Contribution of previous year’s leaf N and soil N uptake to current year’s leaf growth in sessile oak

Stephane Bazot*, Chantal Fresneau, Claire Damesin, Laure Barthès

*Author for correspondence

Stéphane Bazot
tel: (+33) 1 69 15 71 36
fax: (+33) 1 69 15 72 38
email: stephane.bazot@u-psud.fr
Abstract

The origin of the N which contributes to the synthesis of N reserves of in situ forest trees in autumn, and to the growth of new organs the following spring, is currently poorly documented. To characterize the metabolism of various possible N sources (plant N and soil N), six distinct 20 year-old sessile oaks were 15N labelled by spraying 15NH$_4$,15NO$_3$: (i) on leaves in May, to label the N pool remobilized in the autumn for synthesis of reserves; (ii) on soil in the autumn, to label the N pool taken up from soil; (iii) on soil at the beginning of the following spring, to label the N pool taken up from soil in the spring. The partitioning of 15N in leaves, twigs, phloem, xylem, fine roots, rhizospheric soil and microbial biomass was followed during two growing seasons. Results showed a significant incorporation of 15N in the soil-tree system; more than 30% of the administered 15N was recovered. Analysis of the partitioning clearly revealed that in autumn, roots’ N reserves were formed from foliage 15N (73%) and to a lesser extent from soil 15N (27%). The following spring, 15N used for the synthesis of new leaves came first from 15N stored during the previous autumn, mainly from 15N reserves formed from foliage (95%). Thereafter, when leaves were fully expanded, 15N uptake from soil during the previous autumn and before budburst contributed to the formation of new leaves (60%).

keywords:

Quercus petraea, N reserves, soil N, 15N labelling
1. Introduction

Tree carbon metabolism associated with photosynthesis, C allocation and remobilization of C storage is well documented (Barbaroux et al., 2003; Dickson, 1989), but tree nitrogen metabolism is less known. Nevertheless, seasonal N cycling is a determinant of plant fitness in perennials, particularly long-lived perennials such as forest trees (Cooke and Weih, 2005). The literature describes general patterns of seasonal tree nitrogen functioning as follows. In early spring, trees’ nitrogen demand for growth can be satisfied either by uptake of external sources such as ammonium, nitrate and organic N available from the soil (Gessler et al., 1998a), or by remobilization of internal stores (Bazot et al., 2013; Coleman and Chen, 1993; Cooke and Weih, 2005; El Zein et al., 2011b; Gilson et al., 2014; Millard, 1996; Taylor, 1967).

In many species, N remobilization for growth in spring occurs before utilization of N taken up by roots, typically during the 20–30 days before the roots actively take up N. These species include: deciduous species, such as Quercus petraea (El Zein et al., 2011a), Malus domestica (Guak et al., 2003; Nielsen et al., 2001), Populus trichocarpa (Millard et al., 2006), Prunus avium (Grassi et al., 2003), Pyrus communis (Tagliavini et al., 1997) and Sorbus aucuparia (Millard et al., 2001); marcescent/evergreen species, such as Nothofagus fusca (Stephens et al., 2001); and coniferous evergreens, such as Picea sitchensis (Millard and Proe, 1993). In a few species (e.g., S. aucuparia), remobilization has completely finished before any root uptake of N occurs, even if trees are supplied with an adequate supply of mineral N in the soil. In contrast, other species have been shown to begin taking up soil N through their roots concomitantly with N remobilization. These include deciduous Juglans nigra × regia (Frak et al., 2002), Pyrus communis (Tagliavini et al., 1997), Betula pendula and evergreen Pinus sylvestris (Millard et al., 2001). All of these
studies were conducted on young trees or/and under controlled conditions. Few studies have applied 15N-labeled mineral fertilizer to larger, undisturbed trees growing in the field (El Zein et al., 2011a), and even those only evaluated the contribution of spring N uptake to leaf and twig growth, while the contribution of stored N was indirectly estimated. However, in autumn, the process of N storage (N translocation from leaves to sink compartments), which starts concomitantly with leaf yellowing (Bazot et al., 2013), is associated with a stimulation of soil nitrogen uptake (Gessler et al., 1998b; Jordan et al., 2012; Kim et al., 2009). In the present study we proposed to investigate the contribution of N storage and that of N taken up from soil during autumn and spring, to the development of new leaves of 20 year-old sessile oaks in the field, after budburst during the following spring. Does soil N or foliar N contribute most to the storage of N compounds in autumn? Does soil N or stored N contribute most to the synthesis of new leaves in spring? Soil 15N labelling is a suitable tool to quantify autumn and spring uptake of N by roots. Labelling of foliage allows quantification of N remobilized from leaves to reserve compartments. During three distinct labelling campaigns, 3 x 2 distinct 20-year-old sessile oaks received 15NH$_4$15NO$_3$ applied to their foliage (May), or on adjacent soil (September and March of the following year). 15N partitioning in all tree-soil compartments, i.e. leaves, twigs, trunk, roots, rhizospheric soil and microbial biomass, was analysed regularly. The contribution of assimilated 15N to storage and remobilization was investigated.
2. Materials and methods

2.1. Site description

The experiment was conducted in an area of 20-year-old naturally regenerated oak in the Barbeau forest (48°29’N, 02°47’E), 60 km southeast of Paris, France, at an elevation of 90 m on a gleyic luvisol. The average air temperature is 10.5 °C and the annual rainfall in this temperate location is 690 mm. Six 20-year-old sessile oaks (Quercus petraea) were selected, their height ranged between 8 to 10 m and their average diameter at breast height was 10 cm. In order to limit possible interference of root cutting with nitrogen allocation, at least five months before labelling a 0.5-0.6 m deep trench was dug around each tree, then the trench was lined with a polyethylene film and backfilled. All roots and root exudates inside this perimeter therefore originated from the isolated tree, and were contained in this trench volume. The area delimited by the trench was about 5 m².

2.2. ¹⁵N pulse-labelling

Three labelling campaigns were carried out: the first (L₁) on the foliage at the end of May (2009/05/27); the second (L₂) on the soil at the beginning of September (2009/09/09); and the third (L₃) on the soil the following March (2010/03/20). Two oaks were labelled during each campaign: trees 1 and 2 during L₁; trees 3 and 4 during L₂; and trees 5 and 6 during L₃. 50% of buds showing leaf unfolding (Vitasse et al., 2009), occurred in those sessile oaks on April 20, 2010; this date was defined as budburst. The L₁ campaign consisted of homogenous spraying on all foliage of 5g ¹⁵NH₄¹⁵NO₃ (98 atom %), i.e. 1.82g of ¹⁵N, dissolved in 2.5 L distilled water. Prior to L₁, soil of the surrounding trenches was protected with a plastic tarpaulin to avoid soil pollution with ¹⁵N. This first campaign aimed at the labelling of foliage and,
subsequently, of the N reserves developed from remobilization of leaf N the following autumn. The L₂ campaign consisted of homogenous spraying of 5g 15NH₄15NO₃ (98 atom %), i.e. 1.82g of 15N, dissolved in 20 L distilled water on the soil of the trench plot of two other selected oak trees (3 and 4). With this procedure, N reserves developed from autumnal soil N uptake were expected to be labelled. The third and last labelling campaign, L₃, consisted of homogenous spraying of 5g 15NH₄15NO₃ (98 atom %), i.e. 1.82g of 15N, dissolved in 20 L distilled water on the soil of the trench plot of trees 5 and 6, thus labelling their spring N uptake.

2.3. Sampling and analytical methods

Leaves, twigs, trunk phloem and xylem and soil monoliths (15 cm depth) were sampled regularly after labelling until the end of 2010. The leaves were rinsed with distilled water to remove any excess 15N. The leaf mass area (LMA) was measured at each sampling date. Fine roots were hand-picked from the soil monoliths, and washed with a 0.5 M CaCl₂ isotonic solution. Soil adhering to roots was removed with a brush and sieved at 2 mm. Total N concentration of plant and soil samples, ground in fine powder, was analysed by dry combustion using an N auto-analyser (Flash EA 1112 series, ThermoFinnigan). 15N abundance was quantified in plant and soil fine powder aliquots with a mass spectrometer (PDZ Europa, University of Davis, Isotopes Facility, California).

Microbial N contents of fresh soil samples were determined using the chloroform fumigation–extraction method (Vance et al., 1987). Extraction was performed using 0.5 M of K₂SO₄ for 30 min under vigorous shaking. The extracts were filtered, then analysed for N content using an N analyser (TNM-1, Shimadzu, Champs-sur-Marne, France). The microbial 15N abundance was estimated using the same procedure.
except that the extraction solution was 0.03 M of K_2SO_4.

2.4. Calculations

All ^{15}N enrichments were corrected for the background natural abundance of this isotope, using control values determined in plants and soils just before labelling. The total weight of each compartment analysed (i.e. leaves, twigs, trunk phloem and xylem, and fine roots) was extrapolated from that of six equivalent trees (same size and same diameter) grown on the same site under the same conditions. Those trees were felled as follows: two in October of the first labelling year (2009); two in the following May (2010); and two the following February (2011). Total leaf biomass was corrected according to the LMA. All data were expressed as proportion of recovered 15nitrogen in a specific compartment (PRN) using the following calculation Eq. (1):

$$PRN\% = \frac{Q^{^{15}N}_{\text{compartment}}}{\text{Max } Q^{^{15}N}} \times 100$$

where $Q^{^{15}N}$ was the quantity of 15N recovered from a compartment on a specific date, and Max $Q^{^{15}N}$ was the maximum quantity of 15N recovered from all the sampled compartments during the experiment.

The % contribution of each 15N source (L_1 : leaves; L_2 : autumn soil N; L_3 : spring soil N) to the 15N recovered in the roots in autumn or in the leaves of the second year as determined according to the following calculation Eq. (2):

$$%\text{contribution}^{^{15}N}_{L_1, L_2, L_3} = \frac{(Q^{^{15}N}_{\text{compartment}} / \text{Max } Q^{^{15}N})_{L_1, L_2, L_3}}{\Sigma(Q^{^{15}N}_{\text{compartment}} / \text{Max } Q^{^{15}N})_{L_1, L_2, L_3}} \times 100$$
3. Results

For each labelling, the two trees analysed displayed similar patterns of 15N partitioning throughout the experiment. That why results was expressed as the mean of both trees ($L_1 : 1+2$; $L_2 : 2+3$, $L_3 : 3+4$).

3.1. 15N partitioning within the plant-soil system during the first leafy season

3.1.1. After the foliar labelling in spring (L_1, May 27, 2009)

The total balance for the administered 15N demonstrated maximum recoveries of 15N within the plant-soil system of 32% one day after leaf labelling. It decreased to 13.5% of the administered 15N recovered in the sampled compartments at the end of September (126 days after labelling) (Table 1).

The PRN was maximum in leaves (96%, Fig. 1a) one day after L_1, then decreased continuously during the four following months (from May 27 to September 30, 2009, i.e. until the 126th day after labelling) with a mean decrease of 80% between these two dates (Fig. 1a). The same pattern was observed in twigs, where the PRN decreased from 3% on day 1 to 0.4% on day 126 (Fig. 1a).

In the trunk phloem tissue and the fine roots, the PRN stayed relatively stable or slightly increased until day 57 (July 24, 2009). They then increased until day 126 (September 30, 2009), when they reached 4.75% in the phloem and 16% in the roots (Fig. 1b, c). The PRN from the rhizospheric soil and microbial biomass was less than 1% (Fig. 1d).

3.1.2. After the first soil labelling (L_2, September 9, 2009)

The total balance for the administered 15N demonstrated maximum recoveries within the plant-soil systems three days after L_2 of 70%. By the end of October (49 days
after labelling) recoveries from the sampled compartments decreased to 22% of the administered 15N (Table 1).

Three days after labelling, 3% of the recovered 15N was present from the fine roots (Fig. 2c). Nine days after labelling (September 18, 2009), the PRN showed that the majority of the 15N was recovered from the soil, with 61% of the 15N recovered from the rhizospheric soil and 32.5% from the microbial biomass (Fig. 2d). During the following 40 days (until October 28, 2009), the PRN from the soil decreased to 8.5% in the rhizospheric soil and 9.5% in the microbial biomass (Fig. 2d). On the same date, 6% of the 15N was recovered from the fine roots (Fig. 2c). Less than 1% of the 15N was recovered from the phloem, xylem and twigs (Fig. 2a, b).

3.2. 15N partitioning within plant-soil system before and after budburst

Almost one year after the first labelling (L_1), and before budburst (April 8, 2010, 318 days after labelling), 7.5% of the 15N were recovered in the sampled compartments. Thereafter, recovery remained stable at around 12% until September (460 days after labelling, Table 1).

On April 8, 2010, i.e. 318 days after L_1, 11.5% of the recovered 15N was found in fine roots (Fig. 1c). Twigs contained 4.5% of recovered 15N (Fig. 1a), while phloem contained 4% (Fig. 1b). Less than 0.5% of 15N was recovered from the rhizospheric soil and microbial biomass (Fig. 1d).

Eight days after budburst (April 28, i.e. 337 days after L_1), 25% of the recovered 15N was observed in new leaves. By May 19, this had decreased to 17% (Fig. 1a). On April 28, twigs contained 3.5% of the recovered 15N (Fig. 1 a), phloem 4% (Fig. 1b) and fine roots 10% (Fig.1c). From then until September (i.e. 460 days after labelling), the PRN from leaves remained relatively stable (22%), whereas it largely
decreased in fine roots (0.35%) (Fig. 1a, b, c). Less than 0.2% of the total 15N recovered over the season was from the rhizospheric soil and microbial biomass (Fig. 1d).

Just before budburst following the second labelling (L$_2$, April 8, 2010, 208 days after labelling) 19% of the 15N administered were recovered from all the analysed compartments (Table 1). Most of it was from the rhizospheric soil (14.5%, Fig. 2d). The microbial biomass contained 9.5% of the recovered 15N and the fine roots 2% (Fig. 2d, c). The rest of the 15N (less than 5%) was distributed between the twigs, trunk phloem and xylem (Fig. 2a, b). The same pattern was observed eight days after budburst (227 days after labelling): most of 15N was recovered from soil microbial biomass and rhizospheric soil (12%, Fig. 2d); 2.25% was recovered from fine roots; 3.5% of 15N was recovered from phloem and xylem; only 0.5% was recovered from new leaves (Fig. 2a).

From April 8 (208 days after labelling) to May 19 (247 days after labelling, and 30 days after budburst), the PRN decreased in soil microbial biomass and rhizospheric soil (7%), but increased in fine roots (9.5%) (Fig. 2d, c). A noticeable increase of the PRN from leaves was also observed at this date (4.5%, Fig. 2a). Thereafter, the PRN from soil microbial biomass and fine roots decreased slightly from May 19 to June 28 (i.e. 247 to 287 days after labelling), then remained stable until the end of August (Fig. 2d, c). The PRN from leaves increased to 7% in June (Fig. 2a).

For trees whose soils were labelled in spring (L$_3$, March 20, 2010), the maximum recovery of the administered 15N occurred 40 days later: 51.5% from the sampled compartments. Recovery decreased thereafter and stabilized at 19.5% until autumn 2010 (Table 1).
Twenty days after labelling and before budburst, the soil microbial biomass contained 44.5% of the recovered 15N and the rhizospheric soil 39% (Fig. 3d). The remaining 15N was mainly located in the roots (2% of recovered 15N, Fig. 3c). 8 days after budburst, the PRN was quite similar: 61% in microbial biomass and 32% in rhizospheric soil (Fig. 3d). 15N recovered from fine roots followed a pattern similar to that observed on the previous sampling occasion (Fig. 3c). However, between 8 and 30 days after budburst (from April 28 to May 19, 2010 i.e. from 40 to 61 days after labelling), the PRN in microbial biomass and in rhizospheric soil decreased sharply to 3.2% (Fig. 3d). On that date, 17% of the 15N was recovered from the fine roots (Fig. 3c) and 21.2% from the leaves (Fig. 3a). The PRN from leaves remained stable until the beginning of June (74 days after labelling) (Fig. 3a). From that date until September the PRN from leaves and fine roots declined slightly (Fig. 3a, c). The PRN from microbial biomass decreased continuously throughout the season and reached 2.5% in September (day 166 after labelling) (Fig. 3d).

4. Discussion

4.1. Efficiency of labelling

During the first labelling procedure (L_1), a substantial fraction of the added 15NH$_4$ 15NO$_3$ was incorporated into the leaves of the sessile oaks. A significant proportion of the 15N was then allocated to the leaves: more than 90% of the 15N was recovered from this compartment. The total balance for the administered 15N demonstrated maximum recoveries within the plant-soil systems of 32% one day after leaf labelling. The remaining 15N was probably lost by leaf leaching. However, soil protection with plastic tarps avoided all contamination of soil and roots. Thereafter, the recovery of administered 15N from the sampled compartments...
decreased to 14.5%, probably due to allocation of 15N to non-harvested compartments, such as old branches, coarse roots or the inner part of the trunk. Nevertheless, this labelling procedure allowed us to label foliar N used in the synthesis of new tissues in spring, and to follow the remobilisation of leaves’ N in autumn, the contribution of foliar N to N storage, and the importance of N storage to the synthesis of new compartments the following spring.

The soil 15NH$_4$15NO$_3$ labelling (L_2) conducted in September was also effective. Indeed, the total balance for the 15N applied to the soil demonstrated maximum recoveries within the plant-soil systems of 70%; 3 days after soil labelling. The rest of the 15N was most probably lost by soil leaching. Thereafter the recovery of administered 15N from the harvested compartments decreased to 22%. As with the leaf-labelling experiment (L_1), this decrease was presumably due to allocation of 15N to non-harvested compartments. This labelling procedure allowed us to follow the contribution of autumn soil N to internal tree N storage.

Finally, the soil 15NH$_4$15NO$_3$ labelling carried out the following March (L_3) was also effective, with maximum recoveries within the plant-soil systems of 51.5%, 40 days after soil 15N labelling. This recovery decreased to a mean of 19% during the rest of the season. This labelling allowed us to follow the contribution of soil N in spring to the synthesis of new compartments from that moment until after budburst.

4.2. N dynamics in soil-tree systems during the first growing season

Following the first labelling procedure, the 15N was quickly incorporated into leaves; more than 90% of the 15N applied was accounted for in leaves one day after labelling. Thereafter this portion decreased continuously along the season. The unaccounted for fraction of the 15N had presumably been transferred to other
compartments, including those which were not sampled, i.e. branches and coarse roots.

This important foliar N remobilisation was observed to continue in leaf-labelled trees until yellowing, i.e. the end of September. Data currently available on woody plants show that nitrogen is mainly re-translocated from leaves to storage sites during the autumn (Coleman and Chen, 1993; Cooke and Weih, 2005; Dong et al., 2002; Taylor, 1967), due to the predominant role of leaf senescence in the constitution of N stores. Leaf senescence leads to the breakdown of leaf proteins, the transfer of their nitrogen to the perennial plant parts and the formation of N storage compounds (vegetative storage proteins and amino acids) (Dong et al., 2000; Tromp, 1983). In this study, a noticeable increase of percentage of recovered 15N in fine roots was observed on September 30 (16%). This compartment could be defined as a storage compartment in young sessile oaks. Such an observation has been already reported for oaks of the same pole stand (Gilson et al., 2014), and similar findings were reported for field-grown adult peach trees by Tagliavini et al (1997), being typical of other young deciduous trees (Millard and Proe, 1991; Salaün et al., 2005; Tromp and Ovaa, 1979; Wendler and Millard, 1996). On this date (end of September), branches and coarse roots could also have contributed significantly to N storage, as previously described (Bazot et al., 2013).

At the same time, root uptake can also contribute directly to storage, as proposed by Millard (1996). Indeed, 49 days after labelled 15N had been applied to surrounding soil (L_2), in September, 5.75% was recovered from the trees’ fine roots. It can be underlined that at the end of September, foliage 15N made up 73% of the 15N recovered in roots, whereas soil 15N uptake contributed to 27% of the 15N recovered in roots (eq. 2, Fig. 4). The soil N uptake in this period was mainly recovered in the...
root system; there was little labelled N in the rest of the trees. This is consistent with the results of Tagliavini et al (1997) and Jordan et al (2012), who found a significant fraction of labelled N in fine root samples of peach trees supplied with 15N applied on soil before fruit harvest in September.

Concomitantly with root N uptake for storage, notably in fine roots, a strong immobilization of N in microbial biomass was observed. Indeed, on October 7 (i.e. 28 days after labelling), when yellowing was well advanced, 12.5% of the applied 15N was recovered in microbial biomass and 21.5% in rhizospheric soil: there was a competition for soil N between microbial N immobilization and reserve synthesis by root N uptake at that time. This is consistent with the idea that soil microorganisms are strong short term-competitors for soil N due to their high surface area to volume ratio, wide spatial distribution in the soil and rapid growth rates, compared with plants roots (Hodge et al., 2000). Thereafter, root N uptake was still efficient during late yellowing (between October 7 and October 28), since 15N recovered from the fine roots slightly increased from 3.5% to 5.5%, whereas that recovered from microbial biomass decreased from 12.5% to 10%. This could be explained by microbial mortality and turnover, which releases N to the soil, combined with the capacity of plants to sequester N for longer (Barnard et al., 2006; Bloor et al., 2009; Hodge et al., 2000).

After leaf fall, even though trees may have a significant capacity for nitrate uptake in the fine roots in midwinter (i.e. in the absence of leaves), as already shown in Japan oak (Ueda et al., 2010), in our case, N soil uptake was limited by low soil temperature, which affected the mineralization rate and root activity, since the 15N recovered from roots declined from 5.5% to 1.75% between October 28 and April 8.
4.3. N dynamic in soil tree system the following spring

In April (before budburst), for trees with leaves labelled in the previous year (L₁), the most part of 15N was recovered in their roots (11.5%). On the other hand, at the same date, most of the labelled N applied to soil in September (L₂) was recovered from the rhizospheric soil (14.5%). When soil (and hence spring N uptake) was labelled (L₃) at the beginning of March, a month later most of the 15N was recovered from microbial biomass and rhizospheric soil (81%), but a small proportion of 15N was recovered from the fine roots (1.5%). The latter demonstrated a small N uptake before budburst, as has previously been observed in Japan oak (Ueda et al., 2010). This early N uptake from the soil could be related to sessile oak’s hydraulic properties. As a ring-porous species, sessile oak achieves 30% of its annual radial stem growth before leaf expansion in spring (Breda and Granier, 1996). Water flow pathways are then restored each spring before the onset of transpiration (Breda and Granier, 1996). This enables early root N uptake from soil as soon as a threshold soil temperature is reached.

Eight days after budburst, most of the 15N applied to leaves (L₁) was recovered from new leaves (25.2%) and new twigs (mean of 3.5%). This clearly underlined that a significant proportion of 15N used to synthesize new leaves came from 15N stored during the previous autumn, as shown for Ligustrum (Salaün et al., 2005). Moreover, this N came from foliar N of the previous year, not from soil N uptake during the previous autumn. Indeed, trees labelled the previous autumn on soil (L₂) showed a similar partitioning of 15N in leaves and twigs before budburst (208 days after labelling) and eight days after budburst (227 days after labelling), there was no mobilisation of 15N for the new leaves and twigs synthesis for those trees. Less than 1% of 15N taken up from soil before budburst was recovered in leaves and twigs.
eight days after budburst. A distinction might be made between stored N sourced from leaves and that sourced from soil, stored mainly in roots. N from leaves could be stored as amino acids in branches, trunk, and coarse roots, whereas N taken up from soil could be stored in roots as NO$_3^-$.

This N was not converted into amino acids by Glutamine synthetase / Glutamate synthase enzymes during winter, most probably due to low enzymatic activity in roots during winter. As a consequence, the following spring, trees first remobilized easily circulating forms of N, and N stored nearer to demands. Indeed in trees, NO$_3^-$ is hardly transported to the leaves but rather turned into amino acids in their roots (Morot-Gaudry, 1997).

Consequently, soil 15N was not the main contributor to the synthesis of new twigs and new leaves during the eight first days after budburst. At this time, 95% of new leaves 15N came from 15N-labelled reserves, 2% from soil labelled the previous autumn, and only 3% from soil labelled in the current spring (Eq. 2, Fig. 4). Previous studies have also found that N reserves contribute significantly to leaf expansion in young trees: in white birch (Wendler and Millard, 1996); sycamore maple (Millard and Proe, 1991); Japan oak (Ueda et al., 2009); pedunculate oak (Vizoso et al., 2008); and sessile oak (El Zein et al., 2011a).

Considering trees whose soil had been labelled in autumn (L$_2$), eight days after budburst the proportion of recovered 15N in microbial biomass decreased slightly whereas it slightly increased in fine roots compared to the previous sampling date.

One can suppose that the increased soil temperature and the first flux of C from plant to soil (rhizodeposition) stimulated microbial biomass turnover, making 15N available for root uptake. Very little 15N was recovered from the other compartments of the trees.
Soil N uptake became really effective between 8 and 30 days after budburst. Indeed, whatever the date of the soil labelling (autumn or the current spring), 30 days after budburst, a sharp decrease in 15N in the microbial biomass was observed, depending on an increase of 15N in fine roots and in young leaves. In June 28 (at leaf maturity), 40% of the 15N recovered from leaves came from stored 15N, 10% came from 15N applied to soil the previous autumn, and 40% came from 15N applied on soil the current March, one month before budburst (Eq. 2, Fig. 4). This pattern of contribution was maintained throughout the season. Similar findings have been reported for other species. For example, 20-30% of shoot leaf N was supplied by spring-applied fertilizer for mature pear trees (Sanchez et al., 1990) and mature almond trees (Weinbaum SA, 1984), while only 13% of a solution of nitrate-N and ammonium-N applied to soil, contributed to total leaf N of apple trees (Neilson et al., 1997). *Sorbus aucuparia* had remobilized half the N from storage before any was taken up by the roots (Millard et al., 2001). Finally, there is a concomitant/concurrent remobilization and uptake of N from the soil by some other species, as shown for scots pine (Millard et al., 2001) and walnut (Frak et al., 2002).

5. Conclusion

This paper completes knowledge of internal and external nitrogen cycles in a forest ecosystem. We highlighted that in autumn, N reserves are formed from N remobilized from leaves and N uptake by roots. This N is stored in roots, principally most probably in the form of amino-acids and nitrate. Those reserves, especially N coming from leaves, contributed significantly to new tissue synthesis the following spring. Nevertheless, N uptake was also observed in spring before budburst; this N was not transferred to new twigs and new leaves during the first days following
budburst. N uptake from soil only contributed significantly to the synthesis of new tissues when leaves were fully expanded. Two months after budburst the relative contributions of 15N originating from leaves and 15N uptake from soil were 40:60, whereas they were 95:5 eight days after budburst.

It will now be interesting to investigate soil N uptake, and the competition for N between tree and microorganisms (bacteria, fungi) in both autumn and spring.

Acknowledgements

The authors would like to acknowledge the contributions of Jérome Ngao and Daniel Berveiller to data collection and field work, and Michèle Viel and Patricia Le Thuaut for technical assistance. We are grateful to the French National Forest Office (ONF) for allowing us to carry out these experiments.

Author contribution statement

SB and LB conceived and designed the experiments. SB, CF and LB conducted all field and laboratory analyses. SB carried out data analysis, wrote most of the manuscript and prepared the figures. CF, CD and LB contributed to the writing of the manuscript.

References

Gilson, A., Barthes, L., Delpierre, N., Dufrene, E., Fresneau, C., and Bazot, S.: Seasonal changes in carbon and nitrogen compound concentrations in a Quercus

Table 1: Labelling characteristics and recovery of ^{15}N administered in each labelling campaign from the sampled compartments of each tree, on each sampling occasion (DAL : Days after Labelling).

<table>
<thead>
<tr>
<th>Tree</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labelling date</td>
<td>2009/05/27</td>
<td>2009/05/27</td>
<td>2009/09/09</td>
<td>2009/09/09</td>
<td>2010/03/20</td>
<td>2010/03/20</td>
</tr>
<tr>
<td>Amount of ^{15}N sprayed (g)</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
</tr>
<tr>
<td>DAL</td>
<td>% ^{15}N</td>
<td>DAL</td>
<td>% ^{15}N</td>
<td>DAL</td>
<td>% ^{15}N</td>
<td>DAL</td>
</tr>
<tr>
<td>1</td>
<td>39</td>
<td>25</td>
<td>3</td>
<td>68</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>25</td>
<td>6</td>
<td>68</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>24</td>
<td>9</td>
<td>68</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>19</td>
<td>16</td>
<td>33</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>16</td>
<td>28</td>
<td>31</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>15</td>
<td>49</td>
<td>29</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>17</td>
<td>14</td>
<td>49</td>
<td>29</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>15</td>
<td>14</td>
<td>49</td>
<td>29</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>8</td>
<td>7</td>
<td>208</td>
<td>24</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>337</td>
<td>11</td>
<td>13</td>
<td>227</td>
<td>12</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>358</td>
<td>10</td>
<td>13</td>
<td>247</td>
<td>16</td>
<td>20</td>
<td>61</td>
</tr>
<tr>
<td>370</td>
<td>14</td>
<td>14</td>
<td>260</td>
<td>22</td>
<td>21</td>
<td>74</td>
</tr>
<tr>
<td>397</td>
<td>11</td>
<td>10</td>
<td>287</td>
<td>38</td>
<td>18</td>
<td>102</td>
</tr>
<tr>
<td>460</td>
<td>13</td>
<td>11</td>
<td>350</td>
<td>13</td>
<td>12</td>
<td>166</td>
</tr>
<tr>
<td>509</td>
<td>7</td>
<td>5</td>
<td>399</td>
<td>10</td>
<td>8</td>
<td>215</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1: Partitioning of recovered 15N (PRN%) from the sampled compartments following the first labelling campaign, i.e. from May 26, 2009 to October 20, 2010. a. leaves and twigs, b. phloem, c. fine roots, d. rhizospheric soil and microbial biomass. DAL: Days after labelling. The two lines for each categories (continuous and dashed) correspond to the tree 1 and the tree 2.

Figure 2: Partitioning of recovered 15N (PRN%) from the sampled compartments following the second labelling campaign, i.e. from September 08, 2009 to October 20, 2010; a. leaves and twigs, b. phloem and xylem, c. fine roots, d. rhizospheric soil and microbial biomass. DAL: Days after labelling. The two lines for each categories (continuous and dashed) correspond to the tree 3 and the tree 4.

Figure 3: Partitioning of recovered 15N (PRN%) from the sampled compartments following the third labelling campaign, i.e. from April 8, 2010 to October 20, 2010; a. leaves and twigs, b. phloem and xylem, c. fine roots, d. rhizospheric soil and microbial biomass. DAL: Days after labelling. The two lines for each categories (continuous and dashed) correspond to the tree 5 and the tree 6.

Figure 4: Conceptual scheme representing percentage contributions of 15N (Eq. 2) from each labelling campaign (L_1: white, L_2: light grey, L_3: dark grey) in roots in the autumn, and in new leaves in the season following the first labelling campaign.
Figure 1:

(a) Leaves
(b) Phloem
(c) Roots
(d) Rhizospheric soil and Microbial biomass
Figure 2:

(a) Leaves
(b) Phloem
(c) Roots
(d) Rhizospheric soil

Yellowing
Budburst
Figure 3:
Figure 4:

- Leaf 15N
 - Spring 2009: 73%
 - Autumn 2009: 27%
- Root 15N Reserve
 - Spring 2009: 95%
- New leaf 15N
 - Spring 2010 (Budburst): 95%
 - Spring 2010 (Leaf maturity): 40%
- Soil 15N
 - Spring 2010: 10%
 - Leaf 15N: 50%
 - Leaf 15N: 3%