation studies it is of utmost importance to have the appro-725

priate knowledge of the observational characteristics of the observational data, here with a focus

on atellite products. This includes an understanding of the observable and its representativeness in

order to develop the appropriate observation operator (see also Kaminski and Mathieu, 2016) but

also the structure of any biases, random errors and error covariances (that is both the diagonal and

off-diagonal elements quantifying the correlations between different observations).730

The benefit of using multiple data streams in a CCDAS lies in the complementarity of the data,

and thus in the ability to constrain different components of the underlying process model. For ex-

ample, while FAPAR data constrain mainly the phenology component of a terrestrial carbon cycle

model, soil moisture data, in contrast, constrain the hydrological component, but both components

are important elements of the model and determine the simulated carbon fluxes. In fact, because of735

the model internal interactions and feedbacks among the components the simultaneous assimilation

of complementary observations has synergistic effects such that the constraint is larger than the sum

of the individual constraints as shown for instance by Kato et al. (2013) assimilating observations of

FAPAR and latent heat flux.
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As a final remark one important aspect of observational data is their continuity since much of740

the important information is contained in response to climate anomalies. Fortunately, the set up of

operational observeing systems such as ICOS for in-situ data or Copernicus for satellite data has

created the necessary infrastructure to ensure such a long-term perspective in the provision of Earth

observations.
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Appendix A: List of Acronyms745

ACE-FTS Atmospheric Chemistry Experiment - Fourier Transform Spectrometer

AGB Above Ground Biomass

AIRS Atmospheric Infrared Sounder

AMSR2 Advanced Microwave Scanning Radiometer 2

AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System

ASCAT Advanced Scatterometer

ATSR Along Track Scanning Radiometers

AVHRR Advanced Very High Resolution Radiometer

CCDAS Carbon Cycle Data Assimilation System

CCI Climate Change Initiative

ECMWF European Centre for Medium-Range Weather Forecasts

ECV Essential Climate Variable

EO Earth Observation (in this form generally understood as from space)

ESA European Space Agency

FAPAR Fraction of Absorbed Photosynthetically Active Radiation

FLEX FLuorescence EXplorer

GCOM-W1 Global Change Observation Mission 1st-Water

GLAS Geoscience Laser Altimeter System

GLEAM Global Land Evaporation Amsterdam Model

GOME-2 Global Ozone Monitoring Experiment-2

GOSAT Greenhouse Gases Observing Satellite

GPP Gross Primary Productivity

IASI Infrared Atmospheric Sounding Interferometer

ICOS Integrated Carbon Observing System

ICESat Ice, Cloud and land Elevation Satellite

ISRO Indian Space Research Organisation

JAXA Japan Aerospace Exploration Agency

JRC-TIP Joint Research Centre – Two-stream Inversion Package

MERIS Medium Resolution Imaging Spectrometer

MIPAS Michelson Interferometer for Passive Atmospheric Sounding

MISR Multiangle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NIR Near Infrared

Obs4Mips Observations for Model Intercomparisons Project

OCO-2 Orbiting Carbon Observatory 2

OE Optimal Estimation
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PDF Probability Density Function

SAR Synthetic Aperture Radar

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SEVIRI Spinning Enhanced Visible and InfraRed Imager

SIF Sun-Induced Fluorescence

SMAP Soil Moisture Active Passive

SMOS Soil Moisture Ocean Salinity

SWIR Shortwave Infrared

TANSO-FTS Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer

TCA Triple Collocation Analysis

TCCON Total Carbon Column Observing Network

TCOS Terrestrial Carbon Observation System

TROPOMI TROPOspheric Monitoring Instrument
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Figure 1. Schematic of a data assimilation system with x being the control vector containing the quantities to be

updated by the assimilation. The inner loop (’Model-data comparison’ box to ’Model and observation operator’

box) indicates the assimilation process. Often, the analysis of residuals in model data comparison lead to either

model improvements or adjustment of the measurement strategies (outer loops).
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Figure 2. Space-time diagramme for a range of observations relevant for a Terrestrial Carbon Observation

System.
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Figure 3. Timeseries of satellite-derived XCO2 in 3 latitude bands (see annotation bottom left, e.g. red line:

30o-60oN) and maps showing the spatial distribution of XCO2 for April 2014 (top left map) and corresponding

XCO2 uncertainty (bottom). (b) As (a) but for XCH4 (maps: September 2014).
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Figure 4. Maps of sun-induced fluorescence (SIF) for July 2010 derived from GOSAT, GOME-2 and SCIA-

MACHY satellite data.
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Figure 5. Signal-to-noise ratio (in dB), estimated with the Triple Collocation Analysis for four different

satellite-based soil moisture products and a Land Surface Model. a) MetOp-A ASCAT based on the TU

Wien method (Wagner et al., 1999); b) AMSR2 based on the LPRM model (Owe et al., 2008); c) SMOS L3

(Kerr et al., 2010); d) SMAP (Jackson, 1993). An SNR of -3 indicates a signal variance that is half of the noise

variance, an SNR of 0 a signal variance equal to the noise variance, an SNR of 3 a signal variance that is twice

the noise variance, and so on. In areas without data the TC could not be computed, e.g. because of too few

observations in one of the datasets. For details see Gruber et al. (2016b).
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Table 1. Overview SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT XCO2 and XCH4

Level 2 data products (individual ground-pixel retrievals). For some products also Level 3,

i.e. gridded data products are available (e.g. for CO2_SCI_WFMD and CH4_SCI_WFMD from

http://www.iup.unibremen.de/sciamachy/NIR_NADIR_WFM_DOAS/ and merged SCIAMACHY and

TANSO-FTS XCO2 and XCH4 products in Obs4MIPs format from http://www.esa-ghg-cci.org/)

Parameter Sensor Available at:

Product (Reference)

XCO2 SCIAMACHY http://www.esa-ghg-cci.org/

CO2_SCI_BESD (Reuter et al., 2011)

CH4_SCI_WFMD (Schneising et al., 2011)

TANSO http://www.gosat.nies.go.jp/en/

NIES operational GOSAT (Yoshida et al., 2013)

http://www.esa-ghg-cci.org/

CO2_GOS_OCFP (Cogan et al., 2012)

CO2_GOS_SRFP/RemoTeC (Butz et al., 2011)

http://www.iup.uni-bremen.de/ heymann/besd_gosat.php

GOSAT BESD (Heymann et al., 2015)

http://disc.sci.gsfc.nasa.gov/acdisc/documentation/ACOS.html

NASA ACOS (Crisp et al., 2012)

SCIAMACHY & http://www.esa-ghg-cci.org/

TANSO merged CO2_EMMA (Reuter et al., 2013)

OCO-2 http://disc.sci.gsfc.nasa.gov/OCO-2

NASA OCO-2 (Boesch et al., 2011)

XCH4 SCIAMACHY http://www.esa-ghg-cci.org/

CH4_SCI_WFMD (Schneising et al., 2011)

CH4_SCI_IMAP (Frankenberg et al., 2011a)

TANSO http://www.gosat.nies.go.jp/en/

NIES operational GOSAT (Yoshida et al., 2013)

http://www.esa-ghg-cci.org/

CH4_GOS_OCPR (Parker et al., 2011)

CH4_GOS_SRPR/RemoTeC (Butz et al., 2010)

CH4_GOS_OCFP (Parker et al., 2011)

CH4_GOS_SRFP/RemoTeC (Butz et al., 2011)

SCIAMCHY & http://www.esa-ghg-cci.org/

TANSO merged CH4_EMMA (Reuter et al., 2013)
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Table 2. Characteristics of a variety of FAPAR products, more details and products are provided by

D’Odorico et al. (e.g. 2014); Pickett-Heaps et al. (e.g. 2014).

Name Time Temporal Definition Reference

period resolution

MODIS 2000-present 8 days Green canopy, direct radiation Myneni et al. (2002)

SeaWiFS1 1997-2006 10 days Green canopy, diffuse radiation Gobron et al. (2006)

TIP-MODIS 2000-present 16 days FAPAR/Green canopy, diffuse radiation Pinty et al. (2011b)

TIP-GlobAlbedo 2002-2011 8 days FAPAR/Green canopy, diffuse radiation Disney et al. (2016)

Vegetation 1999-present 10 days FAPAR, direct radiation Baret et al. (2007)

1 The same algorithm is also used for MERIS, spanning a period form 2003-2012 with a 1 km, 10 day resolution.

Table 3. Selected characteristics of operating and planned spaceborne instruments able to deliver SIF data.

Names of upcoming instruments are highlighted in italics. NIR stands for near-infrared. It must be noted that

GOME-2 on MetOp-A has been operating with a reduced pixel size of 40×40 km2 since July 2013.

Time Overpass Spectral Global Spatial Temporal

period time sampling coverage resolution resolution

GOSAT 2009–today Midday NIR No 10 km diam. 3 days

GOME-2 2007–today Morning red & NIR Yes 40×80 km2 <2 days

SCIAMACHY 2003–2012 Morning red & NIR Yes 30×240 km2 <3 days

OCO-2 2014–today Midday NIR No 1.3×2.3 km2 16 days

TROPOMI ∼2017 Midday red & NIR Yes 7×7 km2 <1 day

FLEX ∼2022 Morning red & NIR Yes 0.3×0.3 km2 <27 days
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Table 4. Current (pre-)operational global soil moisture missions and products (for abbreviations / acronyms see

List of Acronyms

Mission Organisation Measurement concept Band Mission start Data access

MetOp - EUMETSAT Real aperture radar C-band Jan. 2007 http://hsaf.meteoam.it/soil-moisture.php

ASCAT (scatterometer) http://land.copernicus.eu/global/products/swi

SMOS ESA Interferometric L-band Nov. 2009 http://www.catds.fr/

radiometer

GCOM-W1 JAXA Radiometer C-band May 2012 http://www.vandersat.com/

AMSR2 http://suzaku.eorc.jaxa.jp/GCOM_W/

SMAP NASA Radiometer L-band Jan. 2015 http://smap.jpl.nasa.gov/

& radar1

Sentinel-1 ESA/ Synthetic aperture C-band Apr. 2014 https://www.eodc.eu/

Copernicus radar

CCI ESA Combined scatterometer L-, C-, X- Nov. 1978 http://www.esa-soilmoisture-cci.org

and radiometer Ku-band

1 SMAP’s radar failed in July 2015
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