Anonymous Referee #1

Author response and line references to changed text.

I wonder whether and how the methods described here are different from the ones presented in earlier papers, e.g. in Bishop et al., 2004 ('Robotic observations ...). This should be clarified and then, the method sections could be shortened and the focus concentrated on the gathered data. If the methods differ, the changes/improvements could be briefly outlined. Some figures could also be moved to the appendix.

— Sorry for the confusion. The papers, Bishop et al. 2004, 2009... "Robotic Observations..." describe our first robot, the Carbon Explorer. The CE was comprised of a SOLO float with interfaced Transmissometer and scattering sensors. The primary mission of the CE was to measure particle concentration profiles (beam attenuation coefficient and turbidity), we also used the transmissometer to register particle accumulation on the upward looking optic as the float drifted at depth, prior to profiling we cleaned the upward looking optic and measured transmission again, thus enabling us to derive the Carbon Flux Index by difference. This is well documented in the referenced publications.

[p3 LINES 7-14 rewitten to clarify]

The current paper describes an entirely new robot, the Carbon Flux Explorer, it was necessary to describe in detail our methodology for the Optical Sedimentation Recorder (OSR) as it was deployed both on the CFE and as a heavier than water package tethered below surface floatation. This is the BUOY-OSR system. The operational details of both CFE and BUOY-OSR systems had to be documented in detail as this is the first paper and because the findings from the two systems were so different. Also described are key environmental data (ADCP results in particular) used for identifying the cause of the differences between the CFE and BUOY-OSR observations. We think that it is therefore appropriate to retain methodology as is and to not relocate figures to the appendix.

[no changes to text]

My major concern, however, is the comparison between optically- and trap-derived (surface tethered and moored traps) fluxes. Both

approaches are fundamentally different and comparisons are limited by seasonal, interannual and regional variability.

(1) It would be helpful to have more information on the locations of the different types of sediment traps used for comparison (e.g. in Fig. 1) and the exact seasons/years and the water depths. In chapter 4.1. the CFE fluxes from the Santa Cruz Basin were compared to fluxes from the nearby Santa Barbara and San Pedro Basins which were derived from different water depths and different sediment trap types.

(2) Flux data from Martin et al. (1987) were captured from more open ocean sites in the far north of the Pacific in different years rather than from a more local basin.

To facilitate reading and to follow the presented argumentation and evaluate this comparison more critically, the authors should show a table with optical and sediment trap fluxes but with detailed information on locations, seasons, years, water depths, surface or bottom-tethered arrays with traps, type of traps and openings.

— (1) and (2). We will add to figure 1 – locations of the two studies compared (see attached graphic which shows a larger view of the southern California bight) and modify the text to describe the periods of observations and methods used in more detail. The methodology for the comparative studies is well documented in Thunell 1998 (Parflux Trap 50 mab at 540 m; August 1993-August 1996 at 2 week sample resolution), and Collins et al. 2011 (McLane Mark V sediment traps Jan. 2004 through Dec. 2007, weekly resolution; 550m and 800 m. Shallow traps (PITs - 24 hour deployments, various months 2005-2008).

[Modified Figure 1 to show deployment locations for other studies, Text p 10 lines 20-21 modified to include dates]

We believe that adding a detailed tabulation of already published data is not needed

(3) Further, the authors cannot explain the large differences (10-20 times) of fluxes in a satisfactory way. It is hard to believe that the CFE's optical sedimentation recorded (OSR) with 1 cm opening was able to better sample large marine snow aggregates of several mm size (which

are rather rare in the water column) than a cylindrical tube of about a decimeter or larger in size of a free-drifting (surface tethered) sediment trap. I would expect this to be the other way round. It is hard to believe that the baffles of sedimentation tubes are so small to destroy fragile marine snow aggregates of a few mm in size (page 11, uppermost chapter). By the way, the opening of the tube of the OSR (1 cm) is not larger than the cm-sized trap baffle openings (page 11 lines 6-9).

The reviewer stated "Obviously, the traps [BUOY-OSR] under sample larger marine snow aggregates of the size class larger than 1mm". The OSR on both CFE and Buoy-OSR systems is identical.

The analysis of particle size distributions in the images and the analysis of ADCP results indicate that the large aggregates are likely not destroyed by the BUOY-OSR baffles, but simply bounce off the baffles back into the flow; during the bounce, some fragments of the aggregates get into the trap.

We think the text is quite clear on this.

The PIT traps have almost the same baffle opening, and have been deployed similarly to our BUOY-OSR, thus we would expect that similar biases may hold.

During the rewrite of the article we will look to clarify the text.

[Clarified text p 9. Lines 1-5]

\sf

Sediment traps have their limitations as well, depending for instance on the type of array (surface vs bottom tethered). In particular, bottom-fixed moorings with shallow water sediment traps seem to be critical to record fluxes in the upper few hundred meters of the water column. Shallow traps may not provide an accurate measure of particle fluxes and differ by a factor of 3-10 (Buesseler 1991).

The 3-10 range of Buesseler 1991 is based on the ²³⁴*Th method combined with assumptions regarding the C:Th ratio of particulates.*

[No changes to text]

Part of the discrepancies discussed here may be attributed to these uncertainties in trap-derived fluxes (e.g. page 9, chapter 4.1. of discussion).

We deployed identical OSRs on a Lagrangian platform and surface-tethered. We feel that the hydrodynamic bias we have seen is very clear.

We tried to discuss factors leading to uncertainty of our POC flux estimates in the methods – these are the best estimates we can make. Bishop et al. 1978 paper is the most closely applicable. Please see our response to Reviewer 2 in the separate reply.

[clarified text]

Particle fluxes from sediment traps (NBST, surface tethered, moored) on the other hand, measure carbon fluxes more directly and apply less assumptions than the optical methods. There are less than a factor of two differences of fluxes between NBST and surface tethered traps as the authors mention at the end of page 10.

The reviewer is correct regarding the factor of two differences; however, the comparisons of NBST and surface tethered PIT traps have been mostly done in waters near Bermuda. Comparisons have not been done in the coastal environment. While Stanley et al., show that POC numbers are about a factor of two different, the PIC/POC ratios vary by a factor of four. Hydrodynamics or surface tethered traps can bias in both directions.

Furthermore, the early flume studies (e.g. Garner 1977) on the performance of traps utilized clay and silt sized particle suspensions; while the trap geometry was scaled down, the baffle openings were cm sized in models with baffles. The scale of the particle size to baffle opening scale was tiny. In our case, the aggregate size is the same magnitude as the baffle opening.

The flume studies also pointed out the importance of controlling trap tilt. Hence our effort to achieve near zero tilt on the OSR systems deployed tethered to the surface.

The present study took place in a coastal environment when large aggregates are abundant, as we mention >97% of the flux was carried by aggregates > 1.5mm in size in January. Thus the factor of 20 difference found in Jan. 2013 is inescapable. Size analysis suggests a factor of 3 bias in the other seasons. I'd like to repeat a quotation from Knauer, Martin, and Bruland. 1979

"Each tube had an inside diameter of 7.39 cm and was equipped <u>with a</u> <u>baffle</u> system (SOUTAR et al., 1977) that consisted of 16 smaller tubes (length 7.6cm). The top ends of the baffle tubes had been milled to a wall thickness of 0.06 mm to minimize surface area (about 5% of the cylinder mouth area which is 43 cm 2). We assume that materials hitting these edges fall into the collectors and contribute to the total flux. GARDNER (1977) has shown that open cylinders with a length-to-width ratio of approximately 2 or greater will yield representative fluxes. With our use of a baffle system, an adequate length-to-width ratio (8.4) and density gradients (see below), **we assume** that our traps sample the vertical flux" of particulate matter with reasonable accuracy. We also have ²¹⁰pb data (see below) supporting our assumptions. However, like other investigators attempting to measure vertical fluxes, we presently have no way of definitely knowing whether our supposition is correct."

What Knauer et al. (1979) did not anticipate is the possibility of large aggregates bouncing back into the current flowing by the trap.

We feel that the discussion is more than adequate as is on this topic..

[No modification of Text, we could add comments above] \sf

Summarizing this, I suggest to be more careful with this kind of comparison and the conclusions. The problems associated with this comparison of fluxes (optical vs traps) should be clearly mentioned in the discussion.

{We feel that we have been as careful as we can in the discussion. We had hardly anticipated the result. We will look to see if the text can be clarified further}

[No change in text beyond minor word changes]

Minor issues (A) page 1 , line 28:... by grazers or settle down as larger marine snow particles.

[corrected p 1 line 29]

(B) The optical methods to estimate carbon fluxes which are described here need several assumptions, e.g. conversation factors (chapter 2.3.). What are the errors of the individual methods and the potential cumulative errors? Is there any estimation/quantification? Something written in earlier papers?

{we have done all that can be done regarding a discussion of uncertainties in the derivation of our attenuance – POC conversion factor. Further work on calibration at sea is scheduled for August 2016}.

[In response to R1 and R2, We added discussion to Sec 2.3. p 6 lines 26-37. Alldridge (1998) describes carbon content – volume relationships for fresh Marine Snow sampled in the euphotic zone. Summary P 13 lines 7-9.]

- page 5, chapter 2.2.4. Do the authors only hypothesize that attenuance is the best proxy for POC? What is the basis for this assumption, please clarify

{The logic is explained in the text. Transmissometer beam attenuation coefficient is a well documented and best proxy for POC concentration; it is superior to scattering based methods which are subject more to refractive index effects. By analogy we hypothesize that Volume Attenuance flux (as opposed to darkfield counts) is a proxy for POC flux.}

[no changes]

(C) page 8, chapter 3.3., sometimes hard to read due to many abbreviations *{we will look at this}*

[p 9 1-5 modiified for clarity]

(D) Fig. 1, show surroundings of the Santa Cruz Basin to provide more info on the general setting of the study site and the other sites used for comparison *{will do}*

[Done]

Anonymous Referee #2 Received and published: 13 April 2016

Reviewer comment in black. *Our original Response in blue;* [Our action taken and line references in green.]

Specific comments

(1) p. 2, L. 4. The specificity of the sentence about foraminifera shells, etc. suggests that perhaps a reference is necessary.

Be et al. Armstrong et al.

[already referenced]

(2) p. 2, L. 36. Can the CFE really operate for years? It would be more useful to most readers to point out the demonstrated length of deployment so far (months?) or give the nominal number of profile cycles that can generally be achieved.

----- The CFEs have had field deployments lasting as long as 40 days with no ill effects. We have demonstrated in the lab that they can operate at hourly frequency for 8 months. By extension, 16 months at 2 hour frequency... etc. The CFE is independently powered and thus has no impact on the profiling lifetime of the float.

[Added text at p 13 lines 12-17]

Bishop, J.K.B. (2012) Autonomous Exploration of Sedimentation Dynamics in the California Current System. Proc. 15th Biennial Challenger Conference for Marine Sciences. 3-6 Sept 2012. University of East Anglia, Norwich, UK. p36.

(3) Methods section. I suggest you tabulate the cruise numbers, deployment locations/times/depths, and retrieval locations/times/depths to help the reader keep track of the different observations.

----- will add this to supplemental materials.

[Added Table 1.]

(4) Section 2.1. It may be a good idea to move the basic trap funnel and stage dimensions from Appendix A to here. Otherwise, you don't state the collection area anywhere. I noticed that another reviewer has assumed the OSR has a 1 cm diameter trap opening, which is not the case and may have led to some misunderstanding.

----- will clarify the text although the Appendix is formally part of the paper.

[OSR funnel and stage diameter information added p 3 line 29]

(5) P. 3, L. 20. Use "thickness" instead of "length" to describe the vertical dimension of the baffle.

----- we will look at this. Given that the OSR is shown in Appendix 1, the aspect ratio of the baffle will be obvious

[no change]

(6) P. 3 L. 28-30. If any of the OSR data are transmitted, they must be pre-processed on board prior to doing so, correct? If this is something that has been implemented, a brief description of the on-board processing steps should be given here. Otherwise, please remove "OSR data" from the list of things that are transmitted during surfacing cycles.

----- We say that images are recorded on board the CFE. We will implement processing onboard the CFE at the level described here. The OSR data transmitted include engineering status and image metadata. We will clarify the text.

[p 3 line 35 and p 4 lines 2&3]

(7) P. 3 L. 29. State the actual dive depth rather than "considerably deeper than planned."

---- Will state depths were 300-400 m deeper than planned in May 2012.

[p4 line 2]

(8) P. 4, L. 12-13: While it is ultimately the author's call, I suggest a change from base-10 to base-e. I believe that this is the convention for

most of the optical oceanography community when describing optical properties.

----- We have explained our rationale for this. 2.303 * log10 = ln.

[p 4 line 20-21]

(9) P. 4, L. 20 (and related discussion in Section 2.3): How have you dealt with particles that overlap? Would stepwise subtraction lead to a possible underestimation of flux?

----- Overlapping particles are additive in attenuance units as explained in the text. The only complexity is determination of particle size distributions. We provide the series of images as supplemental materials that were used in the estimation of cumulative attenuance and POC conversion factor.

[no change to text]

(10) P. 4, L. 30: Is there a poster or meeting presentation which has shown the elimination of the stress polarization interference, which you can refer to here? If not, this sentence should be reworded to indicate that the problem is surmountable, but the discussion of later CFE builds should be removed as they are not relevant to the data presented here.

----- We will retain this discussion as it is something we have demonstrated through deployment experience.

[text remains unchanged. This is simply a fact]

(11) Section 2.2.3 and P. 7 L. 7-8, and supplemental videos: Presumably swimmer interference should also affect analysis of the POC flux data, not just the PIC flux. Please revise this discussion so that it applies to both proxies. The supplemental videos clearly show several instances of "disappearing/moving particles" (e.g., halfway through 1204 and maybe again at the end; also about halfway through 1301). Unlike direct sediment traps, you can actually detect and correct for the presence of swimmers with the OSR, and I think this should be discussed in more detail. ----- We plan to implement processing codes that detect movement. This is outside of the scope of the current paper. The interference by swimmers was minor in Attenuance units.

[Added line p 5 18-19]

\P (12) P. 5, L. 21: Please add a reference for the statement that birefringence scales linearly with PIC concentration.

----- We did (Guay and Bishop, 2002). The two points about birefringence are related.

[No change]

(13) P. 6, L. 6-16: Please add an equation or two summarizing the calculation you have described here in words. It will greatly clarify the procedure.

----- The text is clear. We do not think an equation will simplify the text.

[No change]

(14) P. 6, L. 18-28: It would be illustrative to also compute fluxes using models in the literature for aggregate carbon content as a function of size. For instance, Alldredge (1998) contains useful relationships for several categories of marine snow. At the very least, you should mention the existence of such models and their relevance to interpretation of image data such as that collected by the OSR.

----- Thank you for pointing out this reference. We will add discussion. Alldredge (1998) collected marine snow by scuba at depths of 10 to 20 m. If we use our 2d analyses of min and max dimension to compute ESV following Alldredge (1998) we get volumes that are 8.5 times higher. If we used their conversion of ESV to POC/aggregate and sum for particles > 1 mm in size then, the POC estimate falls 17 times lower than our estimate. Their estimate yields a POC density for marine snow equal to 0.00020 g/cm3; in our case numbers are ~0.03 g/cm3. The carbon content derived from their equations differs by a factor of 150. [changed 0.05 to 0.03 as used OM% and not C %]

I'm not sure whether or not there is a units error in Alldredge (1998) or if the identified marine snow particles sampled in the euphotic zone are mostly empty

of material. There are no images of collected marine snow in the 1988 paper. Ours are clearly loaded. Bishop et al. (1978) worked with aggregates sampled from 100-400 m. We feel that these data are more reasonable. Obviously, there is a need for further work on calibration. We will add some discussion of Alldredge (1988) to the paper.

[Added Discussion p 6. lines 30 to p 7 line 2]

(15) P. 6, L. 33-34 and Figure 1. Add a distance scale bar to Fig. 1c.

----- Yes

[done]

You state that all satellite data points used for comparison were within a 2km radius of 33.72N, 119.5W, but that appears to be the center of a "150 km2" study region, and does not correspond to the actual surfacing locations of the CFE or optics cast locations. If ChI and POC were patchy, then the changes seen in the surface optical properties at a fixed point in the center of the box are unlikely to correspond with the observations on a quasi-Lagrangian platform drifting tens of kilometers from this point. Comparisons to satellite data should attempt to match up with the actual locations of the CFE tracks. Once this is done, please adjust the text accordingly.

 -150 km^2 is the rectangular area of the study region. The actual area is smaller. This is an effort that will not change the interpretation of the data. With 3 surfacings of the CFE per day and only one satellite image per day at best, a drifting matchup is not as simple as it seems. The single point reference is adequate. We had provided imagery at 4 km (Modis aqua) as a supplemental document. We worked with 1 km results and report means and standard deviations. We have attached similar images from Mati Kahru (Scripps) with area of the Reference circle plotted. They are also shown at 4 km resolution. The big picture story of the imagery is that prior to the expedition, there were higher levels of Chlorophyll at the surface in the Santa Cruz Basin in general. From day to day they fluctuate. By the time the ship arrived, the Chlorophyll had decreased. Interestingly, a bloom developed in the Santa Barbara Basin by the time we had left. Animation of the imagery shows that there is little coherent structure. This is the best that we can do to document conditions. Further analysis of patchiness is beyond the scope of this paper and our funding.

[Added text p7 lines 20-21; and added Figure A1.3 to describe spatial gradients of Chlorophyll a in the study area].

(16) Section 3.2: How close in time and space were the different depths measured on each deployment? These details should be made clear in the text or in Figure 1. That is, it is possible the CFEs were sampling different sinking particle pools at each of the different depths? It may not be correct to assume a single attenuation model.

----- There will always be a temporal / spatial effect seen in particle profiles. We have analyzed hydrographic data for evidence of intrusions and found none. The water column is influenced by tidal currents and there is a net westward drift.

[The distance of separation stated in the caption for Fig 1. Spatial gradients of chlorophyll were less than 20% over this distance in almost all cases and all expeditions. Even though the CFE and BUOY-OSR were separated, CFE data at the same location as the BUOY-OSR one day earlier showed no difference in flux (Fig. 8)]

(17) p. 10 L. 11-14. You invoke certain physical conditions here in order to support the hypothesis that low-biomass conditions were caused by consumer-driven export and not by physical aggregation or advection.

However, the minimal wind and current shears you describe are inconsistent with your other major finding that your surface-tethered BUOY-OSR undersampled by a factor of 20 relative to the CFE due to strong hydrodynamic effects felt by the different platforms. Please reconcile these ideas.

----- We described conditions minimal wind and swell at the surface. In January 2013, there is no evidence for frontal features in the area of our observations. The whole water column is influenced by semi-diurnal tidal currents varying from 0-20 cm/sec. It is also influenced by internal waves.

The difference in shear is that experienced by the BUOY-OSR vs, the Lagrangian CFE at depth. We have quantified the horizontal motions leading to the observed bias.

[The text is clear on meaning, no change]

(18) p. 10, L 16-17 and Figure 6: The trend is hard to pick out from Figure 6. You need to add an inset that shows the January 2013 period. Otherwise it looks like the 1-week-prior points are scattered, not necessarily decreasing, and in any case they cover up the runningmean line so it cannot be seen.

----- will review this and improve the figure.

[Added section A1.3 and Fig. A3 to the Appendix]

(19) P. 10 L. 18-19. "Satellite imagery from Jan 2013 shows a patchy POC/chlorophyll distribution without obvious eddy structures or fronts near by." This statement is not possible to evaluate from the satellite chlorophyll images included in the Supplementary Information. It certainly appears as though there are potential eddy structures and fronts in these images. However, the images do not have latitude and longitude marked, there is no color bar (is it log or linear? What are the scale limits?) nor are the CFE deployment locations marked. These images need to be clearly annotated so it is obvious that they support the claim that there were no nearby eddy structures or fronts. Otherwise it is not possible to differentiate a rapid temporal change in POC from a rapid spatial change, and this assertion should be removed.

----- see our response to point (15) above.

[no further text modifications]

(20) P. 10, L. 22-23: What are the uncertainties on your derived "Martin" b values? Are they even significant? (If not, add a statement to this effect – it adds strength to your finding that the Martin curve is an inappropriate model for these data). However, you should also mention again the time and distance separations among the different depth measurements – if export was patchy, then it could be that each sampled depth is too far from the others to infer a continuous attenuation profile.

— The data are presented as clearly as can be. The depth occupations of the CFE occur approximately 7 hours apart as described in the methods. The time series is not long enough to average out day/night effects; thus there may be a

temporal effect. In early versions of the manuscript, Martin curves were not drawn. Reviewers requested this discussion. Reviewer 3 requests contrast with the typical curve. We will do this. We will provide a table with times and positions of CFE transmissions and BUOY-OSR positions. The figures graphically compare time series. We feel that a lot of additional discussion is unwarranted.

[we added text p 11. lines 14-16; Table 1(locations) and Table 3]

(21) Section 4.1: The difference between surface tethered and neutrally buoyant traps may be more pronounced in the presence of large aggregates such as the ones you have observed here. The studies you cite comparing PITS and NBST traps were conducted in an oligotrophic region where in situ camera profiles showed low concentrations of particles larger than 1500 um (McDonnell and Buesseler, 2012). Your findings in coastal California are quite striking, but there may be site-specific differences in the relative efficiencies of tethered/neutrally-buoyant traps at collecting aggregates. Please revise lines 34-36 to address the differences between the different types of environments.

----- I looked at the text and don't understand what this reviewer wants us to say beyond the fact that the factor of two differences are found in oligotrophic waters. The text seems clear but I will look at it again and modify if it can be improved. That said, Stanley et al. found a factor of four difference in PIC/POC ratio. So surface tethered traps are collecting a different quality of particle than NBSTs even in oligotrophic waters.

[No changes to the text; We caution against assuming > 1mm sized particles are not important components of flux in oligotrophic waters; See e.g. particle size distributions at Bermuda (in Bishop et al., 2012)]

(22) P. 11, L. 5-6: Near-horizontal approach of particles to tethered traps has been described in detail by Siegel et al. 2008; I suggest you include a citation to this reference.

----- we see no reason to add the reference for particle trajectories. This has been a point of discussion since Garner's 1977 thesis.

[no further text modifications]

(23) P. 11 L. 21: Replace "the single profile 234Th/238U method" with "the 234Th/238U method with a steady-state assumption", which is clearer.

----- The text seems clear as written. Will review.

[no further text modifications]

(24) P. 11 L. 23-24: Similarly, replace "time series sampling" (which is less specific) with something like, "multiple reoccupations of a water parcel assuming non steady-state conditions".

----- The text seems clear as written. Will review.

[page 12, line 18; "of a water parcel"]

(25) P. 11 L. 22: Replace "is not applicable" with "may not be applicable". If it can be established that a coastal system is in steady state and advection is minimal, then the steady-state assumption can be used.

----- The text seems clear as written. Will review. The conditions satisfying steady state the reviewer indicates are unlikely to occur in any coastal environment.

[no further text modifications]

(26) Figure 9: Please put a thin margin between these panels.

----- *will do*.

[modified Figure 9 with line]

(27) Movies in Supplement. Do these represent multiple depths and profile cycles?

----- yes. Imaging logic described in the methods.

[no further modifications]

(28) Can you make this information clearer in the "readme" file?

----- *yes*

[will modify on final document upload]

(29) If there are multiple cycles represented in the videos, please insert "marker" frames so it's clear where the breaks are.

— the video is provided as an example of CFE deployment results. They are there primarily to contrast the kinds of particles encountered by CFE in the three seasons. A second purpose is to document the contrast of CFE and BUOY-OSR collections in January. We don't have funding to do any more with movie production at this time.

[no further modifications]

(30) Also, the movies occasionally show "disappearing" particles. Are these zooplankton? How are they treated in the flux estimation calculation? (see also the comment on section 2.2.3)

— Yes the ones that move around and/or disappear are swimmers. We describe interferences in the PIC records due to barnacle larvae. The effects are relatively small in the attenuance data. We mention cases where corrections have been made. We are developing codes to detect movement and remove the contributions of these relatively rare swimmers.

[no further modifications beyond our reply to comment 11 above]

Technical comments (31) p. 1, L. 14, change "monitor" to "monitored"

----- yes [Done]

(32) p. 1, L. 19, Break into two sentences. Start 2nd sentence with "Multiple lines of evidence indicate ..."

----- yes [Done]

(33) p. 1., L. 19. Remove space from "under sampling"

----- yes [Done]

(34) p. 1, L. 20. Change "compared to" to "than the"

----- yes [Done]

(35 & 36) p. 2, L. 3. "coccoliths" should be singular p. 2 L. 13, change "near by" to "nearby"

----- yes [Done]

(37) P. 2 L. 13, should be "strong, recent weakening"

----- yes [Done]

(38) P. 2 L. 18. It is unnecessary to abbreviate Eppley and Peterson 1979 because you only cite it once more.

----- the abbreviation works as written.

[No change]

(39) p.2 L.34. Insert "that" before "we have developed".

----- yes [Done]

(40) p.3 L. 4. "gain detail of the" is awkwardly-worded.

----- yes [Done]

(41) p. 8 L. 5. "artifact" is misspelled.

----- yes [Done]

(40) P. 10 L. 17: Should refer to Figure 6, not Figure 4.

----- will correct. [Done]

Anonymous Referee #3 Received and published: 16 April 2016

(1) However, in the spirit of exploring multiple working hypotheses, I would ask the authors to consider an alternative interpretation of their principal scientific finding described in the paper. Bishop et al. interpret the high flux of POC in January, a time of low surface biomass and low POC concentration, to reflect the rapid loss of POC by grazing and export.

By contrast, they interpret the opposite end-member condition of high surface biomass and low export, in May, to reflect the much greater efficiency of biological recycling (consumption and regeneration) of POC in surface waters. This interpretation is plausible, and I don't necessary disagree, but I wonder if the authors can rule out the following alternative interpretation.

Specifically, could the contrasting conditions observed in January and May reflect variable storage of POC in surface waters which, in turn, is regulated by physical aggregation and sedimentation?

— The transmissometer profiles show that there is not an accumulation of stored POC in the water column at the time of the January expedition. We don't know anything about DOC pools, however as the study lacked these measurements.

[no changes to document]

(2) As noted in the text (p.2, line 2 and p. 10 line 11) one generally thinks that turbulence increases particle coagulation by increasing the rate of particle-particle encounter. While this may be true for aggregation of small particles, turbulence may lead to fragmentation of fragile large aggregates. Indeed, this may explain the absence of large aggregates in the samples collected by the BUOY-OSR.

----- The aggregates we encountered in January looked structurally robust. (See 5 supplemental images and animations of imagery). The particles arrive on the sample stage and do not disaggregate. That said, there are cases during the March 2013 and May 2012 deployments where aggregates arrive and then fall apart over the period of two hours. I will clarify the text and see if I can add some discussion. Everything about the observations suggests that baffle bounce is the major reason that the bias is observed.

[page 11 line 4 most consistent with...]

Furthermore, although the weather conditions were characterized as "calm" for all deployments of the CFE, conditions were the most quiescent in January. Therefore, is it possible that ultra-quiescent conditions facilitate the physical aggregation of POC into particles large enough (marine snow) to be exported with much greater efficiency than for the fragmented pieces of marine snow?

I have no evidence to suggest that this alternative hypothesis is preferable to the one offered by the authors. Rather, I simply suggest that the authors consider physical aggregation as an alternative hypothesis to account for the unexpected inverse relationship between surface ocean POC inventory and the flux of exported POC collected by the CFE.

----- I think the only way this will be resolved is with serious process studies and physical characterization of the turbulence levels present.

Also, the authors speculate that larger size classes of organisms dominated the grazing during January. Can this be verified using collections of historical data available from some of the programs that have been monitoring the region for decades, such as CalCOFI, the California Current System LTER, or the Central and Northern California Ocean Observing System?

----- I think the biggest surprise was the finding of intense feeding activity of the large creatures (dolphins, seabirds, squid...) in the water column. It was remarkable.

[Investigation of CalCOFI - CCS LTER data sets is a future activity]

DETAILS and EDITORIAL COMMENTS in their order of appearance: (a) p. 2 line 13 "nearby" as one word ----- yes. [Done]

(b) p. 5 line 5 delete "were"

----- yes. [Done]

(c) p. 5 line 21 insert "with" between linearly and PIC.

----- yes. [Done]

(d) p. 6 line 10 delete "a" after estimate.

----- yes. [Done]

(e) p. 6 lines 18-20: Here the authors stress, appropriately, that the conversion to POC flux is based on very little observational evidence. I suggest that the authors add a new section to the Discussion with recommendations for future studies that would reduce the uncertainty in this conversion factor.

----- yes, good suggestion will add recommendations. We are building a sample collecting CFE with expectation of deploying it in August 2016.

Page 13 – lines 6-10.

(f) p. 6 line 21 delete the comma after "above".

----- yes. [Done]

(g) p. 8 lines 9-12: Here the authors describe the unexpected finding that in some cases the PIC/POC ratio decreases with depth. This is unexpected because the paradigm is that POC is regenerated much more rapidly than PIC. The authors attribute the PIC/POC decrease with depth to temporal variability of the PIC/POC production ratio. Could other (potentially more interesting biogeochemistry) factors be involved?

----- yes. In the Pacific, we have seen evidence of relatively fast remineralization of PIC – shallower than the carbonate saturation horizon (Bishop and Wood, 2008). [Added p 11 line 24-25].

(g) p. 8 line 23 insert "in January 2013" between collected and by.

----- yes. [Done]

(h) p. 8 line 30 "lower" is misspelled.

----- yes. [Done]

(i) p. 10 lines 20-26: Plot the Martin curve on Figure 6C to provide readers with a visual illustration of the difference between Martin's export attenuation (b value) and the b values derived in this study.

----- yes. [Done]

(j) p. 11 line 9 change "high" to "higher"

----- yes. [Done]

(k) Fig 1 caption: insert "place" after "deployments took"

----- yes. [Done]

(I) Fig 4 caption: explain the small circles, similar to the explanation offered in the caption of Fig. 5.

----- yes. [Done]

(m) Fig 9: placing a white vertical bar between the two images will make it easier for readers to compare the figure with the caption.

----- yes. [Done]

End of review response.

Robotic observations of high wintertime carbon export in California coastal waters

J. K. B. Bishop^{1,2}, M. B. Fong³, T. J. Wood²

¹Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA 94720, USA. ²Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA ³Department of Chemistry, Scripps Institution of Oceanography, La Jolla, CA, USA.

Correspondence to: J. K. B. Bishop (jkbishop@berkeley.edu)

Abstract.

5

Biologically mediated particulate organic and inorganic carbon (POC and PIC) export from surface waters is the
principal determinant of the vertical oceanic distribution of pH and dissolved inorganic carbon and thus sets the conditions for air sea exchange of CO₂; exported organic matter also provides the energy fuelling communities in the mesopelagic zone. However, observations are temporally and spatially sparse. Here we report first hourly-resolved optically-quantified POC and PIC sedimentation rate time series from autonomous Lagrangian Carbon Flux
Explorers (CFEs), which monitored particle flux using <u>an</u> imaging <u>optical sedimentation recorder (OSR)</u> at depths
below 140 m in the Santa Cruz Basin, CA in May 2012, and in January and March 2013. Highest POC vertical flux (~100-240 mmol C m⁻² d⁻¹) occurred in January, when most settling material was mm to cm-sized aggregates, but when surface biomass was low; fluxes were ~18 and ~6 mmol C m⁻² d⁻¹, respectively in March and May, under high surface biomass conditions. An unexpected discovery was that January 2013 fluxes measured by CFE were 20 times

- higher than that measured by simultaneously deployed surface-tethered OSR; multiple lines of evidence indicate strong undersampling of aggregates larger than 1 mm in the later case. Furthermore, the Jan 2013 CFE fluxes were about 10 times higher than observed during multi year sediment trap observations in the nearby Santa Barbara and San Pedro Basins. The strength of carbon export in biologically dynamic California coastal waters is likely underestimated by at least a factor of 3 and at times by a factor of 20.
- 25 Key words. Biological Carbon Pump, Ocean Carbon Cycle, Twilight Zone Export, Coastal Sedimentation, Optical Sedimentation Recorder, Carbon Flux Explorer.

1. Introduction

30

Phytoplankton account for half of global net photosynthesis (Field et al., 1988), or about 50 Pg C y⁻¹, yet they live for a week before being removed from the euphotic zone through grazing or abiotic aggregation processes. While most phytoplankton carbon is recycled in the surface layer, recent model and observation based estimates (Henson *et al.*, 2011; Yao and Schlitzer 2013; Siegel *et al.*, 2014) suggest that globally 5 to 12 Pg C y⁻¹ is exported below the euphotic zone as sinking particulate organic and inorganic carbon (POC and PIC) in fecal pellets, amorphous large aggregates, and as independently sinking carapaces and calcareous shells (e.g. Bishop, Ketten, and Edmond, 1978; Alldredge and Silver 1988; Turner, 2015). Many large amorphous aggregate particles (e.g. greater in size than 0.5

James Bishop 4/28/2016 9:31 AM
Deleted: sediment traps
James Bishop 4/28/2016 9:32 AM
Deleted:
James Bishop 4/28/2016 9:34 AM
Deleted: compared to highest previous
James Bishop 4/28/2016 8:40 PM
Deleted: nearby
James Bishop 4/28/2016 9:32 AM
Deleted: between

James Bishop 4/28/2016 9:38 AM Deleted: consumed by grazers

mm) would also be classified as marine snow by virtue of their being visible to the naked eye or camera in reflected light; such aggregates have been shown to originate as products of feeding (e.g. ejected boluses of fecal material, or discarded mucus feeding webs, or appendicularian houses) or from turbulence driven aggregation of biogenic organic and inorganic particles (Alldredge and Silver 1988). Important to POC settling is particulate inorganic carbon (i.e.

- 5 PIC), in the form of calcite foraminifera shells and coccolith plates and aragonite pteropod shells and shell fragments. Foraminifera shells preserved in sediments in particular are key to unravelling past climate and ocean chemistry, yet little of their dynamics in the water column has been understood (e.g. Be *et al.*, 1985). Together with siliceous diatom frustules and radiolarian tests, biogenic carbonates are a major factor governing the excess density, and hence sinking rate, of aggregate particles carrying POC downward from the surface layer (Armstrong et al., 2002). As much of
- 10 exported organic matter is consumed in the water column or at the sediment sea water interface, little POC is preserved in sediments. The varied processes of production, grazing, recycling, export, and subsurface remineralisation constitute the ocean's biological carbon pump (Volk and Hoffert, 1985).

Direct observations of POC and PIC sedimentation fluxes in the upper thousand meters of the ocean are sparse, of short duration (days), and with few exceptions, are mostly during summertime. This is because all observations to date have required ships to be present or nearby (e.g. Martin *et al.*, 1987; Buesseler *et al.*, 2000; Stanley *et al.*, 2004;

Lam and Bishop, 2007; Lampitt *et al.*, 2008; Lee *et al.*, 2009; Owens *et al.*, 2013). Such direct observations are often used to calibrate models used to estimate global carbon export (e.g. Henson *et al.*, 2011, Siegel *et al.*, 2014). Henson *et al.* (2011) estimated an export of 5 Pg C y⁻¹, based on the synthesis of a decade of ship observations of the ratio of dissolved radioactive ²³⁴Th to parent ²³⁸U, ²³⁴Th/POC ratios measured in shallow

15

- 20 sediment trap or pump sampled particulates, and satellite-based estimates of primary productivity. Siegel *et al.* (2014) estimated a global carbon export of 6 Pg C y⁻¹ using the combination of food web models calibrated with ship-board observations of production, grazing, and sedimentation -- and global satellite retrievals of size-dependent phytoplankton biomass. In contrast, Yao and Schlitzer (2013) estimated an export of 12 Pg C y⁻¹ by inversion, within an ocean circulation model, of ocean nutrient fields averaged over five to six decades. It is unknown whether the
- 25 factor of two difference in export numbers are a reflection of a strong₂ recent weakening biological carbon pump, or of differences in methodology. Either way, there is major uncertainty in both the strength and stability of the ocean's biological carbon pump and of consequent feedbacks to atmospheric CO_2 trends; furthermore, there remains major uncertainty as to the magnitude of the energy flow carried by sinking particles to sustain mesopelagic communities (Burd, *et al.* 2010; Banse, 2013).
- 30 Eppley and Peterson (1979; E&P) pointed out the importance of near-shore waters, defined as coastal waters deeper than 200 m, to the ocean carbon cycle. In their estimate, near-shore waters account for over 40% of global new production and hence particle export. While there have been arguments that this number may be somewhat high in the modern context (Henson *et al.*, 2011), all recent calculations of global export (although not broken down as done as in E&P 1979) indicate a lower contribution from coastal waters.
- In this paper, we describe direct in-situ observations of carbon export in biologically dynamic ocean waters near the
 California coast obtained using a fully autonomous ocean profiling Carbon Flux Explorer (CFE; Fig. 1A) that we have developed. The Carbon Flux Explorer is designed to perform sustained high-frequency observations of POC

2

James Bishop 4/28/2016 8:43 PM

Deleted: s

James Bishop 5/2/2016 11:22 AM Deleted: frustrules

James Bishop 4/28/2016 9:45 AM Deleted:

and PIC sedimentation within the upper kilometer (or twilight zone) of the ocean for seasons to years and to operate in an observational context not dependent on ships, The CFE melds the concept of current-following, samplecollecting neutrally-buoyant sediment traps (Buesseler *et al.*, 2000; Stanley *et al.*, 2004, Lampitt et al., 2008, Owens *et al.*, 2013) with photographic imaging of the particles as they are deposited in a sediment trap (Asper, 1987). The

current-following approach aims to avoid the hydrodynamic biases suffered by surface tethered sediment traps
 (Gardner, 2000; Buesseler *et al.*, 2007).

Bishop et al. (2004, 2009) and Estapa et al. (2013) have deployed transmissometer equipped profiling floats to observe the high-frequency variability of the systematics of sedimentation. When the floats yo-yo from depth to the surface, transmissometers record the concentration variability of particles in the water column. As the floats drift at

- 10 depth between profiles, there is a measurable transmission loss (or attenuance increase) as settled particles accumulate on the upward looking transmissometer window. These data, when normalized by the time at depth, yield a simple metric, or index, of sedimentation. In contrast, with direct high-resolution imaging of the settled particles, the CFE not only is able to quantify optical metrics of particle flux, but also is able to gain detail on kinds of particles and thus the specifics of the process governing carbon export.
- 15 Below we present observations from CFE development testing during three expeditions off the coast of southern California aboard R/V New Horizon: May 29-June 4 2012 (NH1204), Jan. 18-21 2013 (NH1301) and March 27-31 2013 (NH1304). These observations, like past ship-tended studies using neutrally buoyant and surface-tethered sediment traps, are of relatively short duration (days); however, they are the first carried out in a productive coastal environment. CFE data are analysed below in the framework of remotely sensed surface chlorophyll and POC, *in-situ*
- 20 water column optical properties, and subsurface currents. The study site is a 150 km² region centred at 33° 43'N 119° 33'W in the 1900 m deep Santa Cruz Basin (SCB) near the California coast (Figs. 1B & C).

2. Methods

2.1 Carbon Flux Explorer (CFE).

The CFE is comprised of an Optical Sedimentation Recorder (OSR) interfaced to a CTD-equipped Sounding Oceanographic Lagrangian Observer (SOLO) float (Davis, Sherman and Dufor, 2001). The CFE dives repeatedly (daily in this study) below the surface to obtain OSR observations at three target depths. The CFE's Optical Sedimentation Recorder (OSR; Figure A1, Appendix Sec. 1.1) awakes when the CFE reaches a target depth. Particles settle through a hexagonal celled baffle (1 cm opening, 5 cm length) into a high-aspect titanium funnel and settling column before depositing on a 2.54 cm diameter glass sample stage; funnel diameter is 15.4 cm, Particles are imaged

in three lighting modes: transmitted, transmitted-cross-polarized, and dark field. On first wake up of a given dive, the sample stage is flushed with water and images of the particle-free stage are obtained. At timed intervals (~20 min in data described here) the OSR repeats image sets, which register the sequential build-up of particles. After the predetermined number of image sets over ~1.8 hours, cleaning occurs and a new reference image set is obtained. After ~5 hours at a target depth the OSR performs a final image/cleaning cycle and reference image set, and the SOLO
 surfaces to report GPS position, CTD profile data, and OSR engineering data, and dives to its next target depth.

3

James Bishop 4/28/2016 9:49 AM Deleted: . James Bishop 4/28/2016 9:50 AM Deleted:

James Bishop 4/28/2016 10:42 PM Deleted: W James Bishop 4/28/2016 10:43 PM Deleted: f James Bishop 4/28/2016 10:06 AM Deleted: the biological process of James Bishop 4/28/2016 10:16 AM Deleted: sedimentation, thus it extends significantly beyond the simple Carbon Flux Index (CFI) optical sedimentation proxy from transmissometer-equipped Lagrangian floats (Bishop et al. 2004, 2009; Estapa et al., 2013)

James Bishop 5/2/2016 12:27 PM Deleted:

Every 3 dive cycles, the depth order is repeated; in the current study, target depths were 150, 300 and 500m. A ballasting error in May 2012 led to the CFE operating <u>300 to 400m</u> deeper than planned. In the <u>CFE described here</u>, all images were stored aboard the OSR for post recovery analysis.

2.2 OSR Image data reduction.

5 Images were taken under transmitted, transmitted-cross-polarized, and dark field illumination, and were processed to yield three parameters that characterize particle abundance, according to the scheme depicted in Fig. 2. The parameters are particle attenuance, cross-polarized photon yield, and dark field counts. Attenuance is the best measure of particle loading as light is reduced exponentially as it propagates through the sample. Cross-polarized photon yield takes advantage of the birefrigent property of calcium carbonate, and is a measure of particulate inorganic carbon. Dark field counts reveal the colour of particles. Details of the treatment of transmitted light and transmitted cross-polarized light images are covered in sections 2.2.1 and 2.2.2, respectively. Dark-field images are normalized by illumination intensity and then transformed to a consistently scaled reflectance in counts above background. A full-resolution post-processing image of an aggregate particle from January 2013 is shown for all modes of illumination in Figure 3.

15 2.2.1 Attenuance (ATN).

Transmitted light (TRA) images are normalized by an in-situ particle free image of the sample stage area under transmitted light illumination. Image attenuance (ATN), the sum of both light scattering loss and particle absorption of the primary beam, is calculated as the negative log_{10} of transmittance and is a measure of both aggregate thickness and transparency. The effects of overlaying particles are additive in attenuance units. We calculate attenuance in log_{10}

20 units rather than in natural log units as order-of-magnitude changes of transmission are easy to infer. <u>Attenuance data</u> reported here may be converted to natural log units by multiplying by 2.303.

In order to detect particles, we set the lowest threshold of pixel attenuance to be 0.02. The attenuance of all pixels identified as particles is integrated across sample stage area and then divided by the total number of pixels of the sample stage area to yield the average particle load of the sample stage (in attenuance units). For convenience

- 25 attenuance is multipled by 1000 and reported in units of milli-attenuance (mATN). The stage load, when multiplied by sample stage area yields units of mATN-cm². Because the light source is directly above the sample stage, the stage load (mATN-cm²) is an optical 'volume' of material on the sample stage. Attenuance flux (in units of mATN-cm² cm² d⁻¹) is calculated by taking differences of successive stage loads, divided by the mouth opening of the trap, and further divided by the time (in days) between image sets. Attenuance is never saturated in our images (e.g. 30 transmission is always greater than 0).

2.2.2 Cross-Polarized Photon Yield (POL).

Transmitted, cross-polarized light images are processed in three steps: compensation for the attenuation effects of particles, subtraction of the particle-free blank and normalization for light source intensity. Due to the isolation of sub-stage polarizer in the pressure case of the OSR, hydrostatically induced stress on the glass pressure case window

James Bishop 4/28/2016 10:20 AM Deleted: considerably James Bishop 4/28/2016 10:22 AM Deleted: present form of the James Bishop 4/28/2016 10:22 AM Deleted: are James Bishop 4/28/2016 10:23 AM Deleted: detailed

at depth induces an interference seen by the camera; thus, absorbing particles appear dark in the uncorrected image (Fig. 2B – RAW POL Image). The absorption effect is compensated by division of observed image counts by a polarization compensation factor (PCF), an empirically derived function of attenuance: PCF = 1/(2.1 * ATN). This stress polarization interference has been eliminated in later builds of the CFE by moving the sub-stage polarizer

5 outside of the pressure case.

10

Following correction, image counts at each pixel (for particles identified using the 0.02 attenuance threshold) are integrated across all particle pixels and normalized by the total number of pixels covering the stage area. Sample counts are normalized to lamp brightness and scaled by the difference in exposure time for POL vs. TRA images to yield the quantity cross-polarized photon yield, expressed as a fraction of incident beam intensity. Results are scaled up by 10^6 and data are reported in ppm. This optical measure of flux is in units of ppm-cm² cm⁻² d⁻¹.

2.2.3 Interference by Swimmers.

In the PIC flux time series, there were several instances when a calcified swimming organism was detected. This mainly affected data from expedition NH1304, and Cypriod barnacle larvae were the predominant interfering organism. When the appearance and disappearance of these organisms in the image series led to a strong positive

15 then negative flux, the interfering flux estimate was eliminated from the 1.8 hour average. In one other case during NH1304, a calcified amphipod carapace (Fig. 4-B) was removed from the 1.8 hour average PIC flux. This carapace was clearly part of the flux but was excluded in our consideration of aggregate sedimentation. Excluded points in Fig.
5B (below) are indicated by circled (+) symbols. Attenuance flux data were not modified as swimmer interference did not alter the signal in a dominant way.

20 2.2.4 POC and PIC flux proxy.

We hypothesize that attenuance is the best proxy for the POC in particles by analogy to the finding that transmissometer measured particle beam attenuation coefficient (c_P) is highly correlated to POC concentration (e.g., Bishop and Wood, 2008). We note that particle beam attenuation coefficient is expressed in units of m⁻¹ while our attenuance values are dimensionless. This is because in transmissometry, beam attenuation occurs continuously along

25 the seawater path that the light beam passes through. In our case, the path length from light to sample stage is unimportant as all attenunance of light occurs in the thin layer of particles on the sample stage. Our use of the image of the light source as a transmission reference removes the minor effects of light loss through the water path.

Cross-polarized photon yield is a measure of PIC, which is comprised of biogenic calcite and aragonite polymorphs of calcium carbonate. The photon yield under cross-polarized illumination (or birefringence) of carbonates has been

30 shown to scale linearly with PIC concentration; furthermore, biogenic carbonates both dominate all mineral material in the water column and have 10 times greater photon yield compared with other birefringent minerals (Guay and Bishop, 2002).

5

James Bishop 4/28/2016 10:27 AM Deleted: only James Bishop 4/28/2016 10:27 AM Deleted: were

2.3 Conversion of POC_{ATN} flux to POC flux.

Calibration samples from the BUOY-OSR system were not useful due to a 20-fold lower particle collection rate compared to that of the CFE (described below in Sec. 3.3). We thus estimate the amount of POC in our images in order to translate attenuance flux to POC flux.

Bishop et al. (1978) report information on the dry weight density and geometric properties of particles of similar morphology as 5 sampled here. Particularly, we use particle dry weight density of 0.087 g cm³, and the Bishop et al. (1978) equation, which estimates aggregate thickness (h, in cm) as a function of equivalent circular diameter (d, in cm): h = 0.052d + 0.0045.

(1)

We analysed a series of 5 images collected on January 20 2013 from 11:11:47 to 12:39:47 UTC (just before cleaning). The last image of this set had 65% of the sample stage covered with particles. These images are provided in supplemental material for 10 readers to independently analyse. The software package ImageJ (National Institutes of Health, USA - http://rsb.info.nih.gov/ij) was used to measure the equivalent circular diameter of aggregates. As aggregates overlapped in successive images due to the unexpectedly high sedimentation observed, successive images were stepwise subtracted in pairs prior to size analysis. Aggregate volume was calculated as the product of cross sectional area and h.

- 15 A total of 127 aggregates from 500 µm to 8.3 mm in size were enumerated in all five images. A size cutoff of 800 µm was used to minimize contamination of the analysis due to the slight expansion of aggregate dimension over time as they rested on the stage. Although, size distributions were initially quantified to a lower limit of 20 µm, it is important to note that 97% of the volume attenuance of the sample was accounted for by particles >800 µm in this sample. For the remaining 63 particles larger than 800 µm, we calculated an aggregate volume of 0.113 cm³. To estimate the POC flux, we assume an aggregate dry weight
- density of 0.087 g cm³ (e.g. From Fig. 22 in Bishop et al. 1978) and thus calculate the weight of aggregate matter as 0.0098 g. 20 Organic matter at depths between 100 m and 500 m is typically 60% (range 50-70%) of dry weight (Fig. 11 in Bishop et al. 1978). Thus, organic matter weight is 0.0059g. We estimate POC (as carbon) by dividing this mass by the OM:C conversion factor, 1.88 from Hedges et al. (2002). We divide by 12.011, the atomic weight of carbon, to yield a POC loading of 0.26×10^{-3} moles. The opening of the OSR funnel has a diameter of 15.4 cm, which yields an assumed trap collection area of 186.3 cm².
- 25 The time interval for collection of this sample was 1.84 hours, or 0.0766 days. Combining this information yields a carbon flux of 183 mmol m⁻² d⁻¹. The average POC_{ATN} flux for all particles >13 μ m in size during the same time interval was 66.2 mATN $cm^2 cm^2 d^{-1}$. As mentioned above, over 97% of cumulative sample attenuance was in the >800 μ m size fraction. The conversion factor for POC_{ATN} flux to POC flux is the ratio of 183 to 66.2*0.97 = 2.8. This conversion factor allows estimation of POC fluxes observed for compare with other data from near by waters.
- Alldredge (1998) collected marine snow by scuba at euphotic depths of 10 to 20 m in the nearby Santa Barbara Basin. They 30 imaged particles in the laboratory and derived maximum and minimum dimensions, and assumed an elliptical volume. From this they calculated equivalent spherical volume (ESV in mm³). Samples were analyzed for POC and a regression formula was derived (POC (µg) = 0.99*ESV^{0.52}). If we use the ImageJ 2-dimensional analyses of minimum and maximum aggregate dimensions in our images to compute equivalent spherical volume (ESV) following Alldredge's methods we get ESV values that
- are 8.5 times higher than obtained using our approach. If we use the Alldredge (1988) conversion of ESV to POC/aggregate and 35 sum over all particles >1 mm in size, then the amount of POC is 17 times lower than our estimate. The Alldredge method yields a POC density for aggregates equal to 0.00020 g C cm³ while our method yields ~0.028 g C cm³. The carbon density of aggregate particles derived from their equations differs from ours by a factor of 140. We are not sure if there is a unit error in Alldredge (1998), or if the marine snow particles sampled in shallow waters were mostly empty of material, or if they deflate as

6

James Bishop 4/28/2016 10:29 AM Deleted: a

ames Bishop 4/28/2016 9:04 PM Formatted: Superscript James Bishop 4/28/2016 10:44 PM Formatted: Font color: Text 1

James Bishop 4/28/2016 10:40 AM Formatted: Superscript James Bishop 4/28/2016 10:40 AM Formatted: Superscript

they sink below the euphotic zone. Bishop et al. (1978) describe aggregates sampled from 100-400 m that appeared similarly loaded to those described here; for this reason believe that our method is internally most consistent.

We stress that the factor 2.8, used for conversion of POC_{ATN} flux to POC flux is approximate. Equation (1) for aggregate thickness is the only applicable published study that we are aware of. The dry weight density factor (0.087 g cm⁻³) was taken for aggregates that were similarly optically dense as observed in this sample. Bishop et al. (1978) also reported dry density values as high as 0.24 g cm⁻³. The organic matter percentage for large particulates used in the calculation above is typical of values obtained by our group using in-situ filtration. We note that Collins et al. (2011) report upper water column POC flux and mass flux data from surface tethered sediment traps in the San Pedro Basin (Fig. 1), closer to shore, which yield values closer to 30% with the rest being contributed by inorganic terrigenous and biogenic phases. This would require our estimate of dry weight

10 particle density to be proportionately adjusted upwards to account for the greater fraction of inorganic ballasting material – and thus compensate for the reduced organic percentage. A factor of two adjustment of the $POC:POC_{ATN}$ ratio either way will not change our conclusions regarding the high magnitude of the sedimentation rate observed in January 2013 by the CFE. Nor will it change the relative difference observed between CFE and BUOY-OSR presented below.

2.4 Satellite data processing.

5

- 15 Retrievals of chlorophyll and POC from observations made by the Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite are provided on the NASA DAAC. Level 2 Local Area Coverage (L2-LAC) data at 1 km resolution for the period of the three expeditions were downloaded on April 4 2013 and processed using SEADAS software. Chlorophyll and POC were retrieved for pixels within a 2 km search radius of 33.72°N 119.5°W and were selected using the standard ocean colour processing quality flags. Means and standard deviations were
- 20 calculated and data were further selected based on the requirement of 5 valid pixels. Further analysis of spatial and temporal trends of chlorophyll within our study area is presented in Appendix section 1.3.

Surface photosynthetically active radiation (PAR) estimated from MODIS Aqua data for Jan., Mar., and May expeditions was 25, 45, and 60 Einsteins $m^{-2} d^{-1}$, respectively. Corresponding values for diffuse attenuation coefficient for PAR (k_{PAR}) from beam attenuation coefficient profiles (Bishop and Wood, 2009) were 0.068, 0.20,

and 0.18 m⁻¹. Euphotic zone depths corresponding to the 1% light level were 68, 23, and 26 m. The euphotic zone depths based on the 1 E m⁻² d⁻¹ isolume were 50, 20, and 25 m.

3. Results

3.1 Flux time-series, Hydrography, and Remote sensing data

Figure 5 shows the time series of POC_{ATN} flux and PIC_{POL} flux. In contrast to surface-tethered sediment traps (Martin et al., 1987), we found that the influence by/presence of swimming organisms was rarely significant in our image time series (see supplemental animations of CFE imagery). The highest POC_{ATN} flux was measured in Jan. 2013, intermediate flux was observed in March 2013, and lowest flux was observed in May 2012. Similar temporal/depth systematics was observed for PIC_{POL} flux (*Fig. 5B*); however, the relative ratio of PIC/POC flux was highest in March 2013.

7

James Bishop 4/28/2016 10:37 AM Formatted: English (US) James Bishop 4/28/2016 9:10 PM Deleted:

James Bishop 4/28/2016 10:29 AM Deleted: e,

James Bishop 4/28/2016 9:14 PM **Deleted:** Imagery for January 2013 from 4 km gridded L3 products is included in supplemental materials

James Bishop 4/28/2016 9:33 PM Deleted: The hydrographic context for our observations was established by CTD/transmissometer casts made to full water depth 3-4 times per day during each expedition. We found that mixed layer depths were mostly shallower than 10 m during all expeditions, reflective of the California coastal upwelling regime and net divergence of surface waters in the Santa Cruz Basin. We calculate properties of the upper 20 m, as these are most closely comparable to remotely

- sensed surface properties. Upper 20 m temperatures for January, March, and May averaged 12.6, 13.5, and 15 °C, 5 respectively, reflecting seasonal warming. Over each cruise, averaged 0-20 m POC concentrations derived from transmissometer profiles (± s.d; Appendix A, Sec. 1.2 Fig. A2) were 4.1±0.7 (Jan.), 17.5±3.4 (March), 15.4± 5.7 µM (May). POC was most variable in May 2012, with concentrations rising from $\sim 10 \ \mu$ M to 25 μ M over the period of observations reflecting the progression of a plankton bloom southward from Point Conception. Corresponding
- euphotic zone depths (EZD) based on the 1 Einstein $m^{-2} d^{-1}$ isolume (EZD for 1% light level in parentheses) were 50 10 (68), 20 (23), and 25 (26) m, respectively. January and March 2013 showed little temporal POC trend indicating a quasi steady state balance of photosynthesis and loss processes (Appendix A, Sec 1.2 Fig. A2).

Figure 6 shows MODIS Aqua Chlorophyll and POC time series, averaged MODIS Chlorophyll and POC values for each cruise period and the previous week, averaged upper 20 m POC from CTD casts, and depth profiles of POCATN

and PICPOL flux. Satellite retrieved POC values agreed well with transmissometer estimates for March and May, and 15 were lowest in January 2013, albeit approximately 2.5 times higher than transmissometer estimates. Imagery of the area in January the week prior to our cruise showed patchy (rather than organized) structure in chlorophyll distribution. During the time of the expedition, distributions were nearly spatially invariant on the scale of the study area (Supplemental materials, Appendix 1.3, Fig. A3). From all perspectives, January 2013 had the lowest phytoplankton biomass but by far the highest fluxes of POC and PIC. 20

3.2 Particle Flux Profiles

25

Averaged POCATN and PICPOL flux profiles provide systematic quantification of depth trends of sedimentation. In Jan. 2013, POC_{ATN} fluxes at depths 150, 300 and 500 m were 67, 85, and 35 mATN-cm² cm⁻² d⁻¹, respectively; in Mar. 2013 at similar depths, flux was between 6 to 7 mATN-cm² cm⁻² d⁻¹; values in May 2012 for the 450 - 900 m interval fell between 2 and 3 mATN-cm² cm⁻² d⁻¹ with no depth trend. PIC_{POL} flux trends roughly followed those for

- POC_{ATN} flux. PIC_{POL} fluxes and at 150, 300 and 500 m depths were 96, 122, and 63 ppm- cm² d⁻¹ (Jan. 2013) and 33, 15, and 16 ppm-cm² cm⁻² d⁻¹ (Mar. 2013); The apparent decrease of PIC flux with depth from 2.8 to 0.5 ppm-cm² d⁻¹ in May 2012 may be <u>a consequence</u> of the low flux condition and high scatter of points.
- For both POCATN and PICPOL flux, it is also notable that the 1.8 hour averaged fluxes for each depth ranged over a 30 factor of 10 relative to their average for the May and March periods, but ranged by less than a factor of two in the high flux period January 2013. This suggests that sedimentation is more uniform when large aggregates dominate. The profile of PIC_{POL}/POC_{ATN} ratio (Fig. 7) shows a depth dependent increase from 1.4 to 2.4 in January, indicating preferential loss of POC with sinking. In March, PIC_{POL}/POC_{ATN} ratios slightly decreased with depth from 4.6 to 3.7. In May 2012, PIC/POC ratio decreased from 1.5 to 0.3 between 430 and 900 m. The fact that the PIC/POC can 35

decrease with depth suggests preferential carbonate dissolution can and does occur in shallow waters, a finding

8

mes Bishop 4/28/2016 Deleted: A

James Bishop 4/28/2016 10:48 PM Deleted:)

James Bishop 4/28/2016 9:31 PM Deleted: supplemental

lames Bishop 4/28/2016 Deleted: an artefact

consistent with Bishop and Wood (2008). These observations confirm that the relative contribution of carbonates to aggregate ballasting varies with time.

3.3 Comparison of Surface Tethered Optical Sedimentation Recorder (OSR) flux with CFE Flux

In January 2013, an OSR system, identical to the OSR on the CFE, was deployed at 237 m tethered below a buoy system at the surface (Appendix, Section 1.4, Fig. A4). This BUOY-OSR system was engineered to collect samples needed to calibrate the POC_{ATN} and PIC_{POL} data; however, this approach was a failure. The POC_{ATN} time series from CFE and BUOY-OSR are compared in Figure 8. The BUOY-OSR yielded POC_{ATN} and PIC_{ATN} fluxes of 3.6 mATN- $cm^2 cm^{-2} d^{-1}$ and 2.2 ppm- $cm^2 cm^{-2} d^{-1}$, respectively – approximately 25 fold and 50 fold lower than CFE fluxes at 144 and 320 m depths. At the same time, BUOY-OSR and CFE images showed that the two systems collected aggregates

10 of completely different morphology and size distribution (Fig. 9). The CFE images showed abundant 5 mm- to cmsized marine snow aggregates. The BUOY-OSR collected only fragments of these aggregates and few particles larger than 2 mm.

Figure 10 shows cumulative volume attenuance size distributions corresponding to samples collected in January 2013

- by the CFE and BUOY-OSR. We selected CFE images for depths 144 m (Fig. 7), 320, and 507 m. We also selected the BUOY-OSR image corresponding to Fig. 7 and another taken at the exact same time as the first CFE image.
- Other BUOY-OSR images were analysed for the rest of the time series. CFE images were either the first or second image after stage cleaning since subsequent images had multiple cases of particle overlap. BUOY-OSR images analysed were from just before stage cleaning since no particles were overlapping. Size distribution analysis was performed using ImageJ software, with an attenuance threshold >0.02, and a size threshold of at least two pixels for a
- 20 particle. Particles were classified according to their equivalent circular diameter (ECD), with the lower size limit of 20 μm. Volume attenuance for each particle was computed (the product of particle area and attenuance). Results were summed cumulatively from largest to smallest particle size and then normalized by total volume attenuance (Table 2; Fig. 10). In January 2013, >96 % of cumulative volume attenuance (CVA) was found in the >1000 μm size range in CFE data at all depths. In contrast, BUOY-OSR results typically show less than half of the cumulative
- 25 volume attenuance in aggregates larger than 1000 μm; this is consistent with the particles being fragments of the larger aggregates and consistent with the factor of 20 difference in observed attenuance flux. If we were to eliminate all aggregates larger than 1500 μm from January CFE data, then there is close agreement with the CVA size-distributions derived from BUOY-OSR data. During the period when current flow across the BUOY-OSR fell below 2 cm s⁻¹, analysis of the BUOY-OSR image shows that nearly 50% of the aggregate volume attenuance was in the
- 2000-5000 μm, i.e. large, size range. In other words, the surface tethered OSR began sampling larger aggregates.
 Although, BUOY-OSR and CFE were operating at different depths, and separated by ~9 km in our study area (Fig. 1), there was no indication in CTD/optics profiles that there was any discontinuity or advective feature at 237 m that would lead to biasing the BUOY-OSR results low. Nor was there any indication in remote sensing imagery (Supplemental materials) of nearby fronts or eddy structures. Furthermore, spatial chlorophyll variability was less

9

35 than 20% in our study area (Appendix, Section 1.3).

James Bishop 4/28/2016 11:35 AM
Deleted: sample-collecting
James Bishop 4/28/2016 11:37 AM
Deleted: ,
James Bishop 4/28/2016 11:36 AM
Deleted: with the same
James Bishop 4/28/2016 11:36 AM
Deleted: model as the one in
James Bishop 4/28/2016 11:37 AM
Deleted: ,
James Bishop 4/28/2016 11:37 AM
Deleted: free-drifting
James Bishop 4/28/2016 5:31 PM
Deleted: 3
James Bishop 4/28/2016 5:31 PM
Deleted: 3
James Bishop 4/29/2016 9:05 AM
Deleted: to gain samples of particulates for
comparison with
James Bishop 4/29/2016 9:06 AM
Deleted:
James Bishop 4/28/2016 2:00 PM
Formatted: Subscript
James Bishop 4/29/2016 9:08 AM
James Bisnop 4/28/2016 2:02 PM
Deleted: of volume attenuance
James Bisnop 4/29/2016 9:11 AM
Deleted: Two cases are contrasted. First, w
James Bishop 4/28/2016 11:43 AM
James Bishop 4/28/2016 10:55 PM
Deleted: 1
James Bishop 4/28/2016 2:04 PM
Deleted: for
James Bishop 4/28/2016 2:04 PM
Deleted:

James Bishop 4/28/2016 2:50 PM Deleted: at slightly different locations

James Bishop 4/28/2016 1:05 PM Deleted: James Bishop 4/28/2016 3:34 PM Deleted: Figure 11, shows, CFE CVA – size distributions, from all three expeditions compared with January BUOY-OSR data and further demonstrates that the CFE captured a greater loading of large particles than the BUOY-OSR, All lines of evidence indicate a major bias against aggregates larger than millimetre in size by the surface-tethered BUOY-OSR.

3.4 POC flux estimates

In absence of calibration sample data, calculations based on particle geometry, thickness, dry weight density, and organic matter percentages (Sec. 2.3 based on Bishop *et al.*, 1978) yield a scaling factor of 2.8, which can be used to convert the optical POC_{ATN} flux (mATN-cm² cm⁻² d⁻¹) to POC flux (mmol m⁻² d⁻¹). POC flux was thus estimated to be 190, 240, and 100 mmol C m⁻² d⁻¹ in Jan. 2013 (at 144, 320 and 506 m), ~18 mmol C m⁻² d⁻¹ in Mar. 2013 (from 170 to 508 m), and ~6 mmol C m⁻² d⁻¹ in May 2012 (430 to 900 m). We similarly estimate ~10 mmol C m⁻² d⁻¹ at 237 m during the January 2013 BUOY-OSR deployment.

4. Discussion

4.1 Surface Biomass and Export in Coastal Waters

The high January 2013 POC flux values of 190 and 240 mmol C $m^{-2} d^{-1}$ to depths of 144 and 320 m are remarkable from several perspectives. Firstly, cases where the imaging stage was almost completely covered with material in 1.8

- 15 hours had been never before encountered in our previous deployments of CFEs for missions totalling over 100 days (mostly in summer time conditions). Secondly, these high particle accumulation rates were observed in the wintertime at a time when both remotely-sensed and in-water optical measures of particle stocks were low. Thirdly, the magnitude of the January 2013 POC flux, estimated from CFE data, was approximately 8 times higher than the highest sedimentation rates measured using surface-tethered (at 100 and 200 m) and moored sediment traps (near 500
- m) in the nearby Santa Barbara (Thunnel, 1998; August 1993 to September 1996) and San Pedro Basins (Collins *et al.*, 2011; January 2004 through December 2007). In both these studies, POC flux in moored trap samples collected over 4 years at a depth of 500 m were typically 3 mmol C m⁻² d⁻¹ with rare values as high as 15 mmol m⁻² d⁻¹. The much sparser surface-tethered trap observations (Collins *et al.*, 2011) were no higher than 28 mmol C m⁻² d⁻¹. The finding of high sedimentation rate during wintertime low-biomass conditions in California coastal waters has not been reported in multi-year moored sediment trap observations.

The May 2012 fluxes of 6 mmol $m^{-2} d^{-1}$ observed by CFE were the lowest of the study, at a time when surface waters had high particle concentrations, thus implying high recycling and shallow remineralisation. The finding of low export beneath plankton blooms in coastal waters reinforces the findings in the open ocean that high surface biomass does not imply high export to depth (Bishop and Wood, 2009; Lam and Bishop 2007; Ebersbach et al., 2011).

30 The low surface biomass observed in January 2013 could indicate either a state of nutrient limitation of photosynthesis or a state of efficient transfer of primary produced organic matter to grazers and efficient particle export through the upper 500 m. We rule out nutrient limitation in our case, as mixed layers consistently shallower than 10 m and surface temperatures of 12.5 °C indicated that upwelling conditions were prevalent. Furthermore, we observed intense activity of marine mammals and sea birds feeding on abundant macro invertebrates and fish during

James Bishop 4/28/2016 1:57 PM
Deleted: ,
James Bishop 4/28/2016 1:57 PM
Deleted: ing
James Bishop 4/28/2016 1:55 PM
Deleted: data
James Bishop 4/28/2016 1:56 PM
Deleted: images always
James Bishop 4/28/2016 1:58 PM
Deleted: in January
James Bishop 4/28/2016 1:58 PM
Deleted:

this period – which suggests that consumers were the source of the sinking aggregated material in the water column at this time. Many of the large aggregates seen in both Jan. and Mar. 2013 closely resemble abandoned appendicularian houses described by Alldredge and Silver (1988). Animations of CFE imagery are provided in supplemental materials for further exploration.

- 5 Physically driven aggregative processes were not likely in January and March 2013, as winds were below 5 m s⁻¹ and averaged 2.5 m s⁻¹. In May 2012, winds were below 10 m s⁻¹ and averaged 3 m s⁻¹. Surface waves and swell were almost completely absent in January and March. ADCP records showed currents were dominated by tidal fluctuations and not by eddy structures. The low biomass condition observed in January is therefore most consistent with biologically mediated export.
- We note that 5-day running mean of satellite chlorophyll and POC levels appear to be nearly halved in a week (Fig. 6A,B) just before the study period in January. The decrease suggests that active grazing and export were in progress.

 Satellite imagery from Jan 2013 (Supplemental materials) shows a patchy POC/chlorophyll distribution without obvious eddy structures or fronts nearby.

Our observations show that POC_{ATN} flux profiles (Fig. 6) attenuate with depth, albeit not following the classic Martin

- 15 et al. (1987) curve fit ($\Phi z = \Phi_{\underline{zref}}/(Z|\underline{Zref})^b$, Z is depth, $\underline{Zref} = 100 \text{ m}$ and Φ is flux, and b = 0.858). Using light based euphotic depths of 50, 20 and 25 m for January, March, and May as the \underline{Zref} values for particle remineralisation (Buesseler and Boyd (2009), we derive Martin's 'b' factors of 0.36, 0.22, and 0.17, respectively, far lower than the accepted b value (Table 3). There are multiple limitations to this exercise; these include likely temporal variation of flux at a particular depth with time of day (see. e.g. Fig 15 in Bishop et al. 1987), depths sampled being 100 m deeper
- 20 than the base of the euphotic zone, and the limited time of the study. This said, it is clear that in January 2013, the export may have been high enough to overwhelm the capacity of detritus feeders to reduce the flux. In May and March, all evidence is consistent with high recycling of the sinking POC in waters shallower than our 400 and 125 m observation points, respectively.

The fact that the PIC/POC ratio can decrease with depth suggests that carbonate dissolution may occur in shallow

25 waters of the Pacific, a finding consistent with Bishop and Wood (2008). Also we note that living foraminifera and empty foraminifera shells were predominantly associated with large aggregates in January. While the occurrence of empty shells in aggregates would not be exceptional, the finding of living foraminifera suggests an active association with these particles.

4.2 Surface tethered BUOY-OSR vs. Lagrangian CFE fluxes.

- 30 Our comparison of fluxes recorded by the CFE and a surface tethered BUOY-OSR in January 2013 found a factor of 20 difference in collection rate (Fig. 9), consistent with the loss of all aggregates >1500µm in size. CFE collection rates, ignoring the >1500 µm fraction in March 2013 and May 2012, would be approximately 4 times lower and 3 times lower, respectively (Fig. 11). This was surprising in light of reports that there are less than 'factor of two' differences in sedimentation measured using surface tethered particle interceptor traps (Martin et al. 1987; PITS) and
- 35 neutrally-buoyant sediment traps (NBST) deployed in oligotrophic waters near Bermuda (Buesseler *et al.*, 2000; Stanley *et al.*, 2004, Owens *et al.*, 2013). In our study, the particles mostly absent from the BUOY-OSR were large

James Bishop 4/28/2016 11:18 PM Deleted: consistent

James Bishop 5/2/2016 4:09 PM	
Deleted: 4A	
James Bishop 4/28/2016 11:28 PM	
Deleted: rapid	
James Bishop 4/28/2016 11:27 PM	
Deleted:	
James Bishop 4/28/2016 11:28 PM	
Deleted:	
James Bishop 4/29/2016 10:29 AM	
Deleted: 100	
James Bishop 4/29/2016 10:29 AM	
Deleted: 100	
James Bishop 4/29/2016 10:30 AM	
Deleted: a	
James Bishop 4/29/2016 10:30 AM	
Deleted: reference	
James Bishop 4/28/2016 11:29 PM	
Deleted: as	
James Bishop 4/29/2016 10:27 AM	
Deleted: I	
James Bishop 5/2/2016 6:36 PM	
Deleted: In	
James Bishop 5/2/2016 6:36 PM	
Deleted: the case of PIC as flux	

James Bishop 5/2/2016 5:37 PM Deleted: 1

aggregates in the millimetre to cm size class (Figs. 9, 10, 11). The only time when large aggregates appeared in the BUOY-OSR imagery was during periods when the flow of water across the mouth of the BUOY-OSR was below 2 cm s⁻¹ (Fig. 8). Given that marine snow aggregates typically settle at rates of 0.1-0.2 cm s⁻¹ (Alldredge and Silver, 1988), the trajectory of the aggregates across the BUOY-OSR funnel would be almost horizontal, even in currents as

weak as 2 cm/s. The large aggregates are thus likely discriminated against entering the cm-sized trap baffle openings, which are of the same size as the particles and we hypothesize that the aggregates simply bounce back into the flow after shedding <u>a few</u> fragments, rather than enter the trap.

Further support for a high<u>er</u> coastal sedimentation than is presently recognized is provided by Stukel et al. (2011) who worked just offshore of our study area in the California Current. They compared the new production (Eppley and

- Peterson, 1979) "f-ratio" the fraction of primary production supported by upwelled nitrate vs. the ²³⁴Th disequilibrium based "e-ratio" the fraction of primary production exported as particles, and the two should be equivalent in a food web in equilibrium. While methods agreed 300 km offshore, the "f-ratio" exceeded the "e-ratio" by factors of 5-7 at locations within 50 and 100 km from the coast. Simply stated, there is insufficient time for the ²³⁴Th (half life 24 days) deficit relative to its parent ²³⁸U to reach steady state in coastal waters. Subsequent surface-
- 15 tethered Particle Interceptor Trap deployments (Stukel et al., 2013) in the same area showed consistently low exports in this region where f-ratios are typically high (Eppley and Peterson, 1979). Our location is closer to shore. Even
 taking into account factors such as food web and lateral transport processes, multiple lines of evidence strongly indicates that large > 1 mm sized aggregates are severely under-sampled by surface-tethered baffled traps.

It is important to note that sediment traps have been the sole method to date for the assessment of carbon export in 20 coastal waters. The single profile ²³⁴Th/²³⁸U method is not applicable in the coastal environment since it relies on an assumption of a steady state deficit and requires a time scale of multiple half-lives (24.1 d) to reach this condition. Although the ²³⁴Th/²³⁸U method may be used to infer export from time series sampling <u>of a water parcel</u>, such a study has not been undertaken in near-shore California waters to our knowledge. Also, e-ratio estimates are calibrated with large particles sampled either using traps or pumps and the assumption is that the Th:C ratio of all large particle

25 phases is the same. Both methods have been shown to suffer serious biases; in-situ pumps are discussed by Bishop, Lam and Wood (2012), and results presented here show a serious issue of under sampling of large aggregates by surface tethered baffled traps. As there is scant literature on the size dependence of Th-C in different large particle size classes in the coastal environment, it is thus impossible to know the accuracy of e-ratio export estimates. Coordinated at sea studies are required to inter compare the various methods of measurement of carbon export.

30 5. Conclusions

35

The new continuous observations of particulate flux off the coast of Southern California by autonomous CFE's show high fluxes in winter when surface chlorophyll is low. The finding is consistent with high primary productivity, efficient grazing, and high export of resulting aggregate material. The finding is also consistent with Eppley and Peterson's (1979) estimate of high new production and their inferred strength of particle export in near-shore waters, and as noted above, is higher by a factor of ~8 than the highest observations made with surface tethered and moored

12

James Bishop 4/28/2016 11:35 PM

Deleted:

James Bishop 4/28/2016 11:36 PM **Deleted:** evidence

James Bishop 5/2/2016 5:39 PM Deleted:

sediment traps in waters close to our study site. Analysis of the images of accumulated particles suggest that surfacetethered sediment traps have under-sampled a major class of large aggregates contributing to carbon export from surface waters. At this writing, it is premature to revise the carbon export attributable to coastal waters up by a factor of 20 as we do not yet know the year-round contribution of large aggregates to sedimentation. In other seasons, our

POC flux estimates are closer - but still elevated by greater than a factor of two compared with moored traps, and 5 likely a minimum of a factor of three based on discussion of size frequency distribution results presented in Sec. 4.1. Missing contributions of large aggregates in sediment trap collections may explain the reported imbalance between POC flux to the seafloor and benthic respiratory demand seen at nearby station M (34° 50'N, 123° 00'W; Smith et al., 2013). We also show that particulate fluxes estimated using remotely sensed surface biomass may be overestimated 10

sometimes - or underestimated at other times, depending on the population of grazers and the efficiency of export. The CFE can provide 'ocean truth' for such estimates. There is uncertainty in the conversion of POC_{ATN} flux to POC flux, and we have no data on the conversion of PIC_{POL} to PIC flux; however, the optical metrics of POC and PIC flux are robustly defined for the CFE and the resulting

15 calibration can only be achieved by at-sea 24-hour deployments of CFEs modified to collect samples; we hope to report on upcoming deployments soon.

images of settled particles clearly provide evidence of the food web mechanisms governing carbon export. Better

While CFE and BUOY-OSRs were not directly compared with simultaneously measured fluxes with PIT traps, thorium methods, large particle abundances sampled by large volume in-situ filtration and other methods, such a study should be undertaken in biologically dynamic waters and augmented by a framework of contemporaneous

remote sensing observations, water column biology and physics. To date, two CFEs have each completed missions lasting 40 days offshore of California and another 10 days in the waters in the subarctic Pacific (mission duration set by ship availability) in bad weather and sea states, and without biofouling issues; our lab tests show that a CFE can perform hourly observations of carbon export in the open ocean for 8 months (2 hourly frequency for 16 months, etc...). More work to enable on board image data analysis is

20

- 25 required to render the CFE fully autonomous. Near shore, horizontal currents can displace a CFE from the area of intended operation in several days time; thus longer time series observations are difficult without a means to reposition the CFE. As the cost of a CFE is equivalent to the cost of operating a research vessel for ~2-3 days, the job of tending CFEs for seasonal or year round studies in the coastal environment would need to be done using autonomous surface or underwater vehicles.
- In summary, we show that autonomous sampling technologies may be deployed to address many questions about the 30 workings of the biological pump both offshore and onshore, including whether or not its strength has changed over the past several decades and whether or not it will change in the future in the face of anthropogenic CO₂ warming and acidification, and exploitation of living resources of the ocean.
- Data Availability. Data for plots, representative images used in this paper, and animations of image time series (at 1/2 35 resolution) are available as supplemental materials and are available from the author on request. Shipboard data sets: including

James Bishop 4/28/2016 11:40 PM Deleted: i

James Bishop 5/2/2016 4:21 PM Deleted: James Bishop 4/28/2016 11:42 PM Formatted: Subscript ames Bishop 5/2/2016 5:39 PM

Formatted: Subscript

James Bishop 4/28/2016 11:42 PM Deleted: W

meteorological, surface hydrography, CTD cast data, are available through the Go Ship (http://www.go-ship.org) archives or in the case of ADCP data, are available through the University of Hawaii.

Acknowledgements.

The CFE was developed in close collaboration with Mike McClune and Russ Davis of the Scripps Institution of Oceanography Instrument Development Group. OSR design and construction had critical contributions from the 5 Electrical and Mechanical engineering groups and machine shop facilities at Lawrence Berkeley National Laboratory. Alex Morales (LBNL) and 25 UC Berkeley undergraduates facilitated CFE and BUOY-OSR deployments and recoveries at sea. In particular, Gabrielle Weiss, Amelia Weiss, Andrew Bower, and Christina Hamilton contributed both at sea and in the laboratory; we also thank the resident technicians, crews and captains of the R/V New Horizon for assistance. Jules Hummon (U Hawaii) assisted with ADCP data reprocessing. Hannah 10 Bourne (UC Berkeley) cross-checked ADCP and BUOY-OSR current shear calculations. We thank Mati Kahru (SIO) for access to kilometre scale chlorophyll data for our study area. We thank the three anonymous reviewers for

Undergraduate participation in Cruises was facilitated by the UC Berkeley Undergraduate Research Apprentice 15 Program and by the Earth and Planetary Science Department Ramsden fund. All work reported here was sponsored by National Science Foundation grant OCE-0936143 (JKBB).

their contributions. The CFE data sets and animated image videos are posted as supplemental Information.

Author contributions.

JKBB initiated the CFE program, was chief scientist at sea, and led the analysis and writing of this paper. TJW played a key engineering role in all aspects of development, deployment, programming, and operation of the CFE. MBF analysed MODIS

20 Aqua/Terra and VIIRS satellite data.

References.

Alldredge, A.L. and Silver, M.W.: Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 25 41-82, 1988.

Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. and Wakeham, S.G.: A new mechanistic model for organic carbon fluxes in the ocean based on quantitative association of POC with ballast minerals. Deep-Sea Research Part II. 49, 219-236, 2002.

Asper, V.L.: Measuring the flux and sinking speed of Marine Snow Aggregates. Deep-Sea Research 34, 1-17, 1987.

30 Banse, C.: Reflections About Chance in My Career, and on the Top-Down Regulated World. Annu. Rev. Mar. Sci. 5, 1-19, 2013.

Be, A.W.H., Bishop, J.K.B., Sverdlove, M.S., and Gardner, W.D.: Standing Stock, Vertical Distribution, and Flux of Planktonic Foraminifera in the Panama Basin. Marine Micropaleontology, 9, 307-333, 1985.

Bishop, J.K.B., Ketten, D.R. and Edmond, J.M. Chemistry, biology and vertical flux of particulate matter from the 35 upper 400m of the Cape Basin in the Southeast Atlantic Ocean. Deep-Sea Research 25 (12), 1121–1161. 1978.

Bishop, J.K.B., Stepien, J.C. and Wiebe, P.H.: Particulate matter distributions, chemistry and flux in the Panama Basin: response to environmental forcing. Progress in Oceanography 17, 1-59. 1987.

Bishop, J.K.B., Wood, T. J., Davis, R. E. and Sherman, J. T.: Robotic Observations of Enhanced Carbon Biomass and Export at 55°S During SOFeX. Science 304, 417-420, 2004.

- 5 Bishop, J.K.B. and Wood, T.J.: Particulate Matter Chemistry and Dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites. Deep-Sea Research I 55, 1684-1706. 10.1016/j.dsr.2008.07.012, 2008.
- Bishop, J.K.B. and Wood, T.J.: Year Round Observations of Carbon Biomass and Flux Variability in the Southern Ocean. Global Biogeochemical Cycles. 23. GB2019. doi:10.1029/2008GB003206. 2009.

Bishop J.K.B., Lam, P.J. and Wood T.J: Getting good particles: Accurate sampling of particles by large volume insitu filtration. *Limnol. Oceanogr.: Methods* **10**, 2012, 681–710. 2012.

Buesseler, K.O., Steinberg, D.K., Michaels, A.F., Johnson, R.J., Andrews, J.E., Valdes, J.R., Price, J.F.: A comparison of the quantity and composition of material caught in a neutrally buoyant versus surface-tethered sediment trap. Deep-Sea Res. I 47(2), 277–294. 2000.

Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner, W. D., Gustafsson, O., Harada, K., Michaels, A.
F., Rutgers van der Loeff, M., Sarin, M., Steinberg, D. K., and Trull, T.: An assessment of the use of sediment traps for estimating upper ocean particle fluxes. Journal of Marine Research 65, 345-416, 2007.

Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnology and Oceanography 54, 1210-1232, 2009.

Burd, A.B., Hansell, D.A., Steinberg, D.K., Anderson, T.R., Arístegui, J., Baltar, F., Beaupre, S.R., Buesseler, K.O.,
Dehairs, F., Jackson, G.A., Kadko, D.C., Koppelmann, R., Lampitt, R.S., Nagata, T., Reinthaler, T., Robinson, C.,
Robison, B.H., Tamburini, C., and Tanaka, T.: Assessing the apparent imbalance between geochemical and
biochemical indicators of meso-and bathypelagic biological activity: what the @\$#! is wrong with present
calculations of carbon budgets? Deep-Sea Research Part II 57, 1557–1571, 2010.

Collins, L. E., Berelson, W., Hammond, D.E., Knapp, A., Schwartz, R., and Capone D.: Particle fluxes in San Pedro 25 Basin, California: A four-year record of sedimentation and physical forcing. Deep-Sea Research I 58, 898–914, 2011.

Davis, R.E., Sherman, J. T. and Dufour, J.: Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Oceanic Tech. 18, 982-993, 2001.

Ebersbach, F., Trull, T. W., Davies, D. M. and Bray, S. G.: Controls on mesopelagic particle fluxes in the Sub-Antarctic and Polar Frontal Zones in the Southern Ocean south of Australia in summer—Perspectives from freedrifting sediment traps Deep-Sea Research II 58. 2260–2276. 2011.

Eppley, R.W. and Peterson, B.J.: Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677-680. doi:10.1038/282677a0. 1979.

Estapa, M.L., Buesseler, K., Boss, E. and Gerbi, G.: Autonomous, high-resolution observations of particle flux in the oligotrophic ocean. Biogeosciences, 10, 5517–5531, 2013.

35 Field, C. B., Behrenfeld, M. J., Randerson, J. T. and Falkowski, P. G.: Primary production of the biosphere: Integrating terrestrial and oceanic components, Science 281, 237-240. 1998,

Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and Quartly G. D.: A reduced estimate of the strength of the ocean's biological carbon pump, Geophys. Res. Lett., 38, L04606, doi:10.1029/2011GL046735. 2011.

Gardner, W.D.: Sediment trap sampling in surface waters. In Hanson, Ducklow, H. and Field, C. eds. The Changing
Ocean Carbon Cycle: A midterm synthesis of the Joint Global Ocean Flux Study. Cambridge University Press. 240-284, 2000.

Guay, C.K. and Bishop, J.K.B.: A rapid birefringence method for measuring suspended CaCO3 concentrations in water, Deep-Sea Research I 49, 197-210, 2002.

- Hedges, J.I., Baldock, J.A., Gelinas, Y., Lee, C., Peterson, M.L., and Wakeham, S.G.: The biochemical and elemental compositions of marine plankton: a NMR perspective. Marine Chemistry 78 (1), 47–63, 2002.
- Hummon, J.M. and Firing, E.: A direct comparison of two RDI shipboard ADCPs: a 75-kHz Ocean Surveyor and a 150-kHz Narrowband. *J. Atmos. and Oceanic Technol.*, **20**, 872–888. 2003.

James Bishop 5/2/2016 3.30 PM
Moved down [1]: P. J.
James Bishop 5/2/2016 3:30 PM
Moved (insertion) [1]
James Bishop 5/2/2016 3:29 PM
Deleted: R.
James Bishop 5/2/2016 3:30 PM
Deleted: E.
James Bishop 5/2/2016 3:30 PM
Deleted: F.
James Bishop 5/2/2016 3:30 PM
Moved down [2]: G. D.
James Bishop 5/2/2016 3:30 PM
Moved (insertion) [2]

Kahru, M., Kudela R.M., Manzano-Sarabia M., and Mitchell B.G.: Trends in the surface chlorophyll of the California Current: Merging data from multiple ocean color satellites, *Deep-Sea Research*. *II*, 77-80, 89-98, 2012

Lam, P. J. and Bishop, J. K. B.: High Biomass Low Export regimes in the Southern Ocean. Deep-Sea Research II 54, 601-638. doi:10.1016/j.dsr2.2007.01.013. 2007.

5 Lampitt, R.S., Boorman, B., Brown, L., Lucas, M., Salter, I., Sanders, R., Saw, K., Seeyave, S., Thomalla, S. J., and Turnewitsch, R.: Particle export from the euphotic zone: estimates using a novel drifting sediment trap, Th-234 and new production. Deep-Sea Research Part I 55 (11), 1484–1502, 2008.

Lee, C., Peterson, M.L., Wakeham, S.G., Armstrong, R.A., Cochran, J.K., Miquel, J.C., Fowler, S.W., Hirschberg, D., Beck, A., and Xue, J.: Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Res. II 56 (18), 1420-1436. 2009.

Martin, J.H., Knauer, G.A., Karl, D.M. and Broenkow, W.W.: VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Research 34, 267-285, 1987.

Owens, S.A., Buesseler, K.O., Lamborg, C.H., Valdes, J., Lomas, M.W., Johnson, R.J., Steinberg, D.K., and Siegel, D.A.: A new time series of particle export from neutrally buoyant sediments traps at the Bermuda Atlantic Timeseries Study site. Deep-Sea Research I, 72, 34–47, 2013.

Siegel, D. A., Buesseler, K.O., Doney, S.C., Sailley, S.F., Behrenfeld, M.J., and Boyd, P.W.: Global assessment of ocean carbon export by combining satellite observations and food-web models, Global Biogeochem. Cycles 28, doi:10.1002/2013GB004743. 2014.

Smith, K. L., Ruhl, H.A., Kahru, M., Huffard, C.L. and Sherman, A.D.: Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. Proc. Natl. Acad. Sci. 110 (49). doi/10.1073/pnas.1315447110. 2013.

Stanley, R.H.R, Buesseler, K.O., Manganini, S.J., Steinberg, D.K. and Valdes, J.R.: A comparison of major and minor elemental fluxes collected in neutrally buoyant and surface-tethered sediment traps. Deep-Sea Research I 51, 1387-1395. 2004.

25 Stukel, M.R., Landry, M. R., Benitez-Nelson, C. R. and Goericke, R.: Trophic cycling and carbon export relationships in the California Current Ecosystem. Limnol. Oceanogr., 56(5), 1866–1878. doi:10.4319/lo.2011.56.5.1866. 2011.

Stukel, M.R., Ohman, M.D., Benitez-Nelson, C. R. and Landry, M. R.: Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system. Mar. Ecol. Prog. Ser. 491, 47-65. doi: 10.3354/meps10453. 2013.

30 Thunell, R.C.: Particle fluxes in a coastal upwelling zone: sediment trap results from Santa Barbara Basin, California. Deep-Sea Research Part II 8–9,1863–1884, 1998.

Turner, J.T.: Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130, 205–248, 2015.

Volk, T., and Hoffert, M.I.: Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO₂ changes. Geophysical Monographs 32, 99–110. 1985.

Yao, X. and Schlitzer, R.: Assimilating water column and satellite data for marine export production estimation. Geosci. Model Dev. 6, 1575–1590. 2013.

Appendix A. Methods Detail

10

40 A1.1 Optical Sedimentation Recorder on CFE.

The Optical Sedimentation Recorder (OSR; *Fig. A1*) is independently powered from the SOLO float to which it is attached and the two communicate via a hard-wired link. It thus does not impact the number of profiles that the float can make beyond additional telemetry needs.

16

James Bishop 4/28/2016 11:55 PM Formatted: Font:Italic James Bishop 4/28/2016 11:51 PM Formatted: Font:(Default) +Theme Body

James Bishop 5/2/2016 3:32 PM
Deleted: K.O.
James Bishop 5/2/2016 3:32 PM
Deleted: C.H.
James Bishop 5/2/2016 3:32 PM
Deleted: J.
James Bishop 5/2/2016 3:31 PM
Deleted: M.W.
James Bishop 5/2/2016 3:31 PM
Deleted: R.J.
James Bishop 5/2/2016 3:31 PM
Deleted: D.K.
James Bishop 5/2/2016 3:31 PM
Deleted: D.A.

The SOLO dives to its target depth and signals the OSR to begin operation. During time at depth, particles settle into a baffled (5 cm thick_x x 1 cm opening hex cell) high aspect polished titanium funnel (height 23.6 cm; slope 75°; 15.4 cm diameter opening) and settling column (height ~11 cm) before depositing on a 2.5 cm diameter glass sample stage. The baffle is typical to the dimensions used in surface tethered Particle Interceptor Traps (e.g. Martin et al.

5 1987, Collins et al., 2011, Stukel et al., 2013).

A downward focused 5 cm diameter white (color temperature 2700 K) light emitting diode (LED) source with bonded linear polarizer (Meadowlark Optics, Frederick, CO) is axially aligned with the funnel and provides transmitted light (or backlit) illumination of the sample.

An annular array of 12 white LEDs provides dark field illumination. This light source is integrated within the body of a 3-D printed form designed to provide both a hydrodynamic cleaning function and to secure a 27 mm diameter

10 a 3-D printed form designed to provide both a hydrodynamic cleaning function and to secure a 27 mm diameter dashed cross-hair reticle (Edmond Optics Inc., Barrington, NJ) to the pressure case window. A Seabird Inc. (Bellevue WA) pump outfitted with an isolation valve is used to flush the sample stage during cleaning.

A substage polarizer rotator is rotated either parallel or perpendicular to the axis of the downlight polarizer. In the case of CFE001, this polarizer rotator was housed within the instrument pressure case.

- 15 Under computer control, particles are imaged with a 5M pixel Sumix (SMX-11M5C; Oceanside, CA) colour imager in transmitted, transmitted – cross polarized, and dark field lighting modes which are designated as TRA, POL, DRK, respectively. Gain settings for each of the red, green, blue (RGB) channels were adjusted so that images of the downlight yield similar count value histogram averages (to within several %). The same gain settings were used for crosspolarized transmitted light illumination. For dark field, RGB channel balance was achieved by imaging salt crystals
- 20 dispersed across the sample stage. The camera lens was set to F16. Shutter timing was set for each of the three modes to prevent image saturation.

A 1.2 Surface conditions, Hydrography, and Transmissometer data.

25

35

Sea and wind conditions during the three study periods were benign. For example, In January and March 2013, winds monitored by the ship were less 5 m s⁻¹ and averaged 2.5 m s⁻¹. In May 2012, winds were less than 10 m s⁻¹ and averaged 3 m s⁻¹. Surface waves and swell were almost completely absent in January and March. In January 2013, the

weather was completely cloud free which contributed to excellent satellite imagery of the area. During all expeditions, a CTD/rosette system with a C-Star (WETLabs, Inc. Philomath, OR) transmissometer and Seapoint Inc. scattering sensor was repeatedly deployed to full water column depth. Approximately 20 casts were completed during each cruise. Only transmissometer data are reported here. The transmissometer cleaning,

30 calibration and data processing to particle beam attenuation coefficient (c_p) follow protocols we have published (Bishop and Wood, 2008, Bishop, Lam and Wood, 2012). POC was calculated by multiplying particle beam attenuation coefficient by 27 (Bishop and Wood, 2008).

Figure A2 (A-C) shows c_p profiles for the three expeditions. Also shown is 0-20 m averaged POC from these casts. The time line for plot (D) is relative to the start of deployment of the CFE. Average and standard deviation values of 0-20 m averaged POC are quoted in the text.

James Bishop 5/2/2016 4:31 PM Deleted: long James Bishop 5/2/2016 4:31 PM Deleted: wide

The effects of internal waves with periods of 20-30 minutes were usually seen in CTD cast data. In March 2013, internal wave amplitudes of approximately 40 m were observed during CTD tow-yo experiments. During other expeditions, wave amplitudes were less than 20 m.

A 1.3 Spatial gradients of surface chlorophyll in the study area.

- 5 To examine the detailed spatial gradients of chlorophyll in our study area, we chose locations at 33.73°N 119.50°W and 33.69°N 119.58°W and retrieved chlorophyll data at 1 km spatial resolution within a 2 km search radius of the two locations. These positions were 9 km apart. To achieve greater temporal and spatial coverage than possible with the single MODIS/Aqua product, we analysed merged data from MODIS on the Aqua and Terra satellites and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the National Polar-orbiting Partnership Suomi satellite
- 10
 (Kahru et al. 2012; http://spg.ucsd.edu/Satellite_Data/California_Current/). Images at 1 km resolution are provided in

 Supplemental material.

Figure A3 shows time series of daily mean and standard deviation of chlorophyll plotted for both locations overthirty day periods encompassing the days that the ship was on station in the Santa Cruz Basin and during CFE

15 deployments. Also plotted is the relative difference in chlorophyll between the two locations. The two locations were almost always <20% different from one another. From this we conclude that a separation of 9 kilometers is not a significant cause of differences in our data. In other words, spatial gradients of biomass in our study area were small.

A 1.4 BUOY-OSR configuration, January 2013.

25

Figure <u>A4</u> depicts the deployment configuration of the sample collecting BUOY-OSR used in this study. A SBE 19plus logging CTD (Sea Bird Electronics, Bellevue WA) recorded pressure, temperature and salinity at 5 second intervals. One OSR (Buoy instrument 84) was configured identically to CFE001. The funnel assembly of the second OSR (Buoy instrument 88) had a sample stage leak enabling strong water circulation through the funnel leading to particle loss as the system was pumped up and down due to wave action. Buoy instrument 84 is considered reliable as particles remained in place where they fell as they accumulated.

James Bishop 4/28/2016 10:39 PM Deleted:

James Bishop 4/28/2016 9:29 PM Formatted: Font:10 pt

James Bishop 4/28/2016 11:57 PM Formatted: Font:11 pt

James Bishop 4/28/2016 3:55 PM Formatted: Normal

James Bishop 4/28/2016 9:29 PM Deleted: A3

Table 1.	Carbon	Flux	Ex	plorer	and	BUO	Y-O	SR	positions
	0	arbon	Ebre	v Evolo	ror Si	urfacin	a Doo	itio	-

	curbonn	Tax Explorer	Surrueing i Ositio	15
Dive	Date	Time (UTC)	Longitude	<u>Latitude</u>
123	<u>1-Jun-2012</u>	3:15	-119.475	33.738
<u>124</u>	<u>1-Jun-2012</u>	<u>11:49</u>	-119.479	<u>33.731</u>
125	<u>1-Jun-2012</u>	21:14	-119.484	33.736
<u>126</u>	<u>2-Jun-2012</u>	4:52	-119.480	33.744
127	2-Jun-2012	13:28	-119.498	33.744
128	2-Jun-2012	22:48	-119.492	33.750
<u>129</u>	<u>3-Jun-2012</u>	6:24	-119.493	33.737
<u>130</u>	<u>3-Jun-2012</u>	<u>15:10</u>	-119.508	33.740
<u>132</u>	<u>3-Jun-2012</u>	20:45	-119.512	33.735
143	<u>19-Jan-2013</u>	8:16	-119.479	33.744
<u>144</u>	<u>19-Jan-2013</u>	<u>9:13</u>	-119.484	33.744
145	19-Jan-2013	16:31	-119.514	33.744
146	<u>19-Jan-2013</u>	23:45	-119.522	33.722
<u>147</u>	20-Jan-2013	8:21	<u>-119.575</u>	33.714
148	20-Jan-2013	14:52	-119.600	33.695
<u>150</u>	20-Jan-2013	20:46	-119.605	33.667
<u>161</u>	28-Mar-2013	10:55	-119.537	33.709
<u>162</u>	28-Mar-2013	<u>18:19</u>	<u>-119.529</u>	33.709
<u>163</u>	29-Mar-2013	4:08	-119.555	33.705
164	29-Mar-2013	10:47	-119.586	33.687
<u>165</u>	29-Mar-2013	<u>18:05</u>	-119.576	33.693
166	30-Mar-2013	3:02	-119.607	33.696
<u>167</u>	30-Mar-2013	<u>9:46</u>	-119.614	<u>33.673</u>

BUC	OY-OSR Positio	ns January 2013	
Date	Time (UTC)	Longitude	Latitude
20-Jan-2013	<u>9:00</u>	-119.490	33.740
20-Jan-2013	10:00	-119.496	33.739
<u>20-Jan-2013</u>	<u>11:00</u>	<u>-119.501</u>	<u>33.739</u>
20-Jan-2013	12:00	-119.507	33.739
<u>20-Jan-2013</u>	13:00	<u>-119.513</u>	33.740
<u>20-Jan-2013</u>	14:00	<u>-119.519</u>	33.741
<u>20-Jan-2013</u>	<u>15:00</u>	<u>-119.524</u>	33.742
20-Jan-2013	16:00	-119.530	33.744
<u>20-Jan-2013</u>	17:00	<u>-119.534</u>	33.745
<u>20-Jan-2013</u>	18:00	<u>-119.538</u>	33.746
<u>20-Jan-2013</u>	<u>19:00</u>	<u>-119.542</u>	33.747
20-Jan-2013	20:00	-119.545	33.748
20-Jan-2013	21:00	-119.546	33.749
<u>20-Jan-2013</u>	22:00	-119.548	33.748
20-Jan-2013	23:00	-119.550	33.747

1	James Bishop 4/28/2016 10:37 PM
	Formatted Table
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	Formatted: Right: -0.07"
	James Bishop 4/28/2016 10:37 PM
	James Bishop 4/28/2016 10:37 PM
	Formatieu. Right0.07

Comparison of the state of the sta

Diameter ¹	144	m CFE	320	m CFE	507 m	n CFE	2	37 m BU	OY ²	237 m B	UOY ³
(µm)	20130	120 11:11	201301	20 16:42	2013012	0 05:56	20	130120	AVG	2013012	0 18:08
>5000	0.462 ⁴	0.462 ⁵	0.000	0.000	0.776	0.776	0.000	0.000	±0.000	0.000	0.000
2000-5000	0.441	0.903	0.978	0.978	0.150	0.926	0.065	0.065	±0.130	0.494	0.494
1000-2000	0.059	0.962	0.000	0.978	0.055	0.981	0.353	0.418	±0.090	0.169	0.662
500-1000	0.014	0.976	0.007	0.984	0.003	0.983	0.250	0.668	±0.070	0.153	0.815
200-500	0.015	0.992	0.005	0.989	0.011	0.994	0.245	0.913	±0.022	0.144	0.959
100-200	0.005	0.996	0.007	0.996	0.003	0.997	0.064	0.977	±0.006	0.030	0.989
50-100	0.003	0.999	0.003	0.999	0.002	0.999	0.017	0.994	±0.001	0.008	0.997
20-50	0.001	1.000	0.001	1.000	0.001	1.000	0.006	1.000	±0.000	0.003	1.000

1. Diameter is Equivalent Circular Diameter of particle with the same area;

2. Averages (excluding 18:08 data) for BUOY data, third column (±) is s.d. of cumulative data.

3. Currents below 3 cm/sec for 60 min.

4. Volume Attenuance for indicated size interval.

5. Cumulative volume attenuance for particles greater than lower limit of size interval

10

5

Table 3. Martin curve fit parameters

Time	Zref (m)	⊕Zret	b	Std. Dev. ¹	P Zref	b	Std. Dev.	
Jan. 2013	50	252.0	0.858	34.7	115.0	0.36	23.3	
Mar. 2013	20	57.5	0.858	2.3	11.4	0.22	0.4	
May 2012	25	35.0	0.858	1.0	3.8	0.17	0.6	
1 Units are	in $m\Delta TN_{cm}^2$	cm ⁻²						

James Bishop 4/28/2016 10:36 PM Deleted: 1

Formatted: Font:(Default) Arial, 9 pt, Not James Bishop 4/29/2016 10:50 AM Formatted Table James Bishop 4/29/2016 10:44 AM Formatted
James Bishop 4/29/2016 10:50 AM Formatted Table James Bishop 4/29/2016 10:44 AM Formatted
Formatted Table James Bishop 4/29/2016 10:44 AM Formatted[1] James Bishop 4/29/2016 10:45 AM Formatted[2] James Bishop 4/29/2016 10:45 AM Formatted[4] James Bishop 4/29/2016 10:44 AM Formatted: Centered James Bishop 4/29/2016 10:44 AM
James Bishop 4/29/2016 10:44 AM Formatted[1] James Bishop 4/29/2016 10:45 AM Formatted[2] James Bishop 4/29/2016 10:45 AM Formatted[4] James Bishop 4/29/2016 10:44 AM Formatted[3]
Formatted[1] James Bishop 4/29/2016 10:45 AM Formatted[2] James Bishop 4/29/2016 10:45 AM Formatted[4] James Bishop 4/29/2016 10:44 AM Formatted: Centered James Bishop 4/29/2016 10:44 AM
James Bishop 4/29/2016 10:45 AM Formatted
Formatted
James Bishop 4/29/2016 10:45 AM Formatted
Formatted
James Bishop 4/29/2016 10:44 AM Formatted: Centered James Bishop 4/29/2016 10:44 AM Formatted
Formatted: Centered James Bishop 4/29/2016 10:44 AM Formatted
James Bishop 4/29/2016 10:44 AM
Formatted
Lamaa Diahan 4/20/2016 10:44 AM
James Bishop 4/29/2016 10.44 AM
Formatted
James Bishop 4/29/2016 10:44 AM
Formatted: Centered
James Bishop 4/29/2016 10:44 AM
Formatted: Font. (Default) Anal, 9 pt, Not
James Bisnop 4/29/2016 10:44 AM
James Diebon 4/20/2016 10:44 AM
Formatted: Font: (Default) Arial 9 nt Not
Jamos Rishon 4/20/2016 10:44 AM
Formatted: Centered
James Rishon 4/20/2016 10:44 AM
Formatted: Font: (Default) Arial 9 pt Not
James Bishon 4/29/2016 10:44 AM
Formatted: Font: (Default) Arial, 9 pt. Not
James Bishon 4/29/2016 10:44 AM
Formatted: Centered
James Bishop 4/29/2016 10:44 AM
Formatted: Font: (Default) Arial, 9 pt, Not
James Bishop 4/29/2016 10:47 AM
Formatted [6]

Figure Captions.

Figure 1. Left. Carbon Flux Explorer showing the SOLO float and interfaced Optical Sedimentation Recorder. Top Right: Relief Map for Southern California Bight (Google Earth) centered on the Santa Cruz Basin (SCB) and our study area (shown in yellow). Also shown are locations of moored sediment trap deployments in the Santa Barbara Basin (SBB, Thunnel, 1998), and San Pedro Basin (SPB, Collins et al. 2011). Lower Right: Operations within study area. Surfacing positions of CFE001 during May 2012 (red triangles), Jan. 2013 (blue circles) and Mar. 2013 (Green box) - Also shown is track for the BUOY-OSR system (blue line) in Jan. 2013; separation of CFE and BUOY-OSR was approximately 9 km. Small symbols denote locations of CTD Casts. All motion was to the southwest. CFE and BUOY-OSR deployments took near 33.75°N 119.5°W. CTD profiles were taken within several km of CFE and BUOY-OSR positions.

10

35

Figure 2. Detail of Image Analysis Scheme for CFE and BUOY-OSR images. Images from NH1301 CFE001 deployment. (A) Raw Backlit (TRA) images are divided by the in-situ TRA lighting reference (Cross hair reticle has 1 mm sized dashes) to get transmittance. This image is transformed to units of attenuance. (B) Raw crossed polarized transmitted light [POL] image is first corrected for attenuation effects of optically dense particles by dividing by PCF, an empirically derived factor proportional to

15 attenuance (ATN). The POL lighting REF is then subtracted and then divided by the TRA Lighting ref to yield the normalized POL image. The contrast and brightness of the final image is enhanced. (C). Raw Dark Field (DRK) images are normalized by dividing by the in-situ lighting reference intensity.

Figure 3. Magnified detail of a marine snow aggregate from the upper left hand quadrant after processing to normallized Dark
 Field (DRK) counts, Attenuance (ATN), and polarized (POL) counts. The scale of the aggregate is ~1 cm. Image resolution is 13 µm. An empty 600 µm Pteropod shell is at the bottom left of the POL image. The 10 bright spherical regions in the POL image are ~200 µm sized Foraminifera shells; haze in aggregates is likely due to coccoliths.

Figure 4. Results from CFE deployments in the Santa Cruz Basin. CFE depths shown in italics. (A) sample attenuance from transmitted light images. (B) polarized photon yield in parts per million from cross-polarized light images. <u>Small circles denote</u> the time that the images were taken. The sawtooth pattern registers particle accumulation and drops to baseline at the time of stage cleaning.

Figure 5. POC_{ATN} (A) and PIC_{POL} (B) flux systematics from CFE deployments in the Santa Cruz Basin. CFE depths are shown in 30 italics in (A). Bars and small circles denote average flux over 1.8 and 0.3 hour intervals, respectively.

Figure 6. A) Chlorophyll-a and POC from the MODIS Aqua satellite; lines are 5 point running means. Color scheme for May 2012 (red), Jan. 2013 (blue) and March 2013 (green). Open and filled graphics in A and B correspond to the week previous to and during each expedition. (B) From left to right successive bar pairs depict satellite chlorophyll and satellite POC. Crosshatched bars denote 0-20 m transmissometer POC. (C) POCATN flux for January (blue circles), March (green squares), and May (red triangles). The large filled symbols are a grand average for a particular depth, small open symbols denote 1.6 hour

averaged data. (D) PICPOL flux profiles. Symbols as in C.

Figure 7. Depth profiles of the ratio of PIC and POC flux proxys. Results show highest relative contribution of PIC occurred in 40 March 2013. January and May values near 500 m are comparable.

21

James Bishop 4/29/2016 12:11 AM Formatted: Font:Not Bold

James Bishop 4/29/2016 12:11 AM Formatted: Font:Not Bold James Bishop 4/29/2016 12:11 AM

Deleted: (A) Carbon Flux Explorer (CFE). (B) Santa Cruz Basin Study Area with bathymetry from Google Earth. The SCB is 1900 m deep and exchanges water with the open ocean at depths shallower than 1000 m. C) Detail of CFE surfacing positions (large symbols), CTD – optics casts (small symbols), and drift track of the BUOY-OSR system (blue line). Figure 8. Time series of image attenuance from CFE and BUOY-OSR deployments in the Santa Cruz Basin during January 2013. Time axis is elapsed days since January 1 at 0000 UTC. In (A) and (B), the green lines depict the ATN time series. In (B), red symbols depict currents relative to the BUOY-OSR at a depth of 237 m that were calculated using ship broad band acoustic

- 5 current profiler data (RDI Instruments, Ocean Surveyor 75; methods described by Hummon and Firing (2003) and 30 minute BUOY-OSR GPS positions. The current dropped briefly below 1 cm s-1 and the rate of accumulation of particles in the BUOY-OSR increased. This moment was also the time when the first large aggregates were seen. Also shown in (B) in blue is the temperature time series from the logging CTD. The most obvious effect on particle collection rate by the BUOY-OSR was the relative lull in currents near day 19.68. Images from samples depicted by * are compared in Figure 9. (C) Time series of CFE and
- 10 BUOY-OSR tilt in degrees. CFE tilt averaged 3 degrees, whereas BUOY-OSR tilt averaged 0.5 degrees.

Figure 9. Comparison of representative Dark Field Images of accumulated settling particles over a 2.5 hour period from an Optical Sedimentation Recorder (OSR) on the Carbon Flux Explorer (CFE, upper left) vs. that from a surface BUOY-tethered OSR (upper right) during NH1301 (Jan. 2013). The CFE was observing sedimentation at 320 m (image 21:14 UTC). The

15 BUOY-OSR was deployed at 237 m (image 18:07 UTC). Each image is 2.5 cm across and pixel resolution is 14 μ m. The Large fluffy 0.5 – 1.0 cm sized marine snow aggregates were almost completely missed by the BUOY OSR. Winds were near calm (< 5 m s⁻¹) and surface waves and swell were almost entirely absent. The BUOY system had ~0.5° of tilt. The only difference between the CFE and BUOY was the absence/presence of tidally fluctuating horizontal currents of up to 8 cm sec⁻¹. Only fragments of the marine snow particles were seen in the BUOY samples.

20

Figure 10. Comparison of Normalized Cumulative Attenuance – Size Distribution (NCA-SD) for images from CFE and BUOY-OSR systems, January 2013. Over 96% of the cumulative volume attenuance loading was in the >1000 μ m fraction in CE samples. The BUOY system images at 11:26 and 18:08 corresponded to times when current velocity above the mouth of the trap was 6 cm s⁻¹ and less than 2 cm s⁻¹, respectively. The cumulative distributions for the BUOY-OSR can be matched by climited at 10 fthe >1500 µm gived material from the CEE size distributions.

25 eliminating all of the >1500 μ m sized material from the CFE size distributions.

Figure 11. Comparison of Normalized Cumulative Volume Attenuance – Size Distributions (CVA-SD) from CFE deployments in May 2012 (red lines and symbols), January 2013 (blue), and March 2013 (green). Shown in <u>black</u> is the average CVA-SD from BUOY-OSR deployments. No CFE data from any of the three expeditions over lapped BUOY-OSR results from January 2013; in all cases larger particules user a physical by the CFE

30 2013; in all cases, larger particles were observed by the CFE.

Figure A1. Drawing depicting the configuration of CFE001 and detail of lighting/imaging elements of the Optical Sedimentation Recorder (OSR). During operation, the OSR uses a 3 axis accelerometer to monitor system tilt.

35 Figure A2. (A-C) Particle beam attenuation coefficient (c_p) profiles corresponding to NH1301 (Jan 2013), NH1304 (Mar. 2013), and NH1204 (May/June 2012) Expeditions. (D) POC calculated for the 0-20 m depth interval using c_p multiplied by 27. The x axis is in days relative to the start of each CFE deployment.

Figure A3. Left Panels: Means and standard deviations of chlorophyll a retrieved from 1 km spatially resolved merged MODIS
40 Aqua/Terra and VIIRS Sumoi products within 2 km radius of 33.73N, 119.50W (red triangles) and 33.69N 119.58W (blue

James Bishop 5/2/2016 10:14 PM Deleted: grey

James Bishop 4/29/2016 12:21 AN Formatted: Not Highlight

circles). Top to bottom graphs correspond to times of sampling. Dashed blue lines denote the periods that the ship was on station in the Santa Cruz Basin study area. The black horizontal line denotes duration of CFE deployments. Right panels show the fractional difference in mean chlorophyll between the two locations. There was no systematic difference between locations.

Figure A4. Photograph of the surface tethered BUOY-OSR as deployed in January 2013. Also shown is the mooring
 configuration used in this study. The seven small floats spaced 1 m apart are intended to minimize the effects of surface wave action on the up and down motion of the subsurface sediment trap. During the January 2013 deployment depth was 237 m (±0.25 m S.D.) – Maximum peak to trough vertical motion was 1 m.

10

Figure 1. Left. Carbon Flux Explorer showing the SOLO float and interfaced Optical Sedimentation Recorder, Top Right: Relief Map for Southern California Bight (Google Earth) centered on the Santa Cruz Basin (SCB) and our study area (shown in yellow). Also shown are locations of moored sediment trap deployments in the Santa Barbara Basin (SBB, Thunnel, 1998), and San Pedro Basin (SPB, Collins et al. 2011). Lower Right: Operations within study area. Surfacing positions of CFE001 during May 2012 (red triangles), Jan. 2013 (blue circles) and Mar. 2013 (Green box) -Also shown is track for the BUOY-OSR system in Jan. 2013; separation of CFE and BUOY-OSR was approximately 9 km Small symbols denote locations of CTD Casts. All motion was to the southwest. Unknown Formatted: Font:11 pt

James Bishop 4/29/2016 12:06 AM

Deleted: Figure 1.

James Bishop 4/29/2016 12:07 AM Formatted: Font:Not Bold

James Bishop 4/29/2016 12:07 AM

Formatted: Font:Not Bold

James Bishop 4/29/2016 12:07 AM Formatted: Font:Not Bold

James Bishop 4/29/2016 12:06 AM

Deleted: (A) Carbon Flux Explorer (CFE). (B) Santa Cruz Basin Study Area with bathymetry from Google Earth. The SCB is 1900 m deep and exchanges water with the open ocean at depths shallower than 1000 m. C) Detail of CFE surfacing positions (large symbols), CTD – optics casts (small symbols), and drift track of the BUOY-OSR system (blue line). CFE and BUOY-OSR deployments took near 33.75"N 119.5°W. CTD profiles were taken within several km of CFE and BUOY-OSR positions

Figure 2. Detail of Image Analysis Scheme for CFE and BUOY-OSR images. Images from NH1301 CFE001 deployment. (A) Raw Backlit (TRA) images are divided by the in-situ TRA lighting reference (Cross hair reticle has 1 mm sized dashes) to get transmittance. This image is transformed to units of attenuance. (B) Raw crossed polarized transmitted light [POL] image is first corrected for attenuation effects of optically dense particles by dividing by PCF, an empirically derived factor proportional to attenuance (ATN). The POL lighting REF is then subtracted and then divided by the TRA Lighting ref to yield the normalized POL image. The contrast and brightness of the final image is enhanced. (C). Raw Dark Field (DRK) images are normalized by dividing by the in-situ lighting reference intensity.

Figure 3. Magnified detail of a marine snow aggregate from the upper left hand quadrant after processing to normallized Dark Field (DRK) counts, Attenuance (ATN), and polarized (POL) counts. The scale of the aggregate is ~1 cm. Image resolution is better than 15 µm. An empty 600 µm Pteropod shell is at the bottom left of the POL image. The 10 bright spherical regions in the POL image are ~200 µm sized Foraminifera shells; haze in aggregates is likely due to coccoliths.

Figure 4. Results from CFE deployments in the Santa Cruz Basin. CFE depths shown in italics. (A) sample attenuance from transmitted light images. (B) polarized photon yield in parts per million from crosspolarized light images.

Figure 5. POC_{ATN} (A) and PIC_{POL} (B) flux systematics from CFE deployments in the Santa Cruz Basin. CFE depths are shown in italics in (A). Bars and small circles denote average flux over 1.8 and 0.3 hour intervals, respectively.

Pigure 6. A) Chilotophylira and POC from the MODIS Aqua satellite; lines are 5 point running means. Color scheme for May 2012 (red), Jan. 2013 (blue) and March 2013 (green). Open and filled graphics in A and B correspond to the week previous to and during each expedition. (B) From left to right successive bar pairs depict satellite chlorophyll and satellite POC. Crosshatched bars denote 0-20 m transmissometer POC. (C) POC_{ATM} flux for January (blue circles), March (green squares), and May (red triangles). The large filled symbols are a grand average for a particular depth, small open symbols denote 1.6 hour averaged data. <u>Dashed and solid blue lines</u> denote Martin curve fits with B=0.858 and 0.31, respectively, (D) PIC_{POL} flux profiles. Symbols as in C.

28

James Bishop 5/2/2016 9:33 PM Deleted: Figure 7.

Figure 7. Depth profiles of the ratio of PIC and POC flux proxys. Results show highest relative contribution of PIC occurred in 5 March 2013. January and May values near 500 m are comparable.

Figure 8. Time series of image attenuance from CFE and BUOY-OSR deployments in the Santa Cruz Basin during January 2013. Time axis is elapsed days since January 1 at 0000 UTC. In (A) and (B), the green lines depict the ATN time series. In (B), red symbols depict currents relative to the BUOY-OSR at a depth of 237 m that were calculated using ship broad band acoustic current profiler data (RDI Instruments, Ocean Surveyor 75; methods described by Hummon and Firing (2003) and 30 minute BUOY-OSR GPS positions. The current dropped briefly below 1 cm s⁻¹ and the rate of accumulation of particles in the BUOY-OSR increased. This moment was also the time when the first large aggregates were seen. Also shown in (B) in blue is the temperature time series from the logging CTD. The most obvious effect on particle collection rate by the BUOY-OSR was the relative IuI in currents near day 19.68. Images from samples depicted by * are compared in Figure 9. (C) Time series of CFE and BUOY-OSR tilt in degrees. CFE tilt averaged 3 degrees, whereas BUOY-OSR tilt averaged 0.5 degrees.

Figure 9. Comparison of representative Dark Field Images of accumulated settling particles over a 2.5 hour period from an Optical Sedimentation Recorder (OSR) on the Carbon Flux Explorer (CFE, upper left) vs. that from a surface BUOY-tethered OSR (upper right) during NH1301 (Jan. 2013). The CFE was observing sedimentation at 320 m (image 21:14 UTC). The BUOY-OSR was deployed at 237 m (image 18:07 UTC). Each image is 2.5 cm across and pixel resolution is 14 μ m. The Large fluffy 0.5 – 1.0 cm sized marine snow aggregates were almost completely missed by the BUOY OSR. Winds were near calm (< 5 m s⁻¹) and surface waves and swell were almost entirely absent. The BUOY system had ~0.5° of tilt. The only difference between the CFE and BUOY was the absence/presence of tidally fluctuating horizontal currents of up to 8 cm sec⁻¹. Only fragments of the marine snow particles were seen in the BUOY samples.

Figure 10. Comparison of Normalized Cumulative Attenuance – Size Distribution for images from CFE and BUOY-OSR systems, January 2013. Over 96% of the cumulative volume attenuance loading was in the >1000 μ m fraction in CE samples. The BUOY system images at 11:26 and 18:08 corresponded to times when current velocity above the mouth of the trap was 6 cm s⁻¹ and less than 2 cm s⁻¹, respectively. The cumulative distributions for the BUOY-OSR can be matched by eliminating all of the >1500 μ m sized material from the CFE size distributions.

10

5

Figure 11. Comparison of Normalized Cumulative Volume Attenuance – Size Distributions (CVA-SD) from CFE deployments in May 2012 (red lines and symbols), January 2013 (blue), and March 2013 (green). Shown in <u>black is the average CVA-SD from</u> BUOY-OSR deployments. No CFE data from any of the three expeditions over lapped BUOY-OSR results from January 2013; in all cases, larger particles were observed by the CFE.

James Bishop 5/2/2016 10:11 PM Deleted: grey

15

Figure A1. Drawing depicting the configuration of CFE001 and detail of lighting/imaging elements of the Optical Sedimentation Recorder (OSR). During operation, the OSR uses a 3 axis accelerometer to monitor system tilt.

Figure A2, (A-C) Particle beam attenuation coefficient (c_p) profiles corresponding to NH1301 (Jan 2013), NH1304 (Mar. 2013), and NH1204 (May/June 2012) Expeditions. (D) POC calculated for the 0-20 m depth interval using c_p multiplied by 27. The x axis is in days relative to the start of each CFE deployment.

James Bishop 5/2/2016 1:16 PM Deleted: 2

Figure A3. Left Panels: Means and standard deviations of chlorophyll a retrieved from 1 km spatially resolved merged MODIS Aqua/Terra and VIIRS Sumoi products within 2 km radius of 33.73N, 119.50W (red triangles) and 33.69N 119.58W (blue circles). Top to bottom graphs correspond to times of sampling. Dashed blue lines denote the periods that the ship was on station in the Santa Cruz Basin study area. The black horizontal line denotes duration of CFE deployments. Right panels show the fractional difference in mean chlorophyll between the two locations. There was no systematic difference between locations.

Figure A4, Photograph of the surface tethered BUOY-OSR as deployed in January 2013. Also shown is the mooring configuration used in this study. The seven small floats spaced 1 m apart are intended to minimize the effects of surface wave action on the up and down motion of the subsurface sediment trap. During the January 2013 deployment depth was 237 m (±0.25 m S.D.) – Maximum peak to trough vertical motion was 1 m.

James Bishop 5/2/2016 1:21 PM Deleted: 3